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Introduction: Visual Information Retrieval 

This section gives a general introduction to the field of Visual Information Retrieval (VIR). 
The first subsection defines the scope of research and discusses examples for research 
questions. Then, potential application areas are described and problem areas are sketched. In 
the following subsection, VIR is structured by identifying and listing the major research areas. 
Borders to neighbouring research disciplines are drawn by a brief discussion of the techniques 
employed. Finally, a short outlook on likely future developments is given and the author's 
research contributions, i.e. the papers collected in this thesis, are fit in the sketched 
categorisation of research areas. 

What is Visual Information Retrieval? 

Despite hundreds of research papers per year (see [21] for publication statistics of recent 
years) and detailed surveys of the field (e.g. [42, 17, 69, 58, 74, 52]), hardly any definitions of 
the term "Visual Information Retrieval" do exist. This may have to do with the distinction of 
Content-based Image Retrieval (CBIR) and Content-based Video Retrieval (CBVR) that has 
been made in the early years of VIR (approximately early 1990s). Though applying mostly 
the same models and algorithms (apart from media data extraction and media visualisation), 
systems have either been intended for CBIR or CBVR application purposes. Developments 
starting in the mid 1990s (especially, the work on the visual part of the MPEG-7 standard [57, 
15, 56]) have led to the fusion of CBIR and CBVR in Visual Information Retrieval. 

For our purpose we define Visual Information Retrieval as all computer-based methods that try 

to approximate the similarity of visually perceivable media objects exclusively from their visual 

content. This definition contains several elements: Firstly, it limits VIR to computer-based 

methods. This is unavoidable, since – as we will see in the discussion of applied methods below – 

VIR methods can only be applied on media objects that consist of digitised, uniform, computable 

media chunks. Visually perceivable media are mainly image and video. The distinction of visual 

media into temporal and non-temporal originates from the different methods (and levels of 

sophistication) required for manipulation in the early years of VIR. Nowadays, almost any CBIR 

technology can also be applied on video content, and vice versa. Of course, for some media-
related methods this interchangeability would not make sense (e.g. application of high resolution 

image analysis on video frames, or application of time-dependent algorithms on images). 
Thirdly, the definition defines similarity measurement as the major focus of VIR. VIR is neither 

pattern recognition nor computer vision: The purpose is not to match or recognise selected 

elements of media content. Quite the contrary, VIR aims at judging the general similarity of 

media objects. Furthermore, following this definition similarity measurement should 

exclusively be based on the visual content of media objects. Text metadata (e.g. media-inserted 

tags, annotations) and other media types (e.g. audio streams of video clips) are not of primary 

concern. Although, they might increase precision in various practical applications. 

This definition of Visual Information Retrieval opens the door for a wide range of 
applications. Before we discuss some of the most important application areas in the next 
subsection, we briefly describe in more detail similarity perception and similarity 
measurement as the central topics of VIR. VIR methods intend to tackle a large number of 
similarity-related problems. Maybe the most basic question is, whether or not two images are 
similar. Figure 1 illustrates a very simple example. Are these images similar? From a 
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biological (content-aware) point of view they are not: A blue hare is more similar to a seal 
than to many other species, but they are not exactly related. Images of a brown European hare 
and a blue hare would be more similar. On the other hand, both animals are mammals, have a 
white fur and are positioned in a similar environment, a wintry scene. Even more radical, 
from an abstract (content-unaware) point of view one could argue that something almost 
elliptical bright white is located in the middle of something dark white. From this point of 
view, the images would be highly similar. 

This difference in similarity assessment comes from different levels of perception, for example 
caused by a different level of expertise or a different focus of judgement. For our purpose it is 
interesting to notice that almost any existing VIR system would judge these images as highly 
similar, because their content is similar in colours, textures and shapes of foreground objects. 

 
Figure 1: Are these images similar? 

Figure 2 shows a second example. Obviously, both images depict flowers, but flowers of 
different kinds, different colours and numbers. Still, many users would judge the images as 
similar, because they show just the flowers and no other objects or scene elements. For a VIR 
system, judging the flower images as similar is almost impossible, because they use different 
colours, textures and contours. (Moreover, recognition from low-level features of the image 
content as flowers is – without additional knowledge – hardly possible.) 

 
Figure 2: Are these images similar? 

 
Figure 3: Is the second or the third image more similar to the first? 

Figure 3 gives an example for a second type of question. While the first type of question is 
mostly relevant for recognition tasks, this question is important for the selection of those 
media objects from a collection that fit a given example. Again, following a "biological 
argumentation" the second image is more similar to the first image. On the other hand, the 
scene shown in the background of the first image is more similar to the scene in the third 
image. If a VIR system is used to decide this question, the decision depends on whether the 
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system is able to recognise the shapes of the two bears (if shape properties are taken into 
account in similarity comparison). Most current VIR systems would select the second 
candidate as more similar. 

A third type of question is illustrated in Figure 4. Here, the first two images are used to define an 
idea of content that can be described as "sunset in the desert". The question is, whether the third 

or the fourth image fits better to this idea. The third image shows a cactus in a desert. The fourth 
image shows sunset, but obviously, the foreground object is not a cactus. Again, it is almost 
impossible to select one image, since both can be argued for. A human selector would ask for 
further information ("Do you want sunsets or deserts?") to solve the problem. Most VIR 
systems would select the fourth image due to similar colours and similar shapes of the 
foreground objects. 

 
Figure 4: Which image fits better to the first two: the third or the fourth? 

These examples should provide the understanding that the imitation of human visual 
similarity perception is a non-trivial task. VIR is a research discipline that has to deal with a 
considerable amount of ambiguity. In consequence, results can almost always be argued for or 
against. This thesis discusses selected approaches to overcome the problem of ambiguity and 
to reduce the gap between human and machine perception. Final remark: Only image 
examples were given in this subsection (due to the usage of paper). Of course, the same types 
of questions could be asked for video objects/collections. 

Application areas 

The digital imaging revolution has lead to an enormous increase in size and numbers of image 
and video collections. Amateur photography is just one aspect of this development. Today, 
imaging is used for a wide range of applications in industry, medical services, libraries, etc. 
Moreover, most created visual media are archived in databases for reuse or later analysis. The 
growth of media databases goes hand in hand with an increasing demand for tools for media 
organisation and retrieval. Since photographing is much easier to perform than image analysis 
and annotation (additionally, human annotation is a faulty and high-cost process), tools for the 
retrieval of media objects with similar content to given examples are highly desirable.  

Since the beginning of VIR, systems have been developed for VIR applications in digital 
libraries. For example, the classic IBM QBIC system [39, 2] has been used to query 
collections of classic stamps [44] and collections of paintings [63]. Today, e.g., the Network 
of Excellence DELOS explores applications for VIR in digital libraries and develops new 
methods for general-purpose content-based retrieval [18].  

Medical databases are a second classic application area of VIR [47, 80]. VIR methods are, for 
example, used to retrieve X-ray images from databases (e.g. [54]). Thus, VIR can support the 
diagnosis process by identifying images showing anomalies that are similar to those of a 
particular patient. Here, the major strength of VIR over other technologies is that it does not 
make any assumptions on the characteristics of image features. 
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VIR is especially suitable for the recognition of trademark images [19, 76]. If registration is 
requested for a new trademark, it has to be verified that it is sufficiently unsimilar to existing 
trademarks. Since today, hundreds of thousands of trademarks are registered worldwide, this 
is an almost ideal application for VIR systems. Moreover, it is often required to give a 
measure for the unsimilarity of trademark images. As we will see below, any VIR system 
fulfils this requirement by expressing similarity in numerical terms.  

Face recognition is another application domain for VIR. Today, video cameras are widely 
used: for identification, for surveillance of public spaces, etc. For online use and exploitation 
of archived material, VIR technologies are often used for face recognition (e.g. [16, 78]). For 
example, the visual part of the MPEG-7 standard provides a set of content-based descriptions 
of faces [1]. Using these descriptions, faces should be reliably distinguishable. 

In recent years, several proposals have been made for VIR systems for news video analysis 
(e.g. [77, 55, 5]). Today, news video analysis is (in numbers of sold systems) the most 
successful application area of VIR. Temporal segmentation is used to identify shot boundaries 
of anchor person shots and news item clips. Text recognition from video is employed to 
extract headlines and context information. Furthermore, face recognition is used for speaker 
identification. The extracted metadata is fed into classification algorithms in order to organise 
news video clips in predefined groups. 

Inspection of metal surfaces is a new field of industrial application of VIR [45]. Since human-
based quality assurance has been replaced by computers and cameras, pattern recognition is 
used to identify defects in metal surfaces. If defects vary widely in shape and size, then VIR is 
– because of the generality of the approach – a more error-robust alternative.  

Finally, in prior work the author has developed a VIR system for retrieval of coats of arms 
images [11, 8]. Identification of coats of arms is a service scientific libraries offer to historians 
but also to interested private citizens. Identifying coats of arms (often from seal prints) helps 
to find out, when documents where written, by whom and in which historic context. Without a 
VIR system, a human expert has to go through ten thousands of images to identify the bearer 
of particular coats of arms. 

Problem areas 

The essential problem of Visual Information Retrieval is measuring visually perceivable 
similarity. This induces firstly, that properties of visual media have to be recognised by the 
VIR system and secondly, that the similarity of stimuli present/absent in two media objects 
has to be computed. In [21] we have laid down that human perception is based on three types 
of stimuli: generally perceived stimuli (also called low-level features, e.g. colour 
distributions), specifically perceived stimuli (recognised elements, e.g. foreground objects) 
and pseudo-random stimuli (e.g. perception habits related to upbringing and culture). 
Obviously, at most only the first two types of stimuli can be handled in VIR systems. 
Unfortunately, usually (e.g. for most types of media content), only generally perceived stimuli 
are available as basis for the similarity measurement process. Image understanding and object 
recognition are mostly beyond the capabilities of state of the art VIR algorithms. 

This shortcoming is the major reason why general-purpose VIR systems are rarely utilised 
today. Humans have high-level concepts in mind (at least specifically perceived stimuli, but 
due to lacking awareness of personal/cultural particularities most times also pseudo-random 
stimuli). The VIR system, on the other hand, does similarity measurement based on low-level 
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features. Apparently, in many cases such results must be unsatisfactory for human users. The 
discrepancy of high-level concepts and low-level features is regarded as the semantic gap [67, 
17]. Figures 5 and 6 illustrate the semantic gap in two examples. Figure 5 shows two images 
that are rated as highly similar by most VIR systems, even though their content is completely 
different (a parade in a stadium and flowers between rocks). The reason is simply, that both 
images contain structures with highly similar colours, textures and (because of the textures) 
hardly recognisable objects.  

 
Figure 5: Semantic gap: Two images that are usually rated as highly similar by VIR systems. 

The images in Figure 6 are rated as highly unsimilar by most VIR systems. Again, the reason 
is that VIR methods fail in recognising that both images show wildcats. Since the first one 
shows a lynx in snow (light background) while the second shows a tiger in a wood (dark 
background), they cannot be retrieved as biologically similar images. Moreover, the tiger is – 
because of its natural camouflage – hardly recognisable at all. 

 
Figure 6: Semantic gap: Two images that are usually rated as not similar by VIR systems. Are they similar? 

The semantic gap is mainly responsible for the rare successful utilisation of VIR. Still, a 
second problem plays an essential role in situations where specifically perceived stimuli can 
be identified. Polysemy denotes the phenomenon that one image can express various 
meanings. In fact, a single image can tell entire stories. Figure 7 illustrates examples for 
different levels of polysemy. The first image contains various meanings: Firstly, it shows 
runners running a race. From the background we can see that people are watching this race. 
The shirts of the runners inform us about the fact, that they run for different countries. So, 
championship is another meaning of the image. Further meanings may by Marathon, Olympic 
Games, etc. The second image contains less polysemy (mountain hike, sunny day, Alps, etc.) 
but still more than the third (flowers).  

 
Figure 7: Examples for polysemy. First image: high polysemy, second image: medium polysemy,  

third image: low polysemy. 

The problem of dealing with polysemy is to identify which interpretation is correct in a 
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particular retrieval situation. To complete this task successfully, additional information on the 
semantic background of the user's query would be required. Such information is – in terms of 
computer-understandable models – hardly expressible. Hence, polysemy is an almost 
unsolvable problem. Practically, querying modules of VIR systems are constructed with 
enough degrees of freedom for the user to express his particular view by refining queries into 
particular directions. 

A third, yet unsolved problem is modelling of similarity perception. Traditionally, the 
development of mathematical and computational models for the imitation of human (visual) 
similarity perception is a field of psychological research (e.g. [3, 51]). For example, in 
[71, 72] the authors falsify the commonly used model for visual similarity perception: The 
metric model assumes that properties of media objects (stimuli) are described by number 
vectors. These number vectors are interpreted as points in a vector space of Euclidean 
geometry. Since the metric axioms hold for such spaces, distance functions (e.g. Minkowski 
distances) can be utilised for measurement of unsimilarity. In the mentioned papers the 
authors show clearly that none of the metric axioms hold for human visual similarity 
perception. Instead, they propose a model based on predicate-like stimuli. This model has also 
been adapted for usage in VIR [67, 66]. Unfortunately, due to serious shortcomings in the 
model, it was not practically applicable [35]. In [23], we propose a similarity measurement 
model that allows the application of almost any similarity measure in VIR. Still, the similarity 
measure that would judge similarity as humans do, has not yet been identified. 

A last problem of VIR research that is practically highly relevant is querying performance. 
Producing fast results is a challenge for every system that has to deal with large datasets, 
especially retrieval systems. In VIR, an additional degree of complexity is that (often, very 
sophisticated and computationally complex) functions are used to judge the similarity of 
media objects. In the worst case, if a ranked list of media objects is required, these functions 
have to be applied to every pair of media objects. Already being a problem of second order 
complexity, usage of complex similarity measurement functions may lead to unbearably slow 
replies. To overcome this problem, various indexing structures, heuristics, etc. have been 
proposed. Quite often, the problem is postponed for the sake of research efforts to narrow the 
semantic gap. Still, for practical applications, bad performance is a serious problem. 

In the next subsection we sketch the components required to build a VIR system and 
technologies used to build these components. Especially, we indicate approaches to overcome 
the mentioned problem areas. 

Areas of research and employed technologies  

Overview 
Every VIR systems consists of two major components: a component for media access and the 
extraction of media descriptions (features), and a component for retrieval and similarity 
measurement. The development of novel technologies and improvement of existing 
approaches employed in these two areas are the two major focal points of VIR research. 
Furthermore, evaluation of feature extraction and retrieval methods, system design 
considerations (improvement of performance, usability, etc.) and development of application 
domain-specific solutions are other major research areas. 

Figure 8 illustrates the major elements of the feature extraction and retrieval components as 
well as their relationships. For media access, a middleware is required, because access of 
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image and video data require different software paradigms. Feature extraction algorithms 
extract media descriptions (stimuli, e.g. generally perceived stimuli) from the media objects 
and store them in a media description database. The user interacts with the VIR system 
through appropriate user interfaces. The user interfaces make use of the media access API to 
visualise media content. Retrieval operations are executed by a query engine that is based on 
retrieval models and procedures for the iterative refinement by the user's relevance feedback 
(e.g. kernel-based learning [59]). 

Media access API

Media
objects

Media
descriptions

Feature extraction
algorithms Query engine

Retrieval models Refinement
procedures

User interfacesMedia visualisation

Feature design
component

Retrieval component  
Figure 8: VIR system components. 

In the next subsections, we sketch the scientific scope of the first four mentioned areas of 
research. Moreover, we give a general introduction to the major technologies used. In this 
introduction, we concentrate on the big picture. Technically more detailed descriptions and 
discussions are given in the first paper of this thesis [21]. 

Media access and feature design 
Purpose of this research area is the development of algorithms for the extraction of 
meaningful descriptions of visual media objects. Traditionally, four groups of feature 
extraction algorithms (often, just "features") are distinguished: colour features, texture 
features, shape features and motion features (e.g. in [17, 58, 42]). Colour features extract 
colour properties (histograms of colour usage, dominant colours, etc.). Texture features try to 
characterise the textures occurring in images and video frames (regularity, direction, 
coarseness, etc.). Classic texture description methods are space to frequency transformations 
(e.g. Fourier transformation, Cosine transformation). Today, wavelets are used for texture 
extraction and description [73, 64, 56]. For VIR, especially Gabor wavelets have proven to 
imitate human texture perception adequately [65, 67]. Both, colour and texture features 
extract generally perceived media properties.  

Shape features aim at extracting objects from pixel data. Segmented objects are either described 

by their border (contour features) or by their area (region features, e.g. moments). For shape 
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extraction, computer vision techniques are used (e.g. edge detection, split and merge, region 

growing, Markov Random Fields, Hough transformation, etc. [70]). Generally, the goal for 

shape feature application is the extraction of specifically perceived properties. This requires an 

object recognition step after object description. Classifiers and graph-based methods are used for 

object recognition (e.g. Bayesian classifiers, Hidden Markov Models, etc. [7]). Unfortunately, 
object segmentation and object recognition are ill-posed problems. Therefore, the results for 

applications not narrowed to specific application domains are often unsatisfactory. 

The motion features commonly used in VIR are a heterogeneous set of methods for temporal 
description. Temporal segmentation based on frame differences is used to detect shot 
boundaries (e.g. [17, 43]). Frame difference maps (optical flow) are used to detect likely 
camera motions (e.g. in the MPEG-7 standard [46, 57]). Segmented objects are tracked 
through video clips to detect their motion trajectories. Eventually, the overall motion in a 
video clip can be described by summarising the motion vectors of compressed video data. 

It is obviously not to the advantage of VIR results that most features extract generally 
perceived properties. Today, additional sources of information and methods for semantic 
enrichment are used to narrow the semantic gap. For example, relevance feedback data and 
kernel-based learning methods are used to distinguish groups of media objects, information 
on the media content and classifiers are employed to cluster media objects, etc. In the next 
section we investigate, how similarity measurement grounded on these low-level and high-
level features can be performed. 

Similarity modelling and retrieval processes 
VIR systems are often distinguished by their querying paradigm. Frequently used methods are 
querying by example, querying by sketch and querying by a group of examples. Though being 
important for the user, for the actual retrieval process the selected querying paradigm makes 
no difference. Media comparison is always based on descriptions. If not available beforehand, 
descriptions have to be extracted during the querying process (e.g. of sketches).  
In most VIR systems, one of two retrieval processes is employed: retrieval based on the 
vector space model, or retrieval based on probabilistic inference. The vector space model 
assumes that media descriptions are points in a vector space and that this vector space has a 
geometry (mostly, Euclidean geometry) [41]. Then, unsimilarity of media objects can be 
measured as distance of media descriptions. The vector space model is successfully used in 
text information retrieval. Unfortunately, applied to VIR, two problems arise: Firstly, it is not 
clear what type of geometry (distance function) fits to human similarity perception (as pointed 
out above). Secondly often, differently extracted media descriptions require different distance 
measures. Selection of features for retrieval and usage of multiple distance measures are non-
trivial, still open research problems (see, for example, [32, 35]). 

Probabilistic inference models use media descriptions and a priori probabilities (computed 
from statistics, e.g. human relevance information) to compute differentiated a posteriori 
probabilities that can be used for retrieval [61, 41]. Employed models are mostly based on 
Bayesian networks. The major advantage of probabilistic inference over the vector space 
model is that it avoids the problem of explicitly defining similarity measures. The main 
disadvantages are that random sample data is required and that fast-learning relevance 
feedback algorithms are – compared to kernel-based learning – harder to define.  

Severe problems as the semantic gap and polysemy have lead to the insight that VIR retrieval 
should be an iterative process. Retrieval steps must be based on and directed by the user's 
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relevance feedback. Today, one refinement technology outperforms all other approaches: 
kernel-based learning with support vector machines (SVM) [79, 59]. The advantages of SVM 
are two-fold: easy application and high performance. SVM are easy to apply, since only two 
groups (relevant and irrelevant media objects) have to be distinguished by the user. Moreover, 
even though segmenting relevant and irrelevant samples is a problem of second order, thanks 
to kernel functions it can be solved in linear time. 

Evaluation 
Traditional VIR system evaluation is exclusively based on the quality of retrieval operations. 
Recall, precision and retrieval ranks are used to express retrieval appropriateness in numbers 
[17, 69, 41]. The obvious drawback of this approach is that retrieval components and media 
description components cannot be evaluated independently. Surprisingly, this problem has 
been almost ignored in VIR research. One reason may be that feature extraction algorithms 
are often seen as "something magical" that cannot be measured. We were the first to introduce 
an evaluation procedure exclusively for the assessment of media descriptions and applied it, 
for example, to the content-based MPEG-7 descriptors [20, 25, 28]. 

System design 
System design comprises various aspects relevant for the implementation of successful VIR 

prototypes: performance improvement, querying parallelisation, loose coupling of system 

components, etc. A number of different approaches have been suggested to increase the 

performance of VIR systems (bad performance is mostly caused by slow distance measures), e.g. 
indexing structures for feature vectors, and complexity reduction algorithms for descriptions. 
Proposed indexing structures include R-trees, S-trees, etc. [6, 40]. We outlined their major 

shortcomings for VIR application in [21]. Principal component analysis [53] and singular value 

decomposition [48] are frequently used complexity reduction methods. Query parallelisation 

can be achieved through peer to peer networking strategies [27]. Loose coupling of VIR 

components (e.g. user interfaces and query engines [31]) can be based on web services and XML 

communication protocols (e.g. the Multimedia Retrieval Markup Language [60]). 

Ongoing and future developments 

The basic approach to VIR has not changed much since the beginning: Feature extraction 
algorithms are still applied to compute media descriptions. Retrieval algorithms are still based 
on low-level descriptions, use query by example interfaces for query definition and relevance 
feedback for iterative refinement. Moreover, almost the same features are used for media 
description as ten years ago. The MPEG-7 standard norms colour histograms, wavelet-based 
texture descriptions, shape moments and motion descriptors. Major past achievements are the 
introduction of wavelets for space to frequency transformation, the application of kernel-
based learning for query refinement and the unified MPEG-7 framework for description 
extraction from image and video content. 

Currently ongoing activities that will continue and expand in the future are reducing the 
semantic gap by enrichment of low-level features (e.g. by latent semantic indexing [14]), 
definition of standardised environments for evaluation (e.g. TREC video [62], Benchathlon 
[4]), development of more sophisticated user interfaces for iterative retrieval, and attempts to 
assemble tailor-made prototypes for specific application domains (e.g. the Networks of 
Excellence DELOS [18] and SCHEMA [68]). For future progress in VIR, more powerful 
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methods for image understanding are required. Semantic enrichment of features improves 
querying results only up to a certain point. Really meaningful object features can only be 
thought of, if algorithms are able to understand (or at least classify) the presented content 
correctly. It is questionable if such advances can be achieved in the near future. 

Summarising the evolution of Visual Information Retrieval, it can be observed that the major 
research effort has shifted from the signal processing aspect (feature extraction) to the 
statistical data mining aspect (classification, recognition, etc.). Today, hardly any new 
features are introduced, but almost every day new methods for semantic understanding of 
media descriptions are proposed.  

My research contribution 

Selection of papers  
In my scientific work, together with my co-authors I have published papers in each of the five 
mentioned key areas of VIR research. In early work we have proposed novel feature 
extraction methods (both general-purpose and for specific application domains) [11, 8, 10]. 
Very soon, we started working on the query definition and similarity measurement problem 
(e.g. [13, 32, 9, 29]). Later, we proposed strategies for query acceleration [33, 30] and on VIR 
system design (e.g. [37, 31, 26, 12]). In [20, 25, 28] we proposed a novel method for 
evaluation of feature extraction methods.  

For this thesis, I have selected representative papers from each area of research. "A new 
perspective on Visual Information Retrieval" [21] provides a technical overview over the state 
of the art and gives indication on ongoing paradigm shifts in VIR. In "Semantic Feature 
Layers in Content-based Image Retrieval: Implementation of Human World Features" [34], a 
novel approach for the implementation of semantic feature classes is introduced and an 
example for symmetry-based features is given. The papers "Visual Similarity Measurement 
with the Feature Contrast Model" [35] and "Distance measures for MPEG-7-based retrieval" 
[23] introduce new ideas for similarity measurement: the first paper proposes an iterative 
retrieval paradigm and a model for the integration of a powerful psychological similarity 
model in VIR systems. The second paper generalises this idea and compares the most relevant 
similarity measures proposed over the last century for their performance.  

"Statistical analysis of MPEG-7 image descriptions" [28] introduces a novel method for visual 
descriptor evaluation and shows results for the content-based MPEG-7 descriptors. The three 
papers "An Experimental Study on the Performance of Visual Information Retrieval 
Similarity Models" [30], "VizIR - A Framework for Visual Information Retrieval" [36] and 
"A Data Management Layer for Visual Information Retrieval" [38] propose new system 
design ideas. The first suggests and compares query acceleration methods, the second 
introduces a framework for VIR system design, and the third describes a generic database 
layer for VIR. Finally, "A Video Browsing Application based on visual MPEG-7 Descriptors 
and Self-Organising Maps" [22] describes an application for video browsing by content.  

All ideas presented in these papers were developed by Horst Eidenberger. Furthermore, all 

papers were written and the evaluation work for all papers except [38] was exclusively 

performed by myself. In the following subsections we discuss the major contributions of these 

publications. 
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A new perspective on Visual Information Retrieval 
This paper summarises the state of the art of VIR research. It gives a brief overview over 
important survey publications in the field, summarises major past advances and describes 
selected ongoing activities that may have a significant impact on future VIR usage. The paper 
is organised in four research areas: feature design, similarity modelling, evaluation and 
system design. Additionally, important media-related aspects are described. The major 
contribution of the paper lies in integrating image- and video-related activities, in analysing 
the key components of the similarity modeling problem, and in proposing a software structure 
for integrated image and video VIR research. 

Semantic Feature Layers in Content-based Image Retrieval: Implementation of Human 
World Features  
This paper introduces a novel concept for hierarchical modelling of semantic feature classes. 
Features on higher levels are exclusively based on features on lower levels. As an example, a 
feature layer for the distinction of man-made from natural scenes is described. These features 
recognise "human world properties" from symmetry, geometric and harmonic properties in 
low-level descriptions. MPEG-7 descriptors are used for low-level description of media 
objects. For the evaluation, a new test dataset is introduced, XML descriptions are proposed 
for the high-level features and distance measures are defined. The evaluation results show that 
the proposed features succeed in understanding the origin of the media objects investigated. 

Visual Similarity Measurement with the Feature Contrast Model  
In this paper, we propose a model that allows to use the Feature Contrast Model (FCM, 
proposed for similarity measurement by Tversky [71]) in VIR systems. Following Tversky's 
argumentation, the FCM has properties that make it superior over other similarity models. 
Unfortunately, it is based on predicates, i.e. media objects are described by vectors of binary 
values. Obviously, this is not the case for most VIR features. Hence, we propose a set of 
statistical operators that allow for using the FCM with numerical features. Furthermore, the 
paper proposes a similarity measurement process that allows for using multiple features and 
distance measures in one query simultaneously. The evaluation results show that the proposed 
model is a successful similarity measure. 

Distance measures for MPEG-7-based retrieval  
This paper generalises the ideas of the last paper [35]. A unified model for the application of 
arbitrary distance measures in VIR systems is derived and evaluated. Based on this model, 
any predicate-based distance measure and any quantitative distance measure (e.g. Euclidean 
distance) can be used to measure distance between feature vectors. Analytical evaluation 
shows that the model is successful in transforming predicate-based distance measures in 
continuous measures and back (e.g. the equivalent Hamming distance and city block 
distance). Quantitative evaluation (based on MPEG-7 descriptors, test queries and recall and 
precision) reveals, which distance measures work well on which types of features. Eventually, 
quantitative analysis shows that some predicate-based measures clearly outperform traditional 
VIR distance measures (Minkowski distances, etc.). A revised and extended version of this 
paper is currently under review for journal publication (available from [24]). 
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Statistical analysis of MPEG-7 image descriptions  
In this paper we propose an evaluation procedure for feature data. For illustration, the 
proposed methods are applied on the visual MPEG-7 descriptors. The evaluation process is 
based on statistical procedures: among others, cluster analysis techniques (e.g. Self-
Organising Maps [49, 50]) and factor analysis methods (e.g. principal component analysis) 
are applied to identify redundancies, robustness and completeness of media descriptions. The 
main advantage of this method is that feature extraction methods are analysed by their 
outcome. Evaluation results are not biased by a retrieval system or human similarity 
judgement. Applying statistical analysis to the MPEG-7 descriptors revealed that some 
descriptors have serious shortcomings while others perform excellently for varying content. 

An Experimental Study on the Performance of Visual Information Retrieval Similarity 
Models  
This short paper compares the similarity measurement process proposed in [35] to the 
traditional approach (k-nearest neighbour querying) in terms of query execution performance. 
Every algorithm is employed in its default version and in one optimised version. The results 
show that the newly introduced querying paradigm clearly outperforms the traditional approach. 

VizIR - A Framework for Visual Information Retrieval  
VizIR is a software framework for the implementation of VIR systems. This paper describes 
the intention of the VizIR project as well as the architecture of the VizIR class framework. 
VizIR consists of two major components: a framework for querying (based on low-level 
features and the similarity measurement process proposed in [35, 23]) and a framework of 
user interface classes (based on a 3D interaction paradigm [31, 12]). VizIR makes use of the 
Multimedia Retrieval Markup Language [60] for loose coupling of query engines and user 
interfaces, and of the visual part of the MPEG-7 standard for media description. The VizIR 
project was also accepted for funding by the Austrian Scientific Research Fund (FWF) and is 
currently implemented at the Institute of Software Technology and Interactive Systems at the 
Vienna University of Technology. Furthermore, the VizIR group is involved in the SCHEMA 
and DELOS Networks of Excellence funded by the European Union [68, 18]. Project results 
are released under GNU General Public License and can be downloaded from [75]. 

A Data Management Layer for Visual Information Retrieval  
This short paper describes the data management layer of the VizIR software framework. This 
component can be use to serialise arbitrary hierarchies of media objects and content-based 
media descriptions to arbitrary databases. Design and implementation are based on modern 
software engineering paradigms. The implemented approach is highly efficient and flexible 
enough to store any type of media and media metadata (including audio and text). Like the 
entire VizIR framework it is freely available from [75]. 

A Video Browsing Application based on visual MPEG-7 Descriptors and 
Self-Organising Maps  
In this paper we propose an application of VIR technology for integrated browsing and 
retrieval of video data by content and time. Video content can be browsed hierarchically. 
Relationships between time and content can be defined and the user can switch between these 
two views at any point in time. Media representation is based on visual MPEG-7 features. 

13



Self-Organising Maps are used for similarity-based organisation of media descriptions. The 
implementation is based on web protocols and light-weight interaction. First evaluation 
results show that the proposed approach is successful in making the temporally bound content 
of video clips transparent in static user interfaces. 
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ABSTRACT 

Visual information retrieval (VIR) is a research area with more than 300 scientific publications every year. 
Technological progress lets surveys become out of date within a short duration. This paper intends to shortly describe 
selected important advances in VIR in recent years and point out promising directions for future research. A software 
architecture for visual media handling is proposed that allows handling image and video content equally. This allows to 
integrate both types of media in a singe system. The major advances in feature design are sketched and new methods for 
semantic enrichment are proposed. Guidelines are formulated for further development of feature extraction methods. 
The most relevant retrieval processes are described and an interactive method for visual mining is suggested that really 
puts "the human in the loop". For evaluation, the classic recall- and precision-based approach is discussed as well as a 
new procedure based on MPEG-7 and statistical data analysis. Finally, an "ideal" architecture for VIR systems is 
outlined. The selection of VIR topics is subjective and represents the author's point of view. The intention is to provide a 
short but substantial introduction to the field of VIR. 

Keywords: Visual Information Retrieval, Content-based Image Retrieval, Content-based Video Retrieval, Survey, 
Media Representation, Feature Extraction, Similarity Definition, Evaluation 

1. INTRODUCTION 

This is a paper on retrieval of visual objects (images and videos) by content. In the year 2003 it is probably one of more 
than thousand papers in this area of research. In 2002 the IEEE alone has published more than 700 retrieval papers. 
Figure 1 depicts the increase in visual retrieval publications since 1981 (on basis of the IEEE digital library). Due to the 
increase of cheaply available (digital) image and video cameras and the increasing power of affordable computer 
systems visual information retrieval becomes more and more popular as a research discipline. Since 1994 more than 
hundred papers (=new ideas?) have been published every year. 

In this paper we try to fence off important areas of visual information retrieval (VIR). For each area we will shortly 
describe important past advances and point out relevant, currently ongoing activities. The main focus of the paper is on 
arguing for new perspectives on selected VIR problem areas. In our opinion, the basic building blocks of VIR research 
are media management, feature design, querying, evaluation and system design. Each of these areas will be discussed in 
one section. 

Our motivation is that, even though significant advances have been achieved and, by now, a large number of freely 
available mature VIR systems exists, VIR techniques are not adopted to an adequate extent in relevant application 
domains (e.g. digital libraries). One major reason may be the discrepancy of hopes associated with VIR (querying by 
semantic similarity) and the reality implemented in most prototypes (querying by low-level features). For example, it is 
annoying trying to retrieve Hollywood kisses in a movie database by colour, texture and shape features. On the technical 
level this fact is called "semantic gap"19.  

Even though in recent years a large number of approaches have been proposed to close – or at least narrow – the 
semantic gap (e.g. semantic enrichment of features, kernel-based learning to find relevant media objects) the potential of 
VIR still seems to be judged from the performance of the classic prototype systems. Clarifying the state of the art as well 
as future potentials is certainly an important task if VIR should have a future as a practically relevant addition to 
existing media management and retrieval tools (based on text). From the author's experience, one point should be 
stressed as most important: VIR technology is able to fulfil sophisticated semantic retrieval tasks but it is not able to 
replace human perception.  
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This paper reviews VIR from a subjective point of view: It reflects the author's opinion. The organisation is as follows. 
Section 2 points out relevant related work. The basic VIR building blocks are discussed in consecutive sections: Section 
3 visual media, Section 4 visual feature design, Section 5 the retrieval process (similarity definition, interaction), Section 
6 evaluation and, finally, Section 7 aspects of VIR system design. 

2. BACKGROUND: VIR STATE OF THE ART REPORTS 

A handful of VIR publications exists that survey the state of the art. Most of them reflect in organisation and content the 
perception of VIR of the time when they were written. Below, firstly, we will name a few outstanding representatives 
and try to sketch their view of VIR. The section will be concluded with remarks on ongoing activities to summarise 
recent findings in this area of research. 

In the book "Image and Video Processing in Multimedia Systems"14 by Furht, Smoliar and Zhang the state of the art of 
VIR up to the publication date (1996) is described. The authors start with a system model of content-based image 
retrieval (CBIR), describe image features (distinguished classically in colour, texture and shape features) and video 
features (shot detection and camera operation detection), indexing approaches for high-dimensional feature vectors, 
methods for interactive querying and evaluation based on ground truth information and retrieval quality indicators (recall 
and precision). Additionally, promising application domains are described and case studies for video visualisation are 
given. 

"Image Retrieval: Past, Present and Future"18 by Rui, Huang and Chang (1997) concentrates on CBIR. Again, the 
organisation is classic. Features are split into colour, texture and shape and high-dimensional indexing as well as 
dimension reduction (e.g. by principal component analysis) are important topics. Well-known CBIR prototype systems 
(QBIC, Virage, Retrievalware, Photobook, VisualSEEk, MARS) are described in detail. Additionally, this paper was the 
first survey that described Gabor wavelets as the best suited (in terms of perception) for time to frequency 
transformation. It led the way for future research as it stressed the importance of putting the "human in the loop" of 
interactive querying (relevance feedback) and of semantic enrichment of low-level features by artificial intelligence 
methods. Also, it stated the evident demand for benchmarking initiatives for CBIR systems and gave a first outlook on 
the MPEG-7 project. 

The book "Visual Information Retrieval"2 by Del Bimbo (published in 1999) is organised by feature groups. As in all 
other VIR surveys up to now, image and video retrieval are treated separately. For each group of features (colour, 
texture, shape, motion (shot segmentation only)) extraction methods, distance measures and application examples are 
described. Classic topics like indexing, evaluation and system design are briefly described. To the author's knowledge 
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Figure 1: Number of papers in IEEE digital library containing "image retrieval" (black) or "video retrieval" (grey) in bibliographic 
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this book introduces the terms "semantic gap" and "multi-resolution analysis" for the first time in a survey. The 
hypothesis of multi-resolution analysis is that using iteratively computed 2D wavelet coefficient matrices as features is 
sufficient for retrieval. Additionally, the author describes in detail the usage of image features in (spatial) combinations.  

The journal paper "Content-based Image Retrieval at the End of the early Years"22 by Smeulders, Worring, Santini, 
Gupta and Jain (2000) gives a broad view on CBIR. For the first time selected features are not described in detail but the 
characteristics of features classes (mainly shape features) are abstracted. Similarity measurement is treated as a topic 
independently of feature extraction, and distance measures and their geometric foundations are discussed in detail. The 
importance of learning methods for iterative query optimisation is stressed. Additionally, system aspects (indexing, 
evaluation, etc.) and techniques of related fields (e.g. edge detection, shape description) are discussed. 

Finally, "Content-based Image and Video Retrieval"16 by Marques and Furht gives only a short overview over the 
various building blocks of VIR systems and concentrates on conservative techniques. Its major strength lies in the 
description of a vast number of prototypes for both image and video retrieval. Additionally, design issues of image and 
video retrieval systems are discussed and case studies are given. 

Since hundreds of new ideas are introduced in VIR every year, every survey can only stay up to date for a very short 
duration. Among the recent publications, the papers on the visual MPEG-7 descriptors3 can be seen as surveys on feature 
design, because these features were selected on careful design and comparison to other feature proposals. The currently 
ongoing SCHEMA project20 of the European Union intends to provide state of the art reports on content-based media 
retrieval. At the point in time when this paper is written, deliveries on retrieval concepts, feature extraction and system 
evaluation are available from the SCHEMA website. 

3. THE VISUAL MEDIA 

The two types of visual media we are going to consider (image and video) have two major properties that have been 
examined in VIR research. The first is the colour model used for colour representation and the second is the spatio-
temporal resolution of visual media. Colour models have been investigated, for example, by Del Bimbo2. Generally, 
colour models that take human perception into account have been preferred for colour feature extraction. An example is 
the CIE XYZ space: its unbalanced representation of colours (e.g. more green than red shades) reflects the evolutionary 
development of the human eye and perception system. For texture and shape analysis, colour models with a luminance 
channel (originating in TV broadcasting) have been preferred, because, essentially, colour information is irrelevant for 
this type of analysis. Additionally, a new colour model (HMMD3) has been proposed for the MPEG-7 standard. The 
MPEG-7 authors are arguing that HMMD has properties that make it superior over other colour models. In the author's 
opinion, since colour values can easily be transformed from any colour model to any other, the selection of colour 
models is only of minor importance for successful retrieval applications. 

Next we will discuss if image and video are similar enough to be handled in one VIR system. The visual media differ 
significantly in their spatio-temporal resolution. Normally, images have a higher spatial resolution than video. Even 
though images do usually not contain more information than video frames, due to the different capturing process more 
scene details are available. The temporal resolution of video is regionally bound and originally derived from TV 
standards. Images do not have a temporal dimension. Still, a tendency in VIR can be observed to apply features on 
media objects independently of the availability of a temporal dimension (motion). The authors of the visual part of the 
MPEG-7 standard stress that their features can be applied reasonably well to both image and video data. They provide 
structures and models for spatio-temporal localisation and aggregation that allow the application of image features on 
video content. 

We think that in future VIR research the distinction between image and video will become irrelevant. Our argumentation 
is threefold: Firstly, human vision is a temporal process. The eye scans images and videos by the same saccadic eye 
movements (to put it simple: close circles in complex areas, larger circles in uniform areas). Therefore, the visual media 
stream that is sent from the eye to the perception system is always a stream of patterns that has a temporal dimension. 
Secondly, the result of visual analysis (feature extraction) in VIR is always a number vector of finite length (for 
technical reasons, etc.). Therefore, image and video are represented by the same type of data. Thirdly, even though some 
motion features are meaningless for image data, they can at least be used to distinguish the media type by feature 
vectors. Uniform application of features on media objects is a resource-consuming approach. However, neither 
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computation power nor storage is scarce in modern computer systems.  

