
Near Real-Time Stereo With Adaptive Support Weight Approaches

Asmaa Hosni, Michael Bleyer and Margrit Gelautz
Institute for Software Technology and Interactive Systems, Vienna University of Technology

Favoritenstr. 9-11/188/2, A-1040 Vienna, Austria
asmaa,bleyer,gelautz@ims.tuwien.ac.at

Abstract

Algorithms based on the adaptive support weight strat-
egy currently represent the state-of-the-art in local stereo
matching. Unfortunately, their good-quality results comeat
the price of high computation times: As opposed to stan-
dard local algorithms, incremental computation via sliding
windows is not applicable for adaptive support weight win-
dows. This paper presents a method for considerably speed-
ing up computation times of these methods. The key idea is
to exploit the adaptive support weight windows for gener-
ating an explicit over-segmentation of the reference image
in a fast way. Having this explicit segmentation, we can
take advantage of a modified “segmentation-based” sliding
window technique, which makes run time independent of the
window size. In particular, we demonstrate our transforma-
tion scheme for the geodesic stereo matcher of [11] that
has recently produced excellent results. Our unoptimized
GPU-based implementation processes 320× 240 pixel im-
ages with 26 allowed disparities at 10 frames per second
and achieves rank 32 out of 74 methods in the Middlebury
online benchmark.

1. Introduction

Stereo research is commonly divided into two different
branches [15],i.e. local andglobalmethods.

Global methods express their model of the stereo prob-
lem as an energy function. This energy is then subject
to optimization, which can, for example, be accomplished
via dynamic programming, graph-cuts or message passing.
Global methods are known to produce good-quality results,
but lose attractiveness due to the high computational de-
mands of the energy optimization step. For several stereo
applications such as robotics, teleconferencing, virtualre-
ality or security applications, slow run time is a knock-out
criterion. It is therefore not surprising that virtually all com-
mercial stereo products (e.g. Point Grey, Videre Design or
TYZX) do not follow the global, but the local approach.

Local approaches rely on support windows. For each

pixel of the left image, they center a (typically square)
window, which is then shifted in the right image to deter-
mine the matching point,i.e. the point of highest correspon-
dence. In a naive implementation, this matching procedure
is not necessarily a fast one. However, it can effectively be
speeded up by elimination of redundant computations via
a sliding window technique[5, 14]. The sliding window
technique makes run time independent of the window size,
which even enables real-time stereo systems.

The inherent problem is the difficulty of choosing
“good” windows. There are two contradicting requirements
that a window should fullfill: (1) It should be large to cap-
ture enough intensity/color variation for handling regions
of poor texture. (2) It should be small to avoid overlap-
ping disparity boundaries (edge fattening effect). Finding
good trade-offs between these requirements has dominated
research on local methods for decades (e.g. [6, 9, 12]), but
has not overcome this problem. Therefore, the results of lo-
cal methods have traditionally been considerably inferiorin
comparison to global methods. This has changed recently.

Exploitation of the concept of self similarity has rep-
resented an important progress in the field of local stereo
matching. The simple idea is that if neighboring or close-by
pixels show similar appearance (typically in their colors),
they are likely to have the same disparity value. Hence, in
a local approach, the support region for a specific pixelp

should be formed by pixels that are close top in terms of
colors and spatial positions. The adaptive support weight
approach of [19] has been the first local method to imple-
ment this concept.1 Numerous variations of [19] have ap-
peared since then (e.g. [7, 11, 13, 17]). A detailed discus-
sion and evaluation of such methods is found in [8, 18].

The main reason why [19] and related approaches have
become popular in the stereo community is their good-
quality results,i.e. the performance is very close to that
of global methods. Unfortunately, this advantage does
not come “for free”. It is known that the sliding window

1It is interesting that the importance of self similar pixelshas been re-
alized considerably earlier in global stereo matching [16]and has led to a
long track of publications on segmentation-based stereo (e.g. [2, 10]).

