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Abstract

This paper addresses the problem of extracting an alpha matte from a sin-
gle photograph given a user-defined trimap. A crucial part of this task is the
color modeling step where for each pixel the optimal alpha value, together
with its confidence, is estimated individually. This forms the data term of the
objective function. It comprises of three steps: (i) Collecting a candidate set
of potential fore- and background colors; (ii) Selecting high confidence sam-
ples from the candidate set; (iii) Estimating a sparsity prior to remove blurry
artifacts. We introduce novel ideas for each of these steps and show that our
approach considerably improves over state-of-the-art techniques by evaluat-
ing it on a large database of 54 images with known high-quality ground truth.

1 Introduction

Matting is the problem of extracting a foreground object from an image C, which is a
mixture of foreground (F) and background (B) colors linearly interpolated by an opacity
value α:

C = αF +(1−α)B . (1)

Matting is a severely under-constrained problem and thus user interaction is necessary to
solve it. In this paper we concentrate on user interaction in the form of a “tight” trimap,
which is a partitioning of the image into foreground, background and an unknown region
where mixed pixels, i.e. opacity values 0 < α < 1, can occur. We define a trimap as tight
if the unknown region is relatively small with respect to the fore- and background regions.
This is in contrast to scribble-based inputs (e.g. [11, 4]) which can be considered as a very
sparse trimap.

Some trimap-based methods are pure “propagation-based” approaches, such as [5,
6, 3, 10]. This means that the given fore- and background regions define the boundary
conditions (1 and 0) for the objective function and the α values in the unknown region are
then interpolated. The propagation (or smoothness) term of the objective function models
that either the fore- and background colors or the α values are smooth within a local
neighborhood. For instance [5] has shown that it is possible to retrieve the true solution
for α if the fore- and background colors in each (small) local window fit a line in color
space.

Propagation-based approaches ignore the color distribution within the known fore-
and background regions of the user-defined trimap. It has been shown, e.g. [12, 7], that
modeling these distributions considerably improves propagation-based methods. This is
known as the color modeling step where for each pixel the optimal α value is estimated in-
dividually and ideally associated with a confidence value. Many different color modeling



approaches have been suggested in the past, e.g. [9, 12, 2]. Most of them (e.g. [9, 2]) build
locally varying parametric fits to the color distributions, e.g. Gaussian Mixture Models, in
order to reason about the colors in the unknown region. Recently, the Robust Matting ap-
proach of Wang and Cohen [12] has shown to considerably outperform them by robustly
selecting a few candidate samples. They argue that fitting a low-dimensional parametric
model is a poor approximation and does unnecessarily interpolate colors. More details
are given in sec. 2.1.

The result of the color modeling is a pixel-wise estimate for α which then forms
the data term of the objective function. The probably best state-of-the-art approaches
[12, 7] utilize the propagation term of [5] together with the data term of [12] as objective
function. The objective function is quadric in the unknown α and hence solving the
corresponding sparse linear system gives the exact solution. A final important aspect of
the top performing matting methods is the use of a sparsity prior, i.e. to encourage most
pixels in the unknown region to take a value which is exactly either 0 or 1. This prior is
true for most real world scenes [13]. Various forms of sparsity priors have been suggested
in the past, which we will outline in sec. 2.3.

In this work we concentrate on improving the color modeling step. In particular we
build on the work of Wang and Cohen [12] and split the task into three successive steps:
a) collecting candidate samples, b) selecting the best candidate sample and c) selecting
pixels on which to impose the sparsity prior. We will present new contributions in all
three steps. In order to verify that our contributions are indeed important, we conducted a
large number of experiments. In particular we used a recently introduced dataset [7], with
know ground truth mattes, and compared our method with state-of-the-art techniques on
54 images and three different trimap types.

The paper is organized as follows. Our approach and new contributions are introduced
in sec. 2. Experiments are discussed in sec. 3, and we conclude the paper in sec. 4.

2 Our Color Modeling Approach
We first give an overview of the three different steps of our color modeling approach.
Then each step is explained in detail in sec. 2.1 - 2.3.

Consider the image crop in fig. 1(a). The user-defined trimap is indicated by the red

Figure 1: Overview of our approach (detailed description in text). From an image crop
(a), color samples are collected which give rise to an independently estimated α at each
pixel (b), together with its confidence (c). This forms the data term of our objective
function. Combined with the smoothness term of [5], it produces the final α matte (e).