Technically, past VIR prototypes worked either on image data or video data. Mainly, technical shortcomings caused this 
development. For the future it would be desirable to have VIR prototypes available that support image and video 
retrieval in a common framework and hide technical media access from VIR-specific tasks (feature extraction, etc.). The 
author has proposed a VIR framework (called VizIR) that implements this goal8. Basically, media access is needed for 
two functions of VIR systems: feature extraction and media visualisation (e.g. for querying). 

VIR video access differs significantly from other media processing applications. Real-time processing is no required. 
Therefore, video does not have to be considered as a stream but can be accessed like any other pooled data. In the VizIR 
framework one class is responsible for access of any type of media content. It offers methods for random access of 
views. It is possible to access the view of a media object at any point in time (independent if it is image or video). 
Additionally, this class is responsible for media content representation and colour space conversion. In a further 
developed version of this class media objects are abstracted as "visual cubes" (two spatial and one temporal dimension). 
Transformations (stretching, cutting, etc.) can be applied to manipulate visual cubes. 

Media visualisation is (in terms of needed software components) more difficult to perform. The main problem is to 
visualise the motion in videos in static user interfaces (for querying, result display, etc.). First of all, since user interfaces 
are normally located on a client while querying components mostly run on a server, media transportation classes are 
needed that stream the media from server to client. In the VizIR framework, these classes can transparently be attached 
to the media access class. Media renderer classes are responsible for temporal media visualisation. They make use of the 
media access interface and construct models of the visualisation that can be used for graphical rendering (e.g. by 
OpenGL) and be kept persistent in a database. A number of methods have been proposed for video visualisation (e.g. 
Micons14). In VizIR, each method is implemented in a separate media renderer class. Figure 2 summarises the media 
access components in VizIR. 

In conclusion, media-independent availability of visual data in VIR frameworks is a desirable goal. To reach it, making 
use of software patterns is an important issue (see Section 7). The VizIR framework implements methods for media-
independent access. For the future in addition to visual cubes, computing pseudo-saccadic representations of media 
objects may be worth considering. Completely new features could be designed on the basis of visual pattern streams. 

4. FEATURE DESIGN 

Since the early days of VIR research, one major focus was on visual feature extraction. The idea of feature 
transformations is as follows: Since (digital representations of) visual media cannot be easily compared in computer 
systems (pixel comparison is computational expensive and inadequate to measure similarity), there is a need to represent 
visual content in a form that allows simple but effective (in comparison to human judgement) similarity measurement. In 
VIR, this is performed by extracting visual media properties as number vectors that can be seen as points in a vector 
space. If a form of geometry is considered for this space, it is possible to measure dis-similarity as distance. This model 
is an application of the vector space model of text information retrieval13. 

Since human perception is based on three stimuli: generally perceived (not recognized) stimuli, specifically perceived 
(recognized) stimuli and pseudo-random (psychological, sociological, etc.) stimuli, two types of features can be 

Media transport
classes

Media access
class (random

access)

Persistence
manager

Media
object

(stream)
Media renderer

class (media
model)

User interface

Database

 
Figure 2: Media encapsulation in VIR. 

 

21



distinguished in VIR: quantitative (low-level) features and qualitative (high-level) features. Unfortunately, only those of 
the first type can be extracted easily. For the second group semantic understanding would be needed and at the point 
when this paper is written, software is still far from being able to reason semantically. Therefore, semantic enrichment of 
low-level features is the mostly adopted course to compute high-level features. 

Low-level features are, as pointed out in Section 2, traditionally organised in three groups: (1) colour-related features, 
(2) texture- and shape-related features and (3) motion-related features. Most colour features (e.g. those in the MPEG-7 
standard) extract histograms of pre-defined regions (globally or locally). Only a few approaches exist that make use of 
colour for other purposes (for example, object segmentation). Texture and shape features can be grouped together, 
because they make use of the same techniques for feature representation. Both types of features work on the distribution 
of brightness in visual objects. Texture features aim at detecting statistical edge properties while shape features aim at 
deriving semantic edge properties (object boundaries). For both types of features it is essential that derived feature 
representations are invariant against geometric transformations (rotation, scaling, etc.). Motion features include shot 
detection, camera operation detection and activity detection. Since these features aim at finding features over time, they 
are mostly built around a core of gradient methods (optical flow, motion trajectories). Usually, low-level feature design 
results in a cookbook: Building blocks from signal processing (Fourier, Radon transformation, etc.) and other research 
areas are combined to a new feature. This development has reached a peak in the visual part of the MPEG-7 standard 
where several cookbooks for low-level features are defined.  

One of the most relevant present activities in feature design is semantic enrichment/interpretation of low-level features 
to narrow the semantic gap. Since as humans we are used to base our similarity judgement on all three groups of stimuli 
mentioned above, retrieving features just by generally perceived properties is unsatisfactory for us. Generally, three 
sources of information can be used to enhance features: (1) information on the application domain, (2) information on 
the user and (3) information on the characteristics of the feature. Additional knowledge can be induced with methods 
from statistics, artificial intelligence, etc. For example, domain knowledge on football could be used to identify ball and 
players from shape features (e.g. circularity).  

As an example for feature enrichment, in our earlier work we have proposed a semantic feature approach that is based on 
human perception9. Low-level features are used to detect high-level properties that usually play an important role in 
visual perception. For example, edge and texture features are used to detect symmetries in images. Symmetries are very 
important for humans. Objects originating from natural processes can easily be distinguished from human-originating 
objects by their symmetries: Symmetry in nature is never as strict as it is for man-made objects. Probably, it is even 
possible to distinguish cultures by the symmetries in pictures of their living world. In conclusion, practically, the 
applicability of semantic enrichment is – at the current point in time – still very limited and for application-independent 
VIR prototypes no common solution exists. 

Another important activity is the ongoing search for 2D segmentation and shape description features. Visual 
segmentation is the inverse process of rendering. Rendering is a well-posed problem. Therefore, segmentation has to be 
an ill-posed problem. Nevertheless, the problem is partially solvable, if additional information (on application domain, 
etc.) is available or if the user helps (for example, by giving a segmentation path). Unfortunately, especially in VIR 
systems the required additional knowledge (very specific, spatial) is hardly ever present. If we consider, how many 
different 2D views even a simple object like an apple can have, it becomes unlikely that robust segmentation tools for 
VIR are possible. However, it will be exciting to see future advances for (narrowly defined) application domains (e.g. 
salient objects in video). 

If we consider the past flood of features, one problem of feature design is obviously answering the question, how many 
meaningful visual features do exist? In other words, which features should be used and which not, because they are 
outperformed by others? And, on which spatio-temporal regions of media objects should the selected features be applied 
on? The classic answer to these questions is Multi-Resolution Analysis (MRA). MRA originates in wavelet 
decomposition. The idea is to make use of a wavelet transformation for computation of wavelet coefficient 
representations of visual media with decreasing complexity. Either the coefficients themselves or features extracted from 
the coefficients are used as features (see Figure 3). Unfortunately, it is not clear and could not yet be proven why MRA 
should guarantee that all relevant media parts are properly considered in the feature extraction process. 

Our proposal differs from the MRA view: Everything can be a feature, if it fulfils two conditions. Firstly, it has to 
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represent a visual property and secondly, it has to be statistically independent of existing features. If a feature is 
statistically independent it is obviously a valuable contribution to a feature set. Independence can be measured by cluster 
analysis, factor analysis and other methods of statistical data analysis. In previous work we have developed a statistical 
evaluation procedure and tested the visual MPEG-7 features on these criteria7, 5 (see also Section 6). Based on this view 
it is possible to argue for a large number of features to be reasonable. The feature problem is shifted from designing 
well-performing features to estimating the relevance of a feature for a particular querying situation. Essentially, this is 
up to the user and should be implemented in an iterative retrieval process that makes use of visualisation tools for feature 
vectors8. 

5. RETRIEVAL PROCESS 

Generally, the visual retrieval process aims at finding media objects that are similar to given examples. "Similarity" is a 
weakly defined term and, consequently, difficult to implement in computer systems. Matching by similarity should 
definitely be less strict than hard pattern matching but still result in comprehensible results. A handful of retrieval 
processes exists for implementing similarity matching in VIR. Two requirements have to be fulfilled by a model: 
Similarity matching has to be performed on media objects represented by feature vectors and the user (his feedback) has 
to be integrated in the retrieval process. Therefore, retrieval is necessarily an iterative communication process between 
man and machine. 

Since the actual retrieval process is always based on feature vectors, distinguishing different querying paradigms is 
irrelevant for the type of retrieval process used. Independently of whether querying by example, sketch, etc. is 
implemented in the user interface, eventually, the input used for retrieval is always converted to a feature vector (as in 
text retrieval, where queries are regarded as sets of terms13). In consequence we will not refer to different querying 
paradigms below. 

A number of retrieval processes has been introduced to VIR. They are mostly derived from text retrieval concepts. We 
will consider the four most important models: (1) Distance measurement & indexing, (2) distance measurement and linear 
merging, (3) distance measurement and non-linear merging and (4) probabilistic retrieval. Except for the last approach, 
the first step is always distance measurement between the elements of feature space and the given reference point(s).  

Distance measurement can be done in two ways: Firstly, a particular type of geometry can be assumed for feature space 
and metrics can be applied to measure distance. For example, feature space can be assumed to be of Euclidean geometry. 
Then, the metric axioms hold and any distance measure fulfilling the axioms can be used for distance measurement (e.g. 
Euclidean distance, city block distance, any Minkowski distance, etc.). Secondly, feature properties (vector elements) 
can be interpreted as being binary (for example, by fuzzy or probabilistic interpretation). In a binary feature space 
(populated by binary vectors) predicate-based methods can be used for distance measurement instead of geometric 
distance measures (e.g. Tversky's well-known Feature Contrast Model24, Hamming distance, pattern difference).  

In recent work we introduced a model that allows for unifying geometric (continuous) and predicate (binary) distance 
measures6. The model allows for using any type of measure on any type of feature data. In experiments on MPEG-7 
descriptors we could show that predicate-based measures using the model are often superior over geometric distance 
measures. The results in the mentioned paper suggest that distance measures should not be designed (derived of feature 
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properties, qualitative arguments) but selected on the basis of quantitative results (e.g. retrieval tests). Generally, the 
tailor-made distance measure for a feature seldom exists. Optimality depends of the retrieval situation. Therefore, 
distance measure selection should be automated and derived from given query examples. 

Indexing is the art of clever organising data in order to locate them quickly. Since VIR retrieval is based on distance 
measurement for all elements of feature space, indexing as an acceleration technique is irrelevant for querying. But 
indexing can be used as a querying method itself. In high-dimensional index structures those regions can be selected as 
positive retrieval results that lie in proximity to the given examples. Unfortunately, hardly any indexing methods do exist 
that could deal with multiple distance measures and variable (in terms of query examples) data organisation. Therefore, 
the applicability of indexing methods for VIR is relatively limited. 

Linear and non-linear merging approaches are addressing the problem of how to use multiple features (and distance 
measures) in one query and to retrieve single result set. Linear merging solves the problem by weighting the distance 
values and summing them up for each media object. Next to weights, transformations are used as well. The resulting 
value is used to rank media objects and select the first ones as similar. Two problems are connected to linear merging: 
the weights and the size of the result set have to be provided by the user and some features cannot be combined linearly. 
Non-linear merging tries to overcome these problems. Often, neural network techniques are used to combine individual 
distance values to a rank. For example, a multi-layer feed-forward net can be trained on basis of ground truth 
information. Unfortunately, non-linear methods are – as any other retrieval method – not able to satisfy all user needs 
and are hardly configurable because of their inflexible architecture. 

Using probabilistic approaches (for example, the Binary Independence Model13) for retrieval results in two major 
problems. Firstly, since most models where developed for text retrieval they require binary input that is seldom available 
in VIR. Again the same methods as for predicate-based distance measurement can be used to convert continuous values 
to predicates but every additional interpretation step reduces the quality of the results. Secondly, probabilistic models 
judge general relevance (similarity) on basis of elementary (feature-wise) relevance information. This relevance 
information has to be provided in form of examples. Already difficult for text retrieval this is nearly impossible for 
visual data, because the number of possible features and feature values (representing all types of visual cues) is nearly 
indefinite. Therefore, if probabilistic model are used, then mostly in elementary form (e.g. simple applications of Bayes' 
theorem). 

One major advance in VIR in recent years was achieved in iterative refinement by relevance feedback. Clearly, retrieval 
should be centered around the user but the question arises of how to apply his feedback in the retrieval process. Here, 
kernel-based learning techniques17 mark a significant advance. Using results of previous queries that are enriched by 
elementary user feedback ("highly relevant", "irrelevant", etc.) as reference points and training a kernel function to 
segment feature space optimally improves results dramatically. After all, finding a dichotomy of relevant/irrelevant 
media objects is all that is required of a VIR system. Often used kernel-based learning methods include support vector 
machines and kernel principal component analysis. The main problem of applying kernel-based learning to VIR is 
finding a kernel functions that neither over-fits (too complex, too high dimensionality) nor under-fits (too simple, bad 
segmentation) the retrieval problem.  

Unfortunately, even the most sophisticated retrieval and refinement algorithms are still not able to satisfy the user's 
desire for similarity-based retrieval sufficiently. Therefore, we have designed a retrieval process (called visual mining, 
VM) that is user-centered from the first to the last querying iteration and makes use of 3D perception. Figure 4 shows 
the retrieval process schematically. Media objects are visualised on the image plane while on the floor dimensions their 
relative location (distance) is visualised for two features. The features selected for the floor dimensions can be changed 
at any time implying changes in the organisation of the media objects. This form of visualisation allows the user to 
visually perceive the retrieval process. Queries are defined by labelling media objects as positive or negative examples. 
Implicitly, the labelling defines hyper-clusters. The query engine tries to fill the defined clusters with similar objects. For 
this purpose it makes use of distance functions and data segmentation methods. 

Visual mining aims at really putting "the human in the loop"18. In Figure 4 image and video objects (represented as 
Micons14) are used in the same query. In a typical querying situation multiple instances of the shown panel are used. For 
example, one for query definition, one that shows the last result set, one that gives a general overview over feature 
space, etc. The VM process and the user interfaces are explained in more detail in recent publications11, 10. 
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In conclusion of Section 4 and 5, a great variety of feature design and VIR retrieval methods exists that all have their 
advantages and disadvantages. To be useful for practical application it is necessary to be able to judge the specific 
qualities of querying prototypes. In the next section, the methods mostly used for VIR evaluation are shortly sketched 
and new methods that could supplement existing ones are proposed. 

6. EVALUATION 

Evaluation of VIR systems is needed for various purposes: It has to be possible to judge the quality of new feature 
extraction methods in relation to existing ones, to compare the quality of novel querying paradigms, to judge the 
usability of user interfaces for retrieval, etc. The most interesting problem is measuring the quality of similarity 
measurement compared to human visual similarity perception. For this purpose, the recall and precision quality 
indicators of text information retrieval evaluation were adopted13. Recall and precision are usually defined as follows: 
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In case of VIR, objects are media objects represented by feature vectors. Recall and precision are inter-dependent. It is 
easily possible to optimise one indicator, if the other is not considered. Meaningful results can only be derived if both 
indicators are considered. In addition to recall and precision other measures exist (for example, ANMRR, used for 
evaluation of visual MPEG-7 descriptors15). 

VIR evaluation based on recall and precision is a four-step process (see Figure 5): (1) Definition of a media set. The 
media set should be appropriate for the evaluation goal and contain a reasonably large number of items. Often, 
collections of thousand and more media objects are used. (2) Derivation of ground truth information. The ground truth 
says, which objects in a media set are similar (and sometimes, how similar they are). Ideally, it should be invariant 
against cultural, sociological and other human-related influence factors. In practice, deriving such a ground truth is 
impossible. Usually, groups of more than average similarity are defined by a few test users. (3) Execution of test queries. 
This step requires automatic selection of query examples and a sufficiently large number of test queries. For 
guaranteeing statistical correctness, the number of test queries should be hundred or larger. (4) Computation of retrieval 
indicators. Recall and precision can, for example, be averaged over all test queries and visualised in a recall-precision-
graph. This evaluation procedure has several shortcomings: Firstly, it is subjective and culture-dependent (media 
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collection, ground truth). Secondly, it cannot be used to evaluate interactive retrieval processes. Thirdly, it is a heavy-
weight process that adds a lot of influence factors that may bias the evaluation results. For example, this may be the case 
if a new feature should be evaluated. 

Present evaluation activities include gathering free media objects in public collections (e.g. the Benchathlon project1) 
and events for comparative system evaluation. One example for the second is the annual TREC video retrieval 
competition21. VIR groups can attend in a number of competitions (e.g. shot segmentation) and see how good their 
methods are in comparison to other approaches. Additionally, a new (very large) set of video clips is created each year 
that can be used for other purposes as well. This is especially positive since most freely available visual media 
collections are image collections. 

In our recent work we have proposed an evaluation procedure for features that is based on statistical data analysis and 
the visual MPEG-7 features5, 7. The procedure makes use of factor analysis and cluster analysis techniques. In contrast to 
the standard procedure it does not suffer from the three mentioned disadvantages. Essentially, feature vectors are 
calculated for arbitrary media collections and compared to the MPEG-7 feature vectors by statistical methods. The 
results can be used to judge the feature type (colour, texture, etc.), redundancies with existing approaches, etc. It is 
intended to be used as a supplement to recall- and precision-based evaluation. 

7. SYSTEM DESIGN 

Good, professional system design is not a VIR-specific issue; it is desired for any type of information system. What 
makes system design especially important in VIR is the fact that acceptance of VIR methods is strongly bound to their 
appearance. Since VIR systems actually fail to fulfil the promise of human-like similarity retrieval, it is even more 
important that they are at least fast and easy to use tools for visual media mining (pre-selection of likely hits). Below, we 
point out the design of classic systems, currently ongoing design activities and our ideas for ideal VIR system design. 

Past VIR prototypes were mostly monolithic systems that ran on server side and were limited to one type of media. Most 
VIR systems implemented image retrieval: a few features (colour histogram, texture moments, etc.), query by example 
and retrieval by linear merging. Most of them were general-purpose, some application-specific (e.g. for trademark 
retrieval). Video retrieval systems were mostly intended for specific applications (e.g. news analysis) and often 
concentrated on the user interface aspect (visualisation of temporal media in static user interfaces). Well-known VIR 
prototypes include QBIC, Virage, RetrievalWare, Photobook, VisualSEEk, MARS, OVID and CueVideo. Surveys exist 
that evaluate these and other prototypes and compare them by their advantages and disadvantages16, 27. 

IBM's Query by Image Content system12 (QBIC) may stand as a representative for these prototypes. QBIC is a classic 
system that introduced many of the concepts that are implemented today in a wide range of VIR prototypes. QBIC is 
based on the C++ programming language and organised in components. The architecture is extendible: new features and 
query engines can be defined and added. Querying components are separated from the user interface and communicated 
over HTTP. Image data is encapsulated in a data class that is also responsible for converting various image formats to 
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raw RGB pixel maps. Those source code elements needed for the extension mechanism are shipped with the binary 
distributions for various operating systems. QBIC contains a number of state-of-the-art feature classes and used linear 
merging for retrieval. Additionally, it is based on a simple file database for feature storage. 

At present, these concepts are imitated in a number of prototypes. For example, the GNU Image Finding Tool25 (GIFT) 
makes use of the Multimedia Retrieval Markup Language26 (MRML, based on XML) for loose coupling of server and 
client components. GIFT is open source and based on other GNU components that allow using a large number of data 
formats for image querying. Since the communication language for server and client components is standardised, 
different user interfaces can be used to access the query engine.  

The MPEG-7 experimentation model23 (XM) goes one further step ahead, as it allows querying in image and video 
collections. Like for QBIC and GIFT, the XM classes are split in server components (for querying) and client 
components. It allows extension with new descriptors and is available as open source. Unfortunately, the practical use of 
the XM is limited, because only a very small number of video formats are supported and hardly any documentation 
exists for architecture and application programming interfaces. Still, the XM is used as basis for a number of VIR 
projects. For example, the SCHEMA project of the European Union20 develops new VIR solutions on basis of the 
MPEG-7 XM. Other projects (e.g. of the DELOS Network of Excellence of the European Union4) are following 
different, individual approaches. 

In recent publications we have proposed an "ideal" architecture for VIR systems. This architecture is currently under 
development in the VizIR project11. One major goal of the VizIR project is providing a framework of VIR tools that are 
media-independent. Another is encapsulating visual media in a way that most common image and video formats are 
supported and that media content can be accessed with exactly the same methods. VizIR is an open source project that is 
based on the Java programming language. It implements all of the proposals for feature design, retrieval and evaluation 
made in this paper. 

Figure 6 shows the VizIR system design. Components are split into typical client components (user interfaces) and 
server components. Client components are the user interface presented in Section 5 and the classes for visual media 
representation presented in Section 3. On the server side a service kernel is responsible for dispatching server calls (e.g. 
query execution, media management). This service kernel can, for example, be implemented as a web service using 
SOAP, WSDL and UDDI. It organises the classes for querying and feature extraction that are derived from general 
interfaces. Therefore, it is easily possible to extend the VizIR framework with new features and querying paradigms. 
Database storage and additional functionalities for query acceleration (feature vector indexing, querying heuristics, etc.) 
are encapsulated in an object-oriented persistence manager that hides the database (for feature storage, etc.) from the 
VIR-specific classes. The same purpose is fulfilled by the media access classes for the media objects. Query automation 
classes are used for evaluation purposes. 

Communication between server and client side is performed by communication classes that make use of XML 
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messaging and are fully compatible with the service kernel. For media transport individual classes are implemented that 
fulfil their job in separate threads in the background. It is important to notice that all VizIR framework components are 
designed to be applicable independently of the type of media used and of the location from where they are used. It is 
possible to build arbitrary VIR applications by using existing building blocks. New ones can be added easily. In order to 
guarantee that every component can communicate with any other, event-based messaging is used and implemented 
following established design patterns (e.g. SUN's delegation event model). Generally, design patterns are used wherever 
possible (e.g. factories for media access). 

8. CONCLUSIONS & OUTLOOK 

This paper summarises selected advances in visual information retrieval. We try to sketch important advances in visual 
media representation, feature extraction, retrieval (including query definition, similarity measurement and query 
refinement). Additionally, we propose problem areas and possible solutions for future visual information retrieval 
research. The selection is subjective: it represents the author's point of view on image and video retrieval. 

The major problem of visual information retrieval is its failure to imitate human visual perception and human similarity 
judgement properly. The goal is to automatically find visual media in, usually very large, collections by imitating human 
visual similarity perception. Clearly, since computers are still unable to do visual reasoning and recognise the real world 
objects behind two-dimensional views, they are condemned to fail. What they can do is to extract visual features on a 
low syntactical level and to measure dis-similarity as distance. Even though this service can be of great value (e.g. as a 
pre-selection step when mining large media collections), the unsatisfactory results are a major reason why content-based 
retrieval techniques are still hardly used in digital library systems and other applications. 

In consequence, the key question is: does visual information retrieval have a perspective for practical application? To the 
author's belief, this question can be answered by "yes" if research and implementation focus are laid on issues different 
from the currently most investigated. Visual information retrieval is a mining tool that should be centered around the 
user and have its major strength in the user interface components used for media and query visualisation. Systems have 
to be designed in an easy to use way and it has to be made clear that visual information retrieval systems are not 
intended to replace but to supplement human beings and their visual perception system. 
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ABSTRACT 
The major problem of most CBIR approaches is bad 
quality in terms of recall and precision. As a major 
reason for this, the semantic gap between high-level 
concepts and low-level features has been identified. In 
this paper we describe an approach to reduce the impact 
of the semantic gap by deriving high-level (semantic) 
from low-level features and using these features to 
improve the quality of CBIR queries. This concept is 
implemented for a high-level feature class that describes 
human world properties and evaluated in 300 queries. 
Results show that using those high-level features 
improves the quality of result sets by balancing recall 
and precision. 
1 INTRODUCTION 
Content-based Image Retrieval (CBIR, [2]) approaches 
aim at finding images that are semantically similar to a 
given query (often a single example image). In this 
definition, ‘semantically similar’ is meant in the sense of 
human visual similarity perception (in CBIR 
publications mostly just called ‘high-level’). The 
methods used to satisfy this demand are based on 
numerical feature extraction (e.g. with signal processing 
and computer vision techniques) and (metric-based) 
distance measurement. This approach is usually referred 
to as ‘low-level’. Now the problem of most (general-
purpose) CBIR approaches is bad quality in terms of 
recall and precision. As a major reason for this, the 
semantic gap has been identified ([9]). This is the gap 
between the high-level requirements of CBIR and the 
low-level implementation. 

In this paper we describe a novel approach to reduce 
the impact of this semantic gap. Usually, iterative 
refinement by relevance feedback is used to minimize 
the semantic gap in CBIR systems ([7], [12]). We follow 
a different path by deriving high-level (semantic) from 
low-level features and using these features to improve 
the quality of CBIR queries. We show by an example 
prototype implementation and evaluation the idea of the 
approach. 

The results of this paper are part of  the Visual 
Information Retrieval project VizIR. The VizIR project 
aims at the following major goals: 
- Implementation of a modern, open class framework 

for content-based retrieval of visual information as 
basis for further research on successful methods for 
automated information extraction from visual media, 
definition of similarity measures and new, better 

concepts for the user interface aspect of visual 
information retrieval. 

- Implementation of a working prototype system that is 
fully based on the visual part of the MPEG-7 
standard. Obtaining this goal requires seeking for 
suitable extensions and supplementations of the 
MPEG-7 standard. 

- Development of integrated, general-purpose user 
interfaces for visual information retrieval. 

- Support of methods for distributed querying, storage 
and replication of visual information and features and 
methods for query acceleration. 

To achieve these goals state-of-the-art software 
development is necessary. VizIR is based on reverse 
engineering and the Rational Unified Process ([6]). The 
output of VizIR will be available to the public. The 
overall goal of VizIR is providing the research 
community with a flexible tool for experiments. See [3] 
for more information on VizIR. 

The rest of the paper is organized as follows. Section 
2 points out relevant related work, Section 3 describes 
the idea of semantic features, in Section 4 we outline the 
design of the Human World Feature class (HWF), 
Section 5 describes the implementation of HWF in our 
test environment, Section 6 discusses experimental 
results and finally, Section 7 sketches our next activities 
in the context of this paper. 
2 RELATED WORK 
Subsequently, we will review the semantic gap problem, 
point out a second current approach for semantic feature 
extraction and briefly describe the descriptor definition 
language (DDL) of the MPEG-7 standard, that will be 
used to describe HWF. 

According to [9], the semantic gap can be defined as 
the space of disappointment between the high-level 
intentions of CBIR and the low-level features that are 
used for querying. The size of the gap in current general-
purpose systems ranges from 60% to 80% of querying 
performance (recall and precision, e.g. in [10]). In his 
keynote speech at the Visual Information Systems 
conference 2002, William Grosky described a semantic 
feature extraction method related to the Semantic Web 
project ([8]) that should help to reduce the semantic gap. 
Basically, the idea is to integrate close distant 
information into the feature extraction process. For 
example, on a webpage, image features are not just 
derived for the area of each image but for an area that 
includes the image and the text around it. Thus, semantic 
information is integrated in the feature vectors. The 
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problem of this method – from our point of view – is 
that it is difficult to argue, why adding image rendered 
text information to the image feature extraction process 
should improve the quality of retrieval results. 

The semantic features introduced below are defined 
on the basis of the MPEG-7 Descriptor Definition 
Language (DDL). MPEG-7 defines Descriptors (D), 
Descriptor Schemes (DS) and the DDL. DS are 
containers of D and DS. The DDL is a uniform method 
for the description of D and DS. Essentially, the DDL is 
the XML Schema Language, extended by a few custom 
data types (like matrices, histograms, etc.). As the 
authors of [5] state, ‘the DDL is not a modeling 
language such as Unified Modeling Language (UML, 
[11]) but a schema language to represent the results of 
modeling audiovisual data.’. Thus it is impossible to 
model the usage of additional knowledge in D and DS.  
3 SEMANTIC FEATURE LAYERS 
The idea of semantic feature layers (SFL) is the design 
of semantically related feature classes that are based on 
features of lower levels and include additional 
knowledge (see Figure 1). Additional knowledge can be 
comprised of modeling information, domain knowledge, 
statistical information, etc. and be expressed as data (e.g. 
a color covariance matrix) or as algorithms (e.g. a 
sophisticated distance measurement algorithm). SFL 
should help to reduce the size of the semantic gap.  

SFL are more than DS. DS define hierarchical 
relationships of static Descriptors and other DS. In SFL, 
Descriptors do not remain static on higher levels but are 

transformed by additional knowledge to more specific 
(semantic) representations. Using SFL in addition or 
instead of low-level features has two major advantages: 
1. It is possible – in the context of the SFL – to perform 

high-level queries without the need to translate them 
to queries on low-level features. This should lead to 
better results. 

2. Queries are much faster, because of simpler feature 
vectors and simpler querying methods. The 
integration of additional knowledge on the basis of 
low-level features will in most cases lead to a  
compression of the high-level feature vectors. This 
process is performed offline during the feature 
extraction process. Querying methods can be simpler 
because no mapping is necessary and feature vectors 
are simpler. 

SFL are an abstraction of low-level features. In the next 
section we will introduce an example of a SFL for the 
description of human world properties in images. 
4 HUMAN WORLD FEATURES 
The world of visual objects (from the human point of 
view) can be split into two groups: nature-originated 
objects (e.g. landscapes, trees, etc.) and human-
originated objects (e.g. equipment, houses, etc.). The 
idea of the human world properties SFL (HWL) is the 
definition of features that describe typical properties of 
human-originated objects and scenes. This is useful, 
because most images consist of both types of objects and 
the relationship of them is often typical for a certain 
image group (cluster, application domain, etc.). For 
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High-level
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Figure 1. Semantic feature layers. Features on higher levels are based on the Descriptors of features on lower levels. 
Together with additional information they derive new Descriptors on higher semantic levels. Additional information 
includes modeling information, statistical information and domain knowledge. This model should help to narrow the 
semantic gap. 
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example, with HWL features images of family photos at 
Christmas can easily be distinguished from family 
photos in summer (at least in the colder regions of the 
world), because Christmas photos are usually made 
indoors (with a lot of human-originated objects in the 
background) while summer photos are usually made 
outdoors (with significantly more nature-originated 
objects in the background). 

We have identified three major properties of human-
originated objects that can be relatively easy described 
with numerical feature vectors: 
1. Geometry. Humans love to create objects with the 

major properties of Euclidean geometry: straight lines 
and right angles. These properties are hardly present 
in natural objects. 

2. Harmony. This includes human characteristics like 
the harmonic application of colors (matching colors 
and color shades), harmonic textures and the regular 
arrangement of objects in scenes. Even though the 
human preference for harmony is presumably 
originated in natural characterization it furthermore 
has a cultural component that makes it different from 
the harmony appearing in natural scenes. 

3. Symmetry. This does not refer to the mathematical 
symmetry term (concerning symmetric objects, this 
symmetry exists in nature as well) but to the 
symmetric arrangement of objects (represented by 
more or less coarse object representations) that can be 
symmetric (e.g. a row of windows), mirrored (e.g. 
semidetached houses) or repetitive (e.g. a row of 
computers).  

These properties are employed to judge whether an 
object appearing in a scene is human-originated. They 
can be represented by feature classes that can be based 
on arbitrary low-level features that include spatial or 
geometric information (e.g. localized color histograms, 
object descriptions, edge histograms, etc.). As an 
example, let us detail the algorithm for an 
implementation of the symmetry feature. It consists of 
three steps (see Figure 2): 
1. Extraction of all occurrences of the underlying 

feature in the visual object. The underlying feature 
can be every feature not invariant against mirroring 
and that may be contained multiple times in a visual 
object (e.g. spatial color distribution, texture 

moments, etc.).  
2. Extraction of all mirrored occurrences of the 

underlying feature in the visual object. Each found 
object is represented by the radius and center of the 
circle around it. 

3. Detection of the parameters of the symmetry axis for 
found pairs. 

The Descriptor of this symmetry feature (according to a 
specific underlying feature) could be the following 
vector: 

( )( )�������� ,,,,,  

where C(x,y) and r are defined as above (for a not 
mirrored object), a and b are the parameters of the 
symmetry axis and d is half of the shortest distance from 
C(x,y) to the symmetry axis. For our tests we used an 
even simpler implementation of the symmetry feature. 
The next section is dedicated to this matter. 
5 IMPLEMENTATION 
For experimental evaluation (see Section 6 for results) 
we have implemented a simple version of the HWL. It 
consists of three features, one for each of the properties 
above. These features are based on four low-level 
features. Figure 3 shows the dependencies.  

The first low-level feature derives a simple object 
description that includes the object size (in 
macroblocks), the circularity of the border (as defined in 
[4]) and the position in the image for the first five 
objects. A macroblock has one 64th of the width and 
height of the image. The edge histogram has four bins 
for all edges in an image with length smaller than one 
macroblock, one to two macroblocks, two to four 
macroblocks and more than four macroblocks. 
Additionally, we use a global color histogram with nine 
bins and the MPEG-7 dominant color feature with two 
bins. The first three low-level features use Euclidean 
distance functions for dissimilarity measurement. The 
dominant color feature uses the following function to 
compare two objects A=(c1A,c2A) and B. 
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The weights were set based on heuristics. The output of 
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Figure 2. Semantic symmetry feature: symmetry axis 
detection. The symmetry axis for two objects is derived 
from the circles around them. 
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Figure 3. Human world feature layer implementation. 
The three high-level features are based on four low-level 
features. 
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all distance measures is normalized to the interval [0,1]. 
The geometry feature is based on the object 

description and the edge histogram. It measures the 
number of straight lines with significant length (longer 
than two macroblocks; derived from the edge histogram) 
and the number of right angles in an image (derived 
from the circularity values). We define the following 
MPEG-7 descriptor: 
<complexType name=”GeometryFeature”> 
   <element name=”StraightLines” 
    type=”unsignedInt” use=”required”/> 
   <element name=”RightAngles” 
    type=”unsignedInt” use=”required”/> 
</complexType> 

The distance of two descriptors A=(slA,raA) and B is 
measured with the following distance function. 
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This is basically an Euclidean distance. 
The harmony feature is based on the edge length 

histogram, the color histogram and the dominant color 
feature. It has three bins for the amount of activity in an 
image, the number of color gradations and the color type 
(warm, cold, grey-scale). The activity in an image is 
measured as the variance of edge lengths. The MPEG-7 
descriptor for the harmony feature is defined as follows. 

 

Figure 4. Test images and ground truth. The collection consists of four groups with 16 images each. The four groups are: 
images of forests (first and second row), images of houses (third and fourth row), images of faces (fifth and sixth row) 
and images of equipment (seventh and eighth row). 
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<complexType name=”HarmonyFeature”> 
   <element name=”Activity” 
    type=”unsignedInt” use=”required”/> 
   <element name=”ColorShades” 
    type=”unsignedInt” use=”required”/> 
   <element name=”ColorType” 
    type=”unsignedByte” use=”required”/> 
</complexType> 

The distance of two descriptors A=(actA,cgA,ctA) and B is 
measured with the following distance function. 
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where u() is defined as for the distance function of the 
dominant color feature.  

The symmetry feature is based on the object 
description feature. It counts the number of symmetric 
objects (equal descriptions with equal size) and the 
number of repeated objects (equal descriptions with 
different size). We define the following Descriptor: 
<complexType name=”SymmetryFeature”> 
   <element name=”Symmetries” 
    type=”unsignedInt” use=”required”/> 
   <element name=”Repetitions” 
    type=”unsignedInt” use=”required”/> 
</complexType> 

The distance of two descriptors A and B is measured 
with the same function as for the geometry feature.  

All features (low-level and HWF) and a querying 
engine that is based on our Query Model concept ([1]) 
were implemented as Perl objects in our test 
environment. Perl was chosen because it allows rapid 
prototyping. The next section explains how we tested the 
HWL features and the results we got. 
6 EXPERIMENTAL RESULTS 
All experiments were done on a collection of 64 

synthetic images. This collection consists of four groups 
with 16 similar images each. Figure 4 depicts the test 
database. Each group consists of two rows. The four 
groups (ground truth) are: images of forests (first and 
second row), images of houses (third and fourth row), 
images of faces (fifth and sixth row) and images of 
equipment (seventh and eighth row). Each image was 
constructed from a stencil with 14 basic icons in 
Microsoft Visio (the image collection and the icon 
stencil can be obtained from the authors). We chose this 
image collection because it is – although the images are 
synthetic – a hard test for the SFL concept and the HWL 
implementation. It is a hard test because these images do 
not contain much information and it is difficult to derive 
more information with high-level features than the 
powerful low-level features (color histogram, object 
description) already do. 

The hypothesis of our experiments was that using 
SFL reduces the impact of the semantic gap. This was 
tested in the following way: 
- The HWF defined above were used as an example of 

an SFL. We did 300 valid queries: 100 with the low-
level features, 100 with the HWF features and 100 
with all features. The parameters of these queries 
were selected automatically (query example, 
threshold parameters, see [1]). 

- A query was defined as valid, if the result set was not 
empty. This was the only restriction in the automatic 
evaluation process. 

- The reduction of the semantic gap was measured by 
the change in the quality of result sets. Quality was 
measured with recall and precision. The ground truth 
from above was used for evaluation. 

Querying was done by selecting an example image from 
the given collection and setting threshold values for the 
used features. The thresholds are upper limits for the 
distance from an image to the query example. If an 
image exceeds the threshold for a certain feature, it is 
discarded from the querying process. The result set 
contains only the images with a distance (for every 
feature) to the query example that is not greater than the 
feature-specific threshold. 

Figure 5 shows the results of all queries. Triangles 
represent the query results for the low-level features, 
circles the results for the HWF and rhombs the results 
for all features. We have split the diagram in four areas: 
excellent (recall and precision >50%), precise (recall 
<=50%, precision >50%), complete (recall >50%, 
precision <=50%) and poor (recall and precision 
<=50%). Only 5% of all results lie in the excellent area, 
10% are precise, 15% are poor and about 70% are 
complete. That means, our system tends to optimize the 
recall. 

Looking at the distribution of results reveals that the 
triangles form two clusters with (recall, precision) at 
(80%,20%) and (10%,85%). That means, the low-level 
features produce extreme results with either high recall 
or high precision. The HWF results (circles) are about 
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Figure 5. Experimental results for 300 queries. Triangles 
represent the query results for the low-level features, 
circles the results for the HWF and rhombs the results 
for queries on all feature classes. 
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equally distributed in the poor and precise area. Most 
rhombs lie in the precise area with slightly better 
precision than the triangles. That means, using low-level 
features and HWF features together leads to more 
balanced results. Most results in the excellent area are 
rhombs. 

Figure 6 summarizes the overall recall and precision 
(mean values over 100 tests each). The high-level 
features produce an excellent recall of 64% with a poor 
precision of 39%. The HWF features alone result in 
even more unbalanced results (71% and 34%). Using all 
features reduces the recall but improves the precision. 

The quality level in Figure 6 is the sum of recall and 
precision (for visualization it is divided by 2). It is a 
measure for the maximum level recall and precision can 
reach for a specific querying method and ground truth 
independent from the query parameters. The quality 
level for the method with all features is 54%. This is a 
slight improvement of 2% over the two basic methods. 
These results suggest that using HWF features refines 
the results of low-level features and balances the result 
set quality. 
7 CURRENT AND FUTURE WORK 
Next work on the HWF will include the development of 
more sophisticated versions of the descriptors and 
distance measures as well as additional tests on other 
image collections. In the future, we will try to base all 
HWF features on MPEG-7 image descriptors. 

Additionally, we will define and investigate two 
further semantic feature layers: image creation artifacts 
(ICA) and chaotic image properties (CIP). ICA try to 
extract typical image errors that are originated in the 
photographing technology (digitized photos, video 
frames, etc.) or in the photographing task (shooting 
portrait photos, film scenes, etc.). For example, such a 
property could be color errors (derived from color 
histograms). These could be used to guess the age of an 
image. CIP extract chaotic elements of images (e.g. 
trees, flowers, etc.). They will be based on fractal theory 
and can be used to distinguish images of natural scenes. 
8 CONCLUSION 
In this paper we describe a novel approach to reduce the 
semantic gap problem of CBIR system. The basic idea is 

enhancing queries with high-level features that are based 
on low-level features. We have implemented a prototype 
for a feature class that describes human world 
properties. This feature class was tested in our test 
environment in 300 queries. The result was: using high-
level features improves the quality of result sets by 
balancing recall and precision. 

