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Abstract 
We present a tool for the user-controlled creation of 
multiresolution meshes. Several automatic mesh reduction 
methods of high quality have been presented in the past, but 
most of these methods are not able to identify mesh regions 
of high semantic or functional importance, for example the 
face of a character model or areas deformed by animation. 
To address this problem, we present a method allowing a 
user to provide importance weights for mesh regions to 
control the automatic simplification process. To demonstrate 
the usefulness of this approach in a real world setting, a 
Maya plug-in is presented that lets the user create multi-
resolution meshes with importance weighting interactively 
and intuitively. The user simply paints the importance of 
regions directly onto the mesh. All user input like weighting, 
resolution change, etc. are applied in real-time to give 
instant feedback during the modeling process. The plug-in 
can handle arbitrary meshes with attributes (vertex colors, 
textures, normals) and attribute discontinuities. This work 
aims to show that an integrated editing approach with full 
support for mesh attributes, which lets the user exercise 
selective control over the simplification rather than 
operating fully automatic, can bring multiresolution meshes 
out of academic environments into widespread use in the 
digital content creation industry. 
 
ACM Category and Subject Descriptor: I.3.5 
[Computer Graphics] Computational Geometry and Object 
Modeling - hierarchy and geometric transformations 
Additional Keywords: level of detail, model 
simplification, multiresolution modeling 

1 Introduction 
Complex polygonal meshes are ubiquitous in computer 
graphics. However, real-time applications such as video 
games executing on constrained hardware such as game 
consoles, or applications that stream geometric models from 
CDROM [19] or over the network, require control over the 
size and complexity of polygonal geometry. 

One way to get a low polygon approximation of a large 
model is to create it manually [15]. An artist using a 
modeling package can either manually reduce the original 
high polygon model, or create a representation with fewer 
polygons from scratch. However, with growing complexity 
of the original model, reduction by hand becomes an 
unfeasible approach. To simplify complex models quickly, 
automatic mesh reduction tools are needed. This need was 
recognized long ago, and this field has received a lot of 
research attention in the past [2][12]. 

Most reduction algorithms share the common goal of 
completely automatic reduction of the input meshes. Auto-
matic reduction is doubtlessly necessary and appropriate for 
large models from real-world sources, such as laser ranging, 
surveying, medical scans, FEM etc. These data sets are 
typically extremely large, and must be reduced to moderate 
size with fully automated methods and guaranteed error 
bounds.   

 
Figure 1: The „cow“ model reduced to 20% - eyes and nose 
marked as important 

In contrast, the digital entertainment industry uses inter-
active modeling tools to create data sets of moderate com-
plexity, which must then be reduced to really small sizes (a 
few thousand triangles). In this domain, fine-grained artistic 
control is required. 

This is especially true if parts of the mesh are of high 
semantic or functional importance. For example, consider 
the potential semantic and functional meaning for a model of 
a human. The face may be of higher visual importance than 
the body; we would like to spend more polygons for the face 
than for the rest of the geometry. Depending on the appli-
cation, other regions of the mesh may have similar high 
semantic importance to the user. If the human model is 
animated through e.g., skeletal animation, functional im-
portance arises. We would like to keep more polygons for 
the deformable regions around the joints than for the rigid 
mesh areas.  

To some extent, visual importance can be deduced from 
the geometry. Several simplification algorithms take mesh 
borders and (attribute) discontinuities into account because 
these features are of high perceptual importance. But ulti-
mately, only the creator knows the intended use of a model, 
therefore completely automatic reduction can never infer all 
the constraints of a model.  

