$\forall x \in X, \quad \exists y \leq \epsilon$
$+ - = ! / ( ) [ ] < > | ' :$
$\cos (2\theta) = \cos^2 \theta - \sin^2 \theta$
$\lim_{x \to \infty} \exp(-x) = 0$
$a \bmod b$
$x \equiv a \pmod b$
$\alpha, A, \beta, B, \gamma, \Gamma, \pi, \Pi, \phi, \varphi, \Phi$
$k_{n+1} = n^2 + k_n^2 - k_{n-1}$
$n^{22}$
$f(n) = n^5 + 4n^2 + 2 |_{n=17}$
$\frac{n!}{k!(n-k)!} = \binom{n}{k}$
$\frac{\frac{1}{x}+\frac{1}{y}}{y-z}$
$^3/_7$
$\newcommand{\rfrac}[2]{{}^{#1}\!/_{#2}} \rfrac{3}{7}$
$$\frac{ \begin{array}{rr} \left( x_1 x_2 \right)\\ \times \left( x'_1 x'_2 \right) \end{array} }{ \left( y_1y_2y_3y_4 \right) }$$
$\sqrt{\frac{a}{b}}$
$x=\sqrt{y^2*2}$
$\sqrt[n]{1+x+x^2+x^3+\ldots}$
$\sum_{i=1}^{10} t_i$
$\int_0^\infty \mathrm{e}^{-x}\,\mathrm{d}x$
$$\sum \prod \coprod \bigoplus \bigotimes \bigodot \bigcup \bigcap \biguplus \bigsqcup \bigvee \bigwedge \int \oint \iint \iiint \iiiint \idotsint$$
$\sum_{\substack{ 0<i<m \\ 0<j<n }} P(i,j)$
$\int\limits_a^b$
$ ( a ), [ b ], \{ c \}, |d|, \|e\|, \langle f \rangle, \lfloor g \rfloor, \lceil h \rceil, \ulcorner i \urcorner $
$\left(\frac{x^2}{y^3}\right)$
$P\left(A=2\middle|\frac{A^2}{B}>4\right)$
$\left\{\frac{x^2}{y^3}\right\}$
$\left.\frac{x^3}{3}\right|_0^1$
$( \big( \Big( \bigg( \Bigg($
$ \big\{ \Big\{ \bigg\{ \Bigg\{$
$\frac{\mathrm d}{\mathrm d x} \left( k g(x) \right)$
$\frac{\mathrm d}{\mathrm d x} \big( k g(x) \big)$
$x \in ]-1,1[$
$x \in {]-1,1[}$
$x \in {]{-1},1[}$
$\begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix}$
$\begin{matrix} -1 & 3 \\ 2 & -4 \end{matrix} = \begin{matrix*}[r] -1 & 3 \\ 2 & -4 \end{matrix*}$
$ \left( \begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right) $
$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$
$ \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} $
$ \begin{Vmatrix} 1 & 2 \\ 3 & 4 \end{Vmatrix} $
$ M = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & 0 \\[0.3em] \frac{5}{6} & 0 & \frac{1}{6} \\[0.3em] 0 & \frac{5}{6} & \frac{1}{6} \end{bmatrix}$
$ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} $ $ \begin{Bmatrix} 1 & 2 \\ 3 & 4 \end{Bmatrix} $
$M = \bordermatrix{~ & x & y \cr A & 1 & 0 \cr B & 0 & 1 \cr}$
A matrix in text must be set smaller: $\bigl(\begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)$ to not increase leading in a portion of text.