Our conclusion is that using semantic feature layers is 
reasonable when the used feature class suits the given 
querying problem (application domain). Otherwise it 
may even lead to a reduction of the querying 
performance. The semantic feature layer concept will be 
incorporated in the open VizIR project. Interested 
researchers are invited to join this project or use its 
results and deliveries for further CBIR research. 
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Figure 6. Quality comparison of evaluated methods. 
Using all features optimizes the quality level. 
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ABSTRACT 

The focus of this paper is on similarity modeling. In the first part we revisit underlying concepts of similarity modeling 
and sketch the currently most used VIR similarity model (Linear Weighted Merging, LWM). Motivated by its 
drawbacks we introduce a new general similarity model called Logical Retrieval (LR) that offers more flexibility than 
LWM. In the second part we integrate the Feature Contrast Model (FCM) in this environment, developed by 
psychologists to explain human peculiarities in similarity perception. FCM is integrated as a general method for 
distance measurement. The results show that FCM performs (in the LR context) better than metric-based distance 
measurement. Euclidean distance is used for comparison because it is used in many VIR systems and is based on the 
questionable metric axioms. FCM minimizes the number of clusters in distance space. Therefore it is the ideal distance 
measure for LR. FCM allows a number of different parameterizations. The tests reveal that in average a symmetric, 
non-subtractive configuration that emphasizes common properties of visual objects performs best. Its major drawback 
in comparison to Euclidean distance is its worse performance (in terms of query execution time). 

�����
��� Visual Information Retrieval, Content-based Image Retrieval, Content-based Video Retrieval, Visual 
Similarity Measurement, Similarity Modeling, Linear Weighted Merging, Logical Retrieval, Feature Contrast Model, 
Boolean Retrieval, Vector Space Model 

1 INTRODUCTION 

Content-based Image Retrieval (CBIR) and Content-based Video Retrieval (CBVR) are two research directions of 
Multimedia (or Media Processing) systems that have been very active in the last couple of years. There is a trend to 
unify concepts and methods from CBIR and CBVR under one umbrella and the MPEG-7 standard is a first step in this 
direction. In this paper we will refer to both CBIR and CBVR as Visual Information Retrieval4 (VIR). Essentially, VIR 
research has undergone three phases with different focus: (1) feature design and indexing methods, (2) user-interfaces 
and iterative refinement and (3) benchmarking (now). To overcome the big open problems of VIR19 we think it being 
necessary to emphasize careful feature and similarity modeling. 

The focus of this paper is on similarity modeling, which is probably the most neglected area of VIR research. First we 
sketch the currently most used VIR similarity model (Linear Weighted Merging, LWM) and point out its major 
weaknesses. Then we describe a new general similarity model called Logical Retrieval (LR) that offers more flexibility 
than LWM without suffering from its drawbacks. In the third step we integrate the Feature Contrast Model (FCM), 
developed by Tversky20 into this environment. The FCM is based on psychological observations of human similarity 
perception. We integrate it in LR as a general method for feature-based distance measurement. 

Utilizing FCM for VIR is not a new idea: it was first performed by Santini and Jain15, 16, who built a unified similarity 
theory integrating geometric and set theoretic approaches. The FCM defines a family of distance measures that are very 
attractive for VIR: It is possible to define asymmetric similarity (e.g. "how similar is image A to B?" instead of "how 
similar are A and B?") and the model is generally less restrictive than distance functions based on the metric axioms 
(e.g. Minkowski distances).  

The following Section 2 offers background information on similarity structures and distance measurement. Section 3 
reviews similarity modeling in VIR, the LWM approach and describes LR as a more flexible model than LWM. Section 
4 integrates the FCM in LR and investigates whether the integrated model still preserves the idea of Tversky’s FCM. In 
Section 5 the FCM is implemented in a prototype as a general-purpose distance measure and tested on image data. 
Performance results are analyzed in comparison to Euclidean distance as a standard VIR distance measure. 

 
* eidenberger@ims.tuwien.ac.at; phone 43 1 58801-18853; fax 43 1 58801-18898; www.ims.tuwien.ac.at 

36



2 BACKGROUND 

Subsequently, we define the term similarity structure as the fundamental concept for distance respective similarity 
measurement. Subsection 2.2 sketches distance measurement based on the metric axioms as it is usually used in VIR 
systems. Finally, Subsection 2.3 briefly describes alternative axiomatic systems for similarity structures including the 
FCM. 

���� ��	���
������
����
���

Let � be an arbitrary set of objects. According to Sint17 a similarity structure (or: a similarity measure) for the elements 
�� of � is defined as a relation respective function over a set of pairs ��� of objects (represented as numerical feature 
vectors). The given measurements have to be somehow transformed into this relation. The list of possible similarity 
structures � over ��� includes17: 

- ��: � is an Euclidean distance over ���. This measure assumes that feature space has Euclidean geometry (fulfills 
the metric axioms, see below). 

- ��: � is a metric over ���. This measure makes no assumption on the geometric shape of feature space. �� is a 
generalization of ��. 

- ��: � is symmetric and rational over ���. 

- ��: � is a total or partial order of �. 

These four are the most common similarity structures but of course, many more do exist. This definition spans an 
umbrella over a wide range of similarity understandings (visual, mathematical, psychological, etc.). In this paper we 
will investigate another method: the generation of a dichotomy of similar and not similar objects with dynamic borders 
over �.  

���� ���������	����
�	�����������������	��
�������	��

Usually, VIR similarity measurement follows the vector space model from information retrieval theory (e.g. in LWM, 
see Section 3.1). It is done by measuring the distances of feature vectors with distance functions and interpreting 
similarity as a point in an n-dimensional distance space. The vector space model is an applied similarity structure of 
type ��. That means, it strongly relies on metric-based distance measurement. For distance measurement in (feature) 
vector spaces a certain type of geometry has to be considered. In VIR the feature space is usually considered to be of 
Euclidean shape. That means, distance measures ��� fulfil four conditions (metric axioms)16: 

1. Constancy of self-similarity: 

 ( ) ( )
����
������ ,, =  (1) 

for the feature vectors ���and �� of two stimuli 	 and 
 (in VIR: media objects). Psychological experiments have show 
that self-similarity is not always the case for human similarity perception16. 

2. Minimality: 

  ( ) ( )
����
������ ,, ≥  (2) 

3. Symmetry: 

  ( ) ( )
����
������ ,, =  (3) 

Like for the constancy of self-similarity, psychological experiments have turned out that humans do not always have a 
symmetric similarity perception.  
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4. Triangle inequality: 

  ( ) ( ) ( )
������
��������� ,,, ≥+  (4) 

Distance measures that fulfil the metric axioms are Minkowski distances, the Euclidean distance and the city block 
measure16. Experimental investigations during the last fifty years have turned out that metric axioms may be too 
restrictive for human similarity perception. The triangle inequality (in CBIR sometimes used for query acceleration) 
was even falsified16, 20. Newer theories as the ones sketched in the next subsection suggest a better representation of 
human similarity perception. 

����  ���
����!���"�
�����	��
�������	��

According to Santini and Jain, Monotone Proximity Structures (MPS, a system of three distance axioms) could be used 
to replace the metric axioms with a less rigid system16. As can be easily shown, MPS suffers from severe 
inconsistencies. One of the axioms is the dominance axiom: 

 ( ) ( ) ( ){ }
121121112211 ,,,max, ��������������� >  (5) 

Here, two stimuli 	 and 
 are compared by distance function ��� where 	 and 
 are represented by two-dimensional 
feature vectors ������� and �������. For example, if the two features are the following predicates: (1) “
 is a color image” 
and (2) “
 has landscape spatial layout” (where 
 is an arbitrary stimulus) then a greyscale landscape media object can 
be represented by ����, ���� and a color landscape media object can be represented by ���� and ����. For this 
example, the dominance axiom has to be written as: 

 ( ) ( ) ( ){ } ( ) ( ))1,1(),1,0()1,1(),1,0()1,1(),1,0(,)1,1(),1,0(max)1,1(),1,0( ����� >≡>  (6) 

Obviously, no distance function ��� exists for which equation 6 holds. 

In comparison to the metric axioms and MPS, FCM is not a geometric but set-theoretic approach20. Basically, the idea 
is measuring the similarity of two stimuli (represented by feature vectors 
 and �) with the formula in equation 7 (��� is 
a monotone increasing function and the non-negative parameters �, � determine, whether ��� is symmetric (���) or 
asymmetric (else) and subtractive (��� or ���) or non-subtractive (else)). 

 ( ) ( ) ( ) ( )
���
��
��
� −−−−∩= βα,  (7) 

The FCM is very successful in representing the properties of human similarity measurement because it allows to 
distinguish between symmetric and asymmetric similarity perception and accounts for non-constant self-similarity. On 
the other hand it does not allow measurement with constant self-similarity and can only be applied to qualitative feature 
vectors (predicates). The latter is because of the logical operators used in ���. 

To overcome the second drawback, Santini and Jain developed the Fuzzy FCM (FFCM) where the numerical elements 
of feature vectors are transformed to truth values and the logical operators (intersection and subtraction) are replaced by 
fuzzy equivalents15, 16. In addition, they developed a geometric equivalent for FFCM by replacing the fuzzy set 
operators by continuous functions. This formula somehow integrates geometric and set-theoretic similarity approaches. 
Santini and Jain16 present a solution for the problematic fact that in FFCM feature vector elements are considered to be 
independent, which is not the case in reality. Unfortunately, this approach has not been integrated with the continuous 
FFCM formula. Additionally, these approaches suffer from the drawback, that the major degree of freedom (the 
selection of the formula ���) had to be abandoned in favour of unification. ��� is always the fuzzy cardinality of the given 
truth values. 

Maybe because of these problems, it seems that using FCM for VIR is not further investigated. For example, in 
Smeulders et al18 it is not mentioned any more. We think this being regrettable, because the ideas of FCM are valuable 
for VIR distance measurement. In Section 4 we describe a new approach to incorporate FCM in a process-oriented 
environment for similarity measurement (LR). Next, we design a general model for the representation of human 
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similarity perception. 

3 SIMILARITY MODELING 

In philosophy, similarity defines the relation between an object and its representation (Plato’s ’image’). In VIR the 
philosophical similarity problem is usually subsumed under the term sensory gap18. Essentially, this term describes the 
loss of information in the (repeated) photographing process. This problem is accepted and not treated in VIR. Computer 
vision people are plowing this field and often, their plow is a 3D model (e.g. an active contour based on a deformable 
template, etc.). 

Quite differently, ’similarity’ in VIR is the relation of two images (stimuli). These may, but need not be representations 
of two objects (scenes, etc.). Thus, the VIR similarity problem is modeling the ���� similarity perception, humans have 
developed since they are able to use sticks for drawing in the dust. This problem has been investigated mostly by 
psychologists (perception theory, Gestalt theory). Researchers in other areas of work use the term ’similarity’ as well but 
– as pointed out above – mean something different than (human perception of) visual similarity (e.g. mechanics: 
similarity of machines), have a more strict similarity concept (e.g. mathematics: similarity of triangles) or investigate 
the similarity of abstract representations of objects or images (e.g. physics: similarity in thermo-dynamics, medicine: 
homeopathy theory). Somehow logical, the most similar meaning of 'similarity' is used in biology for categorization of 
species. In this section we examine the standard VIR similarity model and develop a new one (Subsection 3.2) that is 
more suitable for human similarity perception. 

���� ������
���#$���	���
����	�����

The usual approach for VIR similarity measurement is called Linear Weighted Merging (LWM) and has the following 
form18 (generalized): 

  ( )
( )( )

∑ ∑

∑ ∑
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,
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,,, ,

,  (8) 

������� is the average dissimilarity of stimulus 	 related to the used set of features � and the query examples in set �. 
The �� are the weights for the features, ��	
 is a binary matrix of size ������� that contains a '1' for each combination of 
feature and query example that is used in the query. ���� can be any linear or exponential transformation of the distance 
values �����	��� ��	
� for feature �, stimulus 	 and query example �. Typical (accepted) transformations are identity and 
negative exponential transformation18: 

  ( ) �

�
��� −=  (9) 

This numerator is standardized by the denominator: the number of dimensions of distance space. Because the 
denominator represents a linear transformation it is often omitted. In this case we do not call ���� a similarity but a 
position value, because the ���� for all objects A are a partial order over the given object collection. Like the distance 
functions, ���� is a similarity structure (in this case of type ��, see Subsection 2.1). Usually, the most similar objects 
have the smallest position values. If the second transformation (equation 9) is used, the most similar stimuli have the 
highest position values. The linear weighted merging formula implies that all distance measures are standardized to the 
same interval (usually [0,1]). Ideally, they should have the same distribution as well. The weights are usually provided 
by the user and usually sum up to 1. 

The LWM formula does not measure the distance of an object to the origin of distance space! It is just a linear 
combination of distance values. One argument against this formula is that most features are (of course) not linearly 
related. The fundamental law of Gestalt Theory is a generalization of this fact: the whole is more than its elements. In 
the formula above, the maximum of derivable information is always the sum of the elements. 
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One could argue, that for testing it is sufficient to know the ground truth for the query examples and use this formula to 
find a lower bound for the quality of a retrieval method. The ground truth according to one element is the number of 
similar elements in a collection. For obvious reasons this is not true. LWM just generates a partial order over all 
elements of a collection. To be usable for retrieval the user has to specify a number � for the number of similar 
elements in the result set. Knowing the ground truth   (for the given examples) per se influences the selection of �. If 
  is selected greater than � the recall improves and if   equals � the precision improves. Additionally, it is not clear, 
how the ground truth can be found for tests, where using multiple example objects is necessary. Finally, knowing the 
ground truth and using LWM is not enough to judge the quality of a method (e.g. for feature extraction). In this case it 
would be necessary to know the distribution of objects in distance space as well.  

The next argument follows a similar direction. Usually, iterative refinement by relevance feedback is used to reduce the 
semantic gap18. Consequently, in the past a lot of research effort has been invested into relevance feedback algorithms. 
Such algorithms can only be successful if the similarity model of the underlying query engine is flexible enough to 
represent the user’s intention. For example, we use two features �� and �� and assume a media collection with ten 
elements. The distribution of the elements in distance space is shown in Figure 1. The query example(s) define(s) the 
origin. The ground truth of this collection is that 5 elements are similar (shown as !) and the 5 other are not (depicted as 
�).  

If we use the formula above, we have two parameters that can be manipulated during relevance feedback: the query 
examples and the weight vector. Anyway, in distance space the result space is always the simplest simplex (a triangle in 
2D, a tetrahedron in 3D, etc.), defined by the weights. Thus in the situation above it is impossible to retrieve all similar 
elements without retrieving the non similar as well. This allows two possible conclusions: (1) the situation above can 
never occur. Human similarity judgment can never result in such a ground truth with this element distribution or (2) the 
LWM formula is – as a similarity model – not suitable for VIR. We tend to the second explanation. In the next 
subsection we will introduce a more flexible model. 

���� %�&�����$��
��!���

McLuhan writes that images are just illusions while only film (or video) is able to transport visual content 
appropriately12. His statement covers the simple observation that nothing exists without time and that "�#�� #��$��
%��$&�. We think that there is deep truth in this statement and derive that similarity measurement based on visual 
information should not be static but a dynamic process – as it is for human beings.  

Logical Retrieval (LR) is based on observation of human behavior. When people are arguing their visual similarity 
perception they do not do this by making general comments but by pointing out certain aspects and details and stressing 
their remarkable analogy. These aspects are the features in the querying process. This view of similarity is very old. It 
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Figure 1: Similarity definition in distance space by LWM. The selected subspace is always of triangular shape. Its size depends the 
result set size and the elements in the queried collection. The slope of the border is determined by the weights. Thus it is impossible 

to sort out all irrelevant elements in iterative refinement. 
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was introduced by Aristotle, who saw similarity, when two objects had most or the most important properties, in which 
they could differ, in common3. Derived from this, similarity can be formally defined as the correspondence of objective 
measurable elements of complex objects or of their physical neighborhood3. For example, imagine cartoon figures. The 
perceived similarity of cartoon figures with real persons comes from extracting and imitating their major features 
(physique, motion, etc.). 

The idea behind LR is simple. It should be a vehicle (model) that allows the selection of every possible combination of 
elements from a given collection. Thus it does not make any assumption, gives the user full control over the retrieval 
process and supports every thinkable similarity perception. The standard argument against this technique is: how should 
the average user be able to handle such a system? To the authors’ belief (and experiences) this argument makes little 
sense at this point, because this is just a user-interface problem, while we are searching for a suitable model for 
similarity definition. We think that persisting on a very limited model that is easy to handle does not make much sense, 
if the overall problem of VIR are recall and precision rates of less than 40%. 

We define LR similarity measurement as a two-step process8. In the first step (micro-level) feature vectors are mapped 
to points in distance space. Distance space is defined as the vector space that is derived by measuring the distance of 
media objects to given query examples with distance functions (micro-level similarity measurement). It has one 
dimension for each unique combination of distance measure and reference stimulus. In the second step (macro-level) 
the user defines his similarity perception as a logical expression. The logical expression consists of conditions '�

j of the 
form given in equation 10. The parameter "� is a threshold for the maximum distance of a media object for distance 
space dimension �
.  

 �� "� ≤  (10) 

A media object is added to the result set, if the query expression evaluates to "��� for its distance values. This 
expression is then refined in an iterative process. We have developed GUI methods where the user need not define the 
expression directly but implicitly by selecting and moving media objects in a 3D user interface5. The set of similar 
objects in the example above (see Figure 1 in Subsection 3.1) could be described by the following expression (see 
Figure 2): 
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Figure 2: Similarity definition in distance space with logical expressions. The LR approach is a suitable similarity model because it 

allows every combination of elements. Thus it can represent each possible similarity perception. 
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The example makes clear that LR expressions can describe each possible selection in distance space and therefore 
represent each type of similarity perception. LR is not a new invention. The idea is partially based on logical 
expressions as in Boolean Retrieval, although it has nothing to do with the Boolean Retrieval method in information 
retrieval. It is the integration of logical expressions with vector spaces, optimized for visual similarity perception. Our 
approach to Logical Retrieval is a generalization of our earlier Query Model concept1. In addition, we are aware of a 
second approach that results in a similar concept from a different starting point13. Next we will investigate the structure 
of LR expressions in VIR. 

Every query expression can be defined in disjunctive normal form ()*-connected terms as in the example above). In 
this style each 	�+-connected term of an expression describes a n-dimensional cube of elements and should contain at 
most one condition for each dimension of distance space. Each such n-dimensional cube can be interpreted as a cluster 
(these clusters correspond to the Query Models we introduced in earlier publications1). The Logical Retrieval process is 
essentially describing clusters of similar elements. According to information retrieval theory, such clusters exist for 
each collection of elements with reasonable size.  

If we interpret LR as disjunctive concatenating of cluster expressions we can do the following simplifications:  

1. The �), can be integrated into the cluster terms. Instead of �),�'�
j we can write: 

  ( ) �

�����

�

� '"�"�'�), ≡>≡≤¬≡  (12) 

2. Two disjunctive conditions on a distance space dimension � in a single cluster term can be integrated into a single 
expression and written as follows: 

  �

���������

�

�

�

� '"�""�"�'' ,≡≤<≡>∧≤=∧  (13) 

We call�'�	

x a cluster restriction. Each 	�+-connected expression of cluster restrictions describes an either finite (one 

cluster restriction for each dimension of distance space) or (ideally) infinite cluster (less cluster restrictions than 
dimensions).  

Next we will point out the major advantages and drawbacks of LR. In opposition to the arguments above, LR has a very 
positive consequence for user-interface design in VIR. It is intuitive and easy to visualize. Queries are usually 
represented by selecting example elements. In LR this selection can be made by dragging rectangles around two-
dimensional views of examples in feature space or distance space. Views can be created by selecting arbitrary features 
for the X- and Y-axis. Obviously, these rectangles can be directly transformed into an LR expression. Iterative 
refinement can be performed in the same way. Abstract annotations like ’very similar’ are not needed5. 

By now, it is accepted that iterative refinement based on LWM is limited. It leads to improvements in recall and 

Iteration

Recall,
Precision

0 1 2 3 4 5 6 7
 

Figure 3: Typical development of recall and precision in iterative refinement by relevance feedback11. We propose that – at least 
partially – this characteristic comes from the user’s limited influence on the LWM querying process. 
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precision in the first four to five cycles11. Then the quality of the results begins to decrease. Figure 3 describes the 
typical development of recall and precision over multiple refinement iterations. We think that that the reason for this is 
the limited influence of the user in a querying process based on LWM. Four to five cycles is exactly the time it takes to 
adjust the weights for a few features to the optimum values. In LR iterative refinement means finding additional clusters 
and optimizing their borders. This should at least stretch the typical refinement curve and lead to a higher quality peak 
in the refinement process. 

In addition, LR has a nice side-effect on query execution time. Within each 	�+-connected cluster, the result set of a 
query is independent from the order of the cluster restrictions. An algorithm that sorts the conditions in a way that those, 
which sort out most elements and/or use the fastest distance functions, are used first in the querying process, would lead 
to significant query acceleration. We have presented the design and implementation of such an algorithm7. It reduces 
the average query execution time in our test environment by 66% (in comparison to a QBIC system9, 10 with the same 
feature classes and distance functions). 

4 INTEGRATION OF THE FEATURE CONTRAST MODEL 

In the LR model, we would like to incorporate the ideas of the FCM: asymmetry and non-constant self-similarity. Even 
though the standard FCM works on binary predicates that are related to the conditions from above (equation 10), we 
think that that the distinction between symmetric and asymmetric queries belongs to the micro-level and therefore FCM 
should be incorporated as a (general-purpose) distance measure. To do this, we are not going to interpret numeric 
feature vector elements fuzzy or probabilistic, because we cannot give good reasons for such an interpretation. Instead, 
we use the following substitute for continuous data: the similarity function ��� is defined as in equation 7 and the set 
operators are replaced by suitable continuous functions. The intersection operator is replaced by one of the two 
following functions: 
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#�� is the maximum distance of feature vector elements �� and �� and �� approaches �. �$"��� emphasizes common 
properties of 
 and � while �$"��� emphasizes their differences. In the tests in section 5 we will try to find out which 
formula performs better for continuous data. For the subtraction operator we use the function from equation 16: 
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 (16) 

This model should preserve the idea of the FCM. The intersection operator selects properties that are present in both 
stimuli to a similar extent and the subtraction operator selects properties that are present just in 
. For ��� we suggest to 
use formula 17. The definition of ��� is not part of Tversky’s FCM model. Therefore we do not include it in the 
continuous model either. 
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" is the determining parameter of ���. -���"� returns the value of t: the constant’s value if t is a constant (e.g. -���.��.) or 
the variable’s value if " is a variable (-������. if ��.). Thus, if "��, ��� is the cardinality of relevant properties 
(equivalent to FCM). If "���, ��� measures the mean of the difference of all relevant properties of two stimuli (either both 
present or only one present).  
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Two problems are connected to this approach: how to choose �� and ��, and how to set the parameters � and � that 
determine, if the FCM is symmetric or asymmetric. We suggest to base the selection of �� and �� on statistical analysis 
of the given feature data (with �i//#��!) and to implement the setting of � and � by a switch in the user interface that 
allow the specification of symmetric (�����) and asymmetric queries as well as subtractive (��� or ���) and non-
subtractive queries. Below, in Section 5 we will show how this continuous FCM model was implemented in a 
prototype.  

Next we investigate the behaviour of the continuous FCM for binary predicates. Ideally, the continuous FCM should 
produce the same results for binary predicates as the original FCM. The following tables show all possible relations for 
two predicate vectors 
����� and ������. The intersection (�$"��) should be ’1’ only if predicate � is present both in 
 and 
�. The subtraction (��0) should be ’1’ if a predicate is present just in 
. 

��� ��� �$"��� 12
max ε≤

+
− ��

��
� �$"���� 11 max εε <−∧≤−

���
��� � �$"����

1 1 1 �1��2��3.���/����444�"���� 1 ��1�����/����444�"������1��/���444�"���� 1 
1 0 0 �1��2��3.���5�/����444������� 0 ��1�����/����444������� 0 
0 1 0 �1��2��3.���5�/����444������� 0 ��1�����/����444������� 0 
0 0 0 �1��2��3.���/����444������� 0 ��1�����/����444�"������1����/���444������� 0 

Table 1. Evaluation of intersection operator for binary predicates. 

��� ��� ��0� ( )
2max ε≤−−

��
�� � ��

�� − �

1 1 0 �1��1�����< �2 ... ������ 0 
1 0 1 �1��1�����< �2 ... "���� 1 
0 1 0 �1��1���.�< �2 ... ������ 0 
0 0 0 �1��1�����< �2 ... ������ 0 

Table 2. Evaluation of subtraction operator for binary predicates. 

For binary predicates #����. If we set �i/��5 and���/� the tables show that all suggested operators perform as desired. 
That means, if the continuous operators are fed with binary predicates the behaviour of the model is exactly the same as 
for Tversky’s model. This is independent from the selection of ���. In the next section we will investigate if the operators 
are suitable for practical use in VIR systems.  

5 TESTS AND RESULTS 

Goal of the tests is to measure the performance of the continuous FCM as a &�$����16��6!��� distance measure in 
comparison to another standard distance measure: the Euclidean distance. The principal superiority of the LR approach 
over LWM has already been shown in other publications1, 8, 13. We have implemented the FCM models from section 4 in 
a Perl prototype. Perl was chosen because it offers powerful data processing capabilities and allows rapid prototyping. 
Additionally, by now powerful image analysis libraries exist for Perl. 

The selection of the test procedure was problematic. Normally, new VIR methods are tested by selecting a large image 
library (e.g. the Corel-library), defining a ground truth based on semantic image properties (e.g. images of flowers, 
images of cars) and evaluating the new method by a reasonably large number of queries with the recall and precision 
measures18. The general problem with this procedure is the following: based on the LR model as a flexible similarity 
measurement process it is always possible to maximize recall and precision at the same time. Additionally, here we 
want to measure the performance of FCM as a distance measure on the micro-level. If the performance was weak, the 
overall system performance in terms of recall and precision could still be good because of LR’s flexibility. Especially, 
the characteristic advantages of FCM cannot be measured with such a procedure. 

Because of these considerations we gave up the idea of an evaluation based on recall and precision and developed the 
following test pattern. We compare the cluster structure of the distance spaces created on the micro-level by the used 
distance measures. A cluster is defined as a group of objects that belong to the same semantic group as the query 
example (defined by the ground truth). In detail we are doing the following (in a reasonable number of repetitions). 
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Based on a given set of feature vectors and a randomly selected query example we generate two distance spaces: one 
with FCM and the other with Euclidean distance. In these spaces we identify all clusters of objects that belong to the 
group of the query example and calculate the average group size and the group size variance. Average and variance of 
the group size are meaningful measures for the quality of a distance function in LR, because a good distance measure 
should generate as large as possible (and therefore as less as possible) clusters that can then be easily tracked on the 
macro-level. The major problem of this approach is the identification of clusters in an n-dimensional distance space 
(derived from n features). This is non-trivial but can be avoided by taking all features together and measuring the 
distance as a ��!��. The generated distance space is then one-dimensional and the test for the general-purpose distance 
measures is even harder (especially for the FCM) because they have to integrate arbitrarily related features. 

For the tests we use a collection of 444 images of coats of arms. The images are synthetic (painted, not scanned or 
photographed) and have been described in earlier publications1, 2. Like Santini and Jain15 we think that computer-based 
similarity assessment should be pre-attentive and therefore VIR benchmarks should be based on pre-attentive similarity 
judgement as well. This can be achieved by using media collections with �0�"��%" content for evaluation. Unfortunately, 
we are not aware of any visual media collection with really abstract content. Therefore we think that using the coats of 
arms library instead is a good compromise, because coats of arms carry no inherent visual meaning. Even though the 
elements of arms have precisely defined semantics the visual image itself has no meaning at all (except some ordinaries 
like horses, crowns, etc.). To select query examples and identify clusters we need a ground truth. Based on the visual 
impression we built a pre-attentive ground truth of four groups of images with similar colors, layouts and textures. The 
group size varies from 18 to 24 images. Finally, for the distance calculation we need feature vectors. We use the 
features from our coats of arms CBIR system1, 2. These include color histograms (global and localized) and other color 
features, object features (contours, etc.), image symmetry features and application-specific features (coats of arms 
segmentation, etc.). Each of the 444 images is represented by a feature vector with 58 elements. 

Testing FCM as a general-purpose distance measure we want to clarify the following question: are the characteristics of 
the FCM as a tailor-made similarity measure still relevant in the LR model? Our hypothesis is: yes. We try to answer 
this question with three tests: (1) Performance comparison of FCM with the �$"��� intersection operator to FCM with the 
�$"��� operator, (2) comparison of symmetric FCM without consideration of features that are only present in one 
stimulus (�����, non-subtractive) to asymmetric and/or subtractive FCM, and (3) comparison of the best FCM model 
to the Euclidean distance. To optimize FCM the optimal values for the parameters ", �, �, �� and �� have to be found. In 
summary we run 217000 queries: 1000 on Euclidean distance (no parameters), 72000 on FCM with �$"��� (6 
parameters) and 144000 on FCM with �$"��� (4 parameters, ��� with "�� was not evaluated, see below). 

The comparison of �$"��� and �$"��� lead to very clear results. FCM with �$"��� (emphasizes common features) was in 
every single test better than FCM with �$"��� (emphasizes differences) with equal parameters. While the average 
number of clusters for FCM with �$"��� is most times less than 9 elements it is nearly always higher than 9 for FCM 
with �$"��� intersection operator. That means, in average the objects of the query examples group fall in more than 9 
clusters in distance space. Consequently, �$"��� was not considered in the rest of the evaluation. Next we tried to 

 
Figure 4: Average cluster size (bars, left Y-axis) and cluster pollution (rhombs, right Y-axis, in percent of correct cluster members) 

for the symmetric non-subtractive FCM (��� ��) depending on �� (X-axis). 
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optimize the parameter " of FCM and found out the following: "��� clearly outperforms "��. That means, function ��� 
with continuous predicate interpretation is always better than ��� with binary interpretation (and FCM with equal 
parameters). Thus "�� was not considered in the further tests as well. 

To find out whether symmetric non-subtractive FCM is better than asymmetric and/or subtractive FCM we optimized 
the parameters for each of the four possible combinations. This revealed that in average symmetric non-subtractive 
FCM performs best. Figure 4 shows the results for �����. The bars show the average number of clusters in distance 
space depending on �� while the rhombs show a new phenomenon that we call cluster pollution. First, we concentrate 
on the average number of clusters. We can see that it decreases with decreasing �� from 6 (about constant for �� ����7) 
to about 2 (��������). This is because if �� is set smaller, less predicates are used to judge the similarity of objects. From 
the small number of clusters we can conclude that FCM has an inherent ’intelligence’ to select the ��&�" properties and 
using lower epsilons results in a better cluster structure. 

Cluster pollution means that in a cluster of adjacent objects from the queried group, false objects exist that have ���%"�� 
the same distance value as one of the cluster members but do not belong to the clustered group (according to the ground 
truth). Such false objects cannot be identified with LR expressions and therefore have to be treated as cluster members. 
Generally, it should be very unlikely that two objects come out at exactly the same point in distance space but because 
of the nature of FCM (only some predicates are used, controlled by ��) this can happen. In Figure 4 we see that cluster 
pollution decreases with increasing �� from 140% to 100%. That means for �������8 each cluster contains about the 
same number of correct and false members. Of course, to a large degree this can be explained by the one-dimensional 
distance space. If distance space had more dimensions the clusters would be less polluted. Still, cluster pollution is a 
consequence of using FCM. Clusters in an Euclidean distance space are not polluted (see below). The results in Figure 4 
may suggest that a lower number of clusters (gained by lowering ��) corresponds with higher cluster pollution. For 
clarification we calculated the correlation of average cluster size and cluster pollution. Figure 5 shows the results. There 
is no significant correlation between the cluster size and cluster pollution. The correlation coefficient is lower than 82%. 

The results for asymmetric and/or subtractive FCM can be seen in Figure 6. In this case, either �, � or both are greater 0 
and therefore the results depend on �� and ��. The left diagrams show the average number of clusters. Black areas 
(combinations of �� and ��) mark results of average 2 clusters (1,5-2,5 clusters of correct objects in distance space), dark 
grey results of average 3 clusters (2,5-3,5), and so on. The right diagrams show the average cluster pollution. Black 
areas have a cluster pollution of average 135%, dark grey of 130%, et cetera. The first row of diagrams shows the 
results for FCM with ��� and � ��. In this case all features are taken into account that exist in both objects or only in 
the query example. The second row of diagrams shows the results for FCM with ��� and � ��. These two FCM 
configurations are asymmetric and subtractive. The third row of diagrams shows the results for FCM with ��� and 
���. This configuration is symmetric and subtractive. We have only investigated these cases but not linear 
combinations between them, because these configurations are extreme cases and the results of intrapolated 

 
Figure 5: Correlation of average cluster size (X-axis) and average cluster pollution (Y-axis) for symmetric non-subtractive FCM.  

The correlation is not significant (81,9%). 
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configurations would be just intrapolations of the extreme results. 

From the diagrams we can induce the following observations: the FCM with ��� is in the average better than the FCM 
with ���. That means, using the information of features that are only present in the compared object � does not 
improve the results. For visual information this is intuitive: non-similar objects can have a vast number of different 
features. Using them in a query is misleading and can hardly be supported by arguments. Additionally, we can see from 
the first row of images that for very low epsilons there is an area with a lower cluster pollution. This supports our 
argumentation that bigger clusters are not just a trade-off for higher cluster pollution. 

In comparison to Euclidean distance (applied to the same test data) we see that FCM performs much better. Euclidean 
distance generates clusters of about two members. That means in average the queried image collection in distance space 
falls in 10 clusters. This is much worse than for FCM (2-8 clusters). On the other hand, Euclidean distance has two 
advantages: the resulting clusters have no pollution (because all features of an object are taken into account for distance 
measurement) and Euclidean distance is faster than FCM. The relationship in query execution time for the same test 
data on the same system is about 3:1. That means an FCM query takes about 3 times as long as an Euclidean query. 

6 CONCLUSION 

This paper reviewed similarity models for Visual Information Retrieval (VIR) and introduced the Feature Contrast 
Model (FCM) for VIR distance measurement. In the first part underlying concepts of similarity modeling were revisited 
and the standard VIR model was sketched. Motivated by the drawbacks of this model the more flexible Logical 
Retrieval model (LR) was introduced. According to this model, distance measurement is reduced from the central 
element of similarity measurement to a less important role. It should help to organize similar objects in distance space 
in a way that they are easy to find in an iterative querying process. In the second part the FCM, developed by 

  

  

  
Figure 6: Cluster size (left column) and cluster pollution (right column) depending on �� (X-axis) and �� (Y-axis).  

First row: ���, � ��, second row: ���, � ��, third row: ���, � ��.  
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psychologists to explain human peculiarities in similarity perception, was integrated in LR as a general-purpose 
distance measure. To do that a continuous model of FCM was developed. This model was tested on an abstract image 
library with a pre-attentive ground truth to judge its performance and find out the optimal parameterization. 

The results show that FCM performs (in the LR context) better than Euclidean distance. Euclidean distance was used 
for comparison because it is used in many VIR systems and is based on the (questionable) metric axioms. FCM 
minimizes the number of clusters in distance space. Therefore it is the ideal distance measure for LR. FCM allows a 
number of different parameterizations. The tests revealed that in the average a symmetric, non-subtractive configuration 
that emphasizes common properties of visual objects performs best. Its major drawback in comparison to Euclidean 
distance is its worse performance (in terms of query execution time).  

In future work we will try to improve the performance of FCM. Additionally, we will develop heuristics for FCM 
configuration for various kinds of feature data (setting ��, ��� and �). To do this, we will integrate FCM in the VIR 
project VizIR. VizIR aims at developing an open framework for VIR6. Interested researchers are invited to contact the 
authors for more information.  
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ABSTRACT 
In visual information retrieval the careful choice of suitable 
proximity measures is a crucial success factor. The evaluation 
presented in this paper aims at showing that the distance measures 
suggested by the MPEG-7 group for the visual descriptors can be 
beaten by general-purpose measures. Eight visual MPEG-7 
descriptors were selected and 38 distance measures implemented. 
Three media collections were created and assessed, performance 
indicators developed and more than 22500 tests performed. 
Additionally, a quantisation model was developed to be able to 
use predicate-based distance measures on continuous data as well. 
The evaluation shows that the distance measures recommended in 
the MPEG-7-standard are among the best but that other measures 
perform even better. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Information filtering, Query formulation, 
Retrieval models.  

General Terms 
Algorithms, Measurement, Experimentation, Performance, Theory. 

Keywords 
Visual Information Retrieval, Content-based Image Retrieval, 
Content-based Video Retrieval, Similarity Measurement, Distance 
Measurement, Similarity Perception, MPEG-7. 

1. INTRODUCTION 
The MPEG-7 standard defines – among others – a set of 
descriptors for visual media. Each descriptor consists of a feature 
extraction mechanism, a description (in binary and XML format) 
and guidelines that define how to apply the descriptor on different 
kinds of media (e.g. on temporal media). The MPEG-7 descriptors 
have been carefully designed to meet – partially complementary – 
requirements of different application domains: archival, browsing, 
retrieval, etc. [9]. In the following, we will exclusively deal with 
the visual MPEG-7 descriptors in the context of media retrieval. 

The visual MPEG-7 descriptors fall in five groups: colour, 

texture, shape, motion and others (e.g. face description) and sum 
up to 16 basic descriptors. For retrieval applications, a rule for 
each descriptor is mandatory that defines how to measure the 
similarity of two descriptions. Common rules are distance 
functions, like the Euclidean distance and the Mahalanobis 
distance. Unfortunately, the MPEG-7 standard does not include 
distance measures in the normative part, because it was not 
designed to be (and should not exclusively understood to be) 
retrieval-specific. However, the MPEG-7 authors give 
recommendations, which distance measure to use on a particular 
descriptor. These recommendations are based on accurate 
knowledge of the descriptors' behaviour and the description 
structures. 

In the present study a large number of successful distance 
measures from different areas (statistics, psychology, medicine, 
social and economic sciences, etc.) were implemented and applied 
on MPEG-7 data vectors to verify whether or not the 
recommended MPEG-7 distance measures are really the best for 
any reasonable class of media objects. From the MPEG-7 tests 
and the recommendations it does not become clear, how many and 
which distance measures have been tested on the visual 
descriptors and the MPEG-7 test datasets. The hypothesis is that 
analytically derived distance measures may be good in general but 
only a quantitative analysis is capable to identify the best distance 
measure for a specific feature extraction method. 

The paper is organised as follows. Section 2 gives a minimum of 
background information on the MPEG-7 descriptors and distance 
measurement in visual information retrieval (VIR, see [3], [16]). 
Section 3 gives an overview over the implemented distance 
measures. Section 4 describes the test setup, including the test 
data and the implemented evaluation methods. Finally, Section 5 
presents the results per descriptor and over all descriptors. 

2. BACKGROUND 
2.1 MPEG-7: visual descriptors 
The visual part of the MPEG-7 standard defines several 
descriptors. Not all of them are really descriptors in the sense that 
they extract properties from visual media. Some of them are just 
structures for descriptor aggregation or localisation. The basic 
descriptors are Color Layout, Color Structure, Dominant Color, 
Scalable Color, Edge Histogram, Homogeneous Texture, Texture 
Browsing, Region-based Shape, Contour-based Shape, Camera 
Motion, Parametric Motion and Motion Activity. 

Other descriptors are based on low-level descriptors or semantic 
information: Group-of-Frames/Group-of-Pictures Color (based on 
Scalable Color), Shape 3D (based on 3D mesh information), 
Motion Trajectory (based on object segmentation) and Face 
Recognition (based on face extraction).  

Descriptors for spatiotemporal aggregation and localisation are: 
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Spatial 2D Coordinates, Grid Layout, Region Locator (spatial), 
Time Series, Temporal Interpolation (temporal) and 
SpatioTemporal Locator (combined). Finally, other structures 
exist for colour spaces, colour quantisation and multiple 2D views 
of 3D objects. 

These additional structures allow combining the basic descriptors 
in multiple ways and on different levels. But they do not change 
the characteristics of the extracted information. Consequently, 
structures for aggregation and localisation were not considered in 
the work described in this paper. 

2.2 Similarity measurement on visual data 
Generally, similarity measurement on visual information aims at 
imitating human visual similarity perception. Unfortunately, 
human perception is much more complex than any of the existing 
similarity models (it includes perception, recognition and 
subjectivity).  

