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Abstract

In this paper we considerably improve on a state-of-the-
art alpha matting approach by incorporating a new prior
which is based on the image formation process. In par-
ticular, we model the prior probability of an alpha matte
as the convolution of a high-resolution binary segmentation
with the spatially varying point spread function (PSF) of the
camera. Our main contribution is a new and efficient de-
convolution approach that recovers the prior model, given
an approximate alpha matte. By assuming that the PSF is
a kernel with a single peak, we are able to recover the bi-
nary segmentation with an MRF-based approach, which ex-
ploits flux and a new way of enforcing connectivity. The
spatially varying PSF is obtained via a partitioning of the
image into regions of similar defocus. Incorporating our
new prior model into a state-of-the-art matting technique
produces results that outperform all competitors, which we
confirm using a publicly available benchmark.

1. Introduction
Alpha matting is the process of extracting a foreground

object that is composed with its background. Formally, the
observed color C is modeled as a convex combination of
the foreground color F and background color B as

C = αF + (1 − α)B, (1)
where the mixing factor α is referred to as the alpha matte.
Recovering alpha given only a single input image C is a
severely ill-posed problem. Hence, strong prior models for
the alpha matte are necessary to restrict the solution space.

In this paper we use a new prior that is based on the im-
age formation process, studied with respect to the super-
resolution (e.g. [3]) and deblurring tasks (e.g. [11, 10, 31]).
The image formation process gives useful insights into the
reasons that cause the appearance of mixed pixels, i.e. pix-
els having non-binary α (0<α<1): Mixed pixels can be
caused by a number of factors such as defocus blur, mo-
tion blur, discretization artifacts or light-transmitting scene
objects. Thus, apart from light-transmitting objects (e.g.
window glass), it is reasonable to assume that mixed pix-
els are mainly caused by the camera’s point spread function

(a) Input image with
trimap.

(b) Result of [17].
MSE:3.1

(c) Result similar to [36].
MSE:6.2

(d) Our binary
segmentation

(e) Our alpha matte.
MSE:2.4

(f) Ground truth alpha.

Figure 1. Why is our prior useful? Ambiguities in alpha matting
are often not resolved by state-of-the-art algorithms (b,c). Our
strong prior, based on a PSF and segmentation (d), can better re-
solve matting ambiguities as reflected in our final alpha matte (e).

(PSF), which accounts for the transparency effects. Hence,
we model the prior distribution of the alpha matte as the
convolution of a high-resolution binary segmentation with
the spatially varying point spread function of the camera.

This is in contrast to all previous matting approaches (ex-
cept [24], which we discus below), which infer alpha di-
rectly from eq. (1) without committing to an explicit image
formation model. However, this has a major drawback as
we discuss now. Levin et al. [17] were the first to show
that if one assumes the colors of the fore- and background
to vary linearly inside a small patch, the alpha matte can be
derived in closed form. The resulting matte of [17] is shown
in fig. 1(b), given the image and trimap in fig. 1(a). The re-
sult is imperfect (some hairs cut-off). It has been observed
(e.g. [19]) that a major problem is that for insufficient user
input (i.e. large trimap) the cost function used in [17] has a
large space of (nearly) equally likely solutions1. There have
been several approaches to overcome this deficiency. Wang
et al. [36] introduced data terms in the framework of [17],
based on color models of the fore- and background regions.
However, the result is even worse, see fig. 1(c). The prob-

1Another problem is that the color line model does not hold for highly
textured patches, which is however in our experience less important.
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lem is that some dark-green areas in the image background
are explained as semi-transparent layers, i.e. dark-green is
a mix of dark foreground with green background. This is a
plausible solution given the color observations, however it is
a solution which is physically very unlikely. Hence, previ-
ous work (e.g. [19, 36, 23]) used a “generic sparsity” prior,
which forces as many pixels as possible to an alpha value of
0 or 1. Our prior, based on the image formation process nat-
urally encodes sparsity of the matte. This is because under
our model it is very likely that transparencies occur only at
the object boundary and most parts of the alpha matte are
either 0 or 1. In contrast to a generic sparsity prior which is
employed to each pixel independently, our prior depends on
the underlying binary segmentation. We will show that our
prior achieves better results than “generic sparsity” priors.

The work closest to our approach is [24], where the idea
of a prior motivated by an image formation model has been
introduced. They showed that their prior can effectively re-
solve ambiguities in the alpha matte (we confirm this obser-
vation in our experiments). However, [24] models the prior
probability of alpha as the convolution of a binary segmen-
tation with a spatially constant PSF. This model is an over-
simplification of the reality, where the PSF can vary over
the image with respect to the scene depth. An example is
shown in fig. 2, where two PSFs are necessary to describe
the alpha matte of the foreground object.

In contrast to [24], we model the prior distribution of the
alpha matte as a convolution of an underlying, potentially
higher resolution, binary segmentation αb with a spatially
varying point spread function K, whose result is potentially
downsampled:

α = D(K ⊗ αb), (2)

where ⊗ denotes convolution and D is the downsampling
function. Note that there are other major differences to the
approach of [24], detailed in sec. 2. We will show that our
approach generates superior results.