However, we believe that it is possible to get the best of 
both worlds: To enable user-controlled creation of multi-
resolution meshes, we introduce a weighted error metric that 
lets the user specify the importance of mesh regions. The 
reduction of the mesh still happens automatically, but the 
user input is taken into account: Regions of high importance 
are reduced less, while regions of low importance are 
reduced more aggressively. By embedding importance 
weights into the simplification metric, the user gains a new 
level of control over the model reduction process, enabling 
users to create simplified models of higher functional, 
semantic and visual quality.  
Another goal of our work was to create a real-world tool that 
is easy to use. Our solution was therefore implemented as a 



Maya plug-in in order to offer an integrated workflow to the 
user. Using Maya’s rich Artisan interface, a user can specify 
the importance of a mesh region, by directly painting 
weights onto the mesh. While editing, all user input is 
always applied in real-time to give instant feedback during 
the modeling process. The plug-in handles arbitrary meshes 
with arbitrary mesh attributes (vertex colors, textures, 
normals) and attribute discontinuities. 

In the remainder of this paper, we review related work 
(section 2), discuss the quadric error metric (section 3), 
followed by the user interface (section 4), and show some 
results (section 5). 
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Figure 2: (left) Contraction of the edge (vi, vj) into a 
single vertex vi´, (right) Wedge-based representation - 
each wedge is associated with a separate quadric 

2 Related Work 
A large number of methods for automatic surface simpli-
fication have been presented in the past. For a recent review 
of different simplification schemes, see [2][12]. The 
approach presented here falls into the category of iterative 
decimation through edge contraction (Figure 2, left). A key 
problem in selecting an edge or vertex pair contraction is a 
suitable error metric, e.g., [6][16][9]. 

Garland’s and Heckbert’s quadric error metric [11] is of 
particular relevance for us because we based our imple-
mentation on the QSlim software package [13]. Later, in 
[10] Garland and Heckbert extended their quadric metric to 
handle surface attributes (texture coordinates, normals, etc.) 
when reducing the geometry. For a mesh with m scalar 
attributes, they generalized their distance-to-plane metric in 
R3 to a distance-to-hyperplane metric in R3+m. Hoppe pre-
sented an improved attribute-preserving quadric metric in 
[5]. He maintains the attribute-to-plane correspondence in 
R3, resulting in lower storage needs, better results and higher 
performance. He also demonstrated that attribute wedges are 
an effective way to handle attribute discontinuities. In [4] he 
showed how to further speed up the evaluation of the metric. 
Again, Hoppe’s work [5] is of particular relevance for us, 
because we combined his improved attribute handling metric 
and the concept of attribute wedges with the original QSlim 
source code for our implementation. 

There has not been as much research in the field of user-
controlled mesh reduction as on automatic mesh reduction. 
SemiSimp [3] by Li and Watson aims at improving the 
quality of aggressively simplified models. They mainly 
focus on changing the order of the simplification hierarchy 
to change the detail distribution over the models surface. 
While doing so, the partial ordering of the simplification 
hierarchy has to be carefully maintained, which restricts the 
editing operations. SemiSimp also allows simple geometric 
manipulations like re-positioning of vertices and segmented 
simplification to further improve the final results.  

A similar tool, Zeta [14], from Cignoni, Montani, 
Rocchini and Scopigno also allows the user to manipulate 
the initial order of the simplification steps. Their approach 
does not rely on a simplification hierarchy but on what they 
call a hyper-triangulation model. In effect, they can reorder 
the simplification operations more freely. However, the 
hyper-triangulation model only supports 2-manifold meshes. 
Zeta does not allow propagated geometry manipulation or 
segmented simplification. 

SemiSimp and Zeta use local manual editing operations 
for mesh editing. Especially with SemiSimp the user has to 
work on the extremely fine-grained level of manipulating 
single vertices and edges. We chose a different approach: By 
embedding additional information into the model, our 
simplification still executes automatically, while taking 
semantic and functional importance into account. With 
respect to exercising control over the mesh on a higher level 
than simple vertices, our approach has some aspects in 
common with recent work on remeshing [17]. 
Also, both SemiSimp and Zeta are demonstrated as stand-
alone tools. In contrast, our approach for user-controlled 
creation of multiresolution meshes has been implemented as 
a Maya plug-in, offering improved workflow integration. 