The common approach in visual information retrieval is 
measuring dis-similarity as distance. Both, query object and 
candidate object are represented by their corresponding feature 
vectors. The distance between these objects is measured by 
computing the distance between the two vectors. Consequently, 
the process is independent of the employed querying paradigm 
(e.g. query by example). The query object may be natural (e.g. a 
real object) or artificial (e.g. properties of a group of objects).  

Goal of the measurement process is to express a relationship 
between the two objects by their distance. Iteration for multiple 
candidates allows then to define a partial order over the 
candidates and to address those in a (to be defined) 
neighbourhood being similar to the query object. At this point, it 
has to be mentioned that in a multi-descriptor environment – 
especially in MPEG-7 – we are only half way towards a statement 
on similarity. If multiple descriptors are used (e.g. a descriptor 
scheme), a rule has to be defined how to combine all distances to 
a global value for each object. Still, distance measurement is the 
most important first step in similarity measurement. 

Obviously, the main task of good distance measures is to 
reorganise descriptor space in a way that media objects with the 
highest similarity are nearest to the query object. If distance is 
defined minimal, the query object is always in the origin of 
distance space and similar candidates should form clusters around 
the origin that are as large as possible. Consequently, many well 
known distance measures are based on geometric assumptions of 
descriptor space (e.g. Euclidean distance is based on the metric 
axioms). Unfortunately, these measures do not fit ideally with 
human similarity perception (e.g. due to human subjectivity). To 
overcome this shortage, researchers from different areas have 
developed alternative models that are mostly predicate-based 
(descriptors are assumed to contain just binary elements, e.g. 
Tversky's Feature Contrast Model [17]) and fit better with human 
perception. In the following distance measures of both groups of 
approaches will be considered. 

3. DISTANCE MEASURES 
The distance measures used in this work have been collected from 
various areas (Subsection 3.1). Because they work on differently 
quantised data, Subsection 3.2 sketches a model for unification on 
the basis of quantitative descriptions. Finally, Subsection 3.3 
introduces the distance measures as well as their origin and the 
idea they implement. 

3.1 Sources 
Distance measurement is used in many research areas such as 
psychology, sociology (e.g. comparing test results), medicine (e.g. 
comparing parameters of test persons), economics (e.g. comparing 
balance sheet ratios), etc. Naturally, the character of data available 
in these areas differs significantly. Essentially, there are two 
extreme cases of data vectors (and distance measures): predicate-
based (all vector elements are binary, e.g. {0, 1}) and quantitative 
(all vector elements are continuous, e.g. [0, 1]). 

Predicates express the existence of properties and represent high-
level information while quantitative values can be used to measure 
and mostly represent low-level information. Predicates are often 
employed in psychology, sociology and other human-related 
sciences and most predicate-based distance measures were 
therefore developed in these areas. Descriptions in visual 
information retrieval are nearly ever (if they do not integrate 
semantic information) quantitative. Consequently, mostly 
quantitative distance measures are used in visual information 
retrieval. 

The goal of this work is to compare the MPEG-7 distance 
measures with the most powerful distance measures developed in 
other areas. Since MPEG-7 descriptions are purely quantitative 
but some of the most sophisticated distance measures are defined 
exclusively on predicates, a model is mandatory that allows the 
application of predicate-based distance measures on quantitative 
data. The model developed for this purpose is presented in the 
next section. 

3.2 Quantisation model 
The goal of the quantisation model is to redefine the set operators 
that are usually used in predicate-based distance measures on 
continuous data. The first in visual information retrieval to follow 
this approach were Santini and Jain, who tried to apply Tversky's 
Feature Contrast Model [17] to content-based image retrieval 
[12], [13]. They interpreted continuous data as fuzzy predicates 
and used fuzzy set operators. Unfortunately, their model suffered 
from several shortcomings they described in [12], [13] (for 
example, the quantitative model worked only for one specific 
version of the original predicate-based measure). 

The main idea of the presented quantisation model is that set 
operators are replaced by statistical functions. In [5] the authors 
could show that this interpretation of set operators is reasonable.  

The model offers a solution for the descriptors considered in the 
evaluation. It is not specific to a certain distance measure, but can 
be applied to any predicate-based measure. In the following it will 
be shown that this model does not only work for predicate data 
but for quantitative data as well. Each measure implementing the 
model can be used as a substitute for the original predicate-based 
measure. 

Generally, binary properties of two objects (e.g. media objects) 
can exist in both objects (denoted as a), in just one (b, c) or in 
none of them (d). The operator needed for these relationships are 
UNION, MINUS and NOT. In the quantisation model they are 
replaced as follows (see [5] for further details). 
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a selects properties that are present in both data vectors (Xi, Xj 
representing media objects), b and c select properties that are 
present in just one of them and d selects properties that are present 
in neither of the two data vectors. Every property is selected by 
the extent to which it is present (a and d: mean, b and c: 
difference) and only if the amount to which it is present exceeds a 
certain threshold (depending on the mean and standard deviation 
over all elements of descriptor space). 

The implementation of these operators is based on a single 
assumption. It is assumed that vector elements measure on an 
interval scale. That means, each element expresses that the 
measured property is "more or less" present ("0": not at all, "M": 
fully present). This is true for most visual descriptors and all 
MPEG-7 descriptors. A natural origin as it is assumed here ("0") 
is not needed. 

Introducing p (called discriminance-defining parameter) for the 
thresholds 21 ,εε has the positive consequence that a, b, c, d can 

then be controlled through a single parameter. p is an additional 
criterion for the behaviour of a distance measure and determines 
the thresholds used in the operators. It expresses how accurate 
data items are present (quantisation) and consequently, how 
accurate they should be investigated. p can be set by the user or 
automatically. Interesting are the limits: 

1. Mp →⇒∞→ 21 ,εε  

In this case, all elements (=properties) are assumed to be 
continuous (high quantisation). In consequence, all properties of a 
descriptor are used by the operators. Then, the distance measure is 
not discriminant for properties.  

2. 0,0 21 →⇒→ εεp  

In this case, all properties are assumed to be predicates. In 
consequence, only binary elements (=predicates) are used by the 
operators (1-bit quantisation). The distance measure is then highly 
discriminant for properties.  

Between these limits, a distance measure that uses the 

quantisation model is – depending on p – more or less 
discriminant for properties. This means, it selects a subset of all 
available description vector elements for distance measurement. 

For both predicate data and quantitative data it can be shown that 
the quantisation model is reasonable. If description vectors consist 
of binary elements only, p should be used as follows (for example, 
p can easily be set automatically): 

( )σµεε ,min..,0,0 21 ==⇒→ pgep  

In this case, a, b, c, d measure like the set operators they replace. 
For example, Table 1 shows their behaviour for two one-
dimensional feature vectors Xi and Xj. As can be seen, the 
statistical measures work like set operators. Actually, the 
quantisation model works accurate on predicate data for any p≠∞. 

To show that the model is reasonable for quantitative data the 
following fact is used. It is well known (and easy to show) that for 
predicate data some quantitative distance measures degenerate to 
predicate-based measures. For example, the L1 metric (Manhattan 
metric) degenerates to the Hamming distance (from [9], without 
weights): 

distanceHammingcbxxL
k

jkik =+≡−= ∑1  

If it can be shown that the quantisation model is able to 
reconstruct the quantitative measure from the degenerated 
predicate-based measure, the model is obviously able to extend 
predicate-based measures to the quantitative domain. This is easy 
to illustrate. For purely quantitative feature vectors, p should be 
used as follows (again, p can easily be set automatically): 

1, 21 =⇒∞→ εεp  

Then, a and d become continuous functions: 
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b and c can be made continuous for the following expressions: 
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Table 1. Quantisation model on predicate vectors. 

Xi Xj a b c d 
(1) (1) 1 0 0 0 
(1) (0) 0 1 0 0 
(0) (1) 0 0 1 0 
(0) (0) 0 0 0 1 
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This means, for sufficiently high p every predicate-based distance 
measure that is either not using b and c or just as b+c, b-c or c-b, 
can be transformed into a continuous quantitative distance 
measure. For example, the Hamming distance (again, without 
weights): 

1Lxxxxswherescb
k

jkik
k

jkikkk =−=−==+ ∑∑  

The quantisation model successfully reconstructs the L1 metric 
and no distance measure-specific modification has to be made to 
the model. This demonstrates that the model is reasonable. In the 
following it will be used to extend successful predicate-based 
distance measures on the quantitative domain. 

The major advantages of the quantisation model are: (1) it is 
application domain independent, (2) the implementation is 
straightforward, (3) the model is easy to use and finally, (4) the 
new parameter p allows to control the similarity measurement 
process in a new way (discriminance on property level). 

3.3 Implemented measures  
For the evaluation described in this work next to predicate-based 
(based on the quantisation model) and quantitative measures, the 
distance measures recommended in the MPEG-7 standard were 
implemented (all together 38 different distance measures).  

Table 2 summarises those predicate-based measures that 
performed best in the evaluation (in sum 20 predicate-based 
measures were investigated). For these measures, K is the number 
of predicates in the data vectors Xi and Xj. In P1, the sum is used 
for Tversky's f() (as Tversky himself does in [17]) and α, β are 
weights for element b and c. In [5] the author's investigated 
Tversky's Feature Contrast Model and found α=1, β=0 to be the 
optimum parameters.  

Some of the predicate-based measures are very simple (e.g. P2, 
P4) but have been heavily exploited in psychological research. 
Pattern difference (P6) – a very powerful measure – is used in the 
statistics package SPSS for cluster analysis. P7 is a correlation 
coefficient for predicates developed by Pearson. 

Table 3 shows the best quantitative distance measures that were 
used. Q1 and Q2 are metric-based and were implemented as 
representatives for the entire group of Minkowski distances. The 
wi are weights. In Q5, ii σµ , are mean and standard deviation 

for the elements of descriptor Xi. In Q6, m is 
2

M
(=0.5). Q3, the 

Canberra metric, is a normalised form of Q1. Similarly, Q4, 
Clark's divergence coefficient is a normalised version of Q2. Q6 is 
a further-developed correlation coefficient that is invariant against 
sign changes. This measure is used even though its particular 
properties are of minor importance for this application domain. 
Finally, Q8 is a measure that takes the differences between 
adjacent vector elements into account. This makes it structurally 
different from all other measures.  

Obviously, one important distance measure is missing. The 
Mahalanobis distance was not considered, because different 
descriptors would require different covariance matrices and for 
some descriptors it is simply impossible to define a covariance 
matrix. If the identity matrix was used in this case, the 
Mahalanobis distance would degenerate to a Minkowski distance. 

Additionally, the recommended MPEG-7 distances were 
implemented with the following parameters: In the distance 
measure of the Color Layout descriptor all weights were set to "1" 
(as in all other implemented measures). In the distance measure of 
the Dominant Color descriptor the following parameters were 
used: 20,1,3.0,7.0 21 ==== dTww α (as recommended). In the 

Homogeneous Texture descriptor's distance all ( )kα  were set to 
"1" and matching was done rotation- and scale-invariant.  

Important! Some of the measures presented in this section are 
distance measures while others are similarity measures. For the 
tests, it is important to notice, that all similarity measures were 
inverted to distance measures. 

4. TEST SETUP 
Subsection 4.1 describes the descriptors (including parameters) 
and the collections (including ground truth information) that were 
used in the evaluation. Subsection 4.2 discusses the evaluation 
method that was implemented and Subsection 4.3 sketches the test 
environment used for the evaluation process. 

4.1 Test data 
For the evaluation eight MPEG-7 descriptors were used. All 
colour descriptors: Color Layout, Color Structure, Dominant 
Color, Scalable Color, all texture descriptors: Edge Histogram, 
Homogeneous Texture, Texture Browsing and one shape 
descriptor: Region-based Shape. Texture Browsing was used even 
though the MPEG-7 standard suggests that it is not suitable for 
retrieval. The other basic shape descriptor, Contour-based Shape, 
was not used, because it produces structurally different 
descriptions that cannot be transformed to data vectors with 
elements measuring on interval-scales. The motion descriptors 
were not used, because they integrate the temporal dimension of 
visual media and would only be comparable, if the basic colour, 
texture and shape descriptors would be aggregated over time. This 
was not done. Finally, no high-level descriptors were used 
(Localisation, Face Recognition, etc., see Subsection 2.1), 
because – to the author's opinion – the behaviour of the basic 
descriptors on elementary media objects should be evaluated 
before conclusions on aggregated structures can be drawn. 

Table 2. Predicate-based distance measures.  

No. Measure Comment 
P1 cba .. βα −−  Feature Contrast Model, 

Tversky 1977 [17] 
P2 a  No. of co-occurrences  
P3 cb +  Hamming distance 

P4 

K

a
 

Russel 1940 [14] 

P5 

cb

a

+
 

Kulczvnski 1927 [14] 

P6 
2K

bc
 

Pattern difference [14] 

P7 

( )( )( )( )dcdbcaba

bcad

++++

−
 

Pearson 1926 [11] 
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The Texture Browsing descriptions had to be transformed from 
five bins to an eight bin representation in order that all elements 
of the descriptor measure on an interval scale. A Manhattan metric 
was used to measure proximity (see [6] for details). 

Descriptor extraction was performed using the MPEG-7 reference 
implementation. In the extraction process each descriptor was 
applied on the entire content of each media object and the 
following extraction parameters were used. Colour in Color 
Structure was quantised to 32 bins. For Dominant Color colour 
space was set to YCrCb, 5-bit default quantisation was used and 
the default value for spatial coherency was used. Homogeneous 
Texture was quantised to 32 components. Scalable Color values 
were quantised to sizeof(int)-3 bits and 64 bins were used. Finally, 
Texture Browsing was used with five components. 

These descriptors were applied on three media collections with 
image content: the Brodatz dataset (112 images, 512x512 pixel), a 
subset of the Corel dataset (260 images, 460x300 pixel, portrait 
and landscape) and a dataset with coats-of-arms images (426 
images, 200x200 pixel). Figure 1 shows examples from the three 
collections. 

Designing appropriate test sets for a visual evaluation is a highly 
difficult task (for example, see the TREC video 2002 report [15]). 
Of course, for identifying the best distance measure for a 
descriptor, it should be tested on an infinite number of media 
objects. But this is not the aim of this study. It is just evaluated if 
– for likely image collections – better proximity measures than 
those suggested by the MPEG-7 group can be found. Collections 
of this relatively small size were used in the evaluation, because 
the applied evaluation methods are above a certain minimum size 
invariant against collection size and for smaller collections it is 
easier to define a high-quality ground truth. Still, the average ratio 
of ground truth size to collection size is at least 1:7. Especially, no 
collection from the MPEG-7 dataset was used in the evaluation 
because the evaluations should show, how well the descriptors 
and the recommended distance measures perform on "unknown" 
material.  

When the descriptor extraction was finished, the resulting XML 
descriptions were transformed into a data matrix with 798 lines 
(media objects) and 314 columns (descriptor elements). To be 
usable with distance measures that do not integrate domain 

knowledge, the elements of this data matrix were normalised to 
[0, 1]. 

For the distance evaluation – next to the normalised data matrix – 
human similarity judgement is needed. In this work, the ground 
truth is built of twelve groups of similar images (four for each 
dataset). Group membership was rated by humans based on 
semantic criterions. Table 4 summarises the twelve groups and the 
underlying descriptions. It has to be noticed, that some of these 
groups (especially 5, 7 and 10) are much harder to find with low-
level descriptors than others. 

4.2 Evaluation method 
Usually, retrieval evaluation is performed based on a ground truth 
with recall and precision (see, for example, [3], [16]). In multi-
descriptor environments this leads to a problem, because the 
resulting recall and precision values are strongly influenced by the 
method used to merge the distance values for one media object. 
Even though it is nearly impossible to say, how big the influence 
of a single distance measure was on the resulting recall and 
precision values, this problem has been almost ignored so far. 

In Subsection 2.2 it was stated that the major task of a distance 
measure is to bring the relevant media objects as close to the 
origin (where the query object lies) as possible. Even in a multi-
descriptor environment it is then simple to identify the similar 
objects in a large distance space. Consequently, it was decided to 

Table 3. Quantitative distance measures.  
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Table 4. Ground truth information. 

Coll. No Images Description 
1 19 Regular, chequered patterns 
2 38 Dark white noise 
3 33 Moon-like surfaces 

Brodatz 

4 35 Water-like surfaces 
5 73 Humans in nature (difficult) 
6 17 Images with snow (mountains, skiing) 
7 76 Animals in nature (difficult) 

Corel 

8 27 Large coloured flowers 
9 12 Bavarian communal arms 
10 10 All Bavarian arms (difficult) 
11 18 Dark objects / light unsegmented shield 

Arms 

12 14 Major charges on blue or red shield 
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use indicators measuring the distribution in distance space of 
candidates similar to the query object for this evaluation instead 
of recall and precision. Identifying clusters of similar objects 
(based on the given ground truth) is relatively easy, because the 
resulting distance space for one descriptor and any distance 
measure is always one-dimensional. Clusters are found by 
searching from the origin of distance space to the first similar 
object, grouping all following similar objects in the cluster, 
breaking off the cluster with the first un-similar object and so 
forth. 

For the evaluation two indicators were defined. The first measures 
the average distance of all cluster means to the origin: 

distanceavgclustersno

sizecluster
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, no_clusters is the 

number of found clusters and cluster_sizei is the size of the i-th 
cluster. The resulting indicator is normalised by the distribution 
characteristics of the distance measure (avg_distance). 
Additionally, the standard deviation is used. In the evaluation 
process this measure turned out to produce valuable results and to 
be relatively robust against parameter p of the quantisation model. 

In Subsection 3.2 we noted that p affects the discriminance of a 
predicate-based distance measure: The smaller p is set the larger 
are the resulting clusters because the quantisation model is then 
more discriminant against properties and less elements of the data 
matrix are used. This causes a side-effect that is measured by the 
second indicator: more and more un-similar objects come out with 
exactly the same distance value as similar objects (a problem that 
does not exist for large p's) and become indiscernible from similar 
objects. Consequently, they are (false) cluster members. This 
phenomenon (conceptually similar to the "false negatives" 
indicator) was named "cluster pollution" and the indicator 

measures the average cluster pollution over all clusters: 

clustersno
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where no_doublesij is the number of indiscernible un-similar 
objects associated with the j-th element of cluster i. 

Remark: Even though there is a certain influence, it could be 
proven in [5] that no significant correlation exists between 
parameter p of the quantisation model and cluster pollution. 

4.3 Test environment 
As pointed out above, to generate the descriptors, the MPEG-7 
reference implementation in version 5.6 was used (provided by 
TU Munich). Image processing was done with Adobe Photoshop 
and normalisation and all evaluations were done with Perl. The 
querying process was performed in the following steps: (1) 
random selection of a ground truth group, (2) random selection of 
a query object from this group, (3) distance comparison for all 
other objects in the dataset, (4) clustering of the resulting distance 
space based on the ground truth and finally, (5) evaluation. 

For each combination of dataset and distance measure 250 queries 
were issued and evaluations were aggregated over all datasets and 
descriptors. The next section shows the – partially surprising – 
results. 

5. RESULTS 
In the results presented below the first indicator from Subsection 
4.2 was used to evaluate distance measures. In a first step 
parameter p had to be set in a way that all measures are equally 
discriminant. Distance measurement is fair if the following 
condition holds true for any predicate-based measure dP and any 
continuous measure dC: 

( ) ( )
CP dcppdcp ≈,  

Then, it is guaranteed that predicate-based measures do not create 
larger clusters (with a higher number of similar objects) for the 
price of higher cluster pollution. In more than 1000 test queries 
the optimum value was found to be p=1. 

Results are organised as follows: Subsection 5.1 summarises the 

 
Figure 1. Test datasets. Left: Brodatz dataset, middle: Corel dataset, right: coats-of-arms dataset. 
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best distance measures per descriptor, Section 5.2 shows the best 
overall distance measures and Section 5.3 points out other 
interesting results (for example, distance measures that work 
particularly good on specific ground truth groups). 

5.1 Best measure per descriptor 
Figure 2 shows the evaluation results for the first indicator. For 
each descriptor the best measure and the performance of the 
MPEG-7 recommendation are shown. The results are aggregated 
over the tested datasets.  

On first sight, it becomes clear that the MPEG-7 
recommendations are mostly relatively good but never the best. 
For Color Layout the difference between MP7 and the best 
measure, the Meehl index (Q8), is just 4% and the MPEG-7 
measure has a smaller standard deviation. The reason why the 
Meehl index is better may be that this descriptors generates 
descriptions with elements that have very similar variance. 
Statistical analysis confirmed that (see [6]).  

For Color Structure, Edge Histogram, Homogeneous Texture, 
Region-based Shape and Scalable Color by far the best measure is 
pattern difference (P6). Psychological research on human visual 
perception has revealed that in many situation differences between 
the query object and a candidate weigh much stronger than 
common properties. The pattern difference measure implements 
this insight in the most consequent way. In the author's opinion, 
the reason why pattern difference performs so extremely well on 
many descriptors is due to this fact. Additional advantages of 
pattern difference are that it usually has a very low variance and – 
because it is a predicate-based measure – its discriminance (and 
cluster structure) can be tuned with parameter p. 

The best measure for Dominant Color turned out to be Clark's 
Divergence coefficient (Q4). This is a similar measure to pattern 
difference on the continuous domain. The Texture Browsing 
descriptor is a special problem. In the MPEG-7 standard it is 
recommended to use it exclusively for browsing. After testing it 
for retrieval on various distance measures the author supports this 
opinion. It is very difficult to find a good distance measure for 
Texture Browsing. The proposed Manhattan metric, for example, 
performs very bad. The best measure is predicate-based (P7). It 
works on common properties (a, d) but produces clusters with 

very high cluster pollution. For this descriptor the second 
indicator is up to eight times higher than for predicate-based 
measures on other descriptors. 

5.2 Best overall measures 
Figure 3 summarises the results over all descriptors and media 
collections. The diagram should give an indication on the general 
potential of the investigated distance measures for visual 
information retrieval. 

It can be seen that the best overall measure is a predicate-based 
one. The top performance of pattern difference (P6) proves that 
the quantisation model is a reasonable method to extend 
predicate-based distance measures on the continuous domain. The 
second best group of measures are the MPEG-7 
recommendations, which have a slightly higher mean but a lower 
standard deviation than pattern difference. The third best measure 
is the Meehl index (Q8), a measure developed for psychological 
applications but because of its characteristic properties tailor-
made for certain (homogeneous) descriptors. 

Minkowski metrics are also among the best measures: the average 
mean and variance of the Manhattan metric (Q1) and the 
Euclidean metric (Q2) are in the range of Q8. Of course, these 
measures do not perform particularly well for any of the 
descriptors. Remarkably for a predicate-based measure, Tversky's 
Feature Contrast Model (P1) is also in the group of very good 
measures (even though it is not among the best) that ends with 
Q5, the correlation coefficient. The other measures either have a 
significantly higher mean or a very large standard deviation. 

5.3 Other interesting results 
Distance measures that perform in average worse than others may 
in certain situations (e.g. on specific content) still perform better. 
For Color Layout, for example, Q7 is a very good measure on 
colour photos. It performs as good as Q8 and has a lower standard 
deviation. For artificial images the pattern difference and the 
Hamming distance produce comparable results as well.  

If colour information is available in media objects, pattern 
difference performs well on Dominant Color (just 20% worse Q4) 
and in case of difficult ground truth (group 5, 7, 10) the Meehl 
index is as strong as P6.  
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Figure 2. Results per measure and descriptor. The horizontal axis shows the best measure and the performance of the MPEG-7 
recommendation for each descriptor. The vertical axis shows the values for the first indicator (smaller value = better cluster structure). 
Shades have the following meaning: black=µ-σ (good cases), black + dark grey=µ (average) and black + dark grey + light grey=µ+σ (bad). 
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6. CONCLUSION 
The evaluation presented in this paper aims at testing the 
recommended distance measures and finding better ones for the 
basic visual MPEG-7 descriptors. Eight descriptors were selected, 
38 distance measures were implemented, media collections were 
created and assessed, performance indicators were defined and 
more than 22500 tests were performed. To be able to use 
predicate-based distance measures next to quantitative measures a 
quantisation model was defined that allows the application of 
predicate-based measures on continuous data. 

In the evaluation the best overall distance measures for visual 
content – as extracted by the visual MPEG-7 descriptors – turned 
out to be the pattern difference measure and the Meehl index (for 
homogeneous descriptions). Since these two measures perform 
significantly better than the MPEG-7 recommendations they 
should be further tested on large collections of image and video 
content (e.g. from [15]). 

The choice of the right distance function for similarity 
measurement depends on the descriptor, the queried media 
collection and the semantic level of the user's idea of similarity. 
This work offers suitable distance measures for various situations. 
In consequence, the distance measures identified as the best will 
be implemented in the open MPEG-7 based visual information 
retrieval framework VizIR [4]. 

ACKNOWLEDGEMENTS 
The author would like to thank Christian Breiteneder for his 
valuable comments and suggestions for improvement. The work 
presented in this paper is part of the VizIR project funded by the 
Austrian Scientific Research Fund FWF under grant no. P16111.  

REFERENCES 
[1] Clark, P.S. An extension of the coefficient of divergence for 

use with multiple characters. Copeia, 2 (1952), 61-64. 
[2] Cohen, J. A profile similarity coefficient invariant over 

variable reflection. Psychological Bulletin, 71 (1969), 281-
284. 

[3] Del Bimbo, A. Visual information retrieval. Morgan 
Kaufmann Publishers, San Francisco CA, 1999. 

[4] Eidenberger, H., and Breiteneder, C. A framework for visual 
information retrieval. In Proceedings Visual Information 
Systems Conference (HSinChu Taiwan, March 2002), LNCS 
2314, Springer Verlag, 105-116. 

[5] Eidenberger, H., and Breiteneder, C. Visual similarity 
measurement with the Feature Contrast Model. In 
Proceedings SPIE Storage and Retrieval for Media Databases 
Conference (Santa Clara CA, January 2003), SPIE Vol. 
5021, 64-76. 

[6] Eidenberger, H., How good are the visual MPEG-7 features? 
In Proceedings SPIE Visual Communications and Image 
Processing Conference (Lugano Switzerland, July 2003), 
SPIE Vol. 5150, 476-488. 

[7] Gower, J.G. Multivariate analysis and multidimensional 
geometry. The Statistician, 17 (1967),13-25. 

[8] Lance, G.N., and Williams, W.T. Mixed data classificatory 
programs. Agglomerative Systems Australian Comp. Journal, 
9 (1967), 373-380. 

[9] Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., and Yamada, 
A. Color and texture descriptors. In Special Issue on MPEG-
7. IEEE Transactions on Circuits and Systems for Video 
Technology, 11/6 (June 2001), 703-715. 

[10] Meehl, P. E. The problem is epistemology, not statistics: 
Replace significance tests by confidence intervals and 
quantify accuracy of risky numerical predictions. In Harlow, 
L.L., Mulaik, S.A., and Steiger, J.H. (Eds.). What if there 
were no significance tests? Erlbaum, Mahwah NJ, 393-425. 

[11] Pearson, K. On the coefficients of racial likeness. Biometrica, 
18 (1926), 105-117. 

[12] Santini, S., and Jain, R. Similarity is a geometer. Multimedia 
Tools and Application, 5/3 (1997), 277-306. 

[13] Santini, S., and Jain, R. Similarity measures. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 
21/9 (September 1999), 871-883. 

[14] Sint, P.P. Similarity structures and similarity measures. 
Austrian Academy of Sciences Press, Vienna Austria, 1975 
(in German). 

[15] Smeaton, A.F., and Over, P. The TREC-2002 video track 
report. NIST Special Publication SP 500-251 (March 2003), 
available from: http://trec.nist.gov/pubs/trec11/papers/ 
VIDEO.OVER.pdf (last visited: 2003-07-29) 

[16] Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., and 
Jain, R. Content-based image retrieval at the end of the early 
years. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 22/12 (December 2000), 1349-1380. 

[17] Tversky, A. Features of similarity. Psychological Review, 
84/4 (July 1977), 327-351. 

 

0,000
0,002
0,004
0,006
0,008
0,010
0,012
0,014
0,016
0,018
0,020

P6

M
P7 Q

8

Q
1 Q
4

Q
2

P2 P4 Q
6

Q
3

Q
7

P1 Q
5

P3 P5 P7

 
Figure 3. Overall results (ordered by the first indicator). The vertical axis shows the values for the first indicator (smaller value = better 

cluster structure). Shades have the following meaning: black=µ-σ, black + dark grey=µ and black + dark grey + light grey=µ+σ. 
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Abstract. The study presented in this paper analyses the visual MPEG-7 descriptors from a statistical point of view. A 
statistical analysis is able to reveal the properties and qualities of the used descriptors: redundancies, sensitivity on 
media content, etc. These aspects were not considered in the MPEG-7 design process where the major goal was 
optimising the retrieval rate. For the statistical analysis eight basic visual descriptors were applied to three media 
collections: the Brodatz dataset, a selection of the Corel photo dataset and a set of coats-of-arms images. The resulting 
feature vectors were analysed with four statistical methods: mean and variance of description elements, distribution of 
elements, cluster analysis (hierarchical and topological) and factor analysis. The analysis revealed that, for example, 
most MPEG-7 descriptions are highly redundant and sensitive to the presence of colour shades. 

Keywords: Visual Information Retrieval, MPEG-7, Cluster Analysis, Factor Analysis, Self-Organizing Map 

1. Introduction 
The MPEG-7 standard defines – among others – a set of 
descriptors (semantics and syntax) for visual media 
content [16, 15, 1, 3]. During the design process these 
descriptors were tested with recall- and precision-like 
performance measures on large datasets and ground truth 
information (average normalised modified retrieval rank 
(ANMRR) [15]). These tests represented well the 
performance of the descriptors in the retrieval process, 
but cannot be used to judge their application-
independent performance. 

Descriptor algorithms extract feature vectors from media 
content. In order to be able to measure proximities 
between feature vectors, a fundamental operation in most 
applications as retrieval, browsing, etc., vectors are 
interpreted as points in a metric space [8]. An efficient 
(general-purpose) descriptor should provide a surjective 
mapping from media objects to points in feature space 
and meet several criteria: Ideally, a descriptor should be 
highly discriminant for any type of media content. The 
description extraction process should be robust against 
different levels of quality and detail. Additionally, all 
description elements should contain meaningful data for 
any type of media. 

The work described in this paper aims at assessing the 
efficiency of MPEG-7 descriptors. Efficiency describes 
the extent to which descriptors are suitable for the 

intended application domains: for example, whether or 
not it makes sense to combine them with other 
descriptors. The efficiency of visual descriptors is 
derived from the statistical quality of descriptions 
extracted from pre-defined media collections. In 
particular, it is investigated if redundancies exist among 
the descriptors (for specific content and in general), how 
sensible the descriptors are for changes in the content 
and whether or not the descriptors cover the proposed 
media property (e.g. color layout) completely. Of course, 
not all relevant aspects can be covered by these three 
areas. However, redundancy, sensitivity and 
completeness are fundamental statistical properties for 
the judgement of the quality of descriptors. Surprisingly, 
this was not considered in the MPEG-7 design process.  

The practical goals of the evaluation are the refinement 
of guidelines describing the usage of descriptors (e.g. for 
visual information retrieval [4, 18]) and suggestions 
describing the improvement of descriptors. In practice 
the criteria pointed out above can only partially be met. 
In the evaluation we found that, for example, 
Homogeneous Texture extracts highly redundant 
descriptions, that the Group-of-Frames/Group-of-
Pictures Color descriptor should not be based on 
Scalable Color, because this descriptor is highly 
sensitive to the presence/absence of colour information 
and that one component of Color Layout explains almost 
the entire Region-based Shape descriptor.  

The paper is organised as follows. Section 2 summarises 
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background information on the visual MPEG-7 
descriptors and on statistical methods for data analysis. 
Section 3 describes the evaluation framework. For the 
analysis descriptors are applied on pre-defined media 
collections (see 3.2) and the results are analysed with 
statistical methods (e.g. cluster analysis, factor analysis; 
see 2.2 for details). Section 4, 5 and 6 investigate various 
aspects of the visual MPEG-7 descriptions: redundancy, 
sensitivity on varying media content and completeness. 
Finally, Section 7 summarises the analysis results. 

2. Background 

2.1 MPEG-7 visual descriptors 

The visual part of the MPEG-7 standard defines several 
descriptors [16, 15, 1]. Not all of them are actually 
descriptors in the sense that they extract properties of 
media content. Some of them are just structures for 
descriptor aggregation and localisation. The basic 
descriptors are Color Layout, Color Structure, Dominant 
Color, Scalable Color (colour), Edge Histogram, 
Homogeneous Texture, Texture Browsing (texture), 
Region-based Shape, Contour-based Shape (shape), 
Camera Motion, Parametric Motion and Motion Activity 
(motion). 

Other descriptors are based on these low-level 
descriptors or on additional semantic information: 
Group-of-Frames/Group-of-Pictures (aggregation of 
Scalable Color descriptions), Shape 3D (based on 3D 
mesh information), Motion Trajectory (based on object 
segmentation) and Face Recognition (based on face 
extraction). Descriptors for spatiotemporal aggregation 
and localisation are: Spatial 2D Coordinates, Grid 
Layout, Region Locator (spatial), Time Series, Temporal 
Interpolation (temporal) and SpatioTemporal Locator 
(combined). Finally, supplementary (textual) structures 
exist for colour spaces, colour quantisation and multiple 
2D views of 3D objects. 

These additional structures allow for combining the 
basic descriptors in multiple ways and on different 
levels. But they do not change the characteristics of the 
extracted information. Consequently, structures for 
aggregation and localisation were not considered in the 
analysis described in this paper. 

2.2 Statistical analysis of data 
vectors 

Matrix 1 shows a fraction of a data matrix as it could be 
computed by feature extraction algorithms from media 
objects: two features f1 (elements e1 to em) and f2 
(elements em+1 to en) and media objects o1 , o2 to ol. The 
major quality indicators for feature extraction methods 
are the characteristics of the extracted description 
elements (e.g. the bins of a color histogram). The 

elements are given as vectors over the size of the test 
dataset (rows of the data matrix). The characteristics can, 
for example, be measured as moments (e.g. mean, 
variance) of  vectors (rows), proximity and dependencies 
between vectors and distributions of quantised vector 
elements. These characteristics are of particular 
importance for visual information retrieval, because 
most querying paradigms follow the vector space model 
where feature vectors are interpreted as points in a 
metric vector space (feature space) [8]. Since the media 
collections used for feature extraction are well known, 
the characteristics of the population of feature space can 
be used to draw conclusions on the characteristics of the 
applied descriptors. 
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In the described work, five statistical methods were used 
to analyse the data matrix generated with visual MPEG-7 
descriptors: (1) extraction of statistical indicators (mean 
and standard deviation) of elements, (2) calculation of 
the distribution of quantised element values (the xij in the 
data matrix), (3) one-dimensional (hierarchical) cluster 
analysis of elements, (4) two-dimensional (topological) 
cluster analysis and (5) factor analysis. The methods are 
based on a single prerequisite: all description elements 
have to measure at least on interval scale, i.e. it must be 
possible to measure differences of description elements 
(a natural zero and computation of ratios are not 
required). 

Mean and standard deviation represent a simple 
characterisation of a data vector. The mean points at the 
average location of the underlying extraction method and 
the standard deviation gives a first clue on its 
discriminance. If the standard deviation is almost zero, a 
description extraction method generates the same output 
for any type of given media content. Therefore, it may be 
characterised as being non-discriminant.  

The distribution of the values of an element is calculated 
in a two step process: First, all coefficients (one row) are 
quantised to the same number of values (e.g. ten). Then, 
coefficients with equal value are summed up to a 
histogram bin. The result is a discrete density function 
expressing how often each value occurs. The histogram 
visualises the characteristics of the extraction methods 
(e.g. uniformly distributed, Gaussian-distributed). This 
method can be used to identify gaps within the measured 
range. 

The cluster analysis methods derive groups of more than 
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average similar description elements. Thus, for example, 
redundancies in descriptions can be found. For one-
dimensional analysis a hierarchical method was 
employed [10] that displays analysis results in form of 
dendrograms. Next to clusters, the hierarchy of 
proximities can be used to assess the distribution of 
elements within the description extraction space. The 
two-dimensional method enriches the result of the 
hierarchical cluster analysis by identifying clusters on a 
two-dimensional map. Such a map shows the 
relationships of clusters and may be used to identify 
holes in the feature extraction process. For the discussed 
analysis, Self-Organizing Maps [13, 11] (SOMs, fully-
connected two-layer neural networks with unsupervised 
feed-forward learning) were used, because they produce 
a more natural clustering than, for example, k-means 
clustering techniques. Finally, factor analysis [14] was 
applied as a method to eliminate redundancies in data 
vectors by identifying factors that cause the variance of 
the examined data. Additionally, factor analysis can be 
used to identify common properties of descriptors by 
finding elements that load high on the same factor. 

3. Evaluation framework 
This section describes all aspects of the framework used 
for the evaluation. The descriptors are described in 
subsection 3.1. Subsection 3.2 describes the media 
collections the descriptors were applied on. Subsection 
3.3 sketches the test environment. Finally, in subsection 
3.4 the parameters used for the statistical analysis 
methods are described. 

3.1 Descriptors 

Eight MPEG-7 descriptors were statistically analysed. 
All colour descriptors: Color Layout (CLD), Color 
Structure (CSD), Dominant Color (DCD), Scalable 
Color (SCD), all texture descriptors: Edge Histogram 
(EHD), Homogeneous Texture (HTD), Texture Browsing 
(TBD) and one shape descriptor: Region-based Shape 
(RSD). The other basic shape descriptor, Contour-based 
Shape, was not used, because it produces structurally 
different descriptions that cannot be transformed to data 
vectors measuring on interval scale. The motion 
descriptors were not considered, since they integrate the 
temporal domain of visual media and would only be 
comparable, if the basic colour, texture and shape 
descriptors would be aggregated over time. High-level 
descriptors (descriptors that are based on other 
descriptors instead of media data) were not used 
(Localisation, Face Recognition, etc.). In the author's 
opinion the behaviour of basic descriptors has to be 
evaluated before conclusions on aggregated structures 
can be drawn. 

The Texture Browsing descriptor had to be transformed 
to be useable in the evaluation. In the MPEG-7 standard 

it is defined as follows [15]: (regularity, direction1, 
scale1, direction2, scale2) where regularity is element of 
{not regular, slightly regular, regular, highly regular}, 
direction (in degree) is element of {no direction, 0, 30, 
60, 90, 120, 150} and scale is element of {no scale, fine, 
medium, coarse, very coarse}. Such a description is not 
suitable for the purpose of this paper. Therefore, the 
extracted descriptions were transformed to the following 
form: (regularity, scaleno direction, scale0, scale30, scale60, 
scale90, scale120, scale150) where regularity is element of 
{0 (not regular), 1 (slightly regular), 2 (regular), 3 
(highly regular)} and the scale bins are element of {0 (no 
scale), 1 (fine), 2 (medium), 3 (coarse), 4 (very coarse)}. 
Defined like this, all elements of Texture Browsing 
measure on interval scale. 

Description extraction was performed employing the 
MPEG-7 experimentation model (XM, [17]) of MPEG-7 
Part 6: Reference Software. In the extraction process 
each descriptor was applied on the entire content of 
every media object. The following extraction parameters 
were used. Colour in Color Structure was quantised to 
32 bins. For Dominant Color, colour space was set to 
YCrCb, 5-bit default quantisation was used and the 
default value for spatial coherency was used. 
Homogeneous Texture was quantised to 32 components. 
Scalable Color values were quantised to sizeof(int)-3 bits 
and 64 bins were used. Finally, Texture Browsing was 
used with five components. 

3.2 Media collections 

The descriptors were applied on three media collections 
with image content: the Brodatz dataset [4] (112 
monochrome images, 512x512 pixel), a subset of the 
Corel dataset [9] (260 colour photos, 460x300 pixel, 
portrait and landscape) and a dataset with coats-of-arms 
images [2] (426 synthetic images, 200x200 pixel). The 
Brodatz dataset is tailor-made for texture descriptors but 
a good test for colour and shape descriptors as well, 
because most colour descriptors are very sensitive for 
luminance and most shape descriptors use monochrome 
information for feature extraction. The Corel dataset 
(shipped with Corel Draw) is a widely applied set of 
colour photos showing humans, animals, flowers, 
landscapes, etc. One would suppose that colour and 
texture descriptors should work well on this set. For the 
evaluation a subset of images from all collections was 
randomly chosen. The dataset was not used in entirety, 
because most employed statistical algorithms would be 
overtaxed by such a large number of cases. The coats-of-
arms dataset lies in-between these two collections: it 
consists of colour images with clear structures, few 
colour gradations and hardly any textures [2]. Therefore, 
colour and shape descriptors should work well on this 
dataset. Fig. 1 shows examples from the three 
collections. 