1

Geodesic
Mask

Computation

Cost
Aggregation
(Brute Force)

Local
Disparity
Selection

O()NW

Algorithmic
Steps:

Computational
Bottleneck

(a) Original Geodesic Matching

Matching
Cost

Computation

Geodesic
Mask

Computation
(sec. 2.1)

O()ND O()NWD O()ND

Matching Cost
Computation

(sec. 2.3)

Cost
Aggregation
via Sliding
Windows
(sec. 2.4)

Local
Disparity
Selection
(sec. 2.5)

O()NW O()NW O()ND O()ND O()ND

Efficiency:

Algorithmic
Steps:

Efficiency:

Segmentation
via Iterative

Color
Averaging
(sec. 2.2)

(b) Our Fast Geodesic Matching

Figure 1. Fast versus original geodesic stereo matching. Weshow the individual steps of the algorithms via block diagrams and plot
corresponding complexity estimations. (Here,N denotes the number of pixels,W the number of pixels within the match window andD

the number of allowed disparities.) (a) The original geodesic algorithm. The cost aggregation step represents a computational bottleneck
and cannot be speeded up by the sliding window technique. (b)Our fast geodesic algorithm. We eliminate the computational bottleneck
by using the geodesic masks to generate an explicit color segmentation. This explicit segmentation enables application of “segmentation-
based” sliding windows in the cost aggregation step, which makes run time independent of the window size. Our fast approximation of the
original geodesic algorithm does not lead to considerable performance degradations in terms of quality of results.

method cannot be applied to adaptive support weight win-
dows. Therefore, cost aggregation has to be performed in a
“brute-force” manner so that the run time is directly depen-
dent on the size of the match window. This is particularly
bad considering that windows should be large to get good-
quality results (33× 33 pixels in [19]). Consequently, [19]
has reported run times that easily exceed a minute. This is
very crucial, since it cancels out the biggest advantage over
global methods,i.e. fast computation time.

In this work, we present a simple technique for trans-
forming adaptive support weight approaches intofaststereo
matchers. In particular, we approximate the geodesic sup-
port weight approach of [11]. (Note that our method would
also work for [19], but we have decided for the geodesic
strategy, because it has produced higher-quality results in
our experiments.) The main idea is to use the adaptive
support weight windows for generating an explicit over-
segmentation,i.e. we divide the reference image into dis-
joint regions of homogeneous color. Note that our segmen-
tation method is fast and hence avoids that the segmenta-
tion step becomes the new computational bottleneck in our
method. The advantage of an explicit segmentation is that
it enables a modified “segmentation-based” sliding window
technique [7]. Thus our stereo method is no longer depen-
dent on the size of the match window as in [11, 13, 17, 19].
Using this transformation scheme, we can considerably im-
prove the computational performance of [11], while keep-

ing approximately the same level of quality. Our method is
very close to real-time performance.

Figure 1 shows the pipelines of the original geodesic ap-
proach [11] and our “transformed” algorithm. The major
difference is that we remove the computational bottleneck
(Cost Aggregation (Brute Force)) of figure 1a and replace
it by two low-cost steps (Segmentation via Iterative Color
Averagingand Cost Aggregation via Sliding Windows) in
figure 1b.

2. Algorithm

In the following, we go through the individual steps vi-
sualized in the block diagram of figure 1b.

2.1. Geodesic Mask Computation

In the adaptive support weight approach, a square win-
dow Wc of predefined size is centered at each pixelc of
the reference image. For each pixelp ∈ Wc, a function
w(p, c) computes a weight representing the likelihood to
which pixel p lies on the same surface with pixelc. We
refer to the set of values{w(p, c) : p ∈ Wc} as the mask
of c. (Since in our case, masks are determined using the
geodesic approach of [11], we will also use the expres-
sion geodesic mask.) Note that in [7, 11, 13, 17, 19] such
a mask is exploited to regulate the influence of each pixel
p ∈ Wc in the aggregation process,e.g. if w(p, c) = 0,

2

(a) (b)

Figure 2. Example masks computed using the geodesic support
weight approach of [11]. The blue rectangle marks the centerpixel
for which the geodesic mask (bottom images) is computed. In the
mask images, bright pixels represent high-weight pixels that are
likely to lie on the same surface with the center pixel. (a) Masks
computed for the Teddy image of the Middlebury set. By using
the concept of connectivity we can separate the center leaf from
the other leaves that have very similar colors and spatial positions,
but lie on a different depth surface. (b) Geodesic masks computed
for the Cones set.

pixel p is not considered to be part ofc’s support region.
As will be discussed in section 2.2, this paper proposes a
different approach,i.e. we use the masks for generating an
explicit over-segmentation of the reference image.