To construct our prior, the key challenge is to solve the
blind deconvolution problem, which is the reconstruction of
the binary segmentation αb and spatially varying PSF K in
eq. (2) from an input alpha matte. Thus the main contri-
bution of this paper is a new and efficient approach for the
deconvolution of alpha mattes. Our method assumes that
the spatially varying PSF is a single peaked kernel, which is
in general true for optical or very slight motion blur (a lim-
itation is complex motion blur). If our assumption is met, it
has been shown by Joshi et al. [11] that the binary segmen-
tation can be recovered from the edges in the blurred alpha
matte. Hence, we infer the binary mask with a new MRF-
based segmentation technique. Also, our approach exploits
flux and a new efficient way to enforce connectivity of the
foreground object.

To recover a spatially varying PSF, our algorithm parti-
tions the foreground object into regions of similar defocus

(a) Input image
(crop of a soft toy)

(b) Binary segmentation
and spatially var. PSF

(c) Alpha prior (d) Ground truth
alpha matte

Figure 2. Our PSF prior. For image (a) our approach computes
the binary segmentation and defocus of the foreground (b). The
color of the foreground (red/yellow) indicates small/large defocus.
PSFs computed for the red/yellow regions are shown in (b). Con-
volving the segmentation (b) with the corresponding PSFs gives
an alpha prior (c) that is close to the ground truth (d).

blur and recovers a PSF in each of these regions. Here, our
main contribution is a new, efficient approach to infer the
amount of defocus at each pixel of the foreground object.
Our defocus estimation method generates results that com-
pare well to specialized approaches proposed for this task.

Convolving the recovered binary segmentation with the
PSF gives an alpha matte which typically is of high qual-
ity (see e.g. fig. 2(c)). However, to account for potential
artifacts in the alpha matte (due to e.g. discretization or in-
accurate PSF), we use the convolved segmentation as prior
in the matting method of [23]. The result is a matte whose
quality exceeds the current state-of-the-art.

It is interesting to note that our matting approach can
be seen as generalization of the segmentation-based “border
matting” method of GrabCut [26]. In fact [26] fits an alpha
profile to the binary segmentation, which could be gener-
ated from a (spatially constant) Gaussian PSF. However, the
authors of [26] conclude that PSF-based border matting is
not applicable to “difficult mattes”, resulting from e.g. hair
(a similar conclusion was recently made in [21]). This work
shows that even for complex mattes such an approach is fea-
sible and moreover outperforms state-of-the-art methods.

Finally, note that in the near future our segmentation-
based matting approach might become even more appli-
cable, since the depth information provided by emerging
consumer 3D cameras (e.g. Fuji 3D W1) could be used to
greatly simplify the PSF estimation procedure.

In the following, we first review and compare related
work in section 2 and section 3.4. In section 3 we detail
our approach to estimate the prior model. Section 4 gives
an experimental comparison.

2. Related work
There are two main areas of related work: alpha matting

and blind deconvolution. We discussed related matting ap-
proaches in sec. 1 and the reader is referred to the survey of
[34] for more details. Recovering the binary segmentation
and PSF from an alpha matte is the task of blind deconvo-
lution and we discuss the related work in the following.

In this section we use the ground truth alpha matte α∗

from [25] for comparing deconvolution methods. However,
for matting (sec. 3) we use an alpha matte, computed from



(a) Input image (b) Ground truth alpha (c) αb of [16] using PSF from [7]
(in 3x res). Result was thresholded.

(d) αb from [10] (in 3x res) (crop
of (b) due to memory limits)

(e) αb from [11]

(f) αb using [24] (in low-res) (g) αb using [24] (in 3x res) (h) αb using our method (3x res)
(computed 13x faster than (g))

(i) Our prior.
MAD:5.9; MSE:0.50; Grad:0.28

(j) Our final alpha matte.
MAD:3.9; MSE:0.25; Grad:0.11

Figure 3. Comparison of blind (and non-blind) deconvolution methods from a ground truth alpha matte (b). Our deconvolution
approach (h) estimates the underlying binary segmentation better than previous approaches for this task (c-g). Note that all results were
computed in 3x higher resolution and downscaled afterwards. Thus segmentation results may not be completely binary. See text for details.

the input image with a standard matting algorithm. To en-
sure that the underlying segmentation is more likely to be
binary, we upscaled α∗ by a factor of 3 before applying the
methods discussed below (we discuss upscaling in sec. 3.2).

In theory one should be able to perfectly reconstruct αb

with deconvolution algorithms, given the true α∗ and the
true K, respectively. (We also confirmed this in a synthetic
experiment). However, in practice we found the results ob-
tained with state-of-the-art blind deconvolution (i.e. simul-
taneously estimating αb and K) approaches, e.g. [29], to be
inappropriate for our purposes. More specifically, we ob-
served that the deconvolved alpha mattes were usually far
away from being binary. This empirical observation was
recently confirmed in the work of Levin et al. [20] which
shows that the simultaneous MAP estimation of both K and
αb mostly favors the no-blur explanation (i.e. K is the delta
kernel). To overcome this problem, Levin et al. [20] sug-
gested to first estimate the PSF using the approach of [7]
and then perform (non-blind) deconvolution using [16]. We
tested this approach, using the authors’ implementations,
but unfortunately the results were still non-binary. Hence,
to obtain αb we had to threshold the deconvolution results,
which resulted in the loss of many details like hair strands.
Figure 3(c) is an example. Since [7] was mainly designed
for large motion blur, we also used [11] to initialize the PSF
for [16] but found it to give non-binary results as well.