Without doubt, other collections exists that could have 
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been used as well. The selected media sets have the 
advantage that they are carefully selected and highly 
independent from each other, since they are expressing 
entirely different properties. Especially, no collection 
from the MPEG-7 dataset was used in the evaluation, 
because the MPEG-7 descriptors were developed on the 
basis of these datasets. The evaluation should indicate, 
how the descriptors perform on "unknown" material.  

3.3 Test environment 

The evaluation was performed in the following steps: (1) 
description extraction, (2) transformation from XML to a 
tab-delimited format and normalisation, (3) extraction of 
statistical indicators, (4) quantisation and extraction of 
distributions, (5) hierarchical cluster analysis, (6) SOM 
calculation and (7) factor analysis. As pointed out above, 
the MPEG-7 experimentation model [17] in version 5.6 
was used to generate the descriptions. After the 
description extraction, the resulting XML-descriptions 
were transformed into a data matrix with 798 lines 
(media objects) and 314 columns (description elements). 
To be usable for statistical analysis, the elements of this 
data matrix had to be normalised to a certain range. This 

was performed for every element with a simple min-
max-normalisation: 

 
jj

jij

ij minmax

minx
x

−
−

=′  (2) 

where minj is the minimum and maxj is the maximum of 
column j. The resulting value x'ij is normalised to [0, 1]. 
This normalisation has the advantage that the relative 
distributions (variances) of both rows and columns of the 
data matrix are preserved. Normalisation and all other 
pre-processing steps (e.g. transformation of the Texture 
Browsing descriptor) were computed with Perl scripts. 
Hierarchical cluster analysis and factor analysis were 
calculated with SPSS and SOMs were calculated with 
SOM-PAK [12]. All other algorithms were implemented 
in Perl. Perl was chosen for its outstanding data 
processing capabilities and because it allows rapid 
prototyping. 

3.4 Analysis parameters 

Mean and standard deviation were used as primary 
indicators for description elements: 

 

Fig. 1. Examples from the test datasets. First row: Brodatz dataset, second to fourth row: Corel dataset, last row: coats-
of-arms dataset. 
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where xij are the extracted values of the i-th description 
element (column of the data matrix) and N is the number 
of investigated media objects. To identify the 
distribution of values of description elements over N 
media samples, the coefficients of the data matrix were 
quantised to ten bins. For the hierarchical cluster 
analysis a single-linkage algorithm with squared 
Euclidean distance measurement was used. The results 
were depicted as dendrograms on a relative scale from 0 
(identical) to 25 (not similar). 

SOMs were calculated with a hexagonal layout (every 
non-border cluster has six neighbours), 15 rows and 15 
columns (225 clusters for 314 elements). For cluster 
adaptation, a Gaussian neighbourhood kernel was used. 
Maps were initialised randomly. Learning was done in 
two iterations. In the first iteration, 10000 learning steps 
were performed with learning rate 05.0=α  and radius 10 
(clusters). In the second iteration (fine tuning), 100000 
learning steps were performed with learning 
rate 02.0=α  and radius 3. For every dataset 15 separate 
SOMs were calculated and the best map was chosen by 
the minimum quantisation error (as defined in [13]). 
Since the capacity of the SOM-PAK implementation is 
very limited, only 200 (of 260) randomly chosen Corel 
images and 200 (of 426) coats-of-arms images could be 
used for training. See the SOM-PAK handbook [12] for 
more information on the learning parameters. 

For factor extraction a principal component analysis 
(analysis of the coefficients of the correlation matrix) 
was used [14]. All Eigenvalues greater than one were 
selected as factors. To simplify interpretation, a 
Varimax-rotation was performed on the factor loadings 
matrix. Factor analysis can only be applied on elements 
with existing variance. Therefore, for the Brodatz dataset 
225 elements could be used, for the Corel dataset 311 
and for the coats-of-arms dataset 310. For the remaining 
elements, the description extraction algorithms came up 
with exactly the same values independent of the analysed 
media content. 

4. Redundancy analysis 
Section 4, 5 and 6 contain the results of the redundancy 
analysis, the sensitivity analysis and the completeness 
analysis. The first subsection of each section describes 
the goals of the analysis and names the methods used to 
extract the required information. Analysis results are 
described in the second subsection of each section. 
Readers that are mainly interested in the interpretation 
of the statistical results may jump directly from the first 
to the third subsection, where conclusions are drawn 
from the analysis results. 

4.1 Scope 

In this analysis we are trying to identify whether the 
description elements extracted from visual content are 
unique or not. Redundancy information is highly 
valuable for two major reasons. It may influence how 
descriptors are organised in description schemes 
(efficiency of application). It is obviously not desired to 
combine certain descriptors to a description scheme if it 
is well known that the descriptors are highly redundant 
for the concerned media class. Additionally, it can be 
used as a supplementary method to the MPEG-7 binary 
format (BiM [16]) for compression of descriptions (e.g. 
for specific classes of content). This helps to further 
reduce the amount of resources needed for storage and 
transmission in visual information retrieval systems 
(efficiency of representation). 

Since the content-based algorithms used in the MPEG-7 
descriptors were not evaluated with statistical methods, it 
is likely that they contain a considerable amount of 
redundancy. Our interest goes to four types of 
redundancy: firstly, the general redundancy of all 
elements, secondly, the redundancy of elements that 
belong to the same descriptor, thirdly, elements that are 
unique for all other elements and finally, complementary 
elements that show "inverse" redundancies (significant 
negative correlations) to other elements. 

Three of the statistical methods named in Subsection 2.2 
provide helpful information to identify redundancy: the 
hierarchical cluster analysis and the topological cluster 
analysis provide information on the redundancy of 
elements, the factors extracted in the factor analysis 
reveal the general redundancy of elements and the 
rotated factor loadings matrices allow to identify 
elements that are positively or negatively correlated 
(redundant) or independent from all other description 
elements. In general, factor analysis provides four 
outputs: the number of extracted factors, the factors, the 
amount of variance explained by each factor and the 
factor loadings matrix. The coefficients of this matrix 
express to which extent the factors influence the 
elements from which they are derived. Elements that 
load high on the same factor have a similar variance. If a 
factor loads high on two elements but with opposite 
signs (factor loadings are element of [-1, 1]), then these 
elements are highly un-similar and suitable for being 
used in combination. This holds also for elements 
explained by factors that do not load on any other 
element. 

4.2 Analysis results 

A first striking result revealed by the hierarchical cluster 
analysis (visualised in dendrograms) is the high self-
similarity of the elements of the Homogeneous Texture 
descriptor for any type of media (see Table 1). For the 
Brodatz dataset (rich textures) and the coats-of-arms 
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dataset (poor textures) all description elements form a 
single cluster with a maximum distance of 4%. For the 
Corel dataset the descriptor forms two clusters, where 
the larger one has the same characteristics as for the 
other two media sets. Only some energy values but no 
energy deviations fall apart. Interestingly, the Edge 
Histogram descriptor forms five to ten clusters with ten 
to 15 elements for any type of content. The elements of 
these clusters are self-similar but the distance between 
the clusters is relatively large. This descriptor (edge 
histograms with five bins for 16 predefined rectangular 
regions) seems to describe areas with similar texture 
(one or more regions) by sets of highly similar elements 
(edge bins). Additionally, some elements of Region-
based Shape and Scalable Color form smaller clusters 
but most elements are – from the one-dimensional point 
of view – not very redundant. 

Looking at the two-dimensional Self-Organizing Map 

(SOM) clustering gives a "topological" view of the data. 
Projecting the high-dimensional data vectors onto a map, 
the clustering algorithm has two degrees of freedom to 
arrange elements. Therefore, relationships between 
elements can more easily be visualised, and some 
elements may be grouped closer to each other than they 
would be in a one-dimensional cluster analysis. 

Analysing the SOMs for the three media collections 
(Figs. 2, 3 and 4 show the maps for the coats-of-arms, 
Brodatz and Corel dataset, respectively) supports the 
first impression of the hierarchical analysis. 
Homogeneous Texture lays a fine-meshed net over the 
investigated media property. Homogeneous Texture 
consists of 15 to 20 clusters (independently of the media 
content). Each cluster contains three to five elements. 
These clusters form a homogeneous super-cluster within 
the map: most clusters are connected to at least one other 
cluster and the border of the super-cluster is nearly 

Descriptor Media collection No. of clusters Maximum distance between clusters 

Brodatz, coats-of-arms 1 4% Homogeneous Texture 

Corel 2 20% 

Edge Histogram any 5-10 12%-20% 

other any >5 >20% 

Table 1. Results of hierarchical cluster analysis: number of clusters and distance between clusters. The maximum 
distance is given in percent (where 100% would be the distance of a vector of "0" values to a vector of "1" values). Only 
Homogeneous Texture and Edge Histogram descriptions have unbalanced cluster structures. 

CLD

HTD

SCD

DCD

RSD

TBD

EHD

CSD

 

Fig. 2. Self-Organizing Map of MPEG-7 description elements for the coats-of-arms dataset. Neighbouring clusters 
contain similar description elements. Since every non-border cluster has six neighbours, clusters are shown as 
hexagons. Cluster populations are depicted as textures (CLD: Color Layout, CSD: Color Structure, DCD: Dominant 
Color, EHD: Edge Histogram, HTD: Homogeneous Texture, RSD: Region Shape, SCD: Scalable Color, TBD: Texture 
Browsing). If clusters are shared between descriptors, hexagons are split into triangular regions. 
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circular. The Edge Histogram descriptor forms clusters 
that contain slightly more elements than Homogeneous 
Texture clusters. These clusters are spread over large 
regions and only loosely connected. Therefore, the net of 
the Edge Histogram is wide-meshed but the descriptor 
covers a larger area of the variance in the media data. All 
other descriptors form rather small two-dimensional 
clusters for any type of content. These clusters are spread 
over the entire maps. 

The results of the cluster analyses give a first indication 
on redundant descriptors. A more detailed view can be 
obtained from the factors extracted by factor analysis 
algorithms (see Table 2). For the Brodatz dataset 34 
factors explain 225 description elements (the remaining 
elements have zero variance). This is a relationship of 
nearly 7:1. Applied on the Corel dataset, coloured 
content with rich details, the MPEG-7 descriptors are 
redundant with a ratio of about 9:2. This is surprising 
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Fig. 3. Self-Organizing Map of MPEG-7 description elements for the Brodatz dataset (see Fig. 2 for description). 
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Fig. 4. Self-Organizing Map of MPEG-7 description elements for the Corel dataset (see Fig. 2 for description). 
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because the Corel photos include brilliant colours, 
significant edges and textures and – many of them – 
tailor-made object arrangements for the Region-based 
Shape descriptor. For the coats-of-arms dataset 71 
factors explain 310 elements. The ratio of redundancy is 
again 9:2. It is surprising that the MPEG-7 descriptors 
perform slightly worse on the coats-of-arms dataset than 
on the Corel dataset. The Corel photos contain more 
details and, generally, descriptors should be less 
redundant on material with richer content. The reason for 
the contrary results may lie in the characteristics of the 
coats-of-arms dataset that is – with respect to its visual 
properties – positioned between the Brodatz and the 
Corel collection (few colours, no colour gradations, long 
sharp edges, hardly any textures, large regions of 
uniform colour).  

The rotated factor loadings matrix expresses, to which 
(linear) extent factors influence description elements. 
Therefore, the coefficients of this matrix can be used to 
find redundant elements. Elements that are loaded by the 
same factor are redundant. Elements that are loaded by 
just one factor are independent. 

For the Brodatz dataset the first factor loads high on the 
DC value for the luminance colour component (Y-DC) 
of Color Layout, the second colour bin of Dominant 
Color (the first dominant colour is white), half of the 
energy values and deviations of Homogeneous Texture, 
almost all bins of Region-based Shape and bin 7, 9, 13 of 
Scalable Color. The latter bins are responsible for 
greyscale pixel. These elements are highly redundant 
and, for example, the Y-DC could be used as a good 
indicator for them. Factors 2, 4-6 and 8 (explaining 9%, 
8%, 7%, 5%, 4%) measure the five edge types of the 
Edge Histogram. The values for each edge type are 
highly similar and using a global edge histogram (as 
defined in the standard) could be a good idea on content 
comparable to the Brodatz dataset (monochrome, high 
contrast). The third factor (explains 8%) loads on the 
half of the elements of Homogeneous Texture that is not 
explained by the first factor. These bins (mainly 4-10, 
19-24) are highly redundant. 

For the Corel dataset the first factor loads high on non-
directional edges (Edge Histogram) and almost all 
elements of Homogeneous Texture. This supports the 
impression that Homogeneous Texture is highly 
redundant. Similarity of non-directional edges can be 

easily explained by the applied extraction algorithm [15] 
that tends to classify complex textures as non-directional 
edges. The second factor (7%) loads high on the Y-DC 
coefficient of Color Layout and most elements of 
Region-based Shape (as for the Brodatz dataset). 
Surprisingly, the first colour bin and all Region-based 
Shape elements seem to be highly correlated 
independently of the complexity of the media content. 
Other factors do not show significant redundancies of 
elements. For example, for complex media content the 
edge bins of the Edge Histogram seem to be very 
different from each other. Therefore, using a global 
histogram on complex content may not be a good idea. 

For the coats-of-arms dataset the first factor loads high 
on non-directional edges and half of the Homogeneous 
Texture bins. Even though these media objects hardly 
contain texture information, non-directional edges and 
energy bins are highly correlated. This allows the 
conclusion that these elements are highly redundant and 
non-directional edges may be used as a substitute for 
Homogeneous Texture. Looking at the cluster analysis 
results reveals that, indeed, these elements are clustered 
close to each other. Factor 2 and 3 (each explaining 4% 
variance) load high on various colour bins of the colour 
descriptors. This is not surprising as coats-of-arms 
images mainly consist of large coloured areas. A 
significant correlation of bins of the same edge type 
could not be identified. 

Another interesting result of the factor analysis is that – 
for any type of content – the Dominant Color descriptor 
has the tendency to identify colours with identical colour 
component values. According to the used parameters 
(see Subsection 3.4) dominant colours are described in 
the YCrCb-colour space. Somehow, independent of the 
hue, the values of Y-, Cr-, and Cb-components of 
dominant colours are most times highly similar. Maybe 
certain characteristics (e.g. quantisation) in the extraction 
algorithm implemented in the MPEG-7 experimentation 
model cause this phenomenon.  

4.3 Interpretation 

Several observations can be made from these analysis 
results. Generally, the MPEG-7 descriptors generate 
results of high redundancy. The relationship of 
description elements to redundancy-free factors varies 

Media collection Elements with 
existing variance 

Factors Explained variance 
(all) 

Explained variance 
(first factor) 

Redundancy 
relationship 

Brodatz 225 34 89% 15% 7:1 

Corel 311 69 85% 12% 9:2 

Coats-of-arms 310 71 80% 6.7% 9:2 

Table 2. Results of factor analysis: number of extracted factors and explained variance. Only elements with existing 
variance are considered. 
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from 4:1 to 7:1. If the MPEG-7 descriptors are used in a 
situation, where storage capacity or network bandwidth 
is scarce, it may be a good idea, in addition to using the 
BiM format [16], to make use of transformations for data 
compression (e.g. Karhunen Loewe transformation [4]). 
Especially, all MPEG-7 descriptors are highly redundant 
for monochrome media content. This is not very 
surprising, because four of eight investigated descriptors 
are colour descriptors and some implemented extraction 
algorithms work inferiorly on luminance information 
alone (see Section 5). Of course, this is a problem if 
MPEG-7 colour descriptors should be applied on media 
objects with monochrome content (e.g. for archival of 
old movies or drawings). If enough colour information is 
present in the media content, Color Layout, Color 
Structure and Scalable Color are independent of each 
other and other descriptors. The Dominant Color 
descriptor is – for any type of content – absolutely 
independent of all other colour descriptors and shows no 
similarities to texture descriptors either.  

Another interesting result is that all bins of Color Layout 
are highly un-similar for any type of media content and 
independent from all other elements. In every map and 
every factor loadings matrix a separate cluster/factor can 
be found for any element of Color Layout. For all types 
of media, the luminance DC coefficient of Color Layout 
determines most elements of Region-based Shape. This 
element seems to be a good indicator for global shape 
information even for complex scenes (as Region-based 
Shape should be). 

The elements of the Homogeneous Texture descriptor are 
– independent of the media – highly self-similar and 
redundant. Therefore, the measured property could be 
expressed with much fewer description elements. For 
example, the non-directional edges of the Edge 
Histogram descriptor could be used instead of 
Homogeneous Texture. Similarly, Edge Histogram 
consists of clusters of redundant elements. Texture 
Browsing is independent of all other descriptors. 

Color Layout, Dominant Color, Edge Histogram and 
Texture Browsing are the most independent descriptors. 
This is supported by the factor loadings. Color Layout, 
Dominant Color, Edge Histogram and Texture Browsing 
are mainly explained by unique factors (even though 
Dominant Color and Edge Histogram contain a certain 
amount of self-similarity). If relationships exist, they are 
highly negative (e.g. the AC coefficients of Color Layout 
and all elements of Texture Browsing are pair-wise 
highly negatively loaded). Most elements of the other 
descriptors depend on factors associated with these 
descriptors. 

In conclusion, the ideal – content-independent – 
description scheme for visual content seems to be Color 
Layout (because of the luminance DC coefficient), 
Dominant Color, Edge Histogram and Texture 
Browsing. This description scheme covers most 

properties measured by the visual MPEG-7 descriptors 
with a minimum of redundancy. Still, the other 
descriptors may be meaningful in specific situations and 
application scenarios. Additionally, the results of the 
factor analysis suggest that the characteristics of the 
coats-of-arms dataset supplement the properties of the 
two other collections substantially. 

5. Sensitivity analysis 

5.1 Scope 

The MPEG-7 standard has been defined for a wide range 
of applications on any kind of visual content. This 
analysis tries to give indication on the sensitivity of the 
descriptors on varying media content. In detail, three 
forms of sensitivity are investigated: firstly, sensitivity of 
colour descriptors for monochrome content, secondly, 
sensitivity of colour descriptors for content with few 
colour shades (e.g. animations) and finally, sensitivity of 
the texture descriptors and Region-based Shape for 
coarse, medium and fine structures in the content. 

Ideally, the descriptors should provide surjective 
mappings from visual content to feature space. These 
mappings should be robust against variations in the 
quality of the content (e.g. presence of colour 
information, resolution). Analysing the sensitivity allows 
the judgement to which extent "bad" (e.g. bleached) 
input affects the data quality of the descriptions. Even 
more important, it can be judged whether or not the 
descriptors are really suitable for the proposed 
applications. For example, if the descriptions extracted 
with colour descriptors are meaningless for content with 
just one colour channel, then these descriptors are 
obviously not suitable for the archival of digitised old 
movies. 

Two statistical methods provide valuable indicators to 
judge sensitivity. Mean and standard deviation of 
element values describe location and distribution of 
elements. If the extracted descriptions are distributed 
over a wide range of values, the associated media objects 
are easy to distinguish. If all objects of a specific content 
type fall into the same range, the extraction methods are 
obviously not sensitive to the properties that make the 
considered media objects distinguishable. Additionally, 
the distribution of clusters (computed for various types 
of content) can be used to judge the sensitivity of the 
descriptors. In the next subsections the results for all 
investigated descriptors and the three tested media 
collections are described. 

5.2 Analysis results 

The main indicators for sensitivity are mean and 
standard deviation. For a uniformly distributed element 
on the interval [0, 1] with a mean of 0.5, the maximum 
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standard deviation is 0.346. In the evaluation the 
standard deviation should be 0.2 or higher (using at least 
an interval of 40% of the data range for 66% of all media 
objects) to be acceptable. Then, the description element 
can be considered as being sufficiently discriminant to 
distinguish media objects independently of variations in 
the content.  

Table 3 summarises the average means and standard 
deviations of the colour description elements. Color 
Layout performs badly on monochrome data (Brodatz 
dataset). Only six of twelve bins have a standard 
deviation greater than zero: the DC and AC coefficients 
of the luminance channel (Fig. 5). Even for these, the 
standard deviation is very low. For the datasets with 
colour information the descriptor works well: the 
standard deviation is about 0.2. Like Color Layout, 

Color Structure performs inferiorly on monochrome 
data: 24 of 32 colour bins have no variance, the other 
bins are apparently responsible for brightness (bins 37 to 
44). Even these bins have a very low variance. 
Whenever colour is present – independent of the number 
of gradations – Color Structure performs excellently. 
The standard deviation is in average 0.25. Therefore, the 
element values are distributed over the entire range of 
possible values. As can be seen from Table 3, the 
Dominant Color descriptor performs equally well on any 
type of media content. The distribution of values is very 
similar for any type of media. Scalable Color performs 
exactly like Color Layout and Color Structure. For 
monochrome content, Scalable Color is not able to 
derive meaningful descriptions. Only eight bins have an 
existing variance (bins 1-3, 5, 9, 13, 33 and 49). For the 

Descriptor Media collection Average mean Average standard deviation 

Brodatz 0.7 0.1 

Corel 0.55 0.2 

Color Layout 

Coats-of-arms 0.65 0.15-0.2 

Brodatz 0.85-0.9 0.05-0.15 Color Structure 

Corel, coats-of-arms 0.5 0.25 

Dominant Color any 0.45-0.5 0.3 

Brodatz 0.4 0.3 

Corel 0.5 0.3 

Scalable Color 

Coats-of-arms 0.4-0.5 0.15 

Table 3. Average mean and standard deviation of colour description elements. Only elements with existing variance are 
considered in the averaging process. The mean should be around 0.5 and the standard deviation should be 0.2 or higher 
(max. 0.346 for uniformly distributed elements). 
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Fig. 5. Mean (depicted as "-") and standard deviation (depicted as vertical lines) of the elements of the Color Layout 
descriptor (twelve elements, shown on the horizontal axis) for the tested collections. The bin values are normalised to 
[0, 1]. 

 

66



  

Corel dataset, Scalable Color results are excellent: 
standard deviation of 0.3. For less colour gradations than 
in photos, many standard deviation values drop down 
below 0.15. This means that Scalable Color is hardly 
discriminant for synthetic content.  

Edge Histogram performs excellently on any type of 
media (see Table 4 for details on texture and shape 
descriptors). Even on coats-of-arms images with hardly 
any textures present (but, of course, very sharp edges) 
the average standard deviation is above 0.25. For 
different content the statistical indicators are even better. 
The Homogeneous Texture descriptor works poorly on 
colour images, especially if they have few colour shades 
and textures in them. In this case, the standard deviation 
of most elements drops below 0.05. The descriptor 
performs slightly better on the Brodatz dataset. This 
means, Homogeneous Texture is not discriminant for 
colour media and still relatively poor for texture regions. 
Texture Browsing (in the form described in Subsection 
3.1) performs well on the Brodatz dataset and the Corel 
dataset but poorly on the coats-of-arms dataset. Finally, 
the Region-based Shape descriptor measures excellently 
on any type of media. The standard deviations are in 
average 0.2 to 0.25.  

These findings are supported by the cluster analysis 
results. Most clusters are on distance level lower than 
20%. Hardly any clusters exist at average distance (20% 
to 60%). Cluster structure and clusters size varies widely 
for different content. An interesting phenomenon can be 
observed in the Self-Organizing Map of the Brodatz 
dataset (Fig. 3). On such content (sharp edges), the Edge 
Histogram descriptor should be highly discriminant, but 
in the map most clusters are border clusters. This 
suggests that descriptions generated by the Edge 
Histogram are extreme (in terms of variance) and not as 
discriminant as they should be. 

5.3 Interpretation 

The analysis results can be summarised as follows. All 
colour descriptors work excellently on photos but Color 
Layout, Color Structure and Scalable Color perform 

badly on artificial media objects with few colour 
gradations and very badly on monochrome content. 
Dominant Color is an exception. This descriptor works 
well on any type of content even though it is particularly 
sensitive to brightness. A solution for using colour 
descriptors on media objects with a single colour 
component could be storing, transporting and utilising 
only the bins that are sensitive for brightness (e.g. using 
special distance measures for retrieval that take only 
these elements into account).  

The statistical properties of the colour descriptors cause 
one major side effect on other descriptors. The Group-
of-Frames/Group-of-Pictures Color descriptor 
(GoF/GoP) is based on Scalable Color. It is intended to 
generate descriptions for short video clips and 
animations. The description is computed by taking the 
mean over all colour histograms of media objects in a 
group. Since the averaging process does not introduce 
new information, GoF/GoP descriptions cannot contain 
valuable information, if the Scalable Color descriptions 
for the frames do not contain valuable information. 
Therefore, obviously, this descriptor does not work if the 
given media does not consist of nicely shot pictures 
(high image sharpness, good lighting conditions, rich 
colours and shades). For example, it cannot be used on 
animations, old monochrome movie clips, cartoons, etc. 
The same would be true if Color Layout or Color 
Structure was used. From the statistical results it has to 
be concluded that GoF/GoP should be based on 
Dominant Color instead of Scalable Color. For 
monochrome content an implementation of this 
descriptor would be straightforward, because colours 
based on one component can easily be averaged. For 
colours with three components the implementation 
would be a bit more complicated, because it would be 
necessary to identify corresponding colours. Still, the 
problem would be solvable, if domain knowledge on 
colour models would be integrated in the averaging 
process.  

Additionally, for retrieval applications the distance 
measures recommended in the MPEG-7 standard for 
colour descriptors should be refined. For monochrome 

Descriptor Media collection Average mean Average standard deviation 

Edge Histogram any 0.5 0.25-0.3 

Brodatz 0.65-0.7 0.1 

Corel 0.75 0.1 

Homogeneous Texture 

Coats-of-arms 0.75 0.05 

Brodatz, Corel 0.2-0.3 0.2-0.25 Texture Browsing 

Coats-of-arms 0.1 0.05 

Region-based Shape any 0.5 0.2-0.25 

Table 4. Average mean and standard deviation of texture and shape description elements. 
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content they should exclusively measure bins with 
existing variance (see Subsection 5.2). Otherwise, media 
objects with one colour channel would be rated more 
similar to query examples than the same media objects 
with three colour channels. 

In conclusion, from the statistical point of view, Edge 
Histogram is by far the best texture descriptor (high 
sensitivity, low redundancy). Homogeneous Texture is 
highly sensitive to the analysed media content and the 
variance of results is small. Texture Browsing produces 
partially ambiguous results (because of poor variances, 
few elements) that are, indeed, suitable for browsing but 
not for other MPEG-7 applications (e.g. retrieval). 
Region-based Shape is a good descriptor in any situation 
that can be applied to any type of media content. 

6. Completeness analysis 

6.1 Scope 

Ideally, for sufficiently large media collections with 
varying content, the values of each description element 
should be uniformly distributed over the available data 
range (in our case [0, 1]). Such description elements 
would utilise the data space optimally and discriminate 
media objects to the largest possible number of 
descriptions. Practically, most descriptors have peaks in 
the distribution and "holes": ranges of data values that 
are not utilised at all. This analysis aims at finding holes 
in the descriptions that are not covered by any descriptor 
and therefore, cannot be filled with description schemes 
either. In detail, three properties are investigated: firstly, 
to which extent the available data range is used, 
secondly, if the element values are uniformly distributed 
or whether or not peaks exist and finally, whether the 
structure of all description elements contains holes or 
not. 

Identifying shortcomings in the completeness of the 
visual MPEG-7 descriptors has three advantages. The 
descriptions can be compressed by quantising elements 
that do not make use of the available data range to 

smaller data types. If peaks exist (e.g. Gaussian-
distributed elements), transformations can be applied on 
the data to increase the discriminance of the descriptors. 
Finally, by identifying holes between elements 
suggestions can be made for new descriptors that could 
supplement the MPEG-7 standard. 

Three statistical methods are used to judge completeness. 
The distribution of element values is used to identify 
holes and the distribution type (extraction is explained in 
subsection 2.2). Four distribution types are 
distinguished: uniform, Gaussian, exponential and 
irregular (else). Additionally, mean values and standard 
deviations can give hints on holes in the data 
distribution. Finally, cluster analysis algorithms are used 
to detect holes between element clusters.  

6.2 Analysis results 

From the distribution of element values, it can be seen 
that the Color Layout descriptor tends to cover just 90% 
of all possible values. The values in the interval [0, 0.1] 
are hardly used (values are normalised to [0, 1]). For the 
Brodatz dataset, all values are higher than 0.3. For the 
Corel dataset and the coats-of-arms dataset the situation 
is less bad but still not optimal. Values below 0.1 hardly 
ever occur. All other values are sufficiently utilised. 
Most energy values and deviations of Homogeneous 
Texture measure exclusively on the range [0.5, 1] (Fig. 
6). Except for a few bins for colour photos the first half 
of values is not utilised.  

An interesting phenomenon can be observed for the 
Edge Histogram descriptor (Fig. 7). Independent of the 
type of media this descriptor does hardly measure on the 
ranges [0.26, 0.35], [0.55, 0.65] and [0.85, 0.95]. Since 
this descriptor simply counts edges of certain 
orientations in pre-defined spatial regions, this behaviour 
must be caused by the (non-normative) extraction 
process implemented in the MPEG-7 experimentation 
model. A possible explanation could be the simple edge 
operators (2x2 matrices) that are used. In any case, this 
phenomenon allows extended compacting of the 
descriptor. About 30% of the available data range is not 
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Fig. 6. Topological visualisation of the discrete density function of the Homogeneous Texture  descriptor applied on the 
Corel dataset (ten bins on the vertical axis). Description elements (energy values and distributions) are depicted on the 
horizontal axis. White: 0-10 percent of examples in this density histogram bin, 20% grey: 10-20 percent, 40% grey: 
20-30 percent, 60% grey: 30-40 percent, black: 40-50 percent. 
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used. The same phenomenon as for Edge Histogram can 
also be observed for Scalable Color (Fig. 8). For any 
type of media (except for a few of the first bins) the 
ranges [0.1, 0.2] and [0.35, 0.45] are not used at all; [0.7, 
0.9] is hardly used. This may have to do with the 
application of the Haar transformation [15]. All other 
investigated descriptors do not show significant holes.  

One possible reason for holes in the data range could be 
the distribution type of data. If the data range is non-
uniformly distributed, peaks exist and not all bins of the 
distribution are utilised to the same amount. For any type 
of media, all elements of Color Layout (with existing 
variance) follow a Gaussian-like distribution. The 
distribution of most Color Structure elements is irregular 
(neither uniform nor Gaussian nor exponential). Only a 
few elements are distributed in Gaussian-like way. Most 
bins of Dominant Color with percentage values are 
Gaussian-distributed while the colour bins are mostly 
irregularly distributed. This may have to do with the 
phenomena described in subsection 4.2 that the colour 
component values seem to be coupled. Only a few 
elements of the descriptor are uniformly distributed. 
Nearly all elements of Edge Histogram and Scalable 
Color have an irregular distribution. Most elements of 
the Edge Histogram descriptor have two significant 
peaks in the intervals [0, 0.1] and [0.8, 0.9]. Nearly all 
description elements of Homogeneous Texture seem to 
be Gaussian-distributed for any type of content, and 
because of the low standard deviations only a few bins 

are utilised. The elements of Texture Browsing are 
irregularly distributed. Finally, most elements of Region-
based Shape are uniformly distributed. The others are 
Gaussian-distributed. 

Looking at the hierarchical cluster structure reveals that 
hardly any clusters exist on average distance (20% to 
60%) for any type of media. Most clusters are on 
distances lower than 20%. The size of these clusters 
varies widely. This supports the conclusion that the 
elements of most descriptors are far from being 
uniformly distributed. If they were, a lot of clusters with 
similar sizes should exist on average level and the 
dendrograms should look like well-balanced trees. 
Generally, descriptors consisting of uniformly 
distributed elements should be more efficient for 
retrieval and browsing than descriptors consisting of 
non-uniformly distributed elements (see Section 8). 

Looking at the Self-Organizing Maps shows that – as 
described in section 4.2 – Homogeneous Texture spans a 
fine-meshed net, but only over a small area of the 
available variance (and therefore, for the price of high 
redundancy). Edge Histogram spans a large wide-
meshed net with large clusters. This bears the risk that 
media objects that are only slightly different may be 
judged equal in one case and completely different in 
another. On the other hand Edge Histogram is generally 
less redundant. The topology of the Brodatz cluster map 
shows large holes between the Homogeneous Texture 
descriptor and the Edge Histogram descriptor. One 
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Fig. 7. Topological visualisation of the discrete density function of the Edge Histogram descriptor applied on the Corel 
dataset. Description elements (edge bins) are depicted on the horizontal axis. White: 0-6 percent of examples in this 
density histogram bin, 20% grey: 6-12 percent, 40% grey: 12-18 percent, 60% grey: 18-24 percent, black: 24-30 
percent. 
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Fig. 8. Topological visualisation of the discrete density function of the Scalable Color descriptor applied on the Corel 
dataset. Description elements (colour bins) are depicted on the horizontal axis. White: 0-20 percent of examples in this 
density histogram bin, 20% grey: 20-40 percent, 40% grey: 40-60 percent, 60% grey: 60-80 percent, black: 80-100 
percent. 
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obvious reason for the large holes are the colour 
histogram features that fill these holes for other content 
but do not work on monochrome content.  

For the coats-of-arms dataset the same problem occurs as 
for the Brodatz dataset (Figs. 2, 3). Large holes can be 
found between Edge Histogram and Homogeneous 
Texture, because Scalable Color is missing: Scalable 
Color is not discriminant for content with few color 
shades. The extraction algorithm of this descriptor 
should be more sensitive, if only few colour gradations 
are present. Scalable Color generates a mesh that is very 
similar to Edge Histogram: large clusters and widely 
meshed. To the author's opinion, using this descriptor 
with more bins (e.g. 256) would not improve the cluster 
structure because of the large clusters. For the Corel 
dataset only comparably small holes do exist (Fig. 4). 
The large holes are filled by elements of Scalable Color. 
The outcome of Region-based Shape is – for any type of 
content – mostly widely meshed with large clusters. 
Finally, Color Structure has smaller clusters but very 
large holes in the cluster distribution. For this descriptor, 
using more colour bins could improve the cluster 
structure and reduce the size of holes (or increase the 
size of clusters). The other descriptors have too few 
elements to allow conclusions on the cluster structure. 

6.3 Interpretation 

In addition to using the binary MPEG-7 format, most 
descriptor values could be transformed and quantised to 
smaller data types. For the Color Layout descriptor this 
could save (depending on the content) at least 10% of 
storage space. For the Homogeneous Texture descriptor 
the amount of required storage could be reduced to 50% 
using an appropriate transformation and quantisation, for 
the Edge Histogram descriptor to 70% and for the 
Scalable Color descriptor to about 45%. In conclusion, 
for example, if any element of a complete MPEG-7 
description would be represented by a floating point 
variable with double precision (eight bytes), the amount 
of needed storage could be reduced from 2512 bytes to 
1832 bytes (73%) without losing precision in the data. 

Nearly no holes exist between clusters of colour 
descriptors. If they work, these descriptors are very 
independent from each other and generate a fine-meshed 
structure with clusters of – at most – average size. For 
the texture descriptors large holes exist between Edge 
Histogram and Homogeneous Texture, if Scalable Color 
is not able to discriminate colour shades. Texture 
Browsing is – because of its poor variance – unable to 
close these holes. Two approaches look promising to 
close the holes between Edge Histogram and 
Homogeneous Texture for content with poor colour 
information: changing the algorithms of the colour 
histograms to make them sensitive for greyscale media 
objects, and modifying the "neighbouring" descriptors, 
especially Edge Histogram. Edge Histogram should 

produce a more homogeneous cluster structure with 
smaller clusters. This could be achieved by making the 
extraction mechanism more sensitive for small 
differences in the content (e.g. by using less-coarse edge 
operators). Since these changes would not affect the 
normative part of the MPEG-7 standard, both solutions 
could easily be implemented. Finally, if the Scalable 
Color descriptor is used in combination with the best 
other descriptors on content with rich colours, then the 
resulting descriptions have a fine-meshed cluster 
structure and even small differences in the content are 
mirrored by the descriptions. 

7. Summary 
Table 5 summarises the results presented in sections 4, 5 
and 6. The three datasets were selected as representatives 
for their respective media classes: 

z Brodatz dataset: monochrome images with sharp 
edges and rich textures. 

z Corel dataset: colour photos with rich content, 
detailed textures and many colour shades. 

z Coats-of-arms dataset: artificial colour images with 
clear structures and few colour gradations. 

8. Conclusions 
The study presented in this paper analyses descriptions 
extracted from visual content by MPEG-7 descriptors 
from a statistical point of view. Good descriptors should 
be invariant against the analysed media content and 
generate descriptions with high variance and a well-
balanced cluster structure. Such descriptions would be 
highly discriminant and be usable to distinguish different 
media content. Statistical analysis reveals the quality of 
the used descriptors. This was not considered in the 
MPEG-7 design process where optimising the recall 
(retrieval rate) was the major goal. For the analysis eight 
basic visual descriptors were applied on three media 
collections: the Brodatz dataset (monochrome textures), 
a selection of the Corel dataset (colour photos) and a set 
of coats-of-arms images (synthetic colour images with 
few colour shades). The results were analysed with four 
statistical methods: mean and standard deviation of 
description elements, distribution of element values, 
cluster analysis (hierarchical and topological) and factor 
analysis. 

The main results are: The best descriptors for 
combination are Color Layout, Dominant Color, Edge 
Histogram and Texture Browsing. The others are highly 
dependent on these. The colour histograms (Color 
Structure and Scalable Color) perform badly on 
monochrome input. Therefore, Dominant Color should 
be used for the Group-of-Frames/Group-of-Pictures 
descriptor instead of Scalable Color. Generally, all 
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descriptors are highly redundant and applying 
compression, quantisation and transformation algorithms 
in addition to using the binary MPEG-7 (BiM) format 
could save up to 80% of storage and transmission 
resources. Finally, analysis shows that some aspects of 
visual media objects are not captured by any of the 
MPEG-7 descriptors. For content-based retrieval and 
browsing applications, MPEG-7 descriptions should be 
augmented by additional descriptors. For example, a 
histogram of brightness values could be valuable to 
describe monochrome images. Shape moments could be 
used to describe the properties of image regions. 
Additional texture features could supplement MPEG-7 
texture descriptors. A colour histogram that is more 
robust than Color Structure and Scalable Color could be 
used in combination with the Dominant Color descriptor. 
Since MPEG-7 offers a descriptor definition language 

and allows definition of description schemes these and 
other suggestions could easily be implemented. 

The study was prepared for the visual information 
retrieval project VizIR [5, 6]. VizIR is based on the 
visual MPEG-7  descriptors and, as a consequence of the 
presented results, the future implementation focus will 
lie on Color Layout, Dominant Color, Edge Histogram 
and Texture Browsing. 
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Descriptor Brodatz dataset Corel dataset Coats-of-arms dataset 

Color Layout Description bins are independent 
from each other, luminance DC 
coefficient explains other 
descriptors, sensitive to missing 
colour information, large holes in 
utilisation of data range 

Description bins are independent 
from each other, luminance DC 
coefficient explains other 
descriptors, high variance, small 
holes in utilisation of data range 

Description bins are 
independent from each other, 
luminance DC coefficient 
explains other descriptors, high 
variance, small holes in 
utilisation of data range 

Color 
Structure 

Highly redundant elements, 
sensitive to missing colour 
information 

High variance High variance 

Dominant 
Color 

Independent of other descriptors, 
robust against missing colour 
information 

Independent of other descriptors, 
high variance 

Independent of other 
descriptors, high variance 

Edge 
Histogram 

Edge type bins with equal 
orientation have very similar 
variance, wide-meshed cluster 
structure, high variance, large 
holes in utilisation of data range 

Wide-meshed cluster structure, 
high variance, large holes in 
utilisation of data range 

Wide-meshed cluster structure, 
high variance, large holes in 
utilisation of data range 

Homogeneous 
Texture 

Highly redundant elements, fine-
meshed cluster structure, average 
variance, large holes in utilisation 
of data range 

Highly redundant elements,  

fine-meshed cluster structure, 
sensitive for present colour 
information, large holes in 
utilisation of data range 

Highly redundant elements, 

fine-meshed cluster structure, 
sensitive for present colour 
information and missing texture 
information, large holes in 
utilisation of data range 

Region-based 
Shape 

Highly dependent on luminance 
DC coefficient of Color Layout, 
high variance 

Highly dependent on luminance 
DC coefficient of Color Layout, 
high variance 

Highly dependent on luminance 
DC coefficient of Color Layout, 
high variance 

Scalable 
Color 

Highly redundant elements, 
highly sensitive to missing colour 
information, large holes in 
utilisation of data range 

High variance, large holes in 
utilisation of data range 

Sensitive to missing colour 
shades, large holes in utilisation 
of data range 

Texture 
Browsing 

High variance High variance Sensitive to missing texture 
information 

Table 5. Summary of analysis results. 
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Abstract–This paper is an experimental study on the 

performance of the two major methods for macro-level 
similarity measurement: linear weighted merging and 
logical retrieval. Performance is measured as the average 
query execution time for a significant number of tests. The 
two models were implemented in the standard version (as 
they are applied in a number of prototypes) and in an 
optimized version. The results show, that optimized logical 
retrieval clearly outperforms optimized linear weighted 
merging. 