Let us now focus on the most challenging question,
namely how to implement the functionw(p, c). This is
where the concept of self similarity comes into play,i.e.
two pixels are likely to reside on the same surface, if they
are similar in their appearance. Adaptive weight approaches
basically only differ in the way how they express this con-
cept. In [19],w(p, c) is computed as the pixels’ difference
in spatial positions and color values. [11] is more advanced
in this respect, since the authors implement an additional
cue for self similarity, namely connectivity. This means that
w(p, c) only returns high values, if there is a path connect-
ing p with c along which the color does not vary consider-
ably.

Let us explain the advantage of this connectivity property
using the example masks of figure 2. In figure 2a, there are
several leaves that all have similar colors and similar spatial
positions. When estimating the support region of the center
leaf, the approach of [19] would therefore erroneously also
include pixels of other leaves although they lie on a different
depth surface. In contrast to this, [11] can avoid this wrong
segmentation: Every path connecting two pixels of different
leaves involves a color edge where the color will vary con-
siderably. Hence, these pixels do not fulfill the connectivity
property.

Let us now formulate the functionw(p, c) according to
the geodesic approach [11]. The weight ofp is inversely
proportional to its geodesic distance to the center pixelc,

which we implement by

w(p, c) = exp

(

−
D(p, c)

γ

)

(1)

whereγ is a user-defined parameter that defines the strength
of the resulting segmentation.D(p, c) denotes the geodesic
distance defined as the costs of the cheapest path betweenp

andc:
D(p, c) = min

P∈Pp,c

ρ(P). (2)

Here,Pp,c denotes the set of all paths betweenp andc. A
pathP = {p1, p2, · · · , pn} ∈ Pp,c represents a sequence
of spatially neighboring points (in 8-connectivity) so that
p1 = p andpn = c. We define the costs of this path as

ρ(P) =

i=n
∑

i=2

σ(pi, pi−1) (3)

with σ() being a function that determines the color differ-
ence. This function is implemented by

σ(p, q) =

√

√

√

√

i=3
∑

i=1

(fi(p) − fi(q))
2
. (4)

Here, fi(p) denotes the value of theith color channel at
pixel p. In our implementation, we represent color using
the RGB system.

Evaluation of equation (2) can easily become computa-
tionally expensive if done in an exact way. However, in
our method, we only determine an approximation of the
geodesic distances via Borgefors’ algorithm [3]. This ap-
proximation algorithm is computationally very efficient,i.e.
the computational complexity for computingall geodesic
masks for the reference image isO(NW) whereN is the
number of the reference image’s pixels andW denotes the
number of pixels inside a window.

It is important to understand that the computational
bottleneck in [11] stems from applying the precomputed
geodesic masks at each pixel anddisparity in the aggrega-
tion step, which leads to a complexity ofO(NWD) with D

being the number of allowed disparities. In this paper, we
eliminate this computational bottleneck by using the pre-
computed geodesic masks for generating an explicit over-
segmentation, which is discussed next.

2.2. Segmentation via Iterative Color Averaging

In the following, we exploit the geodesic masks of sec-
tion 2.1 to compute an explicit color over-segmentation in
a fast way. It is important to note that computational effi-
ciency of the segmentation step is vital for the transforma-
tion scheme proposed in this paper. If one applies a compu-
tational demanding segmentation algorithm such ase.g. the

3

Figure 3. Our segmentation results for the four images currently used in the Middlebury benchmark. The top row shows the extracted
color segments by assigning all pixels of the same segment tothe same color. The bottom row shows the same results, but uses a different
representation. Here, we show the borders of segments.

commonly-used meanshift algorithm [4], the segmentation
step can easily become the new computational bottleneck.
Hence, the overall computational performance of the stereo
matching algorithm might not necessarily be faster than that
of the “untransformed” algorithm.