(foreground F ) and blue (background B) regions. For each pixel in the unknown region
of the trimap, e.g. the green pixel in fig. 1(a), we first gather a number of potential fore-
and background color samples from the F and B regions. This is done by spreading the
samples along the boundaries of the respective regions (red dots indicate background and
yellow dots foreground samples). While previous approaches (e.g. [12]) spread samples
in an area which is spatially close to the green pixel, we use a spreading area which is
close in geodesic space (see sec. 2.1).

In the next step a confidence value is computed for all pairs of sampled fore- and back-
ground colors. The confidence value reflects for instance how well the sampled colors
explain the mixed color of the pixel under consideration (i.e. fit eq. 1). A novel paradigm
to compute the confidence value is presented in sec. 2.2. Then the corresponding sample
pair with the highest confidence is selected for each pixel. Fig. 1(b) shows the α values,
computed from the selected sample pairs using eq. 1, with corresponding confidence in
fig. 1(c). This forms one part of the data term of the objective function. The other part is
a novel sparsity prior (see sec. 2.3), which has the effect of pushing α values towards 0
and 1 (not visualized here).

The confidence values in fig. 1(c) are used to weight the data term with respect to
the smoothness term of our objective function.1 We use the smoothness term of [5] and
minimize the objective function by solving a sparse set of linear equations yielding a final
α matte shown in fig. 1(d). As we can see the propagation removed many artifacts of the
pixel-wise α in fig. 1(b). The composition onto a white background (fig. 1(e)) shows that
fine details of the hair are nicely preserved. (Here we use the approach of [5] to obtain
the foreground colors.)

2.1 Collecting Candidate Samples

Let I be the set of all pixels in an image and let the subsets F , B and U define the
foreground, background and unknown region of the user-defined trimap. For each pixel
z ∈ U we first collect a sample set of N (we use N = 30 in our implementation) fore-
and background color samples: Fz = (F1

z , ...,Fi
z , ...,F

N
z ), Bz = (B1

z , ...,B
j
z , ...,BN

z ), from
F and B, that are used to reason about the true fore- and background color at pixel z.2

(For simplicity, we omit the subscript z if only a single pixel is under consideration).
Most previous approaches (e.g. [2, 9, 11]) reason about the fore- and background

colors by fitting a parametric model to the sampled colors, e.g. a Gaussian Mixture Model.
The key insight of [12] was that better results can be achieved by simply selecting the
“best” samples (defined in sec. 2.2) from the initial set. This circumvents a potential
poor fit of the low-dimensional parametric model, and adds robustness with respect to
outliers. The basic assumption of this approach is that the true fore- and background
colors for every mixed pixel are present in the sample sets. This makes the collection of
color samples a crucial part of the overall algorithm. In order to capture a large variation
of colors, [12] suggested to spread the samples along the boundaries of the known fore-
and background regions. Let us improve on this idea.

Consider the image crop in fig. 2(a) of a buckle which is part of a soft toy. Assume

1Note, an important difference to [12] is that they use a constant weighting of the data term, and in their
approach the confidence value is used to build the sparsity prior (see details in sec. 2.3). We show experimentally
that our approach is superior.

2We use calligraphic letters for a set of pixels, e.g. I , and bold letters for a set of color samples, e.g. F.



we aim to find a good set of foreground colors F for the green pixel in fig. 2(b). A
simple approach to gather F is to start spreading the sample set from the spatially nearest
pixel in F (bold blue dot in fig. 2(b)).3 Unfortunately, this sample set includes only
bright colors, which do not match the true foreground color (i.e. dark brown) of the pixel
marked in green. Thus, this simple sampling scheme results in a poor estimation of α (fig.
2(d)). Our basic idea is to improve the search for a suitable foreground color by assuming
the foreground object to be spatially connected, which is a reasonable assumption and
in practice true for trimap-based matting. The yellow path in fig. 2(b) goes from the
unknown pixel (marked green) to the bold yellow dot in F and passes solely through
pixels that are very likely to belong to the foreground object. The bold yellow dot defines
a better starting point to spread the foreground samples, since the sample set comprises of
colors that are similar to the true foreground color. This motivates to spread the sample
set from the closest pixel in geodesic distance (fig. 2(c)), which respects the shape of the
foreground object and gives better results (fig. 2(e)).

Figure 2: Collecting color samples (detailed description in text). Collecting foreground
candidate samples for image crop (a). (b) Trimap with “geodesic samples” in yellow
and spatial samples in blue. Result with spatial samples (d) is worse than with geodesic
samples (e).