A possible explanation for this failure is that state-of-
the-art deblurring approaches are based on natural image
statistic priors that are not applicable to alpha mattes. In
particular, the desired deblurred alpha matte is a two-tone
image, thus has a much simpler structure than a natural im-
age. Experiments in Levin et al. [20] suggest that a prior

which favors two-tone images could potentially overcome
the undesired no-blur solution. Therefore, one could follow
the approach of Jia [10] and incorporate in the deconvolu-
tion process the assumption that the unblurred alpha matte
is binary. The authors of [10] kindly applied their method
on a crop of a ground truth matte (fig. 3(b)). The result is
shown in fig. 3(d), where unfortunately many fine details
were lost.

One could also employ the sparsity prior of [19] directly
on αb, as proposed in Dai et al. [5]. However, Rhemann et
al. [24] found such an approach to be inferior to their own
method. Also, [5] additionally applies an edge smoothness
prior to αb, which is, however, invalid at hairy boundaries
according to [5]. Finally, αb in [5] is not necessarily binary.

Another class of deconvolution approaches explicitly de-
tect edges in the image to infer a binary segmentation. For
instance, the recent approach by Joshi et al. [11] detects the
location of the step edge in the (unknown) sharp image by
applying a sub-pixel accurate edge detector to the blurred
image. If the deblurred image is two-toned (which is true
for alpha mattes), the location and orientation of the sharp
image edges is sufficient to infer αb around the detected
edges. We found this method to perform reasonably well
on solid boundaries, but it severely over-estimated αb in the
presence of thin structures like hair strands, which can be
attributed to an incorrect edge localization, see e.g. fig. 3(e).

The work most closely related to our approach is Rhe-
mann et al. [24], where αb is iteratively obtained from the
deconvolved alpha matte using an MRF that preserves the
edges in the deblurred alpha. This method can effectively
preserve thin structures like hair strands. The result of [24]
is shown in fig. 3(f). Although most details could be pre-



served, αb was overestimated and originally connected hair
strands are fragmented (see upper right corner of fig. 3(f)).

In this work we improve on the approach of [24] in sev-
eral respects. Firstly, we propose to work on the higher-
resolution (upscaled) alpha matte, where the underlying
segmentation of thin structures is more likely to be binary.
We also found this to greatly improve the result of [24], an
example of which is shown in fig. 3(g). Secondly, our ap-
proach works directly on the alpha matte as opposed to [24],
where computationally expensive deconvolution methods
were applied to alpha before binarization. (We observed a
speed up factor of about 13 compared to [24].) Thirdly, we
apply a different procedure to estimate αb based on flux and
connectivity (sec. 3.3). Finally, we estimate the spatially-
varying amount of blur over the foreground object, which
relaxes the assumption of a spatially constant PSF in [24].

Fig. 3(h) shows αb obtained with our method using the
ground truth α∗. We see that most of the fine details were
nicely recovered and the foreground is connected. Convolv-
ing our computed αb with our estimated PSF yields the re-
sult in fig. 3(i), which is very close to the ground truth, both
visually and in terms of error rates. To further refine this
result, we use it as prior in the approach of [23], see fig.
3(j). This example shows that our prior has the potential to
approximate even very detailed mattes with high accuracy.

3. Our matting approach
We now detail our matting approach, which comprises

five steps: (i) Given an image and trimap, compute an initial
(usually imperfect) alpha matte α with the matting method
of [23]; (ii) upscale α to a resolution where the underlying
segmentation is more likely to be binary (apart from dis-
cretization); (iii) estimate the binary segmentation αb with
an MRF; (iv) downsample αb and compute the spatially
varying PSF; (v) convolve αb with the PSF and use the re-
sult as prior in the framework of [23] to compute the final
alpha matte. Each step is now described in detail.

3.1. Estimating the initial alpha matte
We have seen in sec. 2 that the binary segmentation and

PSF may be derived using deconvolution approaches from
the ground truth alpha. To apply our approach to natural
images where the ground truth is unknown, we infer the
segmentation and PSF from an alpha matte computed from
the natural image with a conventional matting algorithm.
(Note, the same task was addressed in [24, 10].) In this
work we use the matting method of Rhemann et al. [23].
In short, they first compute a pixel-wise estimate of alpha
denoted as α̂, which defines the data term. The data term
is combined with the smoothness term of [17], giving the
objective function:

J(α) = αT Lα + (α − α̂)T Γ̂(α − α̂), (3)

where α and α̂ are treated as column vectors and L is the
matting Laplacian of [17]. The diagonal matrix Γ̂ weights

the data against the smoothness term. The objective func-
tion is minimized by solving a set of sparse linear equations,
subject to the user constraints. To obtain high-resolution
mattes we solve (3) in overlapping windows as in [23].