Keywords–content-based image retrieval; content-based visual 
retrieval; visual information retrieval; query optimization; 
similarity measures; triangle inequality; experimental study 

I. INTRODUCTION 
Content-based retrieval of information from visual media 

(images and video; CBIR) has been an area of increasing 
interest and research in the past years ([6]). Up to now, one of 
the major problems of most CBIR approaches has been bad 
performance in terms of query execution time. Similarity 
measurement in CBIR systems is essentially based on distance 
measurement of feature vectors that have been previously 
extracted from visual media. Most used distance functions are 
L1 and L2 metrics, e.g. the city block distance and the 
Euclidean distance. These distance functions have a 
complexity of at least O(n)=n, n being the size of the feature 
vectors. Most query acceleration approaches follow one of 
three directions: 
1. Indexing of feature data. Indexing method include tree 

techniques (quadtree, R-tree, etc.) and gridfiles. They 
suffer from the drawback that most of them support only 
one inherent distance measure (mostly Euclidean distance) 
and therefore have to be implemented fore each group of 
features with common distance measure separately. 
Additionally, most of them become increasingly ineffective 
for high-dimensional data. 

2. Complexity reduction of feature vectors prior or after the 
feature extraction process. This includes coarse 
representation of features (reduced scales or number of 
histogram-bins, etc.) and redundancy reduction (e.g. factor 
analysis). 

3. Occlusion of media objects to minimize the number of 
distance comparisons. The most well-known approach 
from this area is using the triangle inequality (the fourth 

metric axiom) to exclude dominated media objects (see 
[1]). 
In the paper we investigate methods from the third area: 

occlusion of media objects that are based on the similarity 
models used in most CBIR systems. We will compare the 
performance of the linear weighted merging model (LWM) 
and the logical retrieval model (LR) in form of a simple and an 
optimized algorithm (see Section II for details on LWM and 
LR). The rest of the paper is organized as follows. Section II 
points out relevant related work, Section III describes the 
algorithms we used in our experiments, Section IV is a brief 
sketch on the test environment we used and Section V 
describes the experimental results. 

II. RELATED WORK 
Subsequently, we will outline the CBIR macro-level 

similarity measurement process and earlier work on CBIR 
query acceleration. In [3] we define macro-level similarity 
measurement as the process that extracts a result set for a 
query from a given distance space. Distance space is defined 
as the vector space that is derived from feature space by 
measuring the distance of media objects to given query 
examples with distance functions (micro-level similarity 
measurement). In feature space, media objects are represented 
as numerical feature vectors.  

The two most widely applied methods for macro-level 
similarity measurement are: (1) linear weighted merging 
(LWM) and (2) logical retrieval (LR). LWM is a two step 
process. In the first step, a position value is calculated for each 
media object (according to equation 1) and in the second, the 
media objects are ordered by this position value and the first n 
elements are selected as the result set.  

 ∑
=

=
F

i
iiObject dwvaluePosition

1

 (1)  

In equation 1 di and wi are the distance value and weight 
for feature i (of F) and the given media object. This equation is 
a simplified version of the formula given in [6]. It is 
implemented by most CBIR prototypes (e.g. QBIC, [4]). In 
opposition to LWM, the result set size in LR is not constant 
and depends on the given media collection. In LR, each query 
is a logical expression of terms ci of the form given in equation 
2. The parameters ti1, ti2 are thresholds for the minimum 
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respective maximum distance of a media object for a certain 
feature. A media object is added to the result set, if the query 
expression evaluates to true for its distance values. For 
example, this method is implemented in MARS ([5]). 

 21 iii tdt ≤≤  (2 ) 

In our earlier work, we implemented a simplified version 
of LR (called QueryModels), where conditions may only be 
and-connected. For this approach we implemented a heuristic 
optimization technique that tries to order the conditions of an 
expression in a way, that those conditions (distance functions) 
are evaluated first that cut off most non-similar media objects 
and/or use the fastest distance functions. Because of the and-
connection, consecutive conditions have to take only those 
media object into account that have not been cut off by prior 
conditions. This method lead to a reduction of the average 
query execution time of 66% (see [2] for details). 
Subsequently, we will introduce a simple optimization 
technique for LR expressions that contain the logical operators 
and, or and not.  

III. USED ALGORITHMS 
We tested four different algorithms for macro-level 

similarity measurement: (1) LWM with simple optimizations 
(referred to as LWM), (2) LWM with triangle inequality 
optimization (LWM+), (3) LR with no optimization (LR) and 
(4) LR with a simple optimization technique (LR+). In the 
tests we used no indexing or complexity reduction techniques, 
because these methods are optimizations on the micro-level 
and can be applied to any of the four algorithms. The test plan 
was as follows: 
1. Select query parameters (query example, features, weights, 

result set size, etc.). The details concerning this step will be 
described in Section IV. 

2. Calculate the result sets for LMW and LWM+. 
3. Derive an LR expression from the LWM result set that 

represents exactly the same result set as the LWM 
algorithm. 

4. Calculate the result sets for LR and LR+.  
The used LWM algorithm has the following form (pseudo-

code): 

FOR EACH mo { 
   pv:= 0; 
   FOR EACH feature { 
      dist:= CALC DISTANCE FROM qe TO mo; 
      pv:= pv + dist*weight(feature); 
      IF pv > distanceSum(n) THEN { 
         GOTO break; 
      } 
   } 
   ADD pv to distanceSum; 
break: 
} 
rs:= FIRST n ELEMENTS BY distanceSum; 

In this algorithm, qe is the query example, mo is a media 
object, pv is the (partial) position value of mo and 
distanceSum is a vector of media object position values 
(always sorted in ascending order). This algorithm differs from 
the standard LWM in one point: whenever the partially 
calculated position value exceeds the position value of the n-th 
element (result set border), the calculation for this media 
object is aborted and calculation continues with the next media 
object.  

 The LWM+ algorithm uses the triangle inequality 
technique (TRIQ) for query optimization. The TRIQ is an 
occlusion technique that can only be applied on distance 
functions that fulfill the metric axioms (see [1] for details on 
TRIQ). We use two distance measures that are both metric: 
city block distance and Euclidean distance. Based on [1] we 
use equation 3 (joint cutoff criterion) to occlude media objects. 
In this equation, r is a reference object, q is the query example, 
x is an arbitrary media object and mind is the distance value of 
the n-th element in the result set. All d(x,r) values can be 
calculated before the querying process. 

 ( ) ( ) drqdrxd min,, >−  (3 ) 

Because we are using multiple features and want to retrieve 
more than one media object, we use an adapted version of 
TRIQ. The final LWM+ algorithm looks as follows: 
FOR EACH mo { 
   pv:= 0; 
   FOR EACH feature { 
      IF |refDist(mo)-refDist(qe)| * 
         weight(feature) >  
         (distanceSum(n)-pv) THEN { 
         GOTO break; 
      } 
      dist:= CALC DISTANCE FROM qe TO mo; 
      pv:= pv + dist*weight(feature); 
      IF pv > distanceSum(n) THEN { 
         GOTO break; 
      } 
   } 
   ADD pv to distanceSum; 
break: 
} 
rs:= FIRST n ELEMENTS BY distanceSum; 

The similarity measurement for a media object is 
terminated as soon as it becomes clear that the position value 
will exceed the position value of the n-th element in 
distanceSum. Using the TRIQ, this can be done prior to the 
distance calculation. 

P7
P8 P9

P4

P1 P2 P3

P5 P6

d(f1)

d(f2)

c1 2

c2 2

c1 1 c2 1  
Figure 1. LR conditions and possible locations of media objects Pi. 
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In our earlier work we have shown that LR is a more 
flexible model for macro-level similarity measurement than 
LWM. It is possible to derive an LR expression for arbitrary 
LWM result sets with the following algorithm: 
expression:=(); 
FOR i:=n to 1 DO { 
   FOR j:=i-1 to 1 DO { 
      IF distVector(i) NOT EXCEEDS  
         distVector(j) THEN { 
         GOTO break; 
      } 
      IF distVector(i) EXCEEDS  
         distVector(j) THEN { 
         DEL distVector(j) FROM expression; 
      } 
   } 
   ADD distVector(i) TO expression; 
break: 
} 

Here, expression is a vector of all conditions and 
distVector(i) is the distance vector for media object i. The idea 
of the algorithm is to take each LWM result set element i, 
check, if it is included in the expression derived so far and – if 
not – add i or-connected to expression. Each added distance 
vector defines an f-dimensional and-connected cube (f 
features, a cube consists of one LR condition for each feature) 
where the distance values are the tf2 thresholds of LR 
conditions (see Section II) and the tf1 are all 0. Figure 1 shows 
an example for two features: (c11,c12) and (c21,c22) are cubes of 
conditions and the result set consists of {P4, P7, P8}. 
Additionally, the LWM to LR conversion algorithm checks, if 
new conditions dominate existing ones and – if yes –  
eliminates the dominated ones. LR querying based on the 
derived expression is done with the following algorithm:  
FOR EACH mo { 
   distVector:=(); 
   FOR EACH feature { 
      dist:= CALC DISTANCE FROM qe TO mo; 
      ADD dist to distVector; 

   } 
   FOR EACH condition { 
      IF distVector EXCEEDS expression THEN { 
         GOTO break; 
      } 
   } 
   ADD mo TO rs; 
break: 
} 

The optimized LR+ algorithm uses the same algorithm but 
adds an additional and-connected cube of conditions to 
expression. This cube consists of one condition for each 
feature, where tf2 is the maximum value of all threshold values 
for this feature in expression and tf1 is always 0. For the 
example in Figure 1 the cube of conditions (c21,c12) is added. 
Thus the media objects P1, P2, P3, P6 and P9 can be occluded 
very fast. The next section describes the test environment and 
test data for these algorithms. 

IV. TEST ENVIRONMENT 
The querying algorithms were implemented in Perl and 

evaluated on a DOS computer. Perl was chosen, because it 
allows rapid prototyping and effective statistical analysis. DOS 
was chosen, because querying performance was tested by the 
average query execution time and therefore using a single user, 
single task operating system was the proper choice. 

We did about 50000 tests on one to ten features (equally 
distributed) and up to 10000 artificial feature vectors with 
length between one and 32 elements (equally distributed). The 
artificial feature vectors were normalized to [0,1] and 
consisted of equally distributed (45%), normally distributed 
(50%) and negative exponentially distributed (5%) columns of 
random numbers. The reference values for LWM+ were 
calculated prior to the tests. Two distance functions were used: 
city block distance and Euclidean distance. Each artificial 
feature was bound to one distance function (equally 
distributed).  
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Figure 2. Results for varying number of queried features. The triangles show the average performance of LR, the diamonds stand for the LR+ performance and 
the gray squares and the diamonds within them depict the performance of LWM resp. LWM+. The lines above and below the icons show the standard deviations.
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Each query was done with one random selected query 
example and random selected weights. The result set size was 
fixed to 32 elements for all tests. The next section describes 
the results for our experiments.  

V. EXPERIMENTS AND RESULTS 
First we tested the four algorithms performance for a 

varying number of features. We did 40000 queries on one to 
ten features. Figure 2 shows the results. The triangles show the 
average performance of LR, the diamonds stand for the LR+ 
performance and the gray squares and the diamonds within 
them depict the performance of LWM respective LWM+. All 
performance values are relative to LWM. The lines above and 
below the icons show the standard deviations relative to the 
average values. 

This test revealed that using the TRIQ has hardly any 
effect on query execution time (smaller than 1%). 
Additionally, it showed that the performance of LWM is 
always better than LR and that LR has a very small standard 
deviation. Using the simple optimization in LR+ reduces the 
query execution time to about 50% of LWM. Because this is a 
heuristic approach, the standard deviation of LR+ is bigger 
than of LWM. The better performance of LR+ seems to be 
independent from the number of queried features. 

In the second experiment, we tested the algorithms 
behavior for a varying relation of result set size and queried 
collection size. This is interesting because at least the 
performance of LR+ could be dependent on this relation. We 
did 7200 queries with a varying number of features and 
relations from 1:1 to 1:256. Figure 3 shows the results. This 
time, LWM and LWM+ were omitted. Still, the performance 
values are relative to LWM (100%). This test showed that only 
for relations of result set size to queried collection size of 
bigger than 1:4, the performance of LR+ is worse than LWM 
(above 100%). For relations lower than 1:4 LR+ outperforms 
LWM and reaches an average query execution time of about 
50% at a relation of 1:256. In this test, the standard deviation 
for LR was significantly worse than in the first test. This is 

because queries on varying numbers of features were mixed. 
The overall performance of the tested algorithms (compared to 
LWM, 100%) is: LWM+:  99.9%, LR: 172% and LR+: 55%.  

VI. CONCLUSION 
In this paper we compared the query execution 

performance of two methods for macro-level similarity 
measurement: linear weighted merging (LWM) and logical 
retrieval (LR). We implemented each algorithm in a standard 
and an optimized version. Additionally, we implemented a 
conversion algorithm that generates LR expressions from 
LWM result sets. About 50000 tests were performed. 

The major result of this study is, that optimized LR clearly 
outperforms LWM in terms of query execution time. In our 
earlier work we showed that this is true for the quality of 
retrieval results as well. Thus, there is – from our point of view 
– no reason to use LWM in CBIR systems any longer. 
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Abstract

In this paper the visual information retrieval project VizIR is presented. The goal of the

project is the implementation of an open visual information retrieval (VIR) prototype as basis

for further research on major problems of VIR. The motivation behind VizIR is the

implementation of an open platform for supporting and facilitating research, teaching, the

exchange of research results and research cooperation in the field in general. The availability of

this platform could make cooperation and such research (especially for smaller institutions)

easier. The intention of this paper is to inform interested researchers about the VizIR project

and its design and to invite people to participate in the design and implementation process. We

describe the goals of the VizIR project, the intended design of the querying framework, the

user interface design and major implementation issues. The querying framework consists of

classes for feature extraction, similarity measurement, media handling and database access.

User interface design includes a description of visual components and their class structure, the

communication between panels and the communication between visual components and query

engines. The latter is based on the multimedia retrieval markup language (MRML, Website.

http://www.mrml.net (last visited: 2003–03–20)). To be compatible with our querying

paradigm, we extend MRML with additional elements. Implementation issues include a sketch

on advantages and drawbacks of existing cross-platform media processing frameworks: Java

Media Framework, OpenML and DirectX/DirectShow and details on the Java components

used for user interface implementation, 3D graphics with Java and Java XML parsing.
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1. Introduction

The global integration of information systems with the ability of easy creation and
digitization of visual content have risen the problem of how these vast amounts of
data in collections or databases are managed. One of the crucial success factors of all
approaches to solve this problem is apparently the implementation of effective but
still easy to handle retrieval methods. Visual information retrieval (VIR) is still a
rather new approach to overcome these problems by deriving features (or:
descriptors; like color histograms, etc.) from the visual content and comparing
visual objects by measuring the distance of features with distance functions. VIR is
usually divided in two directions: Content-based image retrieval (CBIR) and
content-based video retrieval (CBVR). The major advantages are fully automated
indexing and the description of visual content by visual features. On the other hand,
the fundamental drawbacks of VIR are the semantic gap between high level concepts
presented to a user and the low level features that are actually used for querying [1]
and the subjectivity of human perception. The latter means that different persons or
the same person in different situations may judge visual content differently. This
occurs in various situations: different persons may judge features (color, texture,
etc.) differently, or if they judge them in the same way they still may perceive them
differently [2].
Partly due to these principle drawbacks four major problems of VIR approaches

can be identified:

* Low result quality.
* Complicated user interfaces.
* Unsatisfactory querying performance.
* Lack of assessment methods.

Retrieval results of low quality are—next to semantic gap and subjectivity of
human perception—often the consequence of working only with general features for
all types of visual content and asking the user to choose the features, he would like to
use. Complicated user interfaces overtax the casual user if they demand for a precise
opinion on similarity, the selection of features, and especially, the provision of
feature weights. Many users would not even try a classic VIR interface, if they had
the opportunity to use it. Simpler, but still effective user interfaces are needed to
improve the acceptance of VIR systems.
Unsatisfactory querying performance—especially for large media collections—is a

result of using distance functions in VIR systems to calculate the dissimilarity
between visual objects. This process is often very slow and unbearable reply times
may occur for large databases. Query acceleration methods include (1) indexing
techniques (e.g. R*-trees), (2) complexity reduction techniques (e.g. coarse feature
vector representation or suitable transformations) and (3) media object occlusion
techniques (e.g. using the triangle inequality in [3]).
Finally, despite reasonable efforts in the last 3 years, very few standardized

methods exist for assessing new querying paradigms. One exception is the Brodatz
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sample collection, which represents some kind of de-facto standard for the
evaluation of texture querying. Promising approaches to overcome this situation
are the Benchathlon project [4] that tries to collect and compare the performance of
CBIR benchmarks and the annual TREC video retrieval competition [5] that defines
evaluation procedures for CBVR.
In this paper we present the visual information retrieval project VizIR. The goal of

the project is an open VIR framework as a basis for further research in order to
overcome the problems pointed out above. The basic structure of VizIR was first laid
down in [6,7]. VizIR was initiated in summer 2001 as a consequence of our
experiences gained in earlier VIR projects and is supported by the Austrian research
fund since December 2002. The motivation behind VizIR is: an open VIR platform
would make research (especially for smaller institutions) easier and more efficient
(because of standardized evaluation sets and measures, etc.). The intention of the
paper is to let interested researchers know about the VizIR project and its design and
to invite them to participate in the design and implementation process.
The goal of VizIR is not the development of a monolithic system but of a system-

independent class framework of querying and user interface components (interaction
panels, event model, etc.) based on the Java programming language. An important
issue of VIR is the communication of user interfaces and query engines. This
communication should be standardized in order to combine arbitrary user interfaces
and querying systems and be based on modern communication paradigms (XML,
etc.).
The paper is organized as follows: the following section points out relevant related

work, Section 3 is dedicated to the VizIR project goals and Section 4 to the querying
and user interface framework design. Section 5 discusses major implementation
issues and finally, Section 6 gives an overview over past, current and next activities in
the VizIR implementation process. The paper is supplemented by an appendix with
an extension of the MRML [8].

2. Related work

In this section we discuss the architectural properties and shortcomings of earlier
CBIR and CBVR prototypes and the user interface approaches that were used.

2.1. Existing VIR prototypes

Past research efforts have lead to several general-purpose prototypes like QBIC
[9], Virage [10], VisualSEEk [11], Photobook [12], MARS [13], El Niño [1,14] and
GIFT [15] for CBIR as well as OVID [16] and VIQS for CBVR and some
application-specific prototypes like image retrieval systems for trademarks [17] or
CueVideo for news videos analysis (e.g. [18]). Most of these prototypes share a
number of serious drawbacks. The first is that all of them implement only a small
number of features and do not offer the developer an API for extensions. An
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exception is IBM’s QBIC system for image querying, which has (in version 3) a well-
documented API for feature programming.
Another problem is that none of these prototypes has an architecture that

supports the MPEG-7 standard (see [19]). To our knowledge, at present no MPEG-
7-compliant prototype for VIR exists or is under development. Part 6 of MPEG-7
contains a reference implementation of its visual descriptors and a simple querying
application, which was developed for testing and simulation [19]. Unfortunately, this
reference implementation does not contain a framework, a documentation of the
VIR part, a modern user interface (though a simple web-interface for experts is
available by now), a suitable database, optimized descriptor extraction functions and
performance-optimized algorithms. That is why it cannot be used as a VIR
prototype, although it is still a good starting point for developing one.
One prototype that should be mentioned here is the GNU image finding tool

(GIFT). GIFT is an extendible CBIR system (developed at the University of
Geneva) available under GNU public license [15]. Unfortunately, GIFT supports
only image querying and because it is based on C++ and the Unix operating system
it can not be extended to video retrieval easily. Currently, no standardized video
processing environment with a C/C++-API is available for Unix operating systems
(see Section 5.1). Still, GIFT introduced several valuable concepts to CBIR
(including MRML, see Section 2.2).
Apart from the mentioned focal points of research and the implemented

prototypes the following key issues of VIR systems have not yet been investigated
to a sufficient extent:

* Similarity measurement in multi-feature environments.
* Media sets for assessment.
* Integration of computer vision methods.

With similarity measurement we mean the transformation of a distance space (the
result of distance measurement for multiple features and distance functions) to a
result set. The common way of similarity measurement in VIR systems is measuring
distances with an L1- or L2-metric (e.g. city block distance and Euclidean distance),
merging a single object’s distance values for multiple features by the weighted sum
and presenting the user the objects with the lowest distance sum as the most similar
ones. We have shown in our earlier work that this approach is not the most effective
one [20]. More sophisticated methods for similarity definition would result in higher
quality results (e.g. [21]).
Additionally, as pointed out above, not enough effort has been undertaken so far

to put together standardized rated image and video sets for the various groups of
features. This has lead to vague, often worthless statements on the quality of VIR
prototypes.
Finally, surprisingly few ideas and methods have been taken over from computer

vision and other areas up to now. Neural networks have been used for feature
clustering (e.g. self-organizing maps [43]), face detection and thresholding methods
for segmentation but hardly any shaping techniques for 3D object reconstruction or
sophisticated neural networks for scene analysis have been yet applied.
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2.2. VIR user interfaces

This section overviews user interfaces of well-known VIR systems: first CBIR
systems and then CBVR systems. The focus in CBIR will be on classic systems
(including QBIC and Virage) and two promising more recent approaches (El Niño
and ImageGrouper). The section ends with a short description of an approach to
standardize the communication of VIR user interfaces and query engines.
In the past, the design of user interfaces of VIR systems was quite simple—in

comparison to most other visual systems. Most systems (QBIC, Virage [10],
Photobook, VisualSEEk) use a single 2D panel of images for query definition and
result set display. Querying is done by selecting one or more query examples, one
(e.g. QBIC), a few (e.g. MARS) or all features (Virage) and—in the latter two
cases—weights for the importance of these features. Iterative Refinement by
Relevance Feedback [44,45] can usually be performed by defining the importance
of result set elements textually and iterating the query. This paradigm has several
drawbacks: earlier result sets are thrown away, selecting features and weights
overtaxes the casual user and after all, the static structure of such an interface
is not very user-friendly and from today’s point of view may be judged old-
fashioned.
Therefore several research groups have been working on new user-centric interface

approaches in the last years. Two of the most interesting are El Niño and
ImageGrouper [22]. To our knowledge, El Niño is the first approach to define a
query implicitly by the distance relations of objects in a 3D panel. This query
definition process can be done intuitively and easily by drag-and-drop. The most
interesting innovations in ImageGrouper are the usage of two panels for the active
and the last query and a history over all refinement steps in a querying session. The
central idea of ImageGrouper is the definition of queries by three groups: positive
examples, negative examples and neutral examples. ImageGrouper’s major draw-
back is that it has no standard interface to query engines and is bound to an engine
with classic distance measurement and linear weighted merging.
Like El Niño, VizIR will contain 3D user interfaces for query formulation. Using

3D information visualization techniques instead of 2D methods has several
advantages. Generally, each 3D view is just a 2D projection [23]. 3D views
take advantage of human spatial memory and allow displaying more information
without incurring additional cognitive load because of pre-attentive processing of
perspective views. In general, they lead to better retrieval results in user studies in
terms of reaction time, number of incorrect retrievals and failed trials [24].
Additionally, they allow the rendering of more information items because of scaling
possibilities and a better global view. Finally, there is experimental evidence that
3D displays enhance subjects’ spatial performances [23]. The major open problem of
3D systems in this context is the development of suitable 3D user interaction
techniques [24,25].
Classic CBVR systems are OVID [16] and VQIS. One of the most interesting

aspects concerning the user interfaces of CBVR systems is the handling of temporal
media (video and animations) in a static user interface. In general, there are three
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principle solutions to present video information: (1) integration of the full video with
player controls into the environment (CPU power and network bandwidth
consuming), (2) creation and usage of animated icons (CPU power consuming)
and (3) creation of still images that represent the video content. The third solution
is the most widely applied one (in VIR). The simplest form of the third type is an
image matrix of all keyframes in a video clip. Another approach is the Micon, a
3D cube showing the first frame of a video clip as well as the first line and the
last column of all consecutive frames (see element A and B in Fig. 5 for examples).
Another type is the Hierarchical Video Browser, a tree-structured view of a
video clip. In [26] a general overview of different presentation styles for video is
given.
The interoperability of VIR user interfaces and querying systems is an issue that is

gaining more and more attention. Interoperability should be achieved by
standardized interfaces. The most promising effort in this direction is the MRML
(developed at the University of Geneva [8]). MRML is an XML-based standard. It is
implemented in GIFT, the user interface Charmer and the basis of the Benchathlon
project (see [8] for details). We try to incorporate MRML into the user interface
components of VizIR.

3. VizIR project goals

This section gives an overview of the objectives of the VizIR project. VizIR aims at
the following major goals:

* Implementation of an open VIR class framework.
* Integration of MPEG-7 visual.
* Implementation of a framework of user interface components for VIR.
* Support for distributed querying.

The overall goal is the implementation of a modern, open class framework for
content-based retrieval of visual information as basis for further research on
successful methods for automated information extraction from images and video
streams, the definition of similarity measures that can be applied to approximate
human similarity judgment and new, better concepts for the user interface aspect of
visual information retrieval, particularly for human–machine interaction for query
definition and refinement and video handling. On top of this framework working

prototypes are implemented that are fully based on the visual part of the MPEG-7

standard for multimedia content description. Reaching this goal requires the careful
design of the database structure and an extendible class framework as well as
research on suitable extensions and supplementations of the MPEG-7 standard by
additional descriptors and descriptor schemes. Mathematical and logical fitting
distance measures have to be selected for all descriptors (distance measures are not
defined in the standard) and an appropriate and flexible model for similarity

definition has to be defined. MPEG-7 is not information retrieval specific. One goal
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of this project is to apply the definitions of the standard to visual information
retrieval problems.
Another goal is the development of a general-purpose user interface framework for

visual information retrieval. This framework has to include a great variety of
different properties: methods for query definition from examples or sketches,
similarity definition by positioning of visual examples in a 3D space, appropriate
result display and refinement techniques and cognitively easy handling of visual
content, especially video. User interfaces and querying methods both have to
support methods for distributed querying, storage and replication of visual
information and features as well as methods for query acceleration. The importance
of this issue becomes apparent from the large amount of data that has to be handled
and the computation power that is necessary for querying by—often quite
complex—distance functions. Methods for distributed querying, storage and
replication include the replication of feature information, client-server architectures
and remote method invocation in the querying and indexing modules as well as
compression of video representations for the transport over low bandwidth
networks. Methods for query acceleration include indexing schemes, mathematical
methods for complexity reduction of distance functions and the generation of
querying heuristics [27].
An additional, however, implicit goal of the VizIR project is the development of a

multimedia-specific UML-based software development process. Multimedia applica-
tions have special needs that have to be considered during the system design and
implementation. This includes modeling of real-time media processing (multiplexing,
conversion with codecs, rendering, etc.), more sophisticated modeling of users and
use-cases (e.g. abstraction of users to user profiles, etc.), metadata modeling and
modeling of multimedia restrictions (Quality of Service parameters, interaction, etc.).
Developing tailor-made software development methods on the basis of the UML
design process is just a natural consequence.

4. VizIR framework design

This section describes technical details of the VizIR objectives and the intended
system architecture. The VizIR framework can be split into four areas of work: (1)
querying framework, (2) user interface framework, (3) configuration and commu-
nication interfaces and (4) assessment methods. The querying framework contains all
methods for feature extraction, similarity measurement, query refinement, media
handling and database access. The user interface framework contains a class
hierarchy of user interface elements (panels), events and event handling methods
and media visualization classes. Configuration and communication concerns all
classes and methods for standardized communication of framework elements with
other elements (e.g. query engines and user interfaces) or the environment.
Assessment methods include benchmarking techniques and media sets for
evaluation. The next four subsections detail the relevant design issues for these
areas of work.
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4.1. Querying framework

The most important issue related to the design and implementation of the
querying framework is the implementation of a technically sound class framework
for the system components. Even though this is not a research but a software
engineering problem, we have to stress that using a professional database and
programming environment are crucial success factors for a modern VIR research
prototype. As pointed out above, most past approaches have serious shortages in
their system architecture.
VizIR uses a relational database for media and feature data storage. Fig. 1 gives

an overview of its data model and indicates the relationships between media and
feature storage. Visual media is stored in table Media and associated with a single
MediaType. Each media may belong to n collections and each collection may contain
m elements. Descriptors are described in table FeatureClass with the MPEG-7
descriptor definition language (DDL; based on XML schema). Feature data for a
certain descriptor is stored in binary and/or XML format in table FeatureData. To
allow the implementation of MPEG-7 descriptor schemes, descriptors are organized
in collections in table FeatureCollection. A collection may consist of descriptors and
other collections. Optionally, it may have a DDL-description. Based on this data
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Feature Data

Media Data

Media MediaType

MediaCollection

ID

n:m

n:1FeatureData n:1

FeatureCollection
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1:n

Name

Desc
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Name

URL

Desc

Raw

ID

Name

Desc

Desc

Name
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ID

Name

Desc

Binary XML

n:m

Fig. 1. EER database diagram. The framework contains a database manager that creates this structure

during VizIR installation automatically.
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model it is possible to use descriptor schemes in queries. If a certain feature collection
is selected for a query, all referenced descriptors are selected and used in the query.
Fig. 2 outlines the class structure of the querying framework. To a certain extent

this class framework follows the architecture of IBM’s QBIC system [9], but largely
differs from QBIC in its server/client independent classes. Similarly to QBIC, the
database access is hidden from the feature programmer and the structure of all
feature classes is predefined by an interface. Key element is class QueryEngine, which
contains the methods for query generation and execution. Each query consists of a
number of QueryLayer elements each of which implement exactly one feature. The
result of each query is a set of media objects that is stored in a Vector object. Media
objects are represented by objects of class MediaContent. MediaContent has an
interface that hides the complexity of the actual media access from the framework
programmer. For example, he can access the media data—independent whether it is
image or video—with a method getViewAtTime(Time, ColorModel). For images,
Time is irrelevant and for videos it is the position in the media stream.
The ColorModel of the resulting image can be RGB, HMMD, etc. With the
MediaContent-mechanism CBIR and CBVIR can be implemented in the
same framework without having to introduce media-specific peculiarities in
the architecture. Similarly, the methods for database access are encapsulated
in the DatabaseManager.

1

1

1

*

1 *

1

1

* 1

<<Interface>>
Descriptor

...

+extractFeature() : void
+calculateDistance(other : Descriptor) :

double
...

...

+prepare(...) : Integer
+execute(...) : Integer
...

QueryEngine

MediaContent

...

...

QueryLayer

+feature : String
+threshold : Double
+weight : Double

...

DatabaseManager

...

...

Vector

...

...

ReadConfig

...

...

Fig. 2. UML class diagram for an ideal implementation of the VizIR class framework. Custom query

engines can be added by sub-classing QueryEngine. The DatabaseManager offers a standard interface for

accessing arbitrary relational databases. Similar to that, MediaContent offers methods for media access

that hide the actually used media processing library.
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All feature classes—MPEG-7 descriptors as well as all others—are derived from
the interface Descriptor For the MPEG-7 descriptors it is intended to follow the
reference implementation of part 6 of the standard. For the reasons given above and
especially, because the algorithms of the reference implementation are not
performance-optimized the redesign and implementation of the MPEG-7 descriptors
is a time- and human resources-consuming task.

Descriptor contains methods for descriptor extraction (extractFeature()) and
distance measurement (calculateDistance()). Unfortunately (for us), MPEG-7 is not
a visual information retrieval-specific standard and in general does not include
distance functions for the various descriptors. Neither does it give any recommenda-
tions for their selection. Therefore it is necessary to implement common distance
metrics (like L1-, L2-metric, Mahalanobis distance, etc.; [2]), to associate them with
descriptors and to find custom distance functions where these metrics are not
applicable (e.g. object features, etc.).
The extractFeature()-method of Descriptor applies the actual feature extraction

algorithm to the media considered (and accessible) as MediaContent. The MPEG-7
standard—although it is a major advance in multimedia content description—
standardizes a number but not all useful features. It is necessary to implement
additional descriptors and distance functions for texture description of images
(wavelets, etc.; e.g. [28]), symmetry detection of objects (useful for face detection,
detection of human-made objects, etc.), object description in video streams (structure
recognition from motion, etc.), object representation (scene graphs, etc.) and video
analysis (shot detection, etc.). Additionally, we plan to use fractal methods (iterated
function systems; IFS) to describe the shape of objects effectively. So far IFS have
been used for the compression of self-similar objects (e.g. [29]) but hardly for
content-based retrieval (see [30]). We think, that IFS could be very effective for shape
description, too.
The sequence diagram in Fig. 3 depicts the querying process. Methods for query

definition and query refinement have to be flexible enough to satisfy different ways of
how humans perceive and judge similarity and should still be applicable in a
distributed querying environment. In VizIR each type of application (server, Servlet,
client, applet, etc.) can initiate a query by instancing a QueryEngine object and
calling the prepare() method. The execute() method of a query creates a feature class
for each QueryLayer of a query and extracts a descriptor by calling extractFeature().
These objects of class Descriptor are then used for feature comparison with
Descriptor objects of the images in the database by the method calculateDistance().
The images of the result set are returned via the getElements() method. To accelerate
queries, indexing schemes and other query acceleration models will be implemented
as part of VizIR. Next to classic index structures for visual content (e.g. R-tree,
segment index tree, etc.) and query acceleration techniques (storage of the factorized
terms of the Mahalanobis distance [31], etc.), experiments will be undertaken with
new heuristic approaches like those we previously published [27].
Concluding this sketch of the VizIR querying framework architecture we outline

several aspects of the application and data distribution. In a scalable framework it is
simply necessary to implement tools for distributed and replicated visual content
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management as well as database management. Modern Web Service- or CORBA-
based programming environments like the Java environment permit the network-
independent distribution of applications, objects and methods (in Java through the
Remote Method Invocation library) to increase the performance of an application
by load balancing and multi-threading. VizIR is based on Java. Therefore the objects
for querying can be implemented as JavaBeans, feature extraction functions with
RMI, database management through Servlets and user interfaces as Applets.
Database distribution is realized through standard replication mechanisms and
database access through JDBC.

4.2. User interface framework

The VizIR user interface framework is a collection of components that can be
combined arbitrarily. The major issue is the design of querying & query refinement
interfaces that integrate image and video content, the implementation of methods for

Application QueryEngine

example:Descriptor

new QueryLayer()

prepare()

execute()

new DatabaseManager()

new Descriptor

: Descriptor

extractFeature

new MediaContent

new Descriptor

new MediaContent()

Vector : calculateDistance

MediaContent[] : getElements

for each QueryLayer

for each Object in MediaCollection

mergeDistances

for each QueryLayer

extractFeature

Media example

Fig. 3. Schematic UML sequence diagram of the querying process.

g f g g p g ( )

87



video content representation in static user interfaces and the support of multiple
media-based querying paradigms. All user interface components have to be designed
as intuitive and self-explanatory as possible to guarantee high usability and, as a
consequence, increasing acceptance of VIR. In addition to user interface building
blocks, methods have to be developed that allow their combination in application-
specific user interfaces (fields of application in the future will be digital libraries,
medical image search, TV broadcast archives, etc.).
Fig. 4 shows the static structure of the VizIR user interface framework that should

satisfy these demands. Central element is the interface UserInterfaceComponent that
is inherited by all classes having a visual panel. These are MediaPanel (the mother
class of all panels that deal with media objects), QueryEngine (the mother class of all
querying engines, the panel contains all elements necessary for query formulation),
Descriptor (mother class of all implemented features, the panel contains a toolbox
for sketch drawing),MetadataPanel and LayerPanel (a layer manager for multi-layer

+getVisualComponent()
+getControlComponent()

«interface»
Visualizable

+getDocumentation()
+getTip()

«interface»
Transparent

+getPanel()

«interface»
UserInterfaceComponent

+extractFeature()
+calculateDistance()

Descriptor

JavaSDK Swing

+prepare()
+execute()

QueryEngine

JavaSDK Panel

MediaPanel

MetadataPanel FeedbackPanelLayerPanel

«interface»
VisualLayer

MediaRenderer

ImageRenderer XMLRenderer VideoRenderer

JavaMediaFrameworkJavaSDK:Java2D

Fig. 4. Class diagram of the VizIR user interface framework.
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image sketching as in Photoshop). VizIR user interface components are based on
Java Swing. UserInterfaceComponent inherits methods from the interfaces Visualiz-
able (methods for receiving a visual panel and a visual control component like in the
Java Media Framework [32]), Transparent (methods for receiving visual documenta-
tion and help in the user interface) and VisualLayer (defines the structure of a layer
of the sketching panel, basically a Java Image type).