3 Weighted Error Metric 

3.1 Basic Quadric Metric 
Our approach is based on iterative edge contractions using 
Garland’s and Heckbert’s quadric error metric [11], in-
cluding Hoppe’s enhancements for appearance attributes to 
the quadric metric [5]. As a foundation for the weighted 
error metric, we will briefly discuss the basics of quadric-
based mesh simplification. The original model gets reduced 
by repeatedly applying edge contractions. Here is an outline 
of the basic algorithm: 

1. Extract all edges from the source model 
2. Assign a cost of contraction to each edge  
3. Put the edges pairs in a priority queue, keyed on cost 

of contraction 
4. Repeat until the desired approximation is reached: 

a. Remove the edge (i, j) with the least cost from 
the queue 

b. Contract this edge into the single vertex vi´, 
update the mesh neighborhood 

c. Update costs for all edges connected to vi or vj  
The quadric error metric is used to calculate both the cost of 
a contraction and the target position of the unified vertex vi´. 
It is a compact representation of the planes associated with a 
vertex through a 4x4 matrix. Because the matrix is 
symmetric, 10 floating-point values are sufficient to store a 
quadric.  

A quadric Q is constructed from a plane. Q then 
represents that plane and Q(v) computes the squared 
distance of a vertex v to the plane represented by Q. 
Quadrics define addition in a natural way: Q1(v)+Q2(v) = 
(Q1+Q2)(v), where (Q1+Q2) is the component wise sum of 
the two quadrics. 

The quadric error metric was enhanced by Garland and 
Heckbert [10] and Hoppe [5] to handle appearance 
attributes. Because Hoppe’s method needs less storage space 
and produces results of higher quality, we chose to use his 
approach. He also handles attribute discontinuities like 
creases or discontinuous texture coordinates with attribute 
wedges (Figure 2, right) to represent the different attributes 
associated with a single vertex. For us, the utilization of 
attribute wedges was absolutely necessary, because pro-
duction tools like Maya impose no restriction on the usage 
of attributes in a mesh. When using attribute wedges, instead 
of associating a quadric with each vertex, a separate quadric 
for each attribute wedges of a vertex is kept. A vertex is 
partitioned into k ≥ 1 wedges, each wedge having its own 
attribute vector and its own quadric representing the faces 
together with the attribute vector of that wedge. Using 
wedge-based quadrics, the cost for contracting an edge (i, j), 
connecting the vertices vi and vj  into a single vertex vi´ is 
calculated as: 



• Compute the unified quadric Q´ representing all wedge 
quadrics associated with vi and vj  

• Compute the vertex position vi´ that minimizes Q’(vi´). 
This also computes the new attributes needed for all 
wedges. 

The value of Q’(vi´) is the cost of the contraction. For edge 
contractions involving attribute discontinuities the compu-
tation of the unified quadric Q´ is not trivial. One needs to 
choose which wedge/attribute pairs get unified to a single 
wedge during contraction and which wedges get removed 
from the target vertex [5].  

3.2 Weights 
It is obvious that the simplification process is controlled by 
the cost of the contractions (see section 3.1). Mesh areas 
with edges of low contraction cost will get reduced earlier 
and more heavily than areas with higher contraction cost, 
regardless of the semantic or functional importance of these 
areas. 

To give the user more control over the mesh simplifi-
cation, we let the user change the computed cost of the edge 
contractions. To achieve this, the cost of the contraction is 
weighted by a user-controlled value. 

For our discussion of the weighted error metric it is 
sufficient to know that the cost of contracting an edge (i, j) is 
computed through a quadric Q´. Q´ is the sum of all wedge 
quadrics associated with the vertices vi and vj. This com-
bined quadric Q´ is then used to choose the target vertex 
position vi´ of the edge contraction. The target vertex vi´ is 
assigned the position that minimizes Q´(vi´). The cost of the 
contraction, which we will call the geometric cost, costg, is 
the value of the unified quadric Q´ at the position vi´: 

costg = Qi´(vi´) 
The cost of a contraction is always positive (≥ 0). Assuming 
that there is a weight function ω(i, j) that defines a weight 
for an edge (i, j), the weighted cost, costw of a contraction is 
computed as: 

costw = ω(i, j) · costg = ω(i, j) · Q´(vi´) 

Recall that the mesh simplification is driven by the cost of 
the edge contractions. By using costw as our cost function, 
we can influence the order of the simplification operations 
through the weight function ω(i, j). 