3.2. Upsampling alpha
It is possible that small structures like hair strands project

to a camera sensor area which is smaller than a pixel. To
ensure that the underlying binary structure is at least of the
size of one pixel, we compute α on a higher-resolution pixel
grid. Thus we bicubically upscale the image to a resolution
where the underlying segmentation is likely to be binary.

To determine a good scaling factor f , let us imagine a
high-resolution 3x3 pixel alpha matte where the center pixel
is completely opaque and all other pixels are completely
transparent. Bicubicly downsampling this alpha matte by a
factor of f = 3, gives a single pixel with an opacity value
of α = 1/f2. Hence, using a scaling factor of 3 we can
recover all structures with α ≥ 1/9.

In practice we can recover even more details with the
same scaling factor because of additional defocus blur
(which was neglected in the above analysis). Thus we found
that a scaling factor of 3 is sufficient to preserve most de-
tails in our test images. However, further work could be
conducted to learn the optimal scaling factor in a user study.

3.3. Estimating the binary segmentation
Assuming that the PSF is a single-peaked kernel, our ap-

proach recovers the binary mask αb from the upscaled α by
solving the following submodular energy with graph cut:

E(αb) =
∑
i∈I

Di(αb
i ) + θ1Fi(αb

i ) + θ2

∑
{i,j}∈N

Vij(αb
i , α

b
j),

(4)
where αb is the binary labeling and N denotes an 8-conn.
neighborhood on the set of image pixels I. The parameters
θ1,θ2 balance the terms in eq. (4) and were set as in sec. 4.

The data term Di encourages αb to be close to α:

Di(αb
i ) = δ(αb

i = 1) · Li, (5)

where δ is the Kronecker delta and Li = − log(2αi) +
log(2(1 − αi)) is the difference of the negative log likeli-
hood that a pixel i with alpha value αi belongs to the fore-
or the background, respectively.2

To detect edges and to preserve thin structures like hair
strands in the segmentation, we use flux which has been
shown to be effective for segmenting thin objects in medi-
cal grayscale images [32] and has been demonstrated to be
amenable for graph cut minimization [14]. The unary term
Fi represents the flux of the gradient in Li:

Fi(αb
i ) = δ(αb

i = 0) · div (∇Li · exp (−|Li|/σ)) , (6)

where ∇ and div denote the gradient and divergence and
σ was fixed to 2. In Fi, the exponential function is used

2The diff. of the log likelihoods is a re-parameterization of the energy.



(a) Segmentation with [26]
(without connectivity)

(b) Our final connected result (c) Our connected result using a fixed
minimum path width

(d) Result using DijkstraGC [33]
(40 times slower than ours)

(e) Image with scribbles
(blue=bkg; red=fgd)

(f) Input image. Computed connected
paths from (b) are marked red.

(g) Input image. Computed connected
paths from (c) are marked red.

(h) Input image. Computed connected
paths from (d) are marked red.

Figure 4. Enforcing connectivity. Given an input image and user constraints (e), GrabCut [26] gives a disconnected segmentation (a). Our
approach automatically connects or excludes disconnected islands in (a) to the foreground. Our final segmentation (b) includes most of
the spider legs and shows no background artifacts. The result of our approach, where we disable the automatic estimation of the minimum
width of the “connection path” (hence, we use a fixed minimum width of 1 pixel) is shown in (c). As expected it is worse than (b). Our
results (b,c) are comparable to the result of DijkstraGC (d), which is, however, 40 times slower than our approach. We show the “connection
paths” for the results in (b-d) in (f-h). Note that for this example we replaced eq. (4) with the energy in [26].

to truncate the gradient in places where the foreground and
background likelihoods in Li are approximately equal. To
avoid that the flux term is affected by noise, we smooth the
gradient of Li with a Gaussian filter of variance 1.5 before
computing the divergence in eq. (6). We observed that the
upsampling process leads to a “fattening” of Fi. To com-
pensate for this, we lower the magnitude of Fi in places
where Fi is not a local maximum.

Note that to preserve thin structures, [24] used a pairwise
MRF term. However, the flux term used in our approach has
a better theoretical justification and is easier to optimize.3

Finally, our pairwise term Vij encodes the ising prior:

Vij(αb
i , α

b
j) = δ(αb

i �= αb
j). (7)

An example of αb is shown in fig. 1(d).
Enforcing connectivity

To additionally regularize the binary segmentation, we
enforce the foreground object to be a single 4-connected
component. In general, this assumption is true for all non-
occluded objects as well as for all images used for evalua-
tion in sec. 4. Recently, a solution to this task has been pre-
sented in [22]. Unfortunately, their solution to thisNP-hard

3We found that the pairwise term in [24] gives a non-submodular en-
ergy, although differently stated in [24].

problem requires the image to be segmented into large su-
perpixels for computational reasons. Thus it is impractical
for segmenting fine structures like hair strands. An interac-
tive solution to this problem was proposed in Vicente et al.
[33]. They start by computing a segmentation without con-
nectivity constraints (e.g. fig. 4(a)). Then the user manually
marks a pixel, which has to be connected to the main part
of the foreground object, and also manually selects a mini-
mum width for the “connection path”. The method finds a
connected component which fulfills these constraints.