MediaRenderer is a special type of MediaPanel for the visual rendering of media
objects.MediaRenderer takes an arbitrary media object as input and generates a (2D
or 3D) diagrammatic representation. Representing media objects in a static user
interface is easy for images but difficult for (time-based) video content. Common
approaches are index frames and Micons, which obviously are unsatisfactory. A
more sophisticated approach would be an object viewer for all objects and their
temporal trajectories in a video shot. Also, video cubism (allowing for interactively
cutting an X2Y -time cube of video data along arbitrary oriented planes; [33])
should be considered as an alternative for presenting video results. So far, we have
implemented three renderers for images (JPG, PNG, GIF, etc., based on Java2D),
videos (generates Micons—see Section 2.2—for arbitrary video formats: MPG, AVI,
MOV, etc., based on the Java Media Framework) and XML. XMLRenderer can
render any XML-file that can be displayed in a web browser (see [7] for technical
details). Fig. 5 shows examples: element A and B are Micons (representing videos of

B
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E

G

A

H I J

D

Fig. 5. Screenshot of the 2.5D panel (media objects are positioned at random).
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the Vienna opera house and the Prater Ferries wheel), element C is a webpage and all
other media objects are standardized images. Like MediaContent for media access,
theMediaRenderer-mechanism allows performing CBIR and CBVR in the same user
interfaces and the implementation of unified APIs for both types of media.
The most importantMediaPanel is the 2.5D media panel. For examples see Fig. 5

and element A of Fig. 6. The 2.5D panel is used for example selection, browsing,
query formulation and the display of result sets. The rendered substitutes of media
objects are displayed as images parallel to the image plane. It is possible to navigate
in two dimensions (left–right, forward–back) and to zoom. Groups of objects can be
selected, moved and associated with metadata (by communication with a
MetadataPanel). The angle of the image plane and the X2Y -plane can be varied
between 0� and 90�. The panel may have visual control components (elements G–J
in Fig. 5 and element C in Fig. 6). Panel G in Fig. 5 (also shown in the lower left part
of element C in Fig. 6) allows to set the selection mode for the cursor and panel H is
for group definition. Panel I shows information on the currently selected object and
panel J its metadata entries. The upper panel of element C of Fig. 6 is initialized with
all dimensions of the media space to be displayed (in the VIR context: all
implemented features). The view changes whenever new dimensions are chosen for

B

C D E

F

A

Fig. 6. Screenshot of a VizIR user interface prototype.
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the X - or Y -axis or the querying button in the lower right part of element C in Fig. 6
is pressed.
It is important to know—in rough terms—the querying process implemented in

VizIR to understand the role of the 2.5D panel. Fig. 7 shows a State-Transition-
Diagram of the underlying querying process. First the user interface components are
initialized with media objects and query parameters (element F of Fig. 6 shows a
progress bar panel for media loading). Then the user can define a first query by
selecting example media objects. This sets the user interface in the defined state.
Executing the query brings the user interface in the active state where refinement can
be started or a new query can be defined. In active state the query is re-executed
whenever the user presses the ‘activate’ button or the query engine control
component detects substantial changes in the query definition.
Both panels for query definition and query refinement are 2.5D panels that have

been initialized with MRML-documents. They can visualize any two-dimensional
subspace of the distance space (for the selected features and examples) generated in
the previous querying iteration. This is done by showing the media objects (or their
representations) parallel to the image plane and, on the X - and Y -axis, arranged
according to their relative distance (depicted in element E and F in Fig. 5). Similar
objects are placed near to each other, un-similar objects far from each other. Element
A of Fig. 6 shows the distance of images for a color histogram feature on the X -axis
and the distance for an edge histogram on the Y -axis. The features (distance space
dimensions) shown on the X - and Y -axis can be changed interactively. Queries are
defined and refined in the same way by selecting media objects or groups and

Initialized. Ready for
query definition

Load media objects
and configuration

Defined. Ready for
querying

Active. Ready for
refinement

Manipulate
example panel

Start querying
(send MRML script,
receive distance space layout
and result set)

Manipulate
example panel

Manipulate
example panel

when:
substantial changes or
activate button pressed

Fig. 7. State-transition-diagram of the querying process.
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marking them as positive or negative examples. Thus, it is possible to define n-
dimensional hyper-cubes (clusters) of (un-)similar media objects. The query engine
tries to find all media objects that belong to the clusters with positive examples minus
those with negative examples. We call this similarity measurement process Logical
Retrieval (LR, see [35] for a more detailed description).
We are implementing two querying paradigms: query by example (QBE) and

query by sketch (QBS), because they are media-based and intuitive. Even though for
beginners text querying may be the easiest form of interaction, we are—at this point
in time—not planning to implement a text interface, because implementing such an
interface would not raise new VIR research questions nor help to solve the existing
ones. QBE follows the querying process described above. Sketches for QBS can be
drawn in the ‘sketch drawing’ panel in Fig. 6. This panel contains layers of type
VisualLayer that are managed by the LayerManager (element E in Fig. 6) and allow
drawing with the tools provided by the descriptor objects. These tools are collected
in the ‘sketching tools’ panel (element B in Fig. 6). The ‘last result set’ panel contains
the media objects of the last result set (similarity values are associated as metadata).
It is just a special 2.5D example panel with an image-plane to X2Y -plane angle
of 0�. The same is true for the ‘example groups’ panel in Fig. 6 that lists all query
examples partitioned in three groups: positive, negative and neutral examples.
(Neutral examples are explicitly excluded from the query. Their properties are
marked as irrelevant for the query.) The ‘description’ panel (element D in Fig. 6)
contains the information of the methods from the Transparent interface for the
active user interface element.
The VizIR user interface class structure follows the paradigm that all components

(methods, panels, etc.) are defined, where they are used. Thus, each query engine has
a visual panel for query formulation and each descriptor has a panel with tools for
sketching (e.g. line drawing tools for an edge layout descriptor). To guarantee the
transparency of VizIR (defined in [6]), each visual component has to implement the
Transparent interface with documentation and tips. The panels of the framework can
be integrated into any visual Java container and organized arbitrarily. The layouts in
the screenshots in Figs. 5 and 6 are just examples. Because the VizIR framework is
based on Java and the Java SDK is possible to integrate the user interface
components into any container (frame, applet, etc.) to perform distributed querying
(with Web Services, CORBA, RMI, etc.) and querying in the background (in a
separate thread).
The validity of arbitrary combinations is guaranteed by the communication

mechanism of the framework. It follows the Delegation-Event-Model and is
conceptually shown in Fig. 8. Each object of class MediaPanel (MediaPanel-1 and
MediaPanel-2) may communicate with any other MediaPanel through MediaPanel-

Event objects (e.g. the selection mode panel in element G in Fig. 5 with a 2.5D panel).
Thus, all media panels have to implement listener classes that are defined in
UserInterfaceComponent and flag the media panel events they fire. For easier user
interface building the framework contains convenience classes with listener functions
for standard communication operations (e.g. communication of query control panel
and 2.5D panel when the example group selection is changed, etc.).
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4.3. Configuration and communication interfaces

Query engines in VizIR can be of arbitrary kind. We are implementing a query
engine based on the querying process sketched in the previous section (see [35] for
more details). In VizIR, the communication of user interfaces and query engines is
loosely coupled based on MRML (see Section 2.2).
Each framework component that uses MRML for communication, uses instances

of the classes MRMLReader and MRMLWriter (see Fig. 9). These classes are
derived from ReadConfig (XML parser class) and WriteConfig (XML writer class).
Communication classes for new XML languages can be implemented in the same
way. In order to perform LR queries with MRML we had to extend its document
type definition (see Appendix A for DTD code). We have defined elements for
context-free media and media group definition (required for the implemented
querying paradigm), descriptor definition and query definition. The following
example illustrates how these extensions can be used:

ologicalQuery>

oclusterDefinition>

oclusterRestriction>

oclusterDimension lowerBound=’’0.0’’

upperBound=’’0.5’’>

omediaGroup id=’’qe1’’ type=’’positive’’>

omediaObject dataLocation=’’file:img1.gif’’

iconLocation=’’file:thumb1.gif’’/>

o/mediaGroup>

odescriptor name=’’ColorHistogram’’>

o/clusterDimension>

+addPanelListener()
+removePanelListener()

«interface»
UserInterfaceComponent

MediaPanel

-eventType

MediaPanelEvent
<<object>>

MediaPanel-1
<<object>>

MediaPanel-2
receivethrow

instatiate instantiate

ConvenienceListener
use use

Fig. 8. Event model for panel communication. Media panels communicate through MediaPanelEvent

objects.
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o/clusterRestriction>

o/clusterDefinition>

o/logicalQuery>

This construct defines a query (on the collection defined elsewhere in the MRML
script) with a single feature. A color histogram is used to find all media objects that
have a distance to the positive query example ‘img1.gif’ (represented by the icon
‘thumb1.gif’) that is smaller than ‘0.5’. If we liked to retrieve all objects that fulfil this
cluster-condition and a second one, we would put the second clusterRestriction in the
same clusterDefinition. If we wanted to retrieve all media objects meeting the first or
the second condition, we would put the second one in a new clusterDefinition. These
constructs are flexible and can be used in various ways. They should not only
support our LR concept but—according to the published querying paradigm—the
one used in MARS as well [13].

4.4. Assessment methods

Concluding this description of the VizIR framework, we would like to point out
issues that are related to VIR assessment methods. To our belief, a significant
improvement of VIR research in the future will be the development of standardized
quality assessment procedures (like in the Benchathlon project [4]). In the VizIR

+getPanel()

«interface»
UserInterfaceComponent

+prepare()
+execute()

QueryEngine

ReadConfig

MRMLReader

«interface»
JavaSDK:Serializable

LookmarkReader

WriteConfig

MRMLWriterLookmarkWriter

JavaSDK:XML

1

0..1

1

0..1

Fig. 9. Class diagram for MRML communication in VizIR. Query engines and user interface

components use the classes ReadConfig and WriteConfig or their subclasses to read and write XML

configuration files.
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project the following assessment tasks will be undertaken:

* Formulation of standardized evaluation procedures.
* Collection and creation of media sets with ground truth.
* Evaluation of descriptors and querying methods.
* Evaluation of query acceleration methods.

Common evaluation models (recall, precision, etc. [36,37]) are analyzed to develop
standardized evaluation procedures. The application of the standard measures in
information retrieval, recall and precision, to VIR systems using linear weighted
merging (see above) implies giving up at least 10% of recall, since a system with
linear weighted merging returns the n ‘most similar’ available objects (independent of
the question whether or not they are really similar), while the recall measures the
ratio of really similar objects to all available objects. This has to be considered in the
evaluation process. As a consequence, the feasibility of less well-known methods
(systematic measures, etc.) will be investigated and methods from other research
areas will be checked for applicability. This could be psychological methods, e.g.
semantic differential techniques [38].
Evaluation sets with image and video content will be collected and—where not

available—created for groups of descriptors and ground truth information will be
derived from tests with volunteers (students, etc.). Such sets are obviously decisive
for the quality judgment of VIR systems. Actually, however, only a few de-facto
standards do exist, including the Brodatz database for texture images. Partially, these
evaluation sets will be created by enriching and extending the image and video clip
sets, used for the MPEG-7 evaluation. As well, different approaches—e.g. findings on
the basis of gestalt laws—will be checked for their suitability to develop those test sets.
The extended evaluation of the MPEG-7 descriptors, descriptor schemes and

other implemented descriptors with statistical methods will be performed in two
steps: (1) Evaluation of their independent performance and their performance in
combinations. From this information the overall performance of the visual part of
MPEG-7 and VizIR can be judged. (2) Analysis of dependencies among descriptors
with statistical methods (cluster analysis, factor analysis, etc.) to identify a base for
the space of descriptors and to be able to normalize the visual part of the MPEG-7
standard and to extend it by new independent descriptors.
Finally, the performance optimization methods developed for VizIR will be

compared to those developed for other comparable retrieval systems. In the past, we
have implemented several performance optimization techniques and compared them
by the reply time for queries (e.g. in [39]). This will be continued in VizIR.

5. Implementation

In this section, two major implementation decisions of VizIR are discussed: the
choice of the programming environments for media handling and graphic i/o. When
we made these decisions, we had not yet decided if we should base VizIR on C++
or Java.
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5.1. Media programming environment

The major question concerning the implementation of the VizIR prototype is the
programming environment. At this point in time, there are three major alternatives
that support image and video processing to choose from:

* Java and the Java Media Framework (JMF; [32]).
* The Open Media Library standard (OpenML) of the Khronos group [40].
* Microsoft DirectX (namely DirectShow [41]).

All of these environments offer comprehensive video processing capabilities and
are based on modern, object-oriented programming paradigms. DirectX is limited to
Windows-operating systems and a commercial product. Therefore, in the following
discussion we will concentrate on the first two alternatives: JMF and OpenML. JMF
is a platform-dependent add-on to the Java SDK, which is currently available for
SunOS, Windows, MacOS-X (implementation by SUN and IBM) as well as Linux
(implementation by Blackdown) in a full version and in a Java version with less
features for all other operating systems that have Java Virtual Machine
implementations. JMF is free and extensible. OpenML is an initiative of the
Khronos Group (a consortium of companies with expert knowledge in video
processing, including Intel, SGI and SUN) that standardizes a C-interface for
multimedia programming. OpenML includes OpenGL for 3D and 2D vector
graphics, extensions to OpenGL for synchronization, the MLdc library for video and
audio rendering and the ‘OpenML core’ for media processing (unfortunately, the
media processing part of OpenML is named OpenML as well; therefore we will use
the term ‘OpenML-mp’ for the media processing capabilities below). Lately, the first
implementation of the OpenML SDK was announced for summer 2003 (for Irix).
Among the concepts that are implemented in a similar fashion in JMF and

OpenML-mp are the following:

* Synchronization: a media object’s time base (JMF: TimeBase object, OpenML-
mp: Media Stream Counter) is derived from a single global time base (JMF:
SystemTimeBase object, OpenML-mp: Unadjusted System Time).

* Streaming: both environments do not manipulate media data as a continuous
stream, but instead as discrete segments in buffer elements.

* Processing control: JMF uses Control objects and OpenML-mp uses messages for
this purpose.

Other important media processing concepts are implemented differently in JMF
and OpenML-mp:

* Processing chains: in JMF real-time processing chains with parallel processing can
be defined (one instance for one media track is called a Codec Chain). In
OpenML-mp processing operations data always flow from the application to a
single processor (called a Transcoder) through a pipe and back.
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* Data flow: JMF distinguishes between data sources (including capture devices,
RTP servers and files) and data sinks. OpenML-mp handles all I/O devices in the
same way (called Jacks).

The major advantages of OpenML-mp are:

* Integration of OpenGL, the platform-independent open standard for 3D
graphics.

* A low-level C API that will probably be supported by the decisive video hardware
manufacturers and should have a superior processing performance.

* The rendering engine of OpenML (MLdc) seems to have a more elaborate design
than the JMF renderer components. Especially, it can be expected that the
genlocking-mechanism of MLdc will prevent lost-sync phenomena, usually
occurring in JMF when rendering media content with audio and video tracks
longer than 10minutes.

* OpenML-mp defines more parameters for video formats and is closer related to
professional video formats (DV, DVCPRO, D1, etc.) and television formats
(NSTC, PAL, HDTV, etc.)

On the other hand the major disadvantages of OpenML are:

* It is not embedded in a CASE environment like Java for JMF. Therefore
application development requires more resources and longer development cycles.

* OpenML is not object-oriented and does not include a mechanism for parallel
media processing.

The major drawbacks of JMF are:

* Lower processing performance because of the high-level architecture of the Java
Virtual Machine. This can be reduced by the integration of native C code with the
Java Native Interface.

* Limited video hardware and video format support: JMF has problems with
accessing certain video codecs, capture devices and with transcoding of some
video formats.

The outstanding features of JMF are:

* Full Java integration. The Java SDK includes powerful methods for distributed
and parallel programming, database access and I/O processing. Additionally,
professional CASE tools exist for software engineering with Java.

* JMF is free software and reference implementations exist for a number of
operating systems. JMF version 2.0 is a co-production of SUN and IBM. In
version 1.0, Intel was involved as well.

* JMF is extensible. Additional codecs, multiplexers and other components can be
added by the application programmer.

The major demands for the VizIR project are the need for a free and bug-free
media processing environment that supports distributed software engineering and
has a distinct and robust structure. Issues as processing performance and extended
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hardware support are secondary for the project. Therefore we think JMF currently
being the best choice for the implementation.
Design and implementation follow an UML-based incremental design process and

rely on prototyping. UML and prototyping are employed, because they both
represent state-of-the-art in software engineering. Prototyping, in addition, shows
invaluable positive effect on the motivation of the developers.

5.2. User interface and communication issues

One of the most important elements of the user interface class framework is the
2.5D panel. It is based on Gl4Java [34] instead of Java3D for the following reasons:
(1) Gl4Java is based on OpenGL and much faster than Java3D, (2) event handling is
easier and bug-free, (3) it is easier to install (e.g. less dependent on graphics hardware
than Java3D) and (4) has less bugs than Java3D.
XML reader and writer classes are based on the Java XML package (JAXP). We

use the JDOM parser for XML writing (because it allows the construction of an
object tree in memory and does serialization automatically) and SAX for XML
parsing (because it is more flexible and faster than JDOM).
A special communication problem of VIR user interfaces is the transportation of

media objects to the client computer. We do media loading in the background
through an RTP stream. The Java Media Framework contains a convenient RTP-
based streaming component. The user interface is operational as soon as at least a
certain quantity of the media objects has arrived at the client side. This is improved
by first sending a subset of representative media objects through the stream.

6. Past, current and future work

Currently, we are working on the first release of the VizIR framework. Most
components of the querying framework, the database manager, the basic user
interface framework (including a video renderer and a webpage renderer for
thumbnail creation), the 2.5D panel and the XML communication classes are
finished since autumn 2002. Next, we will implement a general-purpose query engine,
a unified media handler for images and video and some of the MPEG-7 visual
descriptors. A first prototype of the full framework should be finished by autumn
2003. This first version (and all following) will be released under GNU Public
License.
Next we will work on other methods for feature extraction, distance measurement

and video representation. New feature extraction methods we are currently working
on, are semantic feature classes that enrich existing descriptor data of low-level
features (e.g. MPEG-7 descriptors) with additional knowledge (modeling
information, statistical dependencies, etc.) to reduce the impact of the semantic
gap (first results in [42]). Concerning video representation, we will follow two
approaches. First, we will implement a renderer that produces animated icons of
selected keyframes of a video. The keyframes will indicate scene changes. The second
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approach originates in 2D animation. Short sequences of keyframes will be overlaid
with an alpha-channel and thus integrated into a video thumbnail. Another idea that
we will follow in the future, is the implicit definition of features from the selection of
media elements or media element regions and expert knowledge. In the past we have
been working on a similar idea that resulted in the system presented in [20].

7. Conclusion

This paper describes the querying and user interface framework of the Visual
Information Retrieval project VizIR. The framework consists of a class hierarchy of
querying classes and user interface panels with event communication, communica-
tion and configuration methods based on XML and an extension of the MRML for
communication of user interfaces and query engines. The intended major outcome of
the VizIR project can be summarized as follows:

* An open class framework of methods for feature extraction, distance calculation,
user interface components and querying.

* Evaluated user interface components and prototypes for content-based visual
retrieval.

* System prototypes for the refinement of the basic methods and interface
paradigms.

* Carefully selected evaluation sets for groups of features (color, texture, shape,
motion, etc.) with human-rated co-similarity values.

* Evaluation results for the methods of the MPEG-7 standard, our earlier content-
based retrieval projects and other promising methods.

VizIR is open, extendible and free. A first version of the user interface part (3D
interaction panel, XML-communication classes) is available since autumn 2002, the
first release of the full framework should be ready by autumn 2003 and will be
available under GNU Public License. We would like to invite interested research
institutions to join the discussion and participate in the design and implementation
of the open VizIR project. Contact the authors to join the project and/or get a copy
of the available pre-release software.
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Appendix A

This appendix contains the document type definition (DTD) for the essential part
of our MRML extension. The extension includes elements for context-free media
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and media group definition, descriptor definition and query definition according to
our querying paradigm. It is based on version 1.0 of the MRML definition presented
in [8] (see Section 2.2 for details). The tags below can be easily integrated into
MRML by adding logicalQuery and mediaGroup as sub-tags of the mrml tag.

A.1. Media and media group definition

In MRML media objects can be context-sensitively defined as user–relevance–

elements (for querying) or as query–result–elements. For initialization we add a tag
for general media definition:

o!ELEMENT mediaObject (descriptor*)>

o!ATTLIST mediaObject

dataLocation CDATA #REQUIRED

iconLocation CDATA #REQUIRED>

dataLocation and iconLocation are URLs. As far as we understand, the collection
tag of MRML cannot be used for the definition of media groups (for querying, etc.).
We define the following element for this purpose:

o!ELEMENT mediaGroup (mediaObject+)>

o!ATTLIST mediaGroup

id CDATA #REQUIRED

type (positive|negative|neutral|init|other) ‘positive’>

The first three types define querying groups. The fourth is for initialization.
Neutral examples are explicitly excluded from the query. Their properties are
marked as irrelevant for the querying process.

A.2. Descriptor definition

MRML uses the algorithm-construct for the definition of features. For extended
use we define arbitrary descriptors as follows:

o!ELEMENT descriptor EMPTY>

o!ATTLIST descriptor

name CDATA #REQUIRED

value CDATA

distanceValue CDATA>

distanceValue is a special field used only when media objects are grouped to
describe the layout in distance space (related to the query examples) instead of
feature space.
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A.3. Logical retrieval query definition

According to our Logical Retrieval approach, a query can be defined by the
following elements:

o!ELEMENT logicalQuery (clusterDefinition+)>

o!ELEMENT clusterDefinition (clusterRestriction+)>

o!ELEMENT clusterRestriction (clusterDimension+)>

o!ELEMENT clusterDimension (mediaGroup,descriptor)>

o!ATTLIST clusterDimension

lowerBound CDATA #REQUIRED

upperBound CDATA #REQUIRED>

See Section 4.3 for an example.
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ABSTRACT 
This case study describes the data management layer of the 
VizIR visual information retrieval project. VizIR is an open 
source framework of software tools for visual retrieval research. 
In content-based multimedia retrieval media objects are 
described by high-dimensional feature vectors. These feature 
vectors have to be stored in an efficient way in order to 
accelerate the retrieval process. VizIR database management is 
based on object-oriented persistence management. The database 

interface has a three tier architecture: a pattern-based persistence 
system hides the underlying database, an object-relational 
mapping system maps classes to entities and a relational 
database provides state-of-the-art database features 
(transactions, integrity, recovery, etc.). The described database 
management prototype can be downloaded from the VizIR 
project website.  

Categories and Subject Descriptors 
H.2.4 [Database Management] Systems – Multimedia 
databases, object-oriented databases, relational databases. 
H.2.8 [Database Management] Database Applications – Data 
mining, image databases. 

General Terms 
Management, Performance, Design, Reliability, 
Experimentation. 

Keywords 
Content-based Visual Information Retrieval, Video Retrieval, 
Image Retrieval, Object-oriented Database Design, Database 
Management, Persistence Management, High-dimensional 
Indexing, Multimedia Databases. 

1. INTRODUCTION 
Content-based visual information retrieval (VIR) is a field of 
multimedia research that aims at extracting meaningful 
(semantic) media information directly from the pixel level. 
Sophisticated algorithms (e.g. the MPEG-7 visual features [2, 
7]) are used to locate relevant information (features, descriptors) 
in media objects. Usually, features are represented as high-
dimensional data vectors. For example, if all visual MPEG-7 
features are used to describe a media object, the data vector has 
more than 320 dimensions. Dis-similarity of media objects is 
measured as distance between feature vectors. See [3, 6, 8] for 
more information on content-based visual information retrieval. 

The fundamental database problem of VIR is to establish the 
efficient storage of feature vectors in order to enable fast (but 
still flexible) content-based multimedia data mining. This case 
study describes the approach we implemented to solve this 
problem in the VizIR project [4]. VizIR aims at developing a 
software workbench of free tools for content-based image and 
video retrieval (see Section 2 for more information on VizIR). 
Below, we discuss general approaches for VIR database design, 
describe and argue for our design decision and give details on 
the concrete implementation in the VizIR framework (freely 
available from [10]). 

The paper is organised as follows. Section 2 sketches the VizIR 
project. Section 3 points out principal data models for feature 
data. Section 4 describes the VizIR data management model. 
Finally, Section 5 describes selected implementation issues. 

2. BACKGROUND: THE VIZIR 
PROJECT 

Even though significant amounts of research on VIR have been 
conducted in recent years and a considerable number of research 
prototypes has been developed (see [8] for a quick overview), 
there is still no VIR software framework available that would 
satisfy the researchers' needs. Firstly, as similar methods are 
used for image and video retrieval, it would be desirable to 
support both media types in one environment. Furthermore, it 
would accelerate research work, if state-of-the-art VIR 
components (e.g. space to frequency transformations, kernel-
based learning algorithms, user interfaces) would be readily 
available in an homogeneous environment. 

With the VizIR project we are intending to satisfy these 
demands. VizIR is a framework of resources (mainly software 
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components implemented in Java) that are needed to build VIR 
prototypes. The software components include classes for media 
access, transportation and visualisation in user interfaces, for 
feature extraction (including the content-based MPEG-7 
descriptors), for querying and refinement based on a novel 3D 
retrieval and browsing panel, for user interface design, and for 
visualisation of media metadata, evaluation and benchmarking. 
As the framework itself and all elements have to be extendible, 
it is imperative that the underlying database system does not 
make any assumptions on the elements' structure in order to 
keep them persistent. This constraint drives the database design 
considerations presented in Section 4. 

VizIR is an open project and all components are free under 
GNU General Public License. See [4] for a more detailed 
description on the VizIR project. All finished components 
(including the database layer presented in this paper) can be 
downloaded as source code from  the project website [10]. 

3. RELATED WORK: DATABASE 
MANAGEMENT FOR FEATURE 
DATA 

One scientific challenge of VIR is the high dimensionality of 
feature vectors. For example, if all content-based MPEG-7 
descriptors are used to describe an image, the description has 
more than 300 dimensions. Solving the dimensionality problem 
adequately must be one of the first issues in designing a VIR 
system. Still, it is mandatory for the success of VIR in general 
and the VizIR project in particular that the database layer meets 
a number of software engineering requirements: Database 
access has to be simple, efficient, domain-independent and 
operating system-independent. Additionally, the database 
management system has to provide traditional features 
(integrity, recovery, etc.). Before we designed the VizIR 
database layer we surveyed approaches that were used in 
existing VIR systems or suggested for the future. 

Classic RDBMS (e.g. DB2 in QBIC [8]) fulfil all software 
engineering requirements easily. If used, media objects are 
usually stored externally, feature vectors are stored as BLOBs 
(often in one table per feature) and indexed by context-free 

structures (e.g. B-trees). Therefore, the data can only be accessed 
sequentially (by ID). More sophisticated access methods (such as 

dis-similarity measurement by distance functions; for example, 
implemented as stored procedures) cannot be used. Fine-
granular access would only be possible, if feature vector 
elements could be assigned to table attributes. This is usually 

impossible as many features have varying length. 

In recent years, sophisticated indexing structures have been 
developed for multimedia RDBMS (see [1] for an overview). 
Various R-trees, SS-trees, etc. have been proposed to allow for 
efficient organisation and access to high-dimensional media 
data. Ideally, raw media data would be stored outside the 
database. Feature metadata should be stored in fine granulation 
in the database to enable context-specific indexing. If 
multimedia indexing structures do exist, feature data can be 
selected using distance functions. Unfortunately, a number of 
drawbacks are connected to this approach. Firstly, most 
indexing structures have the tendency to become inefficient for 
really high-dimensional data (in the MPEG-7 case: 320+ 
dimensions). Secondly, most indexing structures are unable to 
deal with multiple distance measures in one index (state-of-the-

art in content-based retrieval). Thirdly, as for classic RDBMS it 
is mostly impossible to define a mapping from feature vector 
elements to entity attributes. Finally, multimedia indexing 
structures are hardly implemented in classic RDBMS and more 
specialised products are often not operating system-independent 
or do not provide traditional RDBMS features. 

As it is very difficult to press polymorphic feature data in 

relational databases in fine-granular manner, we searched for 
alternative approaches of data representation. XML databases 
seem to provide ideal structures and properties for VIR data. 
Features can easily be mapped to XML documents (e.g. MPEG-
7 defines an XML representation of its visual features). Media 
objects are per se separated from metadata and stored externally. 
All data points can easily be accessed by using document 
models and (simple) querying languages (e.g. W3C DOM and 
XPath).  

One VIR-specific example for this group of systems is the 
PTDOM database [11]. PTDOM defines a document object 
model specific for the MPEG-7 features. All features (including 
those based on MPEG-7 types: vector, matrix) can be accessed 
on a fine-granular level and retrieved using XPath and database-
internal user-defined functions (similar to stored procedures). 
Data elements can be indexed by B-trees. Of course, 
additionally, more sophisticated multimedia indexing structures 
could be implemented as well. The main drawback of PTDOM, 
in terms of practical application, is that the currently available 
implementation is strongly bound to commercial, operating 
system-dependent helper libraries. 

The last VIR-specific approach that may become relevant in the 
future is the media mediator concept [9]. Media mediators are 
functions that are used to access media data live during a query. 
Conceptually, media mediators are defined on a semantic level 
and mapped to low-level features that extract information from 
the media samples. Theoretically, media mediators can be used 
to define arbitrary operations on media data but, as well, to 
implement distributed querying environments. The advantages 
of the media mediator concept are that everything is done on the 
fly and media objects are accessed in a fine-granular way. On 
the other hand, obviously, the comprehensive operations needed 
to implement  mediators would be extremely resource-
consuming. Additionally, it would be almost impossible to 
accelerate the querying process using indexing structures. These 
drawbacks make it unlikely that the media mediator concept can 
ever be implemented in its original form. Still, if particular 
operations could be identified as basic building blocks for media 
mediators, these operations could be computed prior to query 
execution. Hereby, the querying process could be dramatically 
accelerated while the flexibility of the concept would be largely 
preserved. 

4. VIZIR DATA MANAGEMENT 
MODEL 

Below, we describe the data management model we designed 
for the VizIR project from the described palette of approaches. 
Subsection 4.1 describes the design decision. Subsequent 
subsections describe all relevant aspects of the VizIR data 
management model. 

4.1 Use case-driven design decision 
Surveying principal VIR approaches showed that we could 
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basically choose between a classic RDMBS (with self-
implemented multimedia indexing structures) and an XML 
database. As VizIR is a software engineering project, we 
decided to follow a best practice and perform the database 
decision use case-driven.  

VizIR is intended for general purpose VIR. For practical 
applicability it should provide reliable state-of-the-art 
persistence management. These requirements are best satisfied by 
classic RDBMS. An XML database would be a good choice, 
because the (implemented) visual MPEG-7 features are 
available as XML documents. Additionally, most feature 
structures can easily be represented in XML form. On the other 
hand, even professional XML databases have serious problems 
with handling large XML documents. Generally, implementing 
multimedia indexing structures would hardly make sense, since 
most features require variable distance measures. In this 
situation, an index would have to be defined for every distance 
measure used in the retrieval process. Obviously, following this 
approach would result in significant overload of indexing 
metadata. Furthermore, some distance measures used in VIR are 
not based on metrics and, in particular, do not meet the triangle 
inequality requirement. For these measures it would be even 
more difficult to define an index. Moreover, feature structures 
can be organised arbitrarily (e.g. as matrices). Additionally, in 
many retrieval situations, the query engine has to browse 
through the feature vectors sequentially anyway. 

Therefore, we decided that VizIR should be grounded on a 
relational database and indexing structures should be 
implemented (if required) on the application level. Since VizIR 
is based on the query-by-example paradigm, low-level indexing 
in relation to a pre-defined origin (e.g. the zero vector of 
distance space) would not be feasible. An index would be 
required for every query example. However, variable indexing 
concepts on the application level (e.g. heuristics) may result in 
valuable query acceleration. 

In order to guarantee application independence and framework 
extendibility we decided to employ object-oriented persistence 
management and to map serialised software objects to tables of a 
relational database. Figure 1 depicts the resulting three layer 
structure: The persistence system layer provides the methods 
needed to access the database (storage and retrieval), the 
mapping layer maps objects to entities and the database layer 
provides transactions, integrity and recovery. The advantages of 
this solution are that (1) any mapping tool and any database can 

be used behind the persistence system API, (2) any serialisable 
object can easily be made persistent and (3) database 
management is fully transparent to the rest of the VizIR 
framework. 

4.2 VizIR entities 
Generally, the VizIR persistence management system needs to 
store media-related and descriptor-related data. For media 
objects, just the visual data and some textual metadata are 
stored. The structure needed for descriptor-related data is shown 
in Figure 2 (in UML syntax). It is required both on the database 
level (as entities) and on the application level (as classes).  

The main class is DescriptorInfo. This class holds the 
management methods for the other components. 
DescriptorLogic contains the extraction algorithms. 
DescriptorLogic may have an arbitrary structure: as it is 
stateless, it is not made persistent. The actual (XML) descriptor 
data are held in Descriptor. Since descriptors may have widely 
varying appearances, each Descriptor is encapsulated by a 
DescriptorContainer. As this class has a pre-defined, fixed 
structure, it can easily be made persistent (see Section 5). 
Additionally, every Descriptor may belong to a group (e.g. an 
MPEG-7 descriptor scheme). This relationship is implemented 
in DescriptorInfo and DescriptorInfoCollection.  

Even though we did not have this generality in mind when we 
designed the VizIR persistence manager, the presented model is 
flexible enough to hold any type of feature data for any type of 
media. It could, for example, be employed to manage content-
based features of audio streams or text features of arbitrary 
media objects. 

4.3 Persistence management layer 
The persistence management layer is responsible for offering all 
database-relevant methods to the VizIR framework while hiding 
the concrete implementation of the object-relational mapping 
and the database. Figure 3 illustrates the implemented model. 
The chosen design follows state-of-the-art software design 
patterns. 

The main class PersistenceSystem is responsible for initialisation 
and the creation of all database-related entities (media objects 
and descriptors). Additionally, it contains a factory class for the 
creation of PersistenceManager classes (PersistenceFactory). 
PersistenceManager encapsulates all methods needed for 
database access and transaction management. This class is used 
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Figure 1. Layer structure of VizIR persistence system. 
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Figure 2. Descriptor-related entities (simplified). 
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to put VizIR objects under persistence control, reload objects 
from earlier instances and retrieve collections of objects by 
name. Currently, the persistence manager supports only direct 
queries by ID (e.g. descriptor class name). Joins can be used to 
retrieve, for example, all feature vectors for one media object or 
all media objects of a particular media collection. Generally, the 
level of sophistication of the querying components depends on 
the object-relational mapping tool. 

In order to guarantee the exchangeability of the underlying 
mapping system, the persistence management classes implement 
the Bridge pattern: PersistenceFactory and PersistenceManager 
are just interfaces that define an API. The classes implementing 

these interfaces are dependent on the mapping layer. The 
factories PersistenceSystem and PersistenceFactory are 
responsible for instantiating the right implementing classes for a 
particular configuration of mapping layer and database. 

5. IMPLEMENTATION 
The Java implementation of the VizIR persistence management 
system makes use of the Hibernate system on the mapping layer 
[5]. Hibernate was selected, because it supports a wide range of 
commercial and open source database systems (including 
Oracle, DB2 and MySQL), provides powerful querying 
mechanisms and employs the Java Reflection API to analyse the 
structure of software classes. Furthermore, it is, like VizIR, an 
open source project that is published under GNU LGPL. 

Classes that are made persistent using Hibernate have to meet a 

few requirements: A default constructor (without parameters, e.g. 
newInstance()) has to exist for each class and accessor methods 
(get/set) have to be available for every resource. These methods 
are used through the Reflection API. Optionally, every class 
should have an ID tag. Only two bits of information have to be 
provided externally: the mapping of resources to database data 
types and the primary/foreign key references in 1:n and n:m 
relationships. This information is provided in simple XML 
documents. Even though it is possible to inform Hibernate about 
relationships of entities, the system leaves maintenance of 
referential integrity (at least of n:m relationships) to the user. 
Integrity can be achieved by implementing the Lifecycle 
interface and callback methods for data manipulation events 
(e.g. onDelete()). 

We are making use of the properties of the Hibernate system to 
store arbitrarily shaped feature data in the database without the 
need to define mappings for every new Descriptor class: The 

mapping is defined for the resources of DescriptorContainer. 
Feature vectors (Descriptor objects) are properties of this class.  

6. CONCLUSIONS AND FUTURE WORK 
We tried to identify the most practicable database solution for a 
content-based visual information retrieval system that does neither 
make assumptions on features used nor on application domains. 
The VizIR framework is intended to be a modern, usable 
workbench for visual information retrieval research. Hence, 
grounding the system on a flexible and robust database layer was 
mandatory. It is interesting to notice that the best solution turned 
out to be a classic relational database in combination with an 
object-oriented persistence manager. Using the described design, 
VizIR can deal with arbitrary feature data and database systems. 
The programming effort for the VizIR user is reduced to a 
minimum. Actually, the VizIR persistence layer can be used to 
manage media objects and metadata (text or binary) of any kind. It 
is free software and can be downloaded from [10]. 

Future work will include performance tests with large MPEG-7 
test datasets as well as architecture tests with mapping tools and 
database systems not considered so far. 
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Abstract 

The paper introduces a novel approach for interactive video 
browsing that makes video content fully transparent to the user. 
Video clips are analysed and indexed by two tree structures: a 
content index tree representing the content of automatically 
segmented video shots and a time index tree representing the 
temporal structure. The index top levels give an overview over 
the entire content. Subsequent levels illustrate content 
relationships more detailed. Every level of both trees is a two-
dimensional self-organising map organising media objects by 
two degrees of freedom. Media objects are represented by 
content-based visual MPEG-7 descriptions. The implemented 
navigation scheme allows the user for switching between 
content index tree and time index tree without loosing the 
overview. Context information (position in the tree, content of 
next lower level, etc.) is permanently shown in auxiliary 
panels. The implementation is based on the scalable vector 
graphics standard (visualisation) and the MPEG-7 reference 
implementation. First evaluation results show that the proposed 
approach facilitates accessing video content in a novel way.  
Keywords : Video Browsing, Video Segmentation, Self-
Organising Map, MPEG-7. 

1. INTRODUCTION 

This paper describes a novel video browsing approach that is 
based on a neural network clustering technique. Interactive 
video browsing aims at making video content transparently 
accessible. Application scenarios include editing, post 
production and metadata annotation. Generally, video browsing 
problems are investigated in visual information retrieval 
research (VIR) [14, 17, 2]. Like the majority of VIR 
approaches, our approach is based on media representation by 
visual descriptions (e.g. colour histograms, edge maps). We 
employ the visual MPEG-7 descriptors [16, 15, 1, 8] to index 
video content and make it accessible for browsing in a web-
based user interface. Indexing is performed using self-
organising maps (see Subsection 2.2) [10, 9]. 
In our approach, video data is hierarchically indexed by two 
criteria: by shot content and by time. For the content index tree, 
video streams are segmented into shots (using automatic shot 

boundary detection). Shots are represented by average 
descriptions and visualised by representative key-frames (see 
Subsection 3.3 for details). Indexing is performed on multiple 
levels: from an overview level (coarse selection of 
representatives from all shots) to multiple detail levels (fine 
selection of representatives from similar shots). This is 
similarly true for time index tree. The difference is that for the 
time index tree, frames are selected at certain time intervals. 
On each level every n-th frame is used for indexing. n, the step 
width, is set to a large value for the overview level and to 
smaller values for the detail levels (see Subsection 3.2 for 
details). Hence, the time index tree represents a content-
independent top-down view on video data while the content 
index is constructed bottom-up based on shot boundaries. Since 
content index tree and time index tree are based on the same 
data, the user is enabled to switch between the two views at 
any time during the browsing process. 
Our video browsing approach differs from related approaches 
in the point that it employs both browsing and retrieval 
techniques: Visual descriptors are used to identify shot 
boundaries and to describe media objects. A similarity-based 
clustering algorithm is employed to cluster video segments. 
Similar video frames are located close to each other. Since we 
use a two-dimensional clustering technique, two degrees of 
freedom are available for clustering. Content-based and time-
based selection and similarity-based clustering in hierarchically 
organised index trees result in a structured transparent view of 
video data. Technically, a major novelty is that the 
implementation is exclusively based on free software. For 
example, the user interfaces are based on the scalable vector 
graphics standard (SVG) [21]. Description extraction is based 
on the free reference implementation of the MPEG-7 standard. 
Shot detection is based on state-of-the-art VIR procedures.  
The paper is organised as follows. Section 2 sketches relevant 
related work including the visual MPEG-7 descriptors, the 
clustering technique used, automatic video segmentation and 
recent video browsing approaches. Section 3 describes idea and 
design of the video browsing application and the implemented 
navigation paradigm. Section 4 deals with implementation 
issues: descriptor selection for video segmentation, description 
clustering and user interface implementation. Finally, Section 5 
presents experimental evaluation results. 