An important property of the weighting scheme is that it 
does not change the geometric properties of a pair con-
traction. The target position of the unified vertex is left 
unchanged and still is only determined by the squared 
distance to the set of planes represented by the quadric. The 
weight only changes the order in which the contractions are 
applied, not the result of the contractions.  

To define the weight function ω(i, j), we have associated 
each vertex vi with a scalar weight value wi ≥ 0. By default 
all vertex weights are assigned the value 1. The two vertex 
weights wi, wj of a vertex pair are used to compute the pair’s 
weight based on a function of the user’s choice:  
ω(i, j) = average(wi, wj)  OR  min(wi, wj)  OR  max(wi, wj) 

The weight of a vertex is directly connected to the semantic 
or functional importance of the vertex to the user. To keep 
the geometric detail of important regions, the user can assign 
large weights (wi ≥ 1). This will increase the cost of 
contraction and thus cause the algorithm to first reduce other 
regions of the mesh. Regions of low interest can be assigned 
small weights in the range [0…1], which will make the 
contractions appear as low cost to the algorithm. A weight of 
1 does not change the cost of the contraction at all. 
If all weights wi are left at their default value of 1, i.e., 

costw = 1·costg = costg, 

then geometry is reduced as if there was no weighting at all.  

3.3 Combination of weights 
After the weight for a vertex pair has been defined, we also 
need to define the weight wi´ for the unified vertex vi´. It is 
generally not sufficient to use the same value as ω(i, j) for 
the weight wi´ of the unified vertex. Through an edge 
contraction, the two original vertices of the edge get con-
tracted to a single vertex. Repeated pair contraction oper-
ations produce a vertex hierarchy or vertex tree (cf. [7], [1], 
[8]).  and often are used for selective refinement of meshes. 
In a vertex hierarchy, each vertex represents all the vertices 
of its sub tree. The weight of a vertex in the hierarchy should 
thus represent the overall user importance of the combined 
mesh region represented through the sub-tree of the vertex.  

To compute the combined weight of a vertex vi´ in a ver-
tex hierarchy, we need to know the weights of the leaf 
vertices in the sub-tree of vi´. Let W be the set of these 
weights. Now we can compute the combined weight wi´ by 
selecting a function from: 
 

wi´= average(w ∈ W)  OR  min(w ∈ W)  OR  max(w ∈ W) 

We found that using the average weight produces the most 
intuitive results. Note that the average has to be computed 
from all leaf weights in the hierarchy. Therefore we cannot 
generally use the ω(i, j) results to compute wi´.  

Moreover, we cannot simply sum up all the weights of the 
leaf vertices to compute the weight of a root vertex, because 
it leads to a counter-intuitive importance-weight feedback. 
Whenever two regions of high importance are merged, the 
result becomes even more important and thus unattractive 
for further reduction. As a consequence, other regions get 
reduced too heavily. This is also a reason for us to keep the 
weights and the quadrics separated at all times. Although 
component-wise a priori multiplication of Q by w leads to 
identical results with respect to the error metric, it also 
implies the undesired importance aggregation described 
above. 

3.4 Enhanced deterministic metric 
In his QSlim [13] implementation of the quadric error 
metric, Garland used a heap keyed on the cost of contraction 
to sort the edge contractions. We found that ordering to be 
not strict enough for an interactive multiresolution-editing 
environment.  