Our fast segmentation method works as follows. We take
the reference color image as an input and iteratively apply
filtering on it. At each pixelc of the reference image, our
filter replacesc’s color value with the mean color computed
over all pixels inside a small window centered onc. The
idea is that if this filter is applied a few times, then pixels
belonging to the same color surface will have almost iden-
tical color values in the filtered image. The crucial point is
that this segmentation strategy can only work if we com-
pute the mean color solely over pixels that belong to the
same color surface. Otherwise, artifacts at segment discon-
tinuities, where colors of different surfaces would be mixed,
are inevitable. Note that our geodesic masks hold the infor-
mation required for this step,i.e. for a pixelc, its geodesic
mask provides a set of close-by pixels that are likely to lie
on the same surface withc.2

We now describe this filtering procedure in a more for-
mal way. LetF andF ′ be the color values of the original
reference image and the filtered image, respectively.F ′ is
computed fromF by applying the following operation on
each pixelc of the left image:

f ′
i(c) =

∑

p∈Wc
w(p, c) · fi(p)

∑

p∈Wc
w(p, c)

(5)

with f() andf ′() denoting color values inF andF ′.

2A segmentation algorithm that applies color averaging has also been
proposed in [20]. In contrast to our more sophisticated large geodesic filter
masks, [20] uses a set of 8 predefined filters in a 3×3 pixel window.

As stated above, we iterate this procedure,i.e. after com-
putingF ′ we computeF ′′ using equation (5) and so on. In
our implementation, we use three iterations. The result of
the iterative filtering is an image of approximately piece-
wise constant colors. We interpret groups of neighboring
pixels that share the same color as our final segments. In a
postprocessing step, we reduce the number of segments by
deleting segments of very small size. A small segment is
thereby merged with its most similar neighboring segment,
i.e. the one that has the most similar color.

Note that we can regulate the strength of the segmenta-
tion via the setting of parameterγ in equation (1). In gen-
eral, it is advisable to apply a strong over-segmentation to
avoid situations in which a color segment overlaps a dispar-
ity discontinuity. Figure 3 shows over-segmentations pro-
duced by our fast segmentation algorithm on the Middle-
bury images. It can be observed that our algorithm works
well in preserving the object edges in all four images.

2.3. Matching Cost Computation

Let us now compute the matching costs. Given a pixel
p of the left and a pixelq of the right image, the match-
ing costs determine the likelihood to whichp andq corre-
spond to each other. To compute the matching costs, we
use the absolute difference of color values (in RGB space)
as a dissimilarity function. Formally, the functionm(p, d)
computes the costs for matching pixelp at disparityd by

m(p, d) =
i=3
∑

i=1

|fi,left(p) − fi,right(p − d)| . (6)

In the following, we will aggregate these matching costs.

4

2.4. Cost Aggregation via Sliding Windows

The explicit color segmentation computed in section 2.2
enables the use of a segmentation-based sliding window
technique [7] in the aggregation step. Note that a key ar-
gument for our transformation scheme is that by bringing
adaptive support weight approaches into a form where slid-
ing windows are applicable, we can reduce the computa-
tional complexity of the aggregation step fromO(NWD)
toO(ND). Hence, we can eliminate the computational bot-
tleneck.

We start by formulating the aggregation function. The
idea is that the support region of a pixelc is solely formed
by pixels that lie inc’s color segment. LetSc denote all
pixels that reside in the same segment asc itself andW ′

c be
a square window centered atc. We buildc’s support region
Lc by intersection:

Lc = Sc ∩W ′
c. (7)

Knowing the support regionLc, we can compute the aggre-
gated matching scoresa(c, d) of pixel c at disparityd by

a(c, d) =
∑

p∈Lc

m(p, d). (8)

Let us now focus on the task of computinga(c, d) for
each pixelc and each allowed disparityd. The main advan-
tage of the aggregation function in equation (8) is that there
is significant computational redundancy when calculating
a() for spatially neighboring pixels. More precisely, let pix-
elsp andp′ be spatial neighbors lying in the same segment.
If one writes a list of values that need to be summed-up
in order to computea(p, d) and another list for computing
a(p′, d), both list will be identical with a few exceptions.3

This motivates an incremental computation scheme,i.e. we
can start with the value ofa(p, d) and focus on the few ex-
ceptions to computea(p′, d).

