
Region-based Optical Flow Estimation with Treatment

of Occlusions1)

Michael Bleyer, Margrit Gelautz, Christoph Rhemann

Interactive Media Systems Group

Institute for Software Technology and Interactive Systems

Vienna University of Technology

Favoritenstrasse 9-11/188/2, A-1040 Vienna, Austria

e-mail: bleyer@ims.tuwien.ac.at, gelautz@ims.tuwien.ac.at

Abstract:

This paper describes an algorithm for computing the optical flow field between two consecutive

frames. The algorithm takes advantage of image segmentation to overcome inherent problems

of conventional optical flow algorithms, which are the handling of untextured regions and the

estimation of correct flow vectors near motion discontinuities. Each segment’s motion is

described by the affine motion model. Initial motion segments are clustered to derive a set

of robust layers. The assignment of segments to layers is then improved by optimization of a

global cost function that measures the quality of a solution via image warping. Occlusions in

both views are detected and handled in the warping procedure. Furthermore, the cost function

aims at generating smooth optical flow fields. Since finding the assignment of minimum costs

is NP-complete, an efficient greedy algorithm searches a local optimum. Good quality results

are achieved at moderate computational expenses.

1 Introduction

The estimation of two-dimensional displacement vectors between two images represents one of

the oldest and most active research topics in computer vision. However, computation of accu-

rate optical flow fields remains challenging for several reasons. Conventional correspondence

techniques often fail to produce correct flow vectors in homogeneous coloured regions and re-

gions of texture with only a single orientation due to the well-known aperture problem, which

is especially true for local methods. Furthermore, to simplify the search, the fact that there

are occlusions, i.e. pixels that are visible in only one view, is often ignored. Consequently, the

performance in regions close to motion boundaries, where occlusions occur, is generally poor.
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In this work, we propose a technique that tries to overcome those problems by the use of

image segmentation. Based on the assumption that motion discontinuities go along with

discontinuities in the intensity image, we take benefit from the segmentation information in

three ways. First, the motion values inside each segment are constrained to follow the same

motion model, which allows the assignment of smooth flow values in regions of poor texture.

Second, we believe that motion boundaries can be accurately identified by the use of monocular

cues, such as the partition of the reference image into regions of homogeneous colour. Third,

occluded regions can be assigned to meaningful flow values that are propagated using the

segmentation information.

For a review and comparison of optical flow methods we refer the reader to [1, 7] and con-

centrate on the works that we see as closest related to our approach. The stereo algorithm

described in [9] models the disparity of segments by a planar equation and propagates dis-

parity across neighbouring segments in a hypothesis testing framework. The stereo method

presented in [3], which builds the basis for the proposed technique, clusters disparity segments

to form a set of layers. Assignments of segments to layers are then improved by optimization

of a cost function. The motion algorithm described in [2] is similar to our approach in the

sense that motion estimation and motion segmentation are performed jointly. Finally, in [6]

the mean-shift algorithm is used for the extraction of motion layers.

The organization of the remainder of this paper is as follows. The proposed optical flow

algorithm is presented in section 2. We start with an overview of the algorithmic framework

and then focus on a more detailed description of the individual steps in the corresponding

subsections 2.1, 2.2 and 2.3. Section 3 shows and discusses experimental results that were

achieved using the proposed method. Finally, we give our conclusions in section 4.

2 Algorithm

The overall algorithm consists of several modules that are illustrated in figure 1. In a first

step, colour segmentation is applied to the reference image. The affine model of each segment

is then initialized from a set of initial correspondences. Motion segments are clustered in the

layer extraction step of the algorithm to derive a set of layers that represent the dominant

image motion. The affine model of each layer is refined based on its spatial extent. In the

layer assignment step, a global cost function is optimized in order to improve the assignment

of segments to layers. The algorithm then iterates the layer extraction and assignment steps

until the costs could not be improved for a fixed number of iterations and returns the solution

of lowest costs.
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Figure 1: Algorithmic outline.

2.1 Colour Segmentation and affine Motion Model

The proposed method applies colour segmentation to the reference image. We thereby embed

two basic assumptions. It is assumed that all pixels inside a region of homogeneous colour

follow the same motion model and motion discontinuities coincide with the boundaries of

those regions. To ensure that our assumptions are met, we apply a strong oversegmentation

as shown in figure 2. In our current implementation, we use an off-the-shelf segmentation

algorithm described in [4].

The optical flow inside each segment is modelled by affine motion, which is

Vx(x, y) = ax0 + axxx + axyy

Vy(x, y) = ay0 + ayxx + ayyy
(1)

with Vx and Vy being the x- and y-components of the flow vector at image coordinates x and

y and the a’s denoting the six parameters of the model. We compute a set of correspondences

using the KLT feature tracker [8] and derive each segment’s affine parameters by least squared

error fitting to all correspondences found inside this segment. A robust version of the method

of least squared errors is employed to reduce the sensitivity to outliers.

2.2 Layer Extraction

Unfortunately, the segments’ motion models are not robust, which is due to the small spatial

extent over which their affine parameters were estimated. To overcome this problem, we

identify groups of segments that can be well described by the same affine motion model.

Each segment is therefore projected into an eight-dimensional feature space, which consists

of the six parameters of the affine motion model and two parameters for the coordinates of

the segment’s center of gravity. A modified version of the mean-shift algorithm [5] is then

employed to extract clusters in this feature space. Segments of the same cluster are combined
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Figure 2: Colour segmentation. (a) Reference image. (b) Segmented image. Pixels of the same

colour belong to the same segment.

to form a layer. The affine motion parameters of a layer are computed by fitting the model

over the larger spatial extent, which is built by all segments belonging to this layer. Each

segment is then assigned to the motion model of its corresponding layer.