When editing a multiresolution mesh it is common that 
the user switches the resolution back and forth very often. 
For example: if a user is interested in a simplified model 
representation with a face count of roughly 75% of the 
original model, the user will frequently switch between the 
representations in the range of 70% to 80% while editing. 
This causes edges to get removed and re-inserted into the 
heap frequently. If any two edges have the same cost of 
contraction, their relative order in the heap is undetermined. 
Their ordering would depend on the heap implementation 
and the insertion order. It is not an uncommon situation, that 
edges have the same cost of contraction. For example, on a 
tessellated plane, all edges have the same cost of con-
traction. In such a situation, a simplified model represen-
tation of a fixed resolution would not only depend on the 
user’s editing operations but also on the order in which he 
applied them. Simply increasing the resolution and de-
creasing it again can produce a slightly different model 
representation.  
This is clearly unintuitive and disturbing for a user, who will 
expect the simplification process to be deterministic. There-
fore we used a stricter ordering for our implementation. 



Figure 3: The Artisan interface is used to paint the importance of mesh regions on the “Hagen” model. The regions
around the two eyes on the source mesh in front are marked simultaneously as important using the reflection tool. The
destination mesh in the back is reduced to 15%. Note the preserved detail around the eyes. 

Instead of only using the cost of contraction as our ordering 
criteria, we also include the vertex indices of the edge in the 
ordering. If two edges have the same contraction cost, the 
edge with the smaller indices will be placed in front of the 
other edge. This stricter ordering fulfills our need for 
deterministic simplification. 

4 User Interface 
To demonstrate the usefulness of our approach in a real 
world setting, a Maya plug-in is presented that lets the user 
create multiresolution meshes with importance weighting 
interactively and intuitively. To start an editing session, the 
user needs to create a multiresolution mesh from an existing 
polygonal mesh. The selected source mesh, with all texture 
coordinates, normals and vertex colors, is cloned into a 
multiresolution mesh, which is inserted into the scene. For 
the editing session, the original source mesh is also left in 
the scene as a reference.  

Once a multiresolution mesh has been created, the user 
can start editing it. There are several global parameters that 
control the overall reduction process (See Figure 4).  

• Resolution: The resolution attribute controls how many 
faces are used in the approximation of the source 
model. The resolution is specified in percent.  

• Vertex Placement: The vertex placement policy 
controls the position of the resulting vertex from a pair 
contraction. There are three vertex placement policies 
to choose from: optimal, end-or-mid and endpoint. 
Optimal placement chooses a position that minimizes 
the error of the contraction. While this produces the 
best results, it introduces new vertex positions, which 
can sometimes be problematic for interactive 
applications. For applications which only want to use 
the original vertices, endpoint placement is best suited. 

In this case a vertex pair always gets contracted into 
one of the original vertices. 

• Attribute Controls: Here the user can control the 
influence of mesh attributes on the reduction process. 
There are three attribute groups: texture coordinates, 
normals and vertex colors. Each group can be 
individually switched on and off. The importance of 
each group can be specified through a scalar weight 
factor (lambda terms from [5]). 

• Weight Controls: The weight controls let the user 
choose how the combined, hierarchical vertex weights 
and the edge weights are calculated. The user can 
choose between min, max and average. 

All attribute changes are immediately applied to the 
multiresolution mesh. Because these attributes are global 
parameters of the reduction, changing them means that the 
simplified model has to be completely recalculated. Usually 
this takes only little time, because the quadric error metric 
evaluates very quickly and models for interactive appli-
cations like games or simulations usually do not exceed a 
few thousand polygons. 

All attributes are fully accessible by Maya’s dependency 
graph. This means that they can be set, read, connected and 
animated like any other attribute in Maya. For example one 
could connect a distance-to-camera evaluator to the 
resolution attribute to achieve dynamic LOD.  

The attributes presented so far were global parameters for 
the mesh reduction. To specify the importance of certain 
mesh regions, the user simply paints the weights reflecting 
the functional or semantic importance directly onto the 
source mesh. See Figure 3 for an image of the mesh painting 
in action. The painted weights are displayed color coded 
directly on the source mesh. The mesh painting is done 
through Maya’s Artisan Interface. Through the use of 
Artisan, the user has access to a well-known, intuitive and 
feature-rich user environment (see Figure 6).  