The idea of removing these redundant calculations to
make the computational complexity for calculatinga()
independent of the window size is implemented in the
segmentation-based sliding window method of [7]. This al-
gorithm is listed in figure 4 using pseudo-code. Here, the
basic difference to the standard sliding window approach is
that instead of just having a single “running sum”, an indi-
vidual “running sum”Ts is maintained for each segments

of the reference image.4

3Note that this is not valid for “untransformed” adaptive support weight
approaches where the matching scores are multiplied with a support mask
that is different for each pixel.

4In fact, the standard sliding window algorithm can be considered as a
special case of the segmentation-based algorithm where there is just one
segment that contains all pixels of the reference view.

Segmentation-based sliding windows

1. For each row:

(a) For each segments: Ts = 0

(b) For each pixelx in row y:

i. Tsx+w/2,y
= Tsx+w/2,y

+ Mx+w/2,y

ii. Tsx−w/2,y
= Tsx−w/2,y

− Mx−w/2,y

iii. A∗
x,y = Tsx,y

2. For each column:

(a) For each segments: Ts = 0

(b) For each pixely in columnx:

i. Tsx,y+w/2
= Tsx,y+w/2

+ A∗

x,y+w/2

ii. Tsx,y−w/2
= Tsx,y−w/2

− A∗

x,y−w/2

iii. Ax,y = Tsx,y

Figure 4. The segmentation-based sliding window algorithmpro-
posed in [7]. The algorithm computes the values ofa() in equation
(8) for all pixels at a single, fixed disparity.M denotes the pre-
computed matching costs of equation (6) andw is the size of the
aggregation window.A holds the aggregated costs that represent
the algorithm’s output.

2.5. Local Disparity Selection

We use the aggregated costs to determine a disparity
valuedp for each pixelp of the reference view. For the sake
of high computational efficiency, we do not incorporate
global optimization algorithms, but use the local Winner-
Takes-All strategy. Hence, the disparity is computed by

dp = argmin
d∈D

a(p, d) (9)

whereD represents the set of all allowed disparities.

3. Experimental Results

We perform two tests to evaluate our method. The first
test is conducted on the four test images from the Mid-
dlebury benchmark [15] and shall evaluate the quality and
computational efficiency of our algorithm. The second test
is carried out on a dynamic scene in order to assess the per-
formance of our stereo matcher when used in real-time sce-
narios.

We run the proposed algorithm on an Intel Core 2 Quad
Q6600 processor with 2.4 GHZ and use a GeForce GTS
250 graphics card with 1GB memory manufactured by
NVIDIA. We apply CUDA [1] to implement our approach
on the GPU.

In our test runs, the algorithm’s parameters are set to con-
stant values. The parameterγ, which is used in converting

5

(a)

(b)

Figure 5. Results on Middlebury images generated using constant parameter settings. (a) The first row shows the results computed by our
algorithm after applying left-right consistancy checkingand occlusion filling. The second row shows a comparison against the ground truth
by plotting disparity errors larger than one pixel. (b) Corresponding results obtained by [11].

geodesic distances to geodesic weights, is fixed to the value
γ = 10. The window sizeWc for image segmentation is
chosen to be9× 9 pixels and adjusted to31× 31 pixels for
W ′

c in the cost aggregation process. These parameters have
been found empirically.

In the first test, we use the Middlebury stereo bench-
mark [15] to quantitatively evaluate the matching accuracy
and computational efficiency of our approach on a static
scene. In this test, we incorporate a simple method for oc-
clusion detection and filling, which is the same as that used
in [11]. (Using the same occlusion handling method shall

ensure a fair comparison between the results of the two al-
gorithms.) Roughly spoken, occlusion detection works by
left-right consistency checking. Pixels invalidated by this
check are then assigned to the background disparity and fi-
nally a smoothing filter is applied on the invalidated regions.
For more details on this occlusion handling procedure, the
reader is referred to [11].