In this work we propose a new approach to compute an
entirely connected segmentation, which in contrast to pre-
vious work is very efficient and fully automatic. In essence,
we automate the user interactions of [33] while maintain-
ing a low energy, and also make the core algorithm of [33]
much more efficient while keeping high quality results.

In detail, we first compute a segmentation α̂b by mini-
mizing (4) without connectivity constraints (fig. 4(a)). Then
those regions in α̂b which are disconnected from a source
region s are identified. We define s to be all pixels in α̂b that
are 4-connected to the user marked foreground pixels (e.g.
spider body in fig. 4(a)). Then for each disconnected region
t a segmentation α̂b′ is computed by minimizing (4) under



the constraint that s and t must be connected. (This step is
discussed in detail below.) We also determine an alternative
solution α̂b′′ , by simply removing region t from α̂b. Now
we keep the solution with lower energy, i.e. we keep e.g. α̂b′

if E(α̂b′)≤E(α̂b′′). In this manner all disconnected regions
are processed, which gives the final result (fig. 4(b)).

The difficult step in the above procedure is to find a seg-
mentation subject to the condition that regions s and t are
connected. Vicente et al. [33] suggested a heuristic method
called DijkstraGC. It works by computing the “shortest
path” in a graph where the “distance” between two nodes
measures the value of the energy (4) under the constraint
that all pixels on the path from s to t belong to the fore-
ground. Unfortunately, DijkstraGC is computationally very
expensive, since it requires many calls to the maxflow algo-
rithm to minimize function (4).4 Hence, we found it imprac-
tical to compute a solution for many disconnected islands.

The key idea of our approach is to compute the shortest
path on a graph where the weight of each node is its min-
marginal energy under (4), which is given by

M(i) = min
αb,αb

i=1
E(αb) − min

αb
E(αb), (8)

and can be computed very efficiently using graph recycling
[12]. (The path to all disconnected islands can be computed
in a single run of Dijkstra.) A segmentation is then com-
puted by minimizing (4) under the constraint that all pixels
on the shortest path in the min-marginals belong to the fore-
ground. Hence, our approach approximates DijkstraGC but
gives comparable results (for instance, compare our result
in fig. 4(b) with the result of DijkstraGC in fig. 4(d)).

Finally, we address the problem of finding the minimum
width of the “connection path”. It has been observed in
[33] that DijkstraGC might result in undesired one-pixel-
wide segmentations (see e.g. fig. 4(c,d)). In [33] this prob-
lem was fixed by manually specifying a minimum width for
each connecting path (see [33] for details). We automate
this process by computing multiple shortest paths with dif-
ferent widths ϕ ∈ {1, .., 4} for each disconnected island and
choose the path which gives the segmentation with the low-
est costs under (4). Note that we encourage thicker paths by
dividing the costs of paths where ϕ>1 by a factor of 1.005.

3.4. Estimating a spatially varying PSF
Most previous work that can be used to estimate a PSF

from alpha, assumes a constant blur kernel over the whole
image (e.g. [24, 10]). However, in real world scenes the PSF
may vary over the image due to lens imperfections, motion
blur or defocus blur that varies with the scene depth.

To account for spatially varying motion blur, [28] pro-
posed an interactive deblurring method which is, however,
limited to rotational motions. Another approach is to es-
timate the PSF in local sub-windows, assuming constant

4In [33] the computational burden was reduced by recycling flow and
search trees[13], but the authors of [33] found that its effectiveness was sig-
nificantly reduced, since nodes had to be (un)fixed in an unordered fashion.

blur in each window (see e.g. [11]). Clearly, such an ap-
proach fails if the PSF changes rapidly due to depth dis-
continuities. In the limit, a window-based approach could
be used to compute a PSF for every pixel. However, there
might not be enough constraints to reliably estimate a PSF
at each pixel locally. Hence, smoothness priors on neigh-
boring kernels could be used to regularize the result, as in
the Filter Flow framework [27]. A drawback of such an ap-
proach are the immense runtime and memory requirements
([27] reported several hours of runtime for low-res. images).
Moreover, the smoothness prior in [27] is limited to linear
metrics, which might oversmooth depth discontinuities.

The basic idea of our approach is to segment the image
into regions exhibiting similar defocus blur and then esti-
mate a PSF in each of these regions separately.5 Thus the
key challenge is to estimate the amount of defocus, which
can be characterized by the radius R (i.e. the spatial extent)
of the PSF K. Recently, a solution to this task has been pro-
posed in [16]. However, it requires the image to be captured
using a camera with a modified aperture. Also their method
is potentially slow, since computationally expensive decon-
volution algorithms are applied to the image several times
(the authors report a runtime in the magnitude of hours).
The method closest to our approach is Bae et al. [1], where
the level of blurriness is automatically computed at image
edges (similar to [6]) and then propagated to the rest of the
image by adapting the approach of [18]. We will qualita-
tively compare [16] and [1] to our approach in fig. 6.