2. RELATED WORK 

2.1. Visual MPEG-7 descriptors 
In the video browsing application, we use visual MPEG-7 
descriptors for media description and video segmentation. The 

________________________ 
Corresponding Author: Horst Eidenberger is with the Institute of 
Software Technology and Interactive Systems, Vienna University of 
Technology, Favoritenstrasse 9-11, Vienna, 1040, Austria. FAX: +43-
58801-18898 
Email: eidenberger@ims.tuwien.ac.at 

108



visual part of the MPEG-7 standard defines several descriptors 
[16, 15, 1, 8]. Not all of them are actually descriptors in the 
sense that they extract properties of media content. Some of 
them are just structures for descriptor aggregation and 
localisation. The basic colour descriptors are Color Layout 
(first DCT coefficients of YCrCb averages of major 
image/frame regions), Color Structure (histogram of colour 
usage in colour regions), Dominant Color (colour value and 
percentage of eight most used colours) and Scalable Color 
(classic, scalable colour histogram). Texture descriptors are 
Edge Histogram (edge orientation histograms for 4x4 sub-
regions), Homogeneous Texture (energy values and 
distributions for 40 Gabor filters) and Texture Browsing 
(average coarseness and directionality of textures). Shape 
descriptors are Region-based Shape (35 ART coefficients for Y 
channel) and Contour-based Shape (contour descriptions of 
segmented objects). Motion descriptors are Camera Motion 
(based on optical flow), Parametric Motion (motion of 
predefined objects) and Motion Activity (motion vector-based 
frame by frame motion). 
Other descriptors are based on these low-level descriptors or on 
additional semantic information: Group-of-Frames/Group-of-
Pictures (aggregation of Scalable Color descriptions), Shape 
3D (based on 3D mesh information), Motion Trajectory (based 
on object segmentation) and Face Recognition (major face 
parameters like eye to eye distance, etc.; based on face 
extraction). Finally, supplementary (textual) structures exist for 
colour spaces, colour quantisation and multiple 2D views of 3D 
objects. Since our application is dealing with individual key-
frames, only the listed colour, texture and shape descriptors are 
considered below. 
2.2. Self-organising maps 
The self-organising map (SOM) [10, 9, 11] is a two-layer fully 
connected neural network that uses feed-forward learning. 
SOMs are mainly intended for clustering of high-dimensional 
data (see [7] for a survey). The input layer is interpreted as a 
one-dimensional data vector. The output layer is interpreted as 
a two-dimensional map of clusters. The clusters of the output 
map may have rectangular or hexagonal shape. Each cluster of 
the output map is described by a weight vector pointing to its 
center (codebook vector). In training and application, input 
data vectors are mapped to the codebook vector with minimum 
Euclidean distance (best matching unit, BMU). SOM learning 
is based on a predefined map size and randomly selected 
codebook vectors. The map is adapted by iteratively applying 
input vectors, selecting the codebook vector with minimum 
distance and changing its location by a fraction of the distance 
(weighted by learning rate α).  
One major innovation of SOMs over other clustering methods 
is the introduction of neighbourhood kernels. These two-
dimensional functions define the fraction, to which the BMU is 
adapted but also, to which extent neighbouring codebook 
vectors are adapted. Thus, SOM learning means learning of 
cluster neighbourhoods. A typical neighbourhood kernel is the 
two-dimensional Gaussian density function. Using 
neighbourhood kernels results in somewhat 'natural' cluster 
structures that intuitively fit with humans' similarity perception. 
This property is the major reason why we are using SOMs for 

clustering in the video browsing application. 
The tree-structured SOM [12] is a further developed SOM that 
allows for constructing hierarchical cluster trees. Tree-
structured SOMs are related to our approach. The major 
difference is that tree-structured SOMs cluster the entire data 
on every level while in our approach every SOM consists only 
of a small, carefully selected fraction of the entire data (video 
frames). Hence, it would not have been possible to achieve the 
effect desired by the proposed video browsing application by 
using tree-structured SOMs. 
2.3. Temporal video segmentation 
Automatic temporal video segmentation aims at identifying 
shot boundaries in video streams without user involvement. In 
recent years, a significant number of approaches have been 
proposed [2]. Today, state-of-the-art automatic video 
segmentation procedures identify more than 90% of all 
transitions (including fades and wipes) in video streams at 
minimal numbers of false positive detections. Generally, shot 
transitions can be distinguished in sharp cuts and effect 
transitions (fades and wipes). Sharp cuts are, for example, used 
in news videos. Effect transitions are regularly used in sports 
programs.  
Methods for detection of sharp cuts are either based on 
uncompressed media data or compressed media data. The 
simplest approach that uses uncompressed data is the frame 
difference approach: Consecutive video frames are spatially 
pixel-wise compared. If the sum of differences exceeds a 
certain predefined threshold, a cut is assumed. This approach is 
easy to implement but has several drawbacks: it is computation 
power-demanding, not robust against global changes in the 
video data (e.g. changed lighting conditions) and sensitive for 
camera movement (e.g. zooming, panning, etc.). More 
sophisticated approaches use visual features to summarise 
frames. Examples are colour histograms (global features) or 
edge maps (local features). Shot boundaries are assumed where 
the distance of feature vectors exceeds a threshold. Obviously, 
feature-based approaches do not suffer from lacking robustness 
against photographing conditions and camera movement. 
Furthermore, if features can be computed in advance, the cut 
detection process is less computation power-demanding than 
the frame difference approach. Recently, since the visual part 
of the MPEG-7 standard for multimedia content description has 
been released, more and more feature-based approaches 
employ MPEG-7 descriptors for cut detection (e.g. Scalable 
Color in [5]). In Subsection 4.2 we try to identify the best 
MPEG-7 descriptors for cut detection. 
Most methods for sharp cut detection that are based on 
compressed media data make use of motion vectors (e.g. [24]). 
If the optical flow changes significantly from frame to frame 
(again, significance implemented by a threshold), a shot 
boundary is assumed. The major advantage of compressed 
data-based approaches is that they require less computation 
power than approaches working on the uncompressed domain. 
Methods for detection of effects are usually based on feature-
based approaches. Twin-comparison [23] employs two 
thresholds: All inter-frame distances exceeding a first threshold 
are summed up. If the sum exceeds the threshold for sharp cuts, 
an effect transitions is assumed. This approach works 
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excellently for gradual transitions as fades and wipes. The 
production model-based approach [6] analyses effects top-
down. Models for location (wipes) and intensity (fades) 
changes are derived. Frame sequences fitting to the models are 
assumed being effect transitions. 
2.4. Video visualisation for browsing 
The crucial user interface issue that has to be solved in video 
browsing systems is the visualisation of the temporal 
dimension of video. The spatial content of video changes over 
time. Since the view does not, there is no 'natural' way to 
visualise video content entirely on the spatial domain. In 
general, there are three solutions to present video information. 
Firstly, integration of the full video with player controls into 
the environment. This approach is CPU power- and network 
bandwidth-consuming. Secondly, creation and usage of 
animated iconic structures. Even though being less demanding 
in terms of network bandwidth, this approach is still 
computation power-consuming. Thirdly, creation of two- or 
three-dimensional models that represent the video content.  
Examples for animated iconic structures are the hierarchical 
video magnifier [2] and the scene transition graph [22]. The 
approach followed by the hierarchical video magnifier is 
similar to the time index tree proposed in this paper. It provides 
a simple hierarchical structure of key-frames: Key-frames 
selected from the entire video content are shown on the top 
level. On subsequent levels, key-frames selected from parts of 
the video (but at smaller intervals) are shown. Layers are 
simply rows of key-frames ordered by time. The user can select 
detail views by clicking on key-frames on higher levels. Scene 
transition graphs give a graph representation of video content: 
Shots with similar content are clustered in nodes. Nodes are 
connected by arcs depending on their temporal relationships.  
Model-based representation is the most widely applied video 
visualisation method. In the simplest form an image matrix of 
all key-frames in a video clip is used. A more sophisticated 
approach is the Micon [4], an image showing the first frame of 
a video clip as well as the first line and the last column of all 
consecutive frames in a cube-like view. Micons are easy to 
compute and give good indication on video motion for many 
types of content. The main shortcoming of Micons is that 
perspective cannot be changed easily. The video X-ray 
approach provides a fully three-dimensional model of video. 
Video X-rays are visualised as Micons but, since the model is 
three-dimensional, perspective can be adapted arbitrarily. 
Furthermore, video X-rays allow for editing of video clips (e.g. 
spatio-temporal cutting, compression, etc.). Another approach 
from a similar direction as the Micon is mosaic visualisation 
[2]. In a mosaic visualisation, the frames of a video clip are 
glued together to a panorama-like view. Stitching is based on 
object motion. See [4, 2] for comprehensive introductions to 
these and other video visualisation techniques. 

3. VIDEO BROWSING APPLICATION 

This section describes the design of the proposed video 
browsing application. Subsection 3.1 illustrates the novel ideas 
implemented in the approach. Subsections 3.2 and 3.3 describe, 
how the two types of browsing criteria (time and content) are 

used. Subsection 3.4 sketches navigation in the browsing 
process and switching between time index tree and content 
index tree. 
3.1. Idea and motivation 
In our video browsing application, video streams are organised 
in tree structures. The top level gives an overview over the 
entire video content. Subsequent levels show detail information 
(on groups of shots, shots, temporal fractions of the video 
stream). Leaves of the tree are shots (content index tree) or 
single frames (time index tree), respectively. The user browses 
through the tree structures from top to bottom. Selecting a 
cluster from a map causes him stepping one level down in the 
index tree and seeing more details on the selected fraction of 
the video stream. The route taken through the index tree is 
visualised in the user interface by auxiliary panels (see 
Subsection 3.4). Generally, this paradigm is similar to the 
hierarchical video browser (as described in [4]). Two aspects 
are responsible for making video perception through the 
proposed video browsing application a completely new 
experience: 
z Two organisation criteria are used: time and content 
z Tree layers are maps of elements clustered by content 

similarity 
Mostly, existing video browsing approaches offer only a single 
view of video: a temporal view of key-frames selected at 
predefined intervals (independently of the content) or a 
content-based view of selected representative frames. In the 
author's opinion this is unsatisfactory, since many applications 
require having both types of index available simultaneously. 
For example, in video archival and browsing-based retrieval, 
the user might – depending on event characteristics – in some 
cases remember the time, when something happened and in 
other cases, in which context something happened: Regular 
viewers of soccer matches can easily remember when a goal 
was shot, if it was scored in overtime and decided the match, 
but hardly when a free kick was executed that did not have a 
major impact on the game. On the other hand, the free kick can 
easily be remembered, if it was the result of a brutal foul by a 
hated defender on a beloved star of the preferred team.  
Our video browser offers both views in independently 
organised index structures. Key-frames for time-based and 
content-based indexing are selected independently and 
clustered hierarchically using the same procedure (see 
Subsection 4.3). Additionally, a matching procedure is 
provided that allows for switching between the two views. 
Subsections 3.2 and 3.3 describe the two index types and 
Subsection 3.4 sketches the matching procedure. 
The second innovation in the proposed video browsing 
application is making use of content-based visual information 
retrieval for layer organisation to support the user's visual 
similarity perception. Key-frames are described by content-
based visual MPEG-7 descriptors (see Subsection 2.1). These 
media descriptions (technically, high-dimensional data vectors) 
are clustered using self-organising maps (SOMs, see 
Subsection 2.2). The result is a two-dimensional map of 
clusters, in which similar media objects are located closely to 
each other. Since we use MPEG-7 descriptors, similarity is 
defined on the basis of generally perceived (un-recognised) 
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image properties (e.g. colour distributions). The major 
advantage of this approach is that it supports human visual 
similarity perception. Similarity-based clustered key-frame 
images allow the user to judge the content of a particular layer 
more quickly and to uncover implicit similarities in the content 
of video streams. This allows, for example, to understand 
colour codes applied in advertisements better (e.g. bright 
colours for product properties that should bet perceived 
positively, etc.). 
We use two-dimensional clustering in the video browser, 
because it supports human spatial perception. Additionally, it 
offers an additional degree of freedom in comparison to 
hierarchical clustering. Furthermore, maps can easily be 
illustrated in any type of user interface. In the past, we have 
also experimented with three-dimensional clustering based on 
Sammon mapping [19] and visualisation in virtual worlds using 
VRML [20]. We found that three-dimensional maps are more 
difficult to understand and navigation, overlapping and 
clipping can soon become confusing for the user. Therefore, 
we decided on two-dimensional clustering. SOMs were 
selected, because – as pointed out in Subsection 2.2 – by 
employing neighbourhood kernels for learning they provide a 
human perception-like cluster structure. 
Figure 1 illustrates the resulting type of index: Layers are 
derived from the video stream by time and content criteria. 
Every layer is a two-dimensional map clustering elements by 
content-based features (e.g. colour, structure). Top levels give 
overview information. Subsequent layers give detail 
information. The entire video browsing application comprises 
two independently organised index structures inter-connected 
on the frame level. See Figures 8, 9 for examples. 
3.2. Time index tree 
For the time index tree, key-frames are selected from the video 
stream in a way that preserves the temporal order. Even though 
content-based access is an important issue in visual information 
browsing, the temporal structure must not be neglected. 
Humans have an excellent memory for the temporal order of 
events. The time index tree is responsible for providing a 

hierarchical temporal view on the media. 
Key-frames are selected as follows (see Figure 1 for 
illustration): Every n-th frame of the video stream is selected. n 
(the step width) depends on l, the layer number (starting with 
'1' (top layer)). n(l) is defined by equation 1. Map dimensions 
are given by r (rows), c (columns). round_up(X) replaces X 
with the next higher cardinal number. 
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Thus, the step width for a map on a particular layer l decreases 
proportionally to the position of the layer in the time index tree. 
At most, one frame per map entry (cluster) is selected. Maps on 
layers below the top level are mapped to clusters on the next 
higher level by an offset function o(x, y) (see equation 2): The 
offset function defines the starting offset for key-frame 
selection from the video stream. 
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x, y (cardinal numbers starting with zero) identify a cluster on 
layer l-1 (that is elaborated on level l). Ol-1 is the offset of the 
map on layer l-1. (Remark on navigation: It is important to 
notice that, since temporal order is lost in the content-based 
map clustering process, the pair <x, y> does not simply 
identify the (y*rows+x)-th cluster of the map on layer l-1. The 
corresponding cluster has to be located by establishing a link 
from map elements on layer l back to map elements on layer l-
1 using the input video stream.) 
In conclusion, the content of maps of the time index tree is 
determined by <n(l), o(x, y)> pairs. On the top level, just one 
map exists. On subsequent levels, exactly one map exists for 
every cluster on the preceding level. Consequently, the time 
index tree is always a balanced tree. Leaves are single frames. 
If rows=columns=2, the time index tree is a quad-tree 
structured by visual content. 
3.3. Content index tree  
The content index tree is an iconic shot index. While the time 
index tree is constructed top-down, the content index tree is 
built bottom-up based on shots. Shot boundaries are detected 
using automatic video segmentation (see Subsections 2.3, 4.2). 
Even though automatic shot detection does not provide full 
accuracy, it is sufficiently good for our purpose.  
In the indexing process, shots are represented by average media 
descriptions. Media descriptions are extracted from frames 
using the content-based visual MPEG-7 descriptors. These 
descriptions are averaged for the relatively coherent content of 
single shots. Generally, using a simple mean should be 
sufficient as an averaging method. The averaged descriptions 
are clustered using self-organising maps. In contrast to the time 
index tree, where only a fraction of frames are employed for 
clustering, all averaged descriptions are considered for 
clustering on the top level. Then, in a recursive process all 
clusters containing a number of elements that exceeds a 
predefined threshold are clustered again and mapped to clusters 
on the next higher level as detail levels. For practical reasons 
the threshold should be set larger than map size. Smaller 
threshold values would result in unnecessarily deep index 
structures.  
Shots are the leaves of the content index tree. Since it is not 

View layer 1

Layer 2

Layer 3

Media stream

Content view

Time view

Figure 1. Video index trees. Every index tree consists of 
multiple layers. The number of layers depends on the media
stream size. Indexes are constructed from the temporal video
view (by selecting every n-th frame) and the content view (by
selecting representative frames of shots). 
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predictable, which content-based relations exist among shots, 
the content index tree is generally unbalanced containing deep, 
highly differentiated structures for frequently appearing content 
(e.g. shots of leading actors in movies) and less differentiated 
structures for less frequently appearing content (e.g. extras). 
This is desired by the approach as it supplements the context-
free view provided by the time index tree elegantly. 
The major design issue connected to the content index tree is 
selecting representative media objects for map clusters. Since, 
in contrast to the time index tree, clustered media descriptions 
are artificial, we cannot simply employ the cluster medians as 
representatives. A two-step procedure is required: Firstly, we 
identify the median average description vector (the one with 
minimum Euclidean distance to the codebook vector; see 
Subsection 2.2). Then, we identify the frame with the most 
similar description to the average vector (again, by Euclidean 
distance). This frame is selected as cluster representative and 
visualised in the map. 
3.4. Tree matching and navigation 
Above, it was mentioned that the video browsing application 
allows the user to switch from content index tree to time index 
tree and back during browsing. The implementation of this 
feature requires matching between the index trees. Starting 
from a selected cluster in one index tree, two parameters have 
to be determined for switching: map cluster correspondence 
and layer correspondence. A content index cluster and a time 
index cluster are defined as corresponding, if they use the same 
representative media object for cluster visualisation: 
 Mediancontent index tree cluster ≡ Besttime index tree cluster (3) 
This is a one-to-many relationship: multiple clusters in the 
second tree may correspond to the selected cluster. In order to 
reduce the number of candidates to one, we use layer 
correspondence: The cluster is selected as switching target that 
is located on the layer with minimum hierarchical distance to 
the switching source. Formally: 

 select mt with 
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where ms, mt are the maps in source and target index trees that 

contain the corresponding cluster representatives, layer(X) 
gives the layer number of map X, |X| is the span (number of 
layers) of index tree X and d() measures Euclidean distance. 
These two conditions define a unique mapping between content 
index tree and time index tree. 
However, there is still one problem that needs to be solved. 
The time index tree contains all frames of an indexed video 
clip. Therefore, for any cluster representative in the content 
index tree it is possible to identify a corresponding cluster 
element in the time index tree. The other way around, this is 
not the case: In the content index tree entire shots are 
represented by a single frame. We suggest the following 
solution to overcome this problem: If, for a particular switching 
source in the time index tree, no corresponding frame exists in 
the content index tree, then the leaf map and cluster are chosen 
as switching target, that refer to the video shot containing the 
corresponding frame. In this case, the layer condition cannot be 
satisfied. To avoid a confusing effect on the user, she is 
notified by a system message. 
Generally, browsing through and switching between trees can 
easily become confusing. We have implemented several user 
interface components to avoid such an effect. These 
components will be described in detail in Subsection 4.4. The 
major guidelines are: Trees are never shown entirely 
(information overload). Instead, we display the active layer, the 
preceding layer (with the selected cluster highlighted) and a 
preview of the next layer that corresponds to the cluster that is 
highlighted in the active layer. Moreover, in an additional 
panel the corresponding map in the non-active index tree is 
shown. Besides avoidance of information overload this scheme 
has the advantage that it can be implemented without complex 
and resource-consuming three-dimensional tree visualisations. 

4. IMPLEMENTATION 

Below, we describe relevant implementation issues of the 
video browsing application. Subsection 4.1 gives an overview 
over workflow and data flow in the index preparation process. 
Subsection 4.2 describes descriptor selection for automatic shot 
boundary detection. Subsection 4.3 gives details on the 
clustering process used. Finally, Subsection 4.4 sketches 
important visualisation and user interface aspects. 
4.1. Overview 
Figure 2 illustrates the index tree preparation workflow in the 
video browsing application. Starting from the input video 
stream, media descriptions are extracted. We apply the MPEG-
7 image descriptors and describe each frame of a video clip by 
colour content, textures and general shape properties. 
Subsection 5.1 gives detailed information on the descriptors 
and parameters used. The media descriptions are the input for 
the automatic shot segmentation procedure. It employs 
description-based comparison (for sharp cuts) and twin 
comparison (for fades and wipes) on optimised MPEG-7 
descriptions to identify shot boundaries (see Subsection 4.2 for 
details).  
Shot boundary information and visual descriptions are fed into 
the index tree construction and clustering process. In the first 
step, averaged shot descriptions are computed. Then, 
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Description
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Media
descriptions

Shot
segmentation

Index
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boundaries

Cluster
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Visualisation Visualised
index trees

Figure 2. Workflow and data flow in the data preparation
process of the video browsing application. 
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independently for time index tree and content index tree, 
frames are selected and the top views of both indexes are 
computed using self-organising maps (see Subsection 4.3 for 
details and Subsection 5.1 for parameters). Based on the top 
view clustering, SOM calculation is recursively repeated for 
the content index tree. The time index tree is computed by top-
down selection of step widths and offsets (as described in 
Subsection 3.2). The resulting index trees are stored in a simple 
XML format that marks the endpoint of the pre-processing 
steps. 
The XML document describing the two index trees is used as 
input for the visualisation process. Visualisation target is the 
web browser. Hence, we employ web-based standards for 
visualisation. Specifically, index tree components are 
visualised by scalable vector graphics (SVG). Visualisation is 
supplemented by event-based interaction: SVG supports 
ECMAScript, which is used for handling user requests. The 
visualisation part of the video browsing application is 
described in detail in Subsection 4.4. 
4.2. Shot boundary detection 
In the video browser we require a procedure for shot boundary 
detection. We use description-based cut detection in 
combination with the twin comparison approach for effect 
detection (see Subsection 2.3). Since we use visual MPEG-7 
descriptors for media description, we want to use the same 
descriptions for cut detection. Below, we aim at identifying the 
best application domain-independent MPEG-7 description 
scheme for automatic cut detection. Optimising the 
performance of shot boundary detection is crucial for the 
quality of the video browser index trees. To reach this goal we 
apply the majority of content-based visual MPEG-7 descriptors 
on video clips of varying content and compare the results of 
automatic detection to ground truth information provided by 
human users. 
Experimental Setup: We split the process of identifying the 
best description scheme for MPEG-7-based cut detection into 
two steps: First, we compute the individual performance of 
descriptors. Then, we try to identify combinations of 

descriptors that improve the individual results. This section 
describes the media sets used for evaluation, the visual 
descriptors we apply and the methods we apply for cut 
detection (including threshold optimisation), performance 
evaluation, descriptor combination and ranking. 
The test data comprises media clips from five different genres: 
advertisements, cartoons, documentaries, movies and news (see 
also Subsection 5.1). Figure 3 shows example frames. The 
genres differ widely in cut rate and transition types used. In 
advertisements clips cuts occur after at least 2,5 percent of 
frames, in cartoons after about one percent and in 
documentaries, films and news after less than 0,5 percent. 
News programs and advertisements mostly apply sharp cuts 
while cartoons and documentaries often use transitions 
(mainly, fades) over twenty or more frames. 
We apply the visual MPEG-7 descriptors (using the 
eXperimentation Model version 5.6) on all frames of the test 
videos. All colour descriptors are used: Color Layout, Color 
Structure, Dominant Color, Scalable Color, two texture 
descriptors: Edge Histogram, Homogeneous Texture, and the 
Region-based Shape descriptor. All descriptors are applied 
with maximum resolution. The feature vector elements are 
normalised to the interval [0, 1]. In total, every frame is 
described by a feature vector of 306 elements. For dissimilarity 
measurement we employ the distance measures and parameters 
suggested by the MPEG-7 authors (mostly, city block distance 
without weights). 
For cut detection we define a threshold tb (individually for each 
descriptor). Additionally, we use the twin comparison approach 
[2] to detect fades and wipes: A second threshold ts is defined 
for gradual changes (ts << tb). Two indicators are computed to 
evaluate the performance of a descriptor: the number of correct 
hits and the number of false positives. Calculation of indicators 
is based on ground truth information provided by test users. 
Since we want to measure the best possible performance for 
each descriptor it is crucial guaranteeing that no descriptor is 
discriminated by false threshold values. Therefore, the 
thresholds are iteratively optimised in an automated procedure 

 
Figure 3. Example frames from advertisement, cartoon, documentary, movie and news clips employed in the evaluation (captured 
from German satellite television). 
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based on ground truth information. This optimisation is 
performed per genre. Then, the best identified thresholds are 
used to compute the hits and false positives indicators. 
In this process we have to deal with two optimisation criteria. 
As the numbers of hits (correct / present) and false positives 
(false / present) cannot be easily combined, it is almost 
impossible to define a single goal function. Giving preference 
to one of them depends heavily on the considered type of 
application. Hence, we decided to base the ranking procedure 
on a superiority principle: One descriptor is considered being 
superior to another if it leads to better results for one indicator 

(more hits, less false positives) while being at least as good for 
the other indicator. Two descriptors, for which superiority 
cannot be clearly identified, are given the same rank 
(independently of the size of the performance gaps). 
 Based on the ranking of individual MPEG-7 descriptors we 
aim at identifying the best overall description scheme by 
combining descriptors using logical operators. Generally, cut 
detection results of two descriptors can be combined in two 
ways: Either, all cuts are assumed correct that are detected by 
both descriptors (AND) or all cuts that are detected by one of 
them (OR). An AND combination of two descriptors reduces 
the hits indicator to the value of the worse descriptor. The false 
positives indicator is reduced to a value in the interval [0, 
min(FP1, FP2)] where FP1 and FP2 are the false positive 
indicators for the first and second descriptor, respectively. In 
the best case, all false positives are eliminated. If two 
descriptors are combined by the OR operator the number of hits 
equals the hits indicator of the better descriptor. The false 
positives indicator becomes a value of [max(FP1, FP2), FP1 + 
FP2]. In the worst case, all false positives are part of the 
combined analysis. Obviously, OR-combined descriptors can 
never be superior to the involved descriptor with the higher 
correct hits rate. In consequence, the OR operator is not further 
considered in this study.  
Results: In the first step the performance of individual MPEG-
7 descriptors is analysed. For example, Figure 4 shows the 
distance signature of the Color Structure descriptor over time 
(frames). This feature is highly discriminant for sharp cuts and 
leaves enough space between cuts, fades and wipes, and object 
and camera movement to define the thresholds for twin 
comparison clearly. Actually, Color Structure showed the best 

performance of all evaluated MPEG-7 descriptors. 
Table 1 summarises optimal threshold values and performance 
indicators for all descriptors. Color Structure and Color Layout 
retrieve most cuts correctly, while the texture features Edge 
Histogram and Homogeneous Texture minimise the number of 
false positives. This may be the case because edge information 
is more robust against camera operation than colour 
information. Characteristics of descriptors and distance 
measures can be seen from the threshold values. For some 
descriptors (especially, Scalable Color) it is highly difficult to 
set the threshold for gradual transitions. In consequence, the hit 
rate is significantly less than for the best descriptors. The first 
rank (in terms of superiority) is shared between Color Layout, 
Color Structure, Edge Histogram and Homogeneous Texture. 

Only these descriptors were considered for combination. 
Computing the performance for all AND-combined description 
schemes reveals three description schemes being superior over 
all others (see Table 2). The highest hit rate is achieved by the 
Color Structure descriptor alone. Using Color Layout and 
Color Structure in combination leads to a high hit rate and few 
false positives. If Color Structure is used in combination with 
Color Layout and Edge Histogram, the number of false 
positives drops to zero. This description scheme may be 
considered optimal for most applications. Consequently, it is 
used for shot boundary detection in the video browsing 
application. 
4.3. Description clustering 
The data clustering procedure of the video browsing 
application is responsible for visual similarity-based 
organisation of index tree layers. It takes its input from the key-
frame selection procedure (as described in Subsections 3.2, 
3.3). Key-frames are described by visual MPEG-7 descriptions, 
i.e., basically, high dimensional vectors of floating point 
numbers (in our case normalised to interval [0, 1]). The 
descriptions of key-frames are clustered by self-organising 
maps. Subsection 2.2 describes the learning process in self-
organising maps and their specific advantages. SOMs have 
been used in visual information retrieval and browsing before: 
The PicSOM system of the Helsinki University of Technology 

 
Figure 4. Frame difference signature of Color Structure
descriptor applied to advertisement clips (X axis: time, Y axis:
distance, grey lines: thresholds). 
 

Descriptor tb ts Hits FP Rank
Color Layout 0,465 0,027 95,4% 6,5% 1 
Color Structure 0,096 0,036 97,2% 10,2% 1 
Dominant Color 0,429 0,230 57,4% 61,1% 4 
Edge Histogram 0,191 0,071 85,2% 1,9% 1 
Homog. Texture 0,074 0,015 76,9% 5,6% 1 
Region-based Shape 0,173 0,022 87,0% 15,7% 2 
Scalable Color 0,078 0,015 68,5% 19,4% 3 

Table 1. Shot detection thresholds and performance indicators 
for visual MPEG-7 descriptors. 

Description Scheme Hits FP 
Color Structure 97,2% 10,2%
Color Layout, Color Structure 95,4% 1,9%
Col. Layout, Col. Struct., Edge Hist. 85,2% 0,0%

Table 2. Shot boundary detection performance of best MPEG-7 
description schemes. 
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[13] is a successful content-based image retrieval system that 
employs SOMs for data clustering and incorporates iterative 
refinement by relevance feedback [18] into the retrieval 
process (based on tree-structured SOMs; see Subsection 2.2). 
Self-organising maps offer two degrees of freedom for 
similarity-based media organisation. The SOM decides 
implicitly, which properties it selects for spatial organisation. 
Generally, the description elements with the highest variance 
have the most significant influence on the cluster structure. In 
visual information retrieval usually the strongest stimuli are 
colour and structure (textures, shapes) properties. Therefore, it 
is likely that SOMs trained from key-frames described by 
MPEG-7 descriptors are spatially organised by colour and 
structure appearance.  
Figure 5 illustrates the workflow in the clustering process. 
Media descriptions are repeatedly fed into the SOM learning 
process. The output map has a predefined size. Every cluster is 
described by a vector pointing to the cluster center (so-called 
codebook vector). The codebook vectors are adapted in the 
learning process until the quantisation error is minimal. To 
compute the quantisation error, every input vector is fed into 
the SOM once and mapped to the codebook vector that has 
minimum Euclidean distance (best matching unit, BMU). The 
sum of distances over all vectors (normalised by the number of 
input vectors) defines the quantisation error: the average 
displacement, if input vectors would be replaced by their 
BMUs. 
The set of codebook vectors completely defines a SOM but it 
does not explicitly express, to which clusters input vectors 
belong. Identifying the cluster structure requires locating the 
BMU for every input vector in an additional iteration. In some 
cases multiple input vectors are mapped to the same BMU and 
other BMUs are not associated with any input vectors. In our 
application, this behaviour is acceptable for the content index 
tree: similar shots are clustered together. Holes in the map may 

exist. See Figure 9 for examples. It is not acceptable for the 
time index tree. In the time index tree every cluster should 
consist of exactly one frame (time interval) that is detailed by a 
map on the subsequent layer. See Figure 8 for an example. To 
implement such a behaviour based on SOMs, we require an 
algorithm that identifies the best combination (e.g. in terms of 
quantisation error) of input vectors and codebook vectors. 
Since, generally this is a problem of order O(n)=n!, we use a 
simple heuristics to identify a sufficiently good 1:1 association 
of input and codebook vectors: For every randomly chosen 
codebook vector (map entry) we identify the best matching 
input vector (frame). Then, this input vector is removed and the 
procedure is repeated until all codebook vectors are mapped to 
input vectors. Experimental results show that this mapping 
procedure generates acceptable results. 
After finished SOM training and identification of the BMU for 
every input key-frame, cluster coordinates and frame IDs of the 
key-frames representing clusters (see Subsections 3.2, 3.3 for 
the selection procedures) are stored in a simple XML 
document. The XML descriptions are used in the visualisation 
process described in the next subsection. 
4.4. User interface design 
User interface design for the video browsing application 
comprises two activities: visualisation of index tree layers and 
visualisation of the navigation system. As described in 
Subsection 3.4, we decided not to visualise entire index trees. 
Instead, the user interface displays the active map layer, the 
preceding layer and a preview of the subsequent layer (for the 
active cluster). 
The basic building block of each layer is the cluster cell. Figure 
6 describes its shape and functionality. Since we are using self-
organising maps with hexagonal layout (every non-border 
codebook vector has six neighbours), the cluster cell is also of 
hexagonal shape. The cell is implemented by a scalable vector 
graphics (SVG) document. Every layer map consists of one cell 
per cluster. Hence, every map is a collection of SVGs that can 
easily be displayed and manipulated in a web browser window. 
The SVG cell is based on the key-frame representing a cluster. 
A polygon of hexagonal shape is laid over this image. A copy 
of this hexagon is used as a clip-path to cut off those parts of 
the image that should not be visible in the cluster map. The 
resulting image is associated with an ECMAScript event 
listener for handling of mouse events. If the mouse cursor is 
moved over the cell, a listener method changes the border 
colour and triggers a user-defined event handler. This event 
handler can, for example, be responsible for displaying the 
preview of the map on the next lower level. The entire user 
interface of the video browsing application is based on this 
simple active SVG cell. 

Media
descriptions SOM clustering Visual map

description
Cluster median
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Codebook map

 
Figure 5. Workflow in MPEG-7 description clustering process. Every layer of the time index tree and the content index tree is
clustered based on visual similarity criteria. 
 

 
Figure 6. The SVG cell is the basic building block of the video
browser user interface. A clip path is used to create the 
hexagonal shape. Event handling is implemented using W3C
DOM event types and JavaScript listener procedures. 
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Figure 7 illustrates the user interface layout. Central element is 
the selected layer of the active index tree ("C" for content index 
tree, "T" for time index tree). The selected cluster is shown 
highlighted. Above the active layer a smaller panel shows the 
next higher layer. In this window, the cluster is highlighted that 
is associated with the active layer. A window below the active 
layer shows a preview of the layer associated with the selected 
cluster in the active layer. If the active layer points to a leaf of 
the index tree (key-frames or shots, respectively), the 
associated video clip can be viewed in a playback window. 
Next to the three layers of the active index tree, the 
corresponding layer of the second index tree (see Subsection 
3.4) is rendered in a smaller panel. Finally, on the top right a 
panel with navigation tools is shown (back button, history, 
etc.).  
This user interface allows for browsing through the video 
content without having to visualise the entire three-dimensional 
index trees. In earlier experiments we found that two-
dimensional user interfaces are easier to handle for non-expert 
users, if sufficient context information is given. Furthermore, 
this user interface can be implemented at a minimum demand 
of resources. All panels are based on the SVG cell. Interaction 
is exclusively based on ECMAScript and mostly executed 
locally. Remote access is only required if the user switches to a 
layer that has not been used before. The next section gives first 
evaluation results of the proposed video browsing application. 

5. EVALUATION 

5.1. Test environment 
The following components were used for the prototype 
presented in this section. Firstly, clips with the following 
content were used: advertisements clips (short shots, fast 
changes, high quality images), cartoons (reduced colour 
palette, few colour gradations, slow scene changes, low motion 
activity), documentaries (alternating videos and animations, 
slow scene changes), movie clips (average image quality, 
average motion activity) and news clips (low motion activity, 
sometimes bad image quality). The media clips were captured 
from German satellite programs and stored in PAL format (720 
by 576 pixels, 25 fps). Figure 3 shows examples. 
Frames were described by seven visual MPEG-7 descriptors: 

Color Layout, Color Structure, Dominant Color, Edge 
Histogram, Homogeneous Texture, Region-based Shape and 
Scalable Color. Descriptor extraction was performed using the 
MPEG-7 eXperimentation model. After extraction, 
descriptions elements were normalised to identical intervals 
([0, 1]). 
Indexing was performed using self-organising maps (SOM; see 
Subsection 2.2). SOMs were computed with a hexagonal layout 
(every non-border cluster has six neighbours), six rows and 
eight columns. For learning, a Gaussian neighbourhood kernel 
was used. Maps were initialised randomly. Learning was 
performed in two iterations. In the first iteration 10000 learning 
steps were performed with learning rate α=0,05 and radius 5 
(clusters). In the second iteration (fine tuning) 100000 learning 
steps were performed with learning rate α=0,02 and radius 3. 
For every dataset 15 separate SOMs were computed and the 
best map was chosen by the minimum quantisation error (as 
suggested in [11]). 
The entire video browsing prototype is based on free software. 
Media access is implemented using Java and the Java Media 
Framework. Descriptions are extracted by the MPEG-7 
reference implementation from the eXperimentation Model. 
SOMs are computed using the C-implementation provided by 
the Helsinki University of Technology [11]. Visualisation of 
maps is based on scalable vector graphics [21]. Visualisation of 
maps is implemented in Perl scripts and the SVG output is 
rendered by the Adobe SVG Viewer plug-in (tested for 
Netscape Navigator and Microsoft Internet Explorer). Finally, 
event-based interaction is implemented in ECMAScript scripts. 
5.2. Experimental results 
This subsection summarises our experiences with the video 
browser prototype. So far, we have not conducted a user study. 
Therefore, all presented results are preliminary based the 
authors' observations. In the first part of this section we will 
investigate the look-and-feel of the video browser. The second 
part discusses quantitative criteria, advantages and 
disadvantages as well as usage types. 
Figures 8 and 9 illustrate hierarchical layer dependencies of 
time index tree and content index tree. The time index tree 
shows the top layer and two detail layers. Time-code values of 
key-frames depicted in clusters act as an additional source of 
information to the user. Since all elements are required for 
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Figure 7. Navigation layout of the video browser user interface (see Subsection 4.4 for details). 
 

116



browsing, no holes are allowed in the SOMs. The algorithm 
describes in Subsection 4.3 solves this problem sufficiently. 
Some artefacts (e.g. some non-circular clusters) are due to its 
heuristic nature. Still, clustering of similar content is 
semantically understandable (especially on detail levels). The 
major clustering criteria seem to be colour distributions and 
edge layouts. This is similarly true for the content index tree 
(Figure 9). The figure illustrates the top layer for the test data 
used and one detail layer. If shots have similar content, they are 
clustered together. Hence, content index tree SOMs have holes 
and varying numbers of detail layers. Shot-content is visualised 
spatially. For example, Layer 2 organises the content of an 
animation sequence in a looped path (starting from bottom 
right; see time-code values). Interestingly, colour information 
is not the dominating clustering criterion. For example, the 
third and fourth cluster in the fifth row of Layer 1 of the 
content index tree have similar structures but different colours. 
In conclusion, since colour and structure are the two 

dominating clustering criteria, similarity is spatially 
perceivable in the two-dimensional SOMs. 
Generally, the layer map size determines the capacity of the 
video browser index trees. For the example, we use maps with 
six rows and eight columns per row. Therefore, every map 
layer has 48 elements and a time index tree with three layers 
has a capacity of 483 = 110592 frames. For a frame rate of 25 
frames per second (PAL, SECAM), this number equals to 73 
minutes of video: Three layers are sufficient to browse through 
73 minutes of content. A map size of 48 elements was chosen, 
because humans are able to perceive between 50 and 100 icons 
spatially by one look. Therefore, 48 is a very convenient 
number of items. Additionally, smaller maps can be computed 
faster and be visualised easier. 
Next, we investigate major differences (in terms of practical 
usage) of content index tree and time index tree. The content 
index tree clusters dependencies in the content: Scenes that 
have no temporal relationship. Scenes with similar colour and 

Layer 1

Layer 2

Layer 3

 
Figure 8. Example screenshot of time index view. The figure shows maps on three layers. Layer 1 is the top layer computed from
the test videos used in the evaluation. 
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structure properties are clustered together. For very similar 

scenes, one representative is chosen and the others are omitted. 

The content index tree shows the 'assets' of a video stream: it 

successfully selects prototypes of all appearing types of content 

and presents them to the user. Furthermore, the content index tree 

guarantees (on the top level) that the entire content is visualised in 

one view. In contrast, the time index tree clusters temporal 

transitions. To a certain extent it preserves the story and gives 

'suggestions' for more detailed analysis in temporal order. 
Technically, content index tree and time index tree are not that 

different: the frames selected as representatives for clusters are 

often located in close proximity in the video stream (of course, 

depending on the shot structure). If shots are short (as, for 

example, in advertisement clips) content-index tree and time 

index tree use mostly similar selections of key-frames. 

Additionally, since SOM clustering destroys the order in the set of 

selected key-frames anyway, content index tree and time index 

tree may appear highly similar (especially, on the top levels). 
Usage experience shows that the content index tree is the main 
browsing tool. It is employed to identify interesting areas in the 

video content and analyse them in greater detail. The time 
index tree is mainly used in the starting phase to get a first 
impression of the video data, for orientation during a browsing 
session and as a tool for associative browsing. Since it 
preserves the temporal order (the story) of the video, it allows 
for semantic browsing through the content. 
From our experiments, we draw the conclusion that the 
proposed video browsing approach is reasonable. Its major 
advantages are: Firstly, the video browser makes use of content 
analysis techniques and similarity-based clustering. This 
supports human visual perception and allows fast and effective 
browsing. Secondly, it summarises the assets of a video stream 
in an easy to overlook structure. The video browser allows real 
content-based random access of video data. Spatially, the video 
browser user interface makes use of human spatial memory. 
Since information overload is avoided by using small maps, the 
user can browse through the data quickly. Furthermore, the 
implemented navigation style is easy to understand. It does not 
implement revolutionary new interaction paradigms but is 
based on simple click operations. Finally, the spatial layout 
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Figure 9. Example screenshot of content index view. The top layer visualises shots by representative frames. Layer 2 shows an
animation shot in detail. Clustered spatially by similarity, the frames of the animation shot follow a loop. 
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used in the layer maps fits to the users spatial expectations. In 
the video browser, video content is presented in a natural way. 
One major disadvantage of the proposed video browser is that 
temporal organisation of video is destroyed. The 'video feeling' 
is lost when analysing the content by the index trees. Even 
though illustrating the time-code together with cluster 
representatives allows the user to comprehend temporal 
organisation intellectually, the obvious visual temporal flow is 
lost (especially in the content index tree). 

6. CONCLUSIONS 

The paper describes a novel video browsing application that is 
based on two index structures. A time index tree visualises the 
temporal structure and a content index tree visualises the video 
stream content. The application is interactive: The user can 
browse through the trees and switch between the trees. 
Browsing is easy, because several additional panels visualise 
navigation-relevant context information. Furthermore, the 
index trees integrate visual information retrieval know-how as 
media objects used on index layers are clustered content-based. 
Media objects are described by visual MPEG-7 descriptions. 
Similarity-based clustering is performed using self-organising 
maps. From the implementation point of view, the video browser 
is novel as it is exclusively based on free software. Scalable 
vector graphics are used for index visualisation and the entire 
browsing application can be accessed through a web browser. 
The major contribution of the video browsing application is 
allowing time and content-based access simultaneously. 
Moreover, it integrates ideas from information visualisation, 
information browsing and content-based information retrieval. 
The result is a powerful application that makes video content 
transparently accessible.  
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