Arriving at Z / f

Michael Hornáček
CVPR 2014 Submission \#1678
Supplementary Material

We state in Section 2.1 of the paper that it is easy to show that the distance between two points both situated at the same depth Z and projecting to neighboring pixels is given by Z / f, where f is the camera's focal length in units of pixels (cf. Figure 1). We motivate this result by computing the distance between the point \mathbf{P} at depth Z projecting to the pixel $(i, j)^{\top}$, and the points at the same depth Z projecting to the pixel neighbors $(i+1, j)^{\top},(i, j+1)^{\top}$, respectively. The point \mathbf{P} is given by $Z \cdot \mathrm{~K}^{-1}(i, j, 1)^{\top}$, where K is the 3×3 camera calibration matrix (cf. Hartley and Zisserman [1]):

$$
\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

where $\left(p_{x}, p_{y}\right)^{\top}$ is the camera's principal point in pixel units. It follows that \mathbf{P} is given in closed form by

$$
Z \cdot \mathrm{~K}^{-1}\left(\begin{array}{l}
i \\
j \\
1
\end{array}\right)=Z\left[\begin{array}{ccc}
1 / f & 0 & -p_{x} / f \\
0 & 1 / f & -p_{y} / f \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
i \\
j \\
1
\end{array}\right)=Z\left(\begin{array}{c}
\frac{i-p_{x}}{f} \\
\frac{j-p_{y}}{f} \\
1
\end{array}\right)
$$

Horizontal Neighbors. We first consider the Euclidean distance δ_{Z} between two points both situated at depth Z and projecting to the horizontal pixel neighbors $(i, j)^{\top},(i+1, j)^{\top}$:

$$
\begin{aligned}
\delta_{Z} & =\left\|Z \cdot \mathrm{~K}^{-1}(i+1, j, 1)^{\top}-Z \cdot \mathrm{~K}^{-1}(i, j, 1)^{\top}\right\|_{2} \\
& =\left\|Z\left(\mathrm{~K}^{-1}(i+1, j, 1)^{\top}-\mathrm{K}^{-1}(i, j, 1)^{\top}\right)\right\|_{2} \\
& =\left\|Z\left(\begin{array}{c}
\frac{i+1-p_{x}}{f}-\frac{i-p_{x}}{f} \\
\frac{j-p_{y}}{f}-\frac{j-p_{y}}{f} \\
1-1
\end{array}\right)\right\|_{2}=\left\|\left(\begin{array}{c}
\frac{Z}{f} \\
0 \\
0
\end{array}\right)\right\|_{2}=\sqrt{\left(\frac{Z}{f}\right)^{2}}=Z / f .
\end{aligned}
$$

Figure 1: The Euclidean distance Z / f in world space between two points $\mathbf{P}_{\mathbf{x}}, \mathbf{P}_{\mathbf{x}^{\prime}}$ both situated at depth Z-with respect to the camera center \mathbf{C}-and projecting to neighboring pixels $\mathbf{x}, \mathbf{x}^{\prime}$.

Vertical Neighbors. Finally, we consider the analogous Euclidean distance δ_{Z}^{\prime} for the vertical pixel neighbors $(i, j)^{\top},(i, j+1)^{\top}$:

$$
\begin{aligned}
\delta_{Z}^{\prime} & =\left\|Z \cdot \mathrm{~K}^{-1}(i, j+1,1)^{\top}-Z \cdot \mathrm{~K}^{-1}(i, j, 1)^{\top}\right\|_{2} \\
& =\left\|Z\left(\mathrm{~K}^{-1}(i, j+1,1)^{\top}-\mathrm{K}^{-1}(i, j, 1)^{\top}\right)\right\|_{2} \\
& =\left\|Z\left(\begin{array}{c}
\frac{i-p_{x}}{f}-\frac{i-p_{x}}{f} \\
\frac{j-p_{y}}{f}-\frac{j-p_{y}}{f} \\
1-1
\end{array}\right)\right\|_{2}=\left\|\left(\begin{array}{l}
0 \\
\frac{Z}{f} \\
0
\end{array}\right)\right\|_{2}=\sqrt{\left(\frac{Z}{f}\right)^{2}}=Z / f .
\end{aligned}
$$

References

[1] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, second edition, 2004.