The geodesic distance is defined as the shortest path on a weighted graph from a
given pixel z ∈ U to the foreground region F of the trimap. Similar to [1] we choose
the weights of the edges to be the gradient of the likelihood, i.e. ∇PF(z). The likelihood
PF(z), for a pixel z to belong to F , is obtained from the user-provided trimap as in [1]:

PF(z) = p(Cz|θGF)/(p(Cz|θGF)+ p(Cz|θGB)) , (2)

where p(Cz|θGF) is the probability that the color C, at pixel z, was generated by the
Gaussian Mixture Model θGF of the foreground, which is constructed from all pixels in
F . The probability p(Cz|θGB) is computed likewise. Note that the color models could
also be built from local windows placed over the unknown region (similar to [2, 9]).
However, in practice we did not find a window-based approach to improve results.

To collect candidate samples for the background we use the same approach as [12],
i.e. spread the sample set from the spatially nearest pixel in B. This is based on the fact
that the background region is usually not connected since occluded by some foreground
parts. We have seen experimentally that the performance can be improved even further
by combining the “geodesic samples” with the samples of the spatially closest area. The

3We believe that a similar method was used in [12] although no details were given in the respective paper.



reason could be that the likelihood PF mask is not necessarily always perfect. Hence
we gather in total 60 samples in each set Bz and Fz for every pixel z. In practice about
40− 50% of our “geodesic samples” contribute to the optimal pair of samples, which
however boosts considerably the performance (see sec. 3).

2.2 Selecting Best Candidate Samples

Given a candidate set of fore- and background colors (Fz and Bz) for each pixel z ∈ U
with color Cz, we first introduce our approach to compute the confidence for all sample
pairs (Fi

z , Bj
z) from this initial set. Confident sample pairs should meet three criteria: (i)

Fi and Bj should fit the linear model in eq. 1 (i.e. the mixed color C should lie on the line
segment, in color space, spanned by Fi and Bj); (ii) Fi and Bj should be widely separated
in color space, to allow for a robust estimation of α using eq. 1; (iii) Assuming most
pixels in the image are likely to be either 0 or 1, Fi or Bj are likely to be close in color
space to C.

Following [12], we encode (i) and (ii) in a distance ratio R(Fi,Bj) as

R(Fi,Bj) =

∥∥C− (
α̂Fi +(1− α̂)Bj

)∥∥
‖Fi −Bj‖ , (3)

where α̂ is estimated by projecting the observed color C onto the line spanned by the
sample pair (Fi, Bj) under consideration. The numerator in eq. 3 represents the linear fit
to the model, i.e. criterion (i), while the denominator encodes the robustness criterion (ii).

For criterion (iii) we define two weights w(Fi) and w(Bj) that encourage individual
fore- and background samples to be similar to color C, which is different to [12] 4:

w(Fi) = exp
{
−maxi

(∥∥Fi −C
∥∥2

)
/
∥∥Fi −C

∥∥2
}

w(Bj) = exp
{
−max j

(∥∥Bj −C
∥∥2

)
/
∥∥Bj −C

∥∥2
}

.
(4)

Finally, a confidence value f for each sample pair is computed, as in [12], by combin-
ing eqs. 3 and 4 to

f (Fi,Bj) = exp

{
−R(Fi,Bj)2 ·w(Fi) ·w(Bj)

σ2

}
, (5)

where σ is set to 0.1. The confidence f (Fi,Bj) is large if the distance ratio R is low or
if the samples Fi or Bj are similar to color C. Note that this is in contrast to [12] where
samples close to the mixed color C are assigned to a low confidence value and biased
towards 0 or 1 in a later step (see sec. 2.3).

We compute then a confidence value for each sample pair and the pair with the high-
est confidence f̂ = maxi, j

(
f
(
Fi,Bj

))
is selected to obtain a pixel-wise estimation of α ,

denoted as α̂ . Note, in practice it is computationally too expensive to evaluate eq. 5 for all
3600 pairs of samples. Therefore we prune each sample set from 60 to 15 using criterion
(iii), i.e. obtain only 225 sample pairs. This gave virtually no drop in performance. Fig.
3(a) shows the pixel-wise computed matte obtained with the method of [12], which con-
tains considerable blurry artifacts and is of lower quality than the initial matte obtained
with our approach (fig. 3(c)).

4In [12] two weights were defined that avoid samples which are similar to color C.