Figure 5 shows the results obtained by our algorithm
(figure 5a) compared against the results obtained by the “un-
transformed” algorithm of [11] (figure 5b). From this figure
we can see that our results exhibit a small degradation in

6

Algorithm Rank
Avg. Error non-occluded pixels [%]

Error [%] Tsukuba Venus Teddy Cones

GeoSup [11] 10 5.80 1.45 0.14 6.88 2.94
NRTGeoSup 32 6.55 1.52 1.05 9.21 3.06

Table 1. Rankings of our proposed algorithm and the “untrans-
formed” algorithm [11] in the Middlebury online database. Our
proposed algorithm is denoted byNRTGeoSup.

quality compared to the results of [11]. For example, some
higher deviations between our results and the ground truth
can be recognized from the error maps of the Venus and
Teddy images in columns 2 and 3 of figure 5. The problem
is that our large31 × 31 pixel windows are not ideal for
handling slanted surfaces where the window contains pix-
els that lie on slightly different disparities. This problem is
less pronounced for the untransformed algorithm, since it
assigns lower continuous weights to pixels that have a large
distance from the center pixel, whereas our weights are es-
sentially binary ones. However, it is important to note that
our algorithm performs well in the reconstruction of dispar-
ity borders, while it also finds correct disparities for regions
of low texture.

Table 1 shows quantitative results that are taken from the
Middlebury online table. Our algorithm currently takes the
32th rank out of 74 submissions, while the “untransformed”
algorithm of [11] takes the 10th rank. Despite this obvious
gap in the ranking, it is important to note that the average
error is increased by less than 1 percent. This implies that
the price we pay for the significant speed-up (as discussed
below) is only a relatively small degradation in quality.

Table 2 compares the execution times of our algorithm
and the “untransformed” method of [11]. To allow for a fair
comparison, we have performed a GPU implementation of
[11]. We also use the same window size in the matching
cost aggregation step for both algorithms. The measured
speed up is therefore solely due to our algorithmic modifi-
cations. The table shows the overall time consumed to com-
pute the disparity maps for the four test images of the Mid-
dlebury benchmark (which includes left-right consistency
checking and occlusion filling).

From Table 2 one can see that our algorithm has a speed
up factor of 61 for the Tsukuba image and an approximate
speed up factor of 26 for the Teddy and Cones images. The
processing time for our method is 0.176 seconds for the
Tsukuba images which have a resolution of384×288 pixels
and 16 allowed disparity values. Hence, our algorithm runs
at 6 fps. For the Teddy and Cones images that have a resolu-
tion of450×375 pixels and 60 allowed disparity values, our
algorithm consumes a processing time of 0.704 and 0.688
seconds, respectively. Similar performance figures are ob-
tained for the Venus images. These results demonstrate that
our approach yields a very good trade-off between accuracy
and speed.

Image Resolution
Time(sec.) Speed-up

GeoSup [11] Our Alg. Factor

Tsukuba 384 x 288 10.874 0.176 61
Venus 434 x 383 15.97 0.406 39
Teddy 450 x 375 18.532 0.704 26
Cones 450 x 375 18.56 0.688 26

Table 2. Computational efficiency of our algorithm comparedto
the “untransformed” geodesic stereo matcher [11] (denotedby
GeoSup).

Our algorithm is also tested on live videos captured using
a bumblebee camera manufactured by Point Grey Research.
We found that our algorithm can achieve 10 fps when han-
dling stereo images of320 × 240 pixels and 26 disparity
levels (excluding the overhead for rectification and render-
ing). This is equivalent to 19.97 million disparity estima-
tions per second (MDE/s). The disparity maps generated
for two frames captured by our live system are shown in
figure 6. As opposed to the tests on static scenes, we do not
apply any occlusion detection or filling mechanism in order
to achieve maximum computational speed. Although we do
not perform occlusion handling, we found that our approach
is still able to produce detailed and accurate disparity maps
along with clean object boundaries.

4. Conclusions

This paper has proposed a method for considerably im-
proving the computational efficiency of adaptive support
weight algorithms. We argue that standard support weight
approaches are computationally slow, because they use sup-
port masks directly in the aggregation step. In contrast to
this, we modify the stereo pipeline so that our aggregation
step applies the support masks only in an implicit way. We
add an additional step to the pipeline where a fast segmen-
tation is computed via the support masks. The major advan-
tage of this explicit segmentation is that it enables applica-
tion of a fast segmentation-based sliding window technique
in the aggregation step. This makes run time independent
of the window size and hence overcomes the computational
bottleneck of standard algorithms.