 
Figure 4: Global Parameters of a multiresolution mesh 

 

 
Figure 5: Areas that will get reduced soon are 
highlighted. The user can choose between two different 
visualization methods: Lines (left) or Faces (right). 
Either the line width or the face transparency is used to 
visualize reduction order.  

 
Artisan features different paint operations (add, replace, 
scale, smooth), brush styles and sizes, global flood fill oper-
ation, mirrored painting on symmetric meshes, support for 
pressure sensitive input devices etc. An embedded graphical 
user interface allows the user to easily and freely configure 
the value range to paint the weights and has numerous 
display control options.  

All weights painted onto the source mesh are immediately 
reflected in the reduced version of the mesh. Consider the 
editing situation depicted in Figure 3: the “Hagen” model 
has been reduced to 15% but the user wants more geometric 
detail around the eyes. By painting the importance of the 
eyes onto the source mesh, the geometric detail around the 
eyes increases as the user paints. However, the overall 
amount of geometry is left unchanged. The model stays 
reduced to 15%, these 15% are just redistributed in a 
different way. 

Again, this means that the mesh reduction has to be 
recalculated, to take the new weights into account. Currently 
this happens after each brush-stroke. We are aware that for 
some models this can be a bit slow. Alternatively, a delayed 
update feature allows to freely paint the weights, while the 
mesh is not recalculated until the corresponding command 
(hot key release) is given. 

 
Figure 6: Artisan user interface for importance painting 

 
When editing a mesh by painting weights onto it, it is often 
useful to know in advance which regions of the mesh will 
get reduced next. Usually, the user wants to increase the 
weights for important regions as long as they are about to 
get simplified immediately. To provide the user with this 
information we have implemented a visualization node that 
highlights mesh areas about to get simplified (Figure 5). The 
visualization simply highlights the top n (adjustable by the 
user) edge contractions from the simplification heap.  

The user can choose between two visualization modes: 
lines and faces. Like all other features, the highlighting is 
also always updated in real-time while the user paints. In 
effect, this gives the user the possibility to paint weights to 
remove the reduction highlights from important areas. The 
user can continue painting until all the important regions are 
not highlighted any more and less important regions are 
highlighted for reduction instead. 

5 Results  
In this section we present some examples of user-controlled 
creation of multiresolution meshes. All examples were 
produced using our Maya plug-in. Figure 7 shows the 
“Fighter” model reduced to 15% (1044 triangles). The 
model was simplified completely automatic. Texture 
coordinates where taken into account in the simplified 
model. Although the result is not bad, there are some 
problematic areas:  
 



 
Figure 7: The “Fighter” model reduced to 15% (1044 
triangles) with no weighting. 

 
The fingers start to degenerate to single triangles, a crack in 
the trousers around the ankles has appeared, the ears are 
gone, the braids are shortened and the face has lost a lot of 
its original detail. Figure 8 illustrates the kind of improve-
ment achievable through the use of importance weighting. 
Figure 9 shows the original model and the applied weights: 
the face and the ears are marked as most important. The 
hands are also marked as important regions, but the applied 
weights are smaller than for the face. The smallest weights 
have been applied to some parts of the trousers and the 
braids. Through the weighting we could improve the quality 
of the face, the fingers and the braids and also removed the 
crack in the trousers. Notice that the models detail has not 
been increased; the available polygon budget has only been 
redistributed differently.  

For animated meshes, the deformable regions usually are 
of special functional importance. Deformed regions tend to 
get stretched and squashed during animation and therefore 
often need to keep more geometric detail than the 
surrounding rigid regions. See Figure 10 for an illustration 
of the problem. Here the “Fighter” model was first simpli-
fied and then deformed using a skeleton. The resulting de-
formation could be improved by weighting the vertices in 
the elbow region.  