Figure 3: Sample selection (detailed description in text). The pixel-wise estimation of
α , based on the selected color samples, has less artifacts with our approach (c) than with
[12] (a). Given the data term, our final α matte (d) is close to the ground truth (e), while
many artifacts remain in the final α matte of [12] (b).

In the next step, we use the pixel-wise estimated α̂ and its confidence f̂ to define the
data term. We use a quadratic function with the minimum at α̂ , as in [7]. The data term is
then combined with a smoothness term. In contrast to [12] we use the matting laplacian
L of [5] as a smoothness term, as in [7]. The complete objective function J is

J(α) = αT Lα +(α − α̂)T Γ̂(α − α̂) (6)

where α and α̂ are treated as column vectors. The diagonal matrix Γ̂ defines the rela-
tive weighting between data and smoothness term. In contrast to [12], where a constant
weighting of the data term is used (i.e. setting the diagonal elements of Γ̂ to a constant),
we regulate each diagonal element γ̂z of Γ̂ with the confidence f̂z of the pixel-wise esti-
mated α̂z: γ̂z = γ · f̂z, where γ is a constant (we use 10−3 in our implementation). Thus
our approach relies more on propagation in low confidence regions. Since we work with
high resolution images (6 Mpix on average) we solve the sparse linear system in a multi-
resolution framework to obtain α mattes within reasonable time and memory, as in [7].

Figs. 3(b) and (d) compare the final result of [12] to our approach. We see that our
result is close to the ground truth (fig. 3(e)), while considerable blurry artifacts remain in
the result of [12], e.g. visible in the middle of fig. 3(b).

2.3 Sparsity Prior

There are several reasons that a pixel is a “mixed pixel”, i.e. has an opacity value of
0 < α < 1 : Motion blur, optical blur, sub-pixel structure, transparency, or discretization
artifacts. Thus, apart from real transparencies (e.g. window glass), mixed pixels are very
likely to occur only at the boundary of an object and most parts of the image belong to ei-
ther exclusively fore- or background [13]. It has been shown (e.g. [6, 7, 12]) that a sparsity
prior that pushes α towards 0 or 1 improves results. In [6, 7] the prior was independent
of the color modeling process, i.e. not based on the color distribution of the user-defined
trimap. For instance [6] selected those “matting components” which contained most 0 and
1 values. In [7] an MRF-based prior was suggested with a dependency between neighbor-
ing pixels. It was shown to considerably improve on the pixel-wise prior of [6] and nicely
preserves the gradient of the α matte, e.g. in fuzzy regions. Since we also use a pixel-



Figure 4: Sparsity prior (detailed description in text). Our sparsity prior (f) is employed
in regions close in geodesic distance (e) to a sharp boundary (c). Our result (g) is close to
the ground truth (h) and better than the result (b) obtained with sparsity prior (a) of [12].

wise sparsity prior we show experimentally (see sec. 3) that the best results are eventually
achieved by incorporating the gradient preserving prior of [7] into our framework.

As [12], our prior is based on the color modeling process and applied to each pixel
independently. There are two challenging tasks when constructing the prior: (i) To decide
which pixels should be biased towards 0 or 1 and (ii) in which direction to push α (i.e.
to either 0 or 1). In [12] those pixels z with low confidence f̂z were biased towards 0 or
1. The value of α̂z decided in which way to push it, e.g. α̂ < 0.5 towards 0. Fig. 4(a)
illustrates the sparsity prior of [12] on a crop of an image showing thin hairs (left) close
to a solid object (right). Here red, blue pixels are biased towards 1 and 0, respectively (the
actual intensity of the push is not visualized). Fig. 4(b) depicts the final α matte of [12]
using this prior. It failed to recover the opaque solid object on the right side of the image.

We derive now a different sparsity prior which is based on a hard segmentation. We
first divide the the image I into two subsets F ′ (hard segmentation foreground) and
B′ (hard segmentation background) using GrabCut [8], where F ⊂ F ′ and B ⊂ B′.
Note, we modified GrabCut slightly by using the color likelihood PF defined in eq. 2. It
has been shown in [7] that the transition from F ′ to B′ of GrabCut [8] often coincides
with a physically sharp boundary5 (e.g. dark object in fig. 5(a)). Mixed pixels usually

5A failure case is a sharp, internal boundary, e.g. a texture edge.