Our approach differs from [1] in several ways. Firstly,
we compute local defocus measures along the boundary of
αb, which usually coincides with the object outline. This is
potentially more reliable than using interior edges for blur
estimation, which might originate from shading or attached
shadows. Secondly, we use a different method for local blur
estimation. Thirdly, by working on the alpha matte, as op-
posed to the image, we can formulate an effective confi-
dence measure for the amount of blur. Finally, we propagate
the local defocus information using discrete optimization,
enabling the use of edge preserving affinities.

In more detail, we formulate the defocus estimation of
the blur kernel radius inside the foreground object as the
following MRF and optimize it using alpha expansion:

E(R) =
∑

i∈Ω Bi(Ri) · ρi +
∑

{i,j}∈N Wij(Ri, Rj), (9)

where Ω denotes the set of pixels at the boundary of αb and
N is an 8-connected neighborhood defined over all fore-
ground pixels of αb (i.e. where αb=1). Here, ρi is the con-
fidence of the data term at pixel i, and Ri is the discretized
radius of the PSF at pixel i (we use 12 radii R ∈ {1, .., 12}).

To construct the data term Bi consider fig. 5(a). It shows
the 1D profile of α orthogonal to the boundary of αb. The

5This is similar to e.g. [15], where the image was segmented into mo-
tion layers before deconvolution.



(a) PSF radius (b) Confidence
Figure 5. Data term estimation. (a) The radius of the PSF is
determined by the max/min values in the alpha profile (see text for
details). (b) The data term might be unreliable two step edges of
the segmentation boundary are close to each other. Our confidence
measure handles such cases (see text for details).

distance of the local minimum alpha value αmin
i along the

edge profile to the segmentation boundary gives an estimate
of the blur radius.6 The data term Bi is then defined as
Bi(Ri) = |αRi

i − αmin
i |, where αRi

i is the alpha value of
the pixel which is at distance Ri away from pixel i in the
direction orthogonal to the segmentation boundary.

The data term at pixel i might be unreliable due to arti-
facts in alpha. Thus we define a pixel-wise confidence for
the data term as ρi=exp(−αmin

i /θ3), where θ3 = 1.2. In-
tuitively, the confidence at pixel i is high if αmin

i is zero and
lower otherwise (αmin

i is zero in a perfect matte).
Another case where our confidence measure is useful is

illustrated in fig. 5(b). It shows the alpha profile (solid blue
line) generated by a binary segmentation (thin dashed line)
whose edges are close to each other. In this case αmin

i does
not longer coincide with the true PSF radius. The true PSF
radius is located at the minimum of the alpha profile that
would result from convolving only the right step edge in fig.
5(b) with the PSF (thick dashed line). Our confidence mea-
sure accounts for such a failure, since in such cases αmin

i is
larger than zero (hence, the confidence is lower).

We also construct a data term using the local max. alpha
value along the edge profile in the same way. Finally, at each
pixel the data term with the higher confidence is chosen.

The pairwise term Wij encodes our assumption that
neighboring pixels should have similar kernel radii if they
have similar colors in the input image. We implement this
assumption using a contrast sensitive truncated linear term:

Wij(Ri, Rj) = δ(Ri �= Rj) · g(Ri, Rj), (10)

where δ is the Kronecker delta and g(Ri, Rj) is a function
based on the difference of colors Ci and Cj in neighboring
pixels of the input image C:

g(Ri, Rj) = θ4+min(|Ri−Rj |, θ5)+θ6 exp(−β|Ci−Cj |2),
where θ5 was fixed to 2 and β =

(
2
〈
(Ci − Cj)2

〉)−1
,

where 〈·〉 denotes expectation over the image. The weights
θ4 and θ6 were chosen such that the smoothness is higher
along the object boundary Ω:

{θ4, θ6} =
{ {0.4, 2} if i ∨ j ∈ Ω

{0, 0.0001} otherwise.

6Our approach was inspired by the sharp-edge prediction method in
[11].

Optimizing eq. (9) gives an estimate of the PSF radius
R for each pixel of the foreground object. We then split the
foreground into regions of uniform kernel radii and estimate
a PSF in each of these regions separately. In each region, we
model the PSF as a kernel K with estimated radius R that
comprises non-negative elements that sum up to one. We
apply a smoothness prior to K that is given by γ||∇K||2,
where γ = (2R + 1)2 normalizes the kernel area. Given
αb and α, we obtain K by minimizing the quadratic energy
function for all pixels in each region of constant defocus:

||αb ⊗ K − α||2/σ2 + θ7γ||∇K||2, (11)

where σ = 0.005 denotes the noise level and θ7 = 2
weights the smoothness prior.7 For computational reasons
we compute K in the original image resolution, thus we
bicubicly downsample αb before PSF estimation.8

To give a rough impression about the quality of our ap-
proach, we compare the result of our interactive defocus es-
timation method with the automatic approaches of [1] and
[16] in fig. 6 (see discussion in figure caption).9 In the fu-
ture, one could try to use our defocus map for further image
manipulations such as re-focusing.