2.3 Layer Assignment

We try to improve the assignment of segments to layers by optimizing a global cost function.

The quality of a solution is thereby measured by image warping. The basic idea behind

this procedure is that if the reference image is warped to the second view according to the

correct flow field, the resulting warped image should be very similar to the real second view.

Speaking more technically, the pixel dissimilarity between visible pixels of the warped and the

real second view should be low. Detection of occlusions and reasoning about visibility has to

be performed in the warping process. We illustrate this in figure 3. Let us assume that a pixel

of the warped view gets contribution from more than one pixel of the reference view, which

is the case for vertical hatched areas of figure 3b. Since we assume surfaces to be opaque,

only one of those pixels can be visible. Consequently, the other pixels are occluded in the

second view. Unfortunately, for a motion algorithm the reasoning about the pixels’ visibility

is not obvious. We decided to declare the pixel of lowest pixel dissimilarity as being visible,

while the other pixels are marked as being occluded. However, it is interesting to note that

a stereo algorithm can naturally do this decision by declaring the pixel of highest disparity

as being visible [3], since this is the pixel closest to the camera. There are also pixels in the

warped image that do not receive contribution from any pixel, which occurs at the horizontal

hatched area of figure 3b. This case corresponds to an occlusion in the reference view. Our

cost function has to penalize occlusions, since otherwise declaring all pixels as being occluded

would form a trivial optimum. The last term of our cost function aims at generating smooth

optical flow fields. We therefore penalize neighbouring pixels of the reference image that are
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Figure 3: The warping operation. (a) Reference view. The image is divided into three segments.

The estimated motion for two segments is zero, while the third segment undergoes a translational

motion as indicated by the arrows. (b) Warped view. The reference image is warped according

to the estimated motion field. Hatched areas represent regions that are affected by occlusion.

assigned to different layers. Putting this together, we formulate the cost function

C =
∑

p∈V is

d(W (p), R(p)) + Noccλocc + Ndiscλdisc (2)

with V is being the set of visible pixels, d(W (p), R(p)) being the dissimilarity function of the

pixel p in the warped image W (p) and in the real second view R(p), which is implemented

as the summed up absolute differences of RGB values, Nocc and Ndisc being the number of

detected occlusions and discontinuities and λocc and λdisc are constant penalties for occlusion

and discontinuity, respectively.

Unfortunately, finding the assignment of lowest costs is NP-complete. A greedy algorithm

is therefore employed to find a local optimum. For each segment we check whether changing

its layer assignment to the assignment of a neighbouring segment reduces the costs. If this

is the case, we record the corresponding layer and update assignments after all segments are

checked. This procedure is iterated until the costs could not be improved for a certain number

of iterations. An incremental warping scheme thereby significantly reduces the computational

costs.

3 Experimental Results

We demonstrate the performance of the proposed algorithm using the frames 50 and 54 of the

Mobile & Calendar sequence that are shown in figure 4a and 4b. In this sequence, the camera

pans to the left, while there are moving objects (calendar, train and ball) in the scene. Since

no ground truth is available, we have to focus on a qualitative discussion of the results. Figure

4c presents the final layer assignment. Although motion segmentation is not the primary goal
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Figure 4: Results for the Mobile & Calendar sequence. (a) Frame 50. (b) Frame 54. (c) Final

layer assignments. (d) Absolute x-components. (e) Absolute y-components. (f) Flow vectors.

of this work, the computed layers seem to correspond well to scene objects. To visualize the

flow field, we plot the absolute x- and y-components of the flow vectors scaled by a factor

of 32 in figures 4d and 4e. Motion boundaries appear to be correctly captured, while also

the image motion in untextured regions seems to be accurately identified (e.g. lower part of

calendar). Finally, we show the two-dimensional flow vectors for some pixels of the reference

frame in figure 4f. For the 352 × 240 pixel input images our current C++ implementation

needed 47 seconds on an Intel Pentium 4 2.0 GHz computer to generate the results.

As a second test pair we used the frames 11 and 14 of the Tennis sequence that are shown

in figure 5a and 5b. There are two moving objects in the scene, which are the arm and the

ball. While the arm undergoes a relatively small motion, there is large motion on the ball.

Since the x-components of the flow vectors are almost zero, we decided to show the warped

view in figure 5c instead. This image is generated by warping the reference view according to

the computed flow vectors and should be compared against the real second view presented in

figure 5b. Regions that were identified as being occluded in the reference view are coloured

black. We then present the final layer assignment in figure 5d. The arm is thereby represented

by five different layers, which is most likely for the reason that only a single affine motion

model can hardly capture the real motion of the arm. The y-components of the flow vectors

scaled by a factor of 16 are then shown in figure 5e. The motion boundaries seem to be

correctly identified and also the large motion of the ball seems to be captured. Finally, we

present the corresponding flow vectors in figure 5f. 99 seconds were needed to generate the

results for the 352 × 240 pixel images.
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Figure 5: Results for the Tennis sequence. (a) Frame 11. (b) Frame 14. (c) Warped image. (d)

Final layer assignments. (e) Absolute y-components. (f) Flow vectors.

4 Conclusions

We have presented an optical flow algorithm that uses image segmentation to improve the

quality of flow estimates in untextured regions and to allow a precise extraction of motion

boundaries. The proposed method uses a layered representation and employs the affine motion

model to describe image motion. The assignment of segments to layers is refined by an efficient

greedy algorithm that optimizes a global cost function. Experimental results demonstrate

the good performance of the algorithm, especially in regions of poor texture as well as in

regions close to motion boundaries. Further work will concentrate on applying a more global

optimization method to the layer assignment problem (e.g. graph cuts) and using a more

sophisticated motion model. The robustness of the algorithm could also be improved by

taking more than two frames into account.
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