occur only in a small band around such a boundary and pixels adjacent to this small band
are very likely to be fully 0 or 1 themselves (and thus should be pushed towards 0 or
1). To compute these “sparse pixels”, we first predict whether a boundary pixel belongs
indeed to a sharp boundary using the approach [7]. Fig. 4(c) shows an example where the
sharp boundary pixels are marked in yellow. Roughly speaking, in [7] they first apply the
purely propagation-based method of [5]6 in a small band7 around the hard segmentation.
The resulting α matte is then classified based on certain criteria (see [7] for details). In
a final step we estimate the “sparse pixels” which are close to the sharp boundary in
terms of geodesic distance. To achieve this we first compute the gradient of the color
likelihood ∇PF defined in eq. 2 (see fig. 4(d)) and then the shortest geodesic distance to
a sharp boundary pixel (yellow in fig. 4(e)). We apply the sparsity prior to those “sparse
pixels” where the distance is smaller than a given threshold ε (we set ε = 30 in our
implementation). The hard segmentation is then used to decide in which way to push
those pixels, e.g. pixels in F ′ are pushed towards 1. Formally, in our objective function
(eq. 6) the value of α̂ of a “sparse pixel” z is set to 0 or 1 respectively, and f̂z is fixed
to 1. Fig. 4(f) shows an example of our sparsity prior. The final α matte is depicted in



We compared our algorithm to the trimap-based matting methods of [5, 12] and [7]
which have been shown to be the best performing methods for this task [6, 12, 7]. For
[12, 7] we used the authors implementation. However we were not able to get [5] working
for high resolution images, hence we adapted our method to simulate [5] by setting Γ̂ to a
0 matrix in eq. 6. Qualitative results are shown in fig. 5 (and fig. 3, 4). (See also supple-
mentary material). Quantitative results are summarized in table 2 which shows that our
algorithm performs considerably better than others. Interestingly, the pure propagation-
based method of [5] performs better than [12] for larger trimaps. This was also noted in
[12] and is likely due to the fact that those color samples which are spatially far away
from the mixed pixel are no longer reliable. Our approach does cope with this limitation
better since it relies more heavily on propagation when the confidence of the color sam-
ples is low. In [7] a new gradient preserving sparsity prior was employed to improve on
the approach of [12]. Indeed, in our experiments the matting approach of [7] performed
better than [12] but is still inferior to our system. Since the gradient preserving prior of [7]
complements our sparsity prior (our prior is quite effective close to sharp object bound-
aries, while the prior of [7] can eliminate artifacts also in fuzzy regions), we incorporated
it into our final system which gives the best error rates for all three trimaps.

Figure 5: Qualitative comparison. (a) Crop of an image including the trimap, showing
part of a solid toy (right) and a fuzzy broom (left). (b) The hard segmentation boundary,
obtained using [8], was classified into physically sharp (red) and soft (green) parts (Image
was darkened for better visibility). (c) The result of [5] shows large semi-transparent
regions, especially in the bkd. (d) The approach of [7] can also not recover the bkd and
even emphasizes some artifacts. (e) Result of [12]. (f) Result of our approach, where most
artifacts in the bkd are eliminated. The broom was recovered well, even so parts of it were
misclassified as sharp boundary (see (b)). (g) Integrating the gradient preserving sparsity
prior of [7] into our objective function, slightly improves the result which is now close to
the ground truth (h). (c-g) The error (SAD) for every method is shown in brackets.



Method Small Medium Large
Wang et al. ’07 [12] 63.1 (149.0) 74.1 (155.0) 98.1 (181.8)
Levin et al. ’06 [5] 62.5 (138.1) 67.5 (158.9) 77.8 (204.0)

Rhemann et al. ’08 [7] 59.8 (131.2) 70.5 (151.7) 95.1 (197.6)
Ours 51.9 (116.7) 57.1 (129.6) 68.2 (153.4)

Ours + Rhemann et al. ’08 51.8 (115.8) 55.9 (126.3) 63.4 (141.2)

Table 2: Comparison of trimap-based matting methods. The error (SAD) averaged
over all (worst 25%) test images for three trimaps. (Error rates divided by 1000).

4 Conclusions
In this paper we have presented a new approach to color modeling which predicts a pixel-
wise α matte and forms the data term of our objective function. We exploited information
from global color models to find better local estimates for the true fore- and background
colors for a mixed pixel. A novel sparsity prior was presented that pushes α towards 0 or
1 in the vicinity of solid foreground boundaries. By using a large set of ground truth α
mattes we showed that our approach considerably improves on state-of-the-art methods.
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