$ A=\begin{cases} 1 & 2 \\ 3 & 4 \end{cases} $
1 | 2 | 3 |
4 | 5 | 6 |
7 | 8 | 9 |
1 | 2 | 3 |
4 | 5 | 6 |
7 | 8 | 9 |
1 | 2 | 3 |
4 | 5 | 6 |
7 | 8 | 9 |
1 | 2 | 3 |
---|---|---|
4 | 5 | 6 |
7 | 8 | 9 |
7C0 | hexadecimal |
3700 | octal |
11111000000 | binary |
1984 | decimal |
$50 apples \times 100 apples = lots of apples^2$
$50 \text{apples} \times 100 \text{apples} = \text{lots of apples}^2$
$50 \text{ apples} \times 100 \text{ apples} = \text{lots of apples}^2$
$50 \textrm{ apples} \times 100 \textbf{ apples} = \textit{lots of apples}^2$
$a' a'\, a'' a''\, \hat{a} \hat{a} \, \bar{a} \bar{a} \, \grave{a} \grave{a} \, \acute{a} \acute{a} \, \dot{a} \dot{a} \, \ddot{a} \ddot{a} \, \not{a} \not{a} \, \mathring{a} \overrightarrow{AB} \overrightarrow{AB} \, \overleftarrow{AB} \overleftarrow{AB} \, a''' a'''\, a'''' a''''\, \overline{aaa} \overline{aaa} \, \check{a} \check{a} \, \breve{a} \breve{a} \, \vec{a} \vec{a} \, \dddot{a}[3] \ddddot{a}[3] \widehat{AAA} \widehat{AAA} \, \widetilde{AAA} \widetilde{AAA} \tilde{a} \underline{a}$
$\pm$
$\mp$
$x=\frac{1+y}{1+2z^2}$
$$x=\frac{1+y}{1+2z^2}$$
$\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}$
$$\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}$$
$\displaystyle \int_0^\infty e^{-x^2} dx$
$$\frac{1}{\displaystyle 1+ \frac{1}{\displaystyle 2+ \frac{1}{\displaystyle 3+x}}} + \frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}$$
$\sqrt{2} \sin x$, $\sqrt{2}\,\sin x$
$\int \!\! \int f(x,y)\,\mathrm{d}x\mathrm{d}y$
$$\mathop{\int \!\!\! \int}_{\mathbf{x} \in \mathbf{R}^2} \! \langle \mathbf{x},\mathbf{y}\rangle \,d\mathbf{x}$$
$$x_1 = a+b \mbox{ and } x_2=a-b$$
$$x_1 = a+b ~~\mbox{and}~~ x_2=a-b$$
$$\begin{aligned} y &=& x^4 + 4 \nonumber \\ &=& (x^2+2)^2 -4x^2 \nonumber \\ &\le&(x^2+2)^2\end{aligned}$$
$$\begin{aligned} e^x &\approx& 1+x+x^2/2! + \\ && {}+x^3/3! + x^4/4! + \\ && + x^5/5!\end{aligned}$$
$$\begin{aligned} \lefteqn{w+x+y+z = }\\ && a+b+c+d+e+\\ && {}+f+g+h+i\end{aligned}$$
$$\begin{aligned} x&=&\sin \alpha = \cos \beta\\ &=&\cos(\pi-\alpha) = \sin(\pi-\beta)\end{aligned}$$
$$\begin{aligned} x&=&\sin \alpha = \cos \beta\\ &=&\cos(\pi-\alpha) = \sin(\pi-\beta) \end{aligned}$$
$$\setlength\arraycolsep{0.1em} \begin{array}{rclcl} x&=&\sin \alpha &=& \cos \beta\\ &=&\cos(\pi-\alpha) &=& \sin(\pi-\beta) \end{array}$$
$$x=y+3 \label{eq:xdef}$$
In equation ([eq:xdef]) we saw $\dots$
... $$x=y+3 \label{eq:xdef}$$ In equation ([eq:xdef]) we saw $\dots$
$$\begin{array}{l} \displaystyle \int 1 = x + C\\ \displaystyle \int x = \frac{x^2}{2} + C \\ \displaystyle \int x^2 = \frac{x^3}{3} + C \end{array} \label{eq:xdef}$$
$$\begin{aligned} && \int 1 = x + C \nonumber\\ && \int x = \frac{x^2}{2} + C \nonumber\\ && \int x^2 = \frac{x^3}{3} + C \label{eq:xdef}\end{aligned}$$
$\left] 0,1 \right[ + \lceil x \rfloor - \langle x,y\rangle$
$${n+1\choose k} = {n\choose k} + {n \choose k-1}$$
$$ |x| = {
rl -x &
x &
. $$$$ F(x,y)=0 |
ccc F”xx & F”xy & F’x
F”yx & F”yy
& F’y
F’x & F’y & 0
| = 0 $$$$ $$
$\hat{x}$, $\check{x}$, $\tilde{a}$, $\bar{\ell}$, $\dot{y}$, $\ddot{y}$, $\vec{z_1}$, $\vec{z}_1$
$\hat{T} = \widehat{T}$, $\bar{T} = \overline{T}$, $\widetilde{xyz}$, $\overbrace{a+\underbrace{b+c}+d}$
$$\overline{\overline{a}^2+\underline{xy} +\overline{\overline{z}}}$$
$$\underbrace{a+\overbrace{b+\cdots}^{{}=t}+z} _{\mathrm{total}} ~~ a+{\overbrace{b+\cdots}}^{126}+z$$
$ \mathcal{abcdefghijklmnopqrstuvwxyz} $ $ \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} $ $ \mathsc{abcdefghijklmnopqrstuvwxyz} $ $ \mathsc{ABCDEFGHIJKLMNOPQRSTUVWXYZ} $ $ \mathbb{abcdefghijklmnopqrstuvwxyz} $ $ \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} $ $ \mathfrak{abcdefghijklmnopqrstuvwxyz} $ $ \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} $