3.5. Re-estimating alpha with our PSF Prior
Once the binary segmentation αb and the spatially-

varying PSF K are computed, we construct the prior for
alpha as αprior = (αb ⊗ K). We then re-estimate α by us-
ing αprior as a data term in the framework of [23]. This was
done by replacing α̂ in eq. (3) with the term:

α̂ = α̂ + θ8α
prior, (12)

where θ8 = 0.08 is the relative weight of the prior. An
example of the final alpha matte is shown in fig. 1(e).

4. Matting results on natural images
We quantitatively evaluated our approach on the recently

proposed ground truth benchmark of [25]. At the time
of submission the benchmark compares 10 state-of-the-art
matting algorithms on 8 (low-resolution) natural images
with respect to 4 error metrics. As user input 3 different
trimaps per input image are provided. Results of different
methods are shown in fig. 1 as well as figures 7-10. Our
results for all low-resolution images were computed by set-
ting the parameters (θ1,θ2) in eq. (4) to (200, 0.005). We
show the overall ranks of selected algorithms obtained from
the benchmark of [25] in columns “low-res” of table 1. We
see that our method is the top performer on three out of four
error metrics. Our approach performs less well on the con-
nectivity metric despite enforcing connectivity of the binary
segmentation. This is because the final alpha matte might

7In [24], K was derived in a similar way. However, they constrained K
to be symmetrical, which cannot account for potential slight motion blur.

8We found this to give similar results compared to computing the PSF
from the upscaled matte and then downsample the convolved result.

9Although the images in fig. 6(a) were recorded with an aperture that
generates a multi-peaked PSF, we found our method to work well.



(a) Input image taken from [16] (b) User defined trimap (c) Our defocus map using (b) (d) Defocus map of [1] (e) Depth map of [16]
Figure 6. A loose comparison of different defocus estimation methods. Our defocus map (c) was generated with the user-defined trimap
(b). The methods of [1, 16] (d,e) are automatic. Here, white encodes small defocus/depth, black means large defocus/depth, and red means
background region which is not estimated by our approach. Note, that our result is much cleaner than that of [1] (d) and is of comparable
quality to [16] (e). It is important to note that [16] requires the image to be captured with a specialized aperture as well as an exact
calibration of the PSF at several depths. Also our solution was computed in a few seconds, thus is orders of magnitudes faster than [16].

still be disconnected. In the future one could investigate
approaches that enforce connectivity directly on alpha.

As an additional competitor we replaced the prior in our
method (i.e. convolved segmentation) with the one com-
puted by Rhemann et al. [24]. As expected, this competitor
performs better then the original method of [24], due to the
better initial alpha matte. However, the results are still infe-
rior to our approach which shows the quality of our prior.

Note that the test set used in [25] includes one image that
shows a light-transmitting object (translucent plasticbag),
which largely violates our assumptions. We excluded this
image from the test set and show the overall rankings for
the remaining 7 images in column “low-res*” of table 1. As
expected, the ranking of our method improves.

It should be noted that the benchmark of [25] is per-
formed on low-resolution (≈ 1Mpix) images where our as-
sumption that the underlying segmentation is binary, might
not always be met (even after upscaling). Fortunately, [25]
provides additionally 27 high-resolution (≈ 6Mpix) images
with public ground truth alpha, which were originally in-
tended for parameter training. We use these images as an
additional test set for our matting approach. For the high-
resolution data we set the parameters (θ1,θ2) in eq. (4) to
(200, 0.05). We show the average ranks in column “high-
res” of table 1. Our approach is best on all error metrics.

Note that on the high-resolution dataset we only com-
pare against the 5 methods that performed best on the low-
resolution data. High-resolution results for [36, 17] were
obtained in a multi-resolution framework, as in [24].

We qualitatively compare our method on the crop of a

high-resolution image showing fuzzy hair (fig. 7(b)). The
results of our competitors (fig. 7(c-g)) show large back-
ground artifacts or underestimate alpha inside the fore-
ground object. Even replacing the prior in our method with
that of [24] gives inferior results (see the background arti-
facts in fig. 7(g)). The result of our method (fig. 7(h)) is
closest to the ground truth (fig. 7(i)).

Another example is shown in fig. 8(b) which depicts a
crop of a high-resolution image showing fine hair strands.
The approach of [24] (fig. 8(c)) could partially recover the
hair strands but introduced large artifacts in the foreground
region. All other competitors (fig. 8(d-g)) underestimated
the fine hair strands. In contrast, our approach could bet-
ter preserve the hair (fig. 8(h)) and is visually close to the
ground truth (fig. 8(i)).

Fig. 9 shows results on the crop of a high-resolution im-
age depicting the out-of-focus boundary of a soft toy (fig.
9(b)). The results of all competing approaches (fig. 9(c-g))
show artifacts in the background. The result of [17] (fig.
9(g)) is closest to our result, but still shows slight artifacts
around the object boundary (arrows in fig. 9(g) point to the
artifacts). Interestingly, the prior of [24] had almost no ef-
fect on the result (compare fig. 9(e) and (f)). This is pre-
sumably because [24] is limited to a single PSF, hence can-
not handle out-of-focus regions (in out-of-focus-regions the
method of [24] degrades to a standard matting method). Our
approach has no such limitations, which is reflected in our
result (fig. 9(h)) that is close to the ground truth (fig. 9(i)).