Figure 11 shows a different scenario: Here the skeleton 
was not bound to the simplified model but to the source 
model instead. While the model is animated a simplified 
mesh (reduced to 50%) is created for each animation frame. 
Because the simplification algorithm uses the already 
deformed source model as input, the deformed regions get 
reduced already taking the deformation into account. In 
effect, each simplified model for each frame is slightly 
different. In such a case we do not need to weight areas to 
account for functional importance. However, one still might 
want to weight other regions of high semantic importance. 

Finally, Figure 12 is another example of functional 
importance. Facial animation is applied to the “Old Man” 
model. Without proper weighting, the simplified version 
folds over in several places and the mouth region is distorted 
heavily. Even though the weights where applied very 
quickly and uniformly the resulting simplified model is 
much more faithful to the original: the mouth is deformed 
properly and the folded mesh areas are gone. (Figure 12, 
right).  

 
Figure 8: The “Fighter” model reduced to 15% (1044 
triangles), using importance weighting  

 

 
Figure 9: The fighter model at full resolution (6952 tri-
angles). The inset shows the visualization of the 
importance weights. The face and the ears are marked as 
being more important as the hands. 

6 Summary and future work 
We have described a weighted quadric error metric for the 
user-controlled creation of multiresolution meshes. The user 
is enabled to control the simplification of a mesh by 
interactively painting the importance of regions as weights 
onto the mesh. This enables the user to improve the quality 
of multiresolution meshes by taking semantic and functional 
importance into account. While we used weights with a 
quadric cost metric, user-controlled weighting should be 
easily applicable to all mesh simplification algorithms that 
use iterative simplification driven by a cost metric. For 
algorithms that do not produce vertex hierarchies, the 



combined weights need to be calculated differently, but a 
modified algorithm for that is straight forward. 

To demonstrate the usefulness of our approach in a real 
world setting, a Maya plug-in for the creation and 
manipulation of multiresolution meshes was presented. The 
plug-in can operate on arbitrary (non manifold) meshes with 
arbitrary mesh attributes. To release our work as a Maya 
plug-in is both an attempt to bridge the gap between 
academic research and real-world applications and also an 
attempt to provide a highly useful tool. By embedding a 
method for user-controlled polygonal simplification into an 
existing modeling package, both the polygonal reduction 
tool and the modeling package are enhanced, and the user 
gains most. 

In future work, it would be desirable to further enhance 
the user interface and to add the possibility of the following 
editing features: (weighted) positional constraints for 
vertices, enabling the user to lock the position of certain 
vertices and a possibility to exclude certain vertices and 
edges from the reduction; this could be desirable for borders 
connecting to other meshes. Also, we would like to include 
an interface for selecting arbitrary vertex pairs, which also 
should be contracted during simplification.   

We would also like to investigate methods for automatic 
or assisted creation of importance weights: For animated 
meshes, it should be possible to deduce higher weights for 
deformable regions by either sampling the animated mesh or 
by analyzing the weights for skeletal animation. Another 
possibility for automatic weight generation may be to 
analyze the local texture density of a mesh. Models created 
by hand tend to have higher texel density in areas of high 
importance. 
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8 Software 
The presented Maya plug-in and its source code is available 
for download from http://www.pojar.net/ProgressiveMesh/   
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Original model, the elbow is de-
formed through skeletal animation. 

Reduced to 15%, the deformed 
elbow is stretched and squashed. 

Reduced to 15%, the elbow is 
improved through weights. 

 
Figure 10: An example of functional importance. Weighted deformable regions can improve the quality of animated meshes. 
 
 
 
 

 
Figure 11: The simplified model was created from an animated source model. Note how each animation frame got simplified 
slightly different, adapting to the deformation of the elbow. No weights where used. 
 
 
 
 

 
Original model at rest pose, the inset 
shows the importance weights 

Reduced to 50%, deformed through 
facial animation. No weights applied 

Reduced to 50%, deformed through 
facial animation. Weights applied 
.

Figure 12: The „Old Man“ model reduced to 50%, deformed through facial animation. The middle image shows the results 
without importance weighting, the right image shows the improved results after importance weights have been applied. 


