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Abstract

We present a new approach to the matting problem which

splits the task into two steps: interactive trimap extraction

followed by trimap-based alpha matting. By doing so we

gain considerably in terms of speed and quality and are

able to deal with high resolution images. This paper has

three contributions: (i) a new trimap segmentation method

using parametric max-flow; (ii) an alpha matting technique

for high resolution images with a new gradient preserving

prior on alpha; (iii) a database of 27 ground truth alpha

mattes of still objects, which is considerably larger than

previous databases and also of higher quality. The data-

base is used to train our system and to validate that both

our trimap extraction and our matting method improve on

state-of-the-art techniques.

1. Introduction

Natural image matting addresses the problem of extract-

ing an object from its background by recovering the opacity

and foreground color of each pixel. Formally, the observed

color C is a combination of foreground (F) and background

(B) colors:
C = αF + (1 − α)B (1)

interpolated by the opacity value α. (This simplified model

will be reconsidered later). Matting is a highly under-

constrained problem and hence user interaction is essential.

In this introduction we will first consider the user aspects

of the matting problem and then compare the different mat-

ting approaches themselves. Previous work in this domain

can be broadly classified into three types of user interfaces.

The first class of interface is based on trimaps [3, 17, 22,

20, 4]. First the user paints a trimap by hand as accurately as

possible, i.e. each pixel is assigned to one of three classes:

foreground (F), background (B) or unknown (U) (e.g. fig.

1(middle)). In a perfectly tight trimap the α values in U are

above 0 and below 1 and F and B regions have only α val-

ues which are exactly 0 and 1 respectively. The information

from the known regions (F, B) is used to predict for each un-

known pixel the values for F, B and α. It has been shown
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[22], and we will confirm it, that if the trimap is perfect (or

nearly perfect), the resulting matte is of very high quality.

The recent soft scissors approach [20] is probably the most

sophisticated trimap “paint tool”. It builds on the intelligent

scissors approach [13] which gives a hard segmentation, i.e.

only F,B labels. In soft scissors the user traces the boundary

with a “fat brush”. The brush size is adapted according to

the underlying data and intermediate results of the matte are

shown, enhancing the user experience. The main drawback

of such a brush tool is that objects with a long boundary

or complicated boundary topology are very tedious to trace,

e.g. a tree with many foreground holes or the example in

fig. 1(left).

Mainly due to this drawback, the trend of hard segmen-

tation has been to move from boundary selection tools like

intelligent scissors [13] to scribble-based region selection

tools [2, 16]. This second class of interfaces is more user-

friendly since only a few pixels have to be assigned to F or

B, which are ideally far away from the boundary. Impres-

sive results were achieved for hard segmentation [2, 16, 1]

and also to some extent for matting [9, 21, 11, 5]. Note, a

simple approach to obtain a soft matte from a hard segmen-

tation is to run existing trimap-based matting techniques in

a band of constant width around the hard segmentation, as

done in e.g. [16, 1]. In contrast to this, our work computes

an adaptive band which respects the underlying data.

We now review scribble-based matting methods. In

[9, 11] a pure local “propagation” approach is taken and

no global color information (i.e. outside a small window) is

used. If the assumption holds that all colors within a small

window around any unknown pixel lie on a line in color

space then this approach obtains the ground truth matte. We

observed in our experiments that this approach obtains good

results for relatively tight trimaps (or scribbles), but it per-

forms quite poorly on sparse scribble inputs. An example is

shown in fig. 2(a) and fig. 7 in [9], where even relatively

tight scribbles cause problems. A plausible explanation is

that global color models do help considerably to overcome

local ambiguities. In contrast, [21, 5] use both global color

models and local propagation. In [21] an iterative approach

is suggested where a global color model is used only for

pixels with low confidence. In [5] the global color model of
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Figure 1. Our interactive matting framework. Given an input image (left) the user interactively creates a trimap (middle). From the

trimap an α matte (right) is computed, first in low and then in high resolution, together with the true fore- and background colors. The

user interactions consist of three types of brushes (F-foreground (red), B-background (blue), and U-unknown (green)) and a slider for the

trimap size (interactive due to the recently developed parametric maxflow technique [8]). We believe that this approach has several benefits

over existing ones: Speed, quality, and user friendliness (see text for details).

Figure 2. Comparison of scribble-based matting approaches (see text for discussion and more results in [15]). Our result was achieved

with a single bounding box selection, inspired by [16], and one additional background brush stroke. Note, our approach can also handle

more challenging α mattes, e.g. fig. 1. All results we show were either taken from the original papers or created with the original

implementation of the respective authors.

the brush strokes is used to reason about all unknown pix-

els (very similarly to [22]). However, even [21, 5] do not

perform well for the example in fig. 2(b) and fig. 5b in [21]

using scribbles