Finally, we show results on the crop of a low-resolution
image (fig. 10(a)). We see that the approach of [17] is clos-



Method Ranking for SAD Ranking for MSE Ranking for Grad. Ranking for Conn.
low-res low-res* hi-res low-res low-res* hi-res low-res low-res* hi-res low-res low-res* hi-res

Our result 2.4 2.1 2.1 2.5 2.1 2.0 2.0 1.8 1.9 5.1 4.6 2.1
Imp. Col. Mat. [23] with prior of [24] 2.6 2.5 2.8 3.5 3.4 3.2 2.8 2.3 3.8 4.2 3.5 3.8

Improved Color Matting [23] 3.0 3.1 2.8 2.6 2.8 2.4 2.6 2.8 3.1 4.2 3.8 2.8
Closed-Form Matting [17] 3.5 3.5 2.8 3.8 3.9 3.4 4.6 5.0 3.0 3.1 3.2 2.2

Robust Matting [36] 5.0 5.4 4.7 4.6 5.0 4.3 4.8 4.9 4.0 7.0 6.9 4.4
High-res Matting [24] 6.0 5.8 5.8 5.5 5.1 5.7 5.2 5.0 5.3 5.4 5.7 5.7.

.

.

Random Walk Matting [8] 7.7 7.5 - 7.8 7.7 - 7.8 8.1 - 2.0 2.1 -
Table 1. Comparison on alphamatting.com. We show the overall ranks (as defined in [25]) of the top performing matting approaches on
the benchmark of [25] wrt. four error metrics. Our approach performs best wrt. three out of four error metrics. See the text for a discussion.

est to our method, but oversmoothed the hole in the fore-
ground (fig. 10(l)). The other approaches (fig. 10(b-k)) ei-
ther introduced large background artifacts or completely cut
off the hair. Our approach (fig. 10(m)) shows the cleanest
result. The ground truth for this test image, obtained from
the benchmark of [25] is hidden from the public.

5. Conclusions
In this work we have shown that state-of-the-art alpha

matting approaches can be improved by incorporating a
prior that models the alpha matte as convolution of a binary
segmentation with the spatially varying PSF. We proposed
a new and efficient deconvolution approach, based on flux
and connectivity that recovers this binary segmentation. We
further introduced a new and efficient method to infer the
amount of defocus at each pixel of the foreground object.
This enabled us to recover a PSF which varies due to scene
depth. We demonstrated that our method improves over the
state-of-the-art on a ground truth matting benchmark.
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(a) Full image (b) Image crop + trimap (c) Closed-Form Matting [17].
SAD:19.6

(d) Improved Color Matting
[23]. SAD:13.0

(e) Robust Matting [36].
SAD:10.7

(f) High-resolution Matting
[24]. SAD:10.6

(g) Improved Color Matting
[23] with prior of High-res.
Matting [24]. SAD:10.1

(h) Our result. SAD:5.0 (i) Ground truth alpha

Figure 7. High-resolution matting comparison (1). (c-h) Results for a crop of an image (obtained from the benchmark of [25]) (b).
Arrows point to minor artifacts. See the text for a discussion.

(a) Full image (b) Image crop + trimap (c) High-resolution Matting
[24]. MSE:1.78

(d) Closed-Form Matting [17].
MSE:0.35

(e) Improved Color Matting
[23] with prior of High-res.
Matting [24]. MSE:0.34

(f) Improved Color Matting
[23]. MSE:0.26

(g) Robust Matting [36].
MSE:0.24

(h) Our result. MSE:0.23 (i) Ground truth alpha

Figure 8. High-resolution matting comparison (2). (c-h) Results for a crop of an image (obtained from the benchmark of [25]) (b)
showing fine hair strands of a doll. See the text for a discussion.



(a) Full image (b) Image crop + trimap (c) High-resolution Matting
[24]. MSE:9.6

(d) Robust Matting [36].
MSE:7.5

(e) Improved Color Matting
[23]. MSE: 4.2

(f) Improved Color Matting
[23] with prior High-res.
Matting [24]. MSE:4.2

(g) Closed-Form Matting [17].
MSE:2.1

(h) Our result. MSE:1.8 (i) Ground truth alpha

Figure 9. High-resolution matting comparison (3). (c-h) Results for a crop of an image (obtained from the benchmark of [25]) (b)
showing the out-of-focus boundary of a soft toy. Arrows point to small artifacts in (g). See the text for a discussion.

(b) Random Walk Matting [8] (c) Geodesic Matting [2] (d) Easy Matting [9]

(e) Poisson Matting [30] (f) Bayesian Matting [4] (g) Iterative BP Matting [35]

(a) Full image (bottom) and
image crop + trimap (top)

(h) Improved Color Matting [23] (i) Improved Color Matting [23]
with prior of High-res. Matting [24]

(j) Robust Matting [36]

(k) High-resolution Matting [24] (l) Closed-Form Matting [17] (m) Our result
Figure 10. Low-resolution matting comparison. On the crop of this challenging test image (a) our approach (m) could better resolve the
matting ambiguities than its competitors (b-l). The ground truth for this test image of [25] is hidden from the public. See the text for details.