In the experimental results, we have shown that in com-
parison to an “untransformed” adaptive support weight al-
gorithm, our method leads to a slight decrease in quality of
disparity maps. However, the important point is that our
method is 20-60 times faster.

In future work, we will concentrate on improving our
GPU-based implementation. Currently, we only have a pre-
liminary implementation that does not fully exploit the ca-
pabilities of modern graphics cards. We strongly believe
that real-time performance can be accomplished by tuning
our implementation (or even by using a more recent graph-
ics card).

7

(a) (b)

(i) (ii) (i) (ii)

Figure 6. Two sample frames captured by our live system and their corresponding disparity maps. (a) Shot 1: (i) left image, (ii) disparity
map. (b) Shot 2: (i) left image, (ii) disparity map.

Acknowledgements

Asmaa Hosni is supported by Vienna PhD School of In-
formatics. Michael Bleyer obtained financial support from
the Austrian Science Fund (FWF) under project P19797 and
the Vienna Science and Technology Fund (WWTF) under
project ICT08-019.

References

[1] CUDA: Compute Unified Device Architecture programming
guide. Technical report, Nvidia Corporation, 2008.

[2] M. Bleyer and M. Gelautz. A layered stereo matching al-
gorithm using image segmentation and global visibility con-
straints.ISPRS Journal, 59(3):128–150, 2005.

[3] G. Borgefors. Distance transformations in digital im-
ages. Computer Vision, Graphics and Image Processing,
34(3):344–371, 1986.

[4] C. Christoudias, B. Georgescu, and P. Meer. Synergism in
low-level vision. In International Conference on Pattern
Recognition, volume 4, pages 150–155, 2002.

[5] O. Faugeras, B. Hotz, H. Mathieu, T. Viéville, Z. Zhang,
P. Fua, E. Théron, L. Moll, G. Berry, J. Vuillemin, P. Bertin,
and C. Proy. Real time correlation based stereo: algorithm
implementations and applications. Technical report, RR-
2013, INRIA, 1996.

[6] A. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with
multiple windowing. InCVPR, pages 858–863, 1997.

[7] M. Gerrits and P. Bekaert. Local stereo matching with
segmentation-based outlier rejection. InCRV, 2006.

[8] M. Gong, R. Yang, L. Wang, and M. Gong. A performance
study on different cost aggregation approaches used in real-
time stereo matching.IJCV, 75(2):283–296, 2007.

[9] H. Hirschmüller, P. Innocent, and J. Garibaldi. Real-time
correlation-based stereo vision with reduced border errors.
IJCV, 47:229–246, 2002.

[10] L. Hong and G. Chen. Segment-based stereo matching using
graph cuts. InCVPR, volume 1, pages 74–81, 2004.

[11] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local
stereo matching using geodesic support weights. InICIP,
2009.

[12] T. Kanade and M. Okutomi. A stereo matching algorithm
with an adaptive window: Theory and experiment.PAMI,
16(9):920–932, 1994.

[13] D. Min and K. Sohn. Cost aggregation and occlusion han-
dling with WLS in stereo matching.TIP, 17(8):1431–1442,
2008.

[14] K. Mühlmann, D. Maier, J. Hesser, and R. Männer. Cal-
culating dense disparity maps from color stereo images, an
efficient implementation.IJCV, 47(1):79–88, 2002.

[15] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms.IJCV,
47(1/2/3):7–42, 2002. http://www.middlebury.edu/stereo/.

[16] H. Tao and H. Sawhney. Global matching criterion and color
segmentation based stereo. InWorkshop on the Application
of Computer Vision, pages 246–253, 2000.

[17] F. Tombari, S. Mattoccia, and L. D. Stefano. Segmentation-
based adaptive support for accurate stereo correspondence.
In PSIVT, pages 427–438, 2007.

[18] F. Tombari, S. Mattoccia, L. D. Stefano, and E. Addimanda.
Classification and evaluation of cost aggregation methods for
stereo correspondence. InCVPR, pages 1–8, 2008.

[19] K. Yoon and I. Kweon. Locally adaptive support-weight
approach for visual correspondence search. InCVPR, vol-
ume 2, pages 924–931, 2005.

[20] L. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using
a layered representation.ACM Transaction on Graphics,
23(3):600–608, 2004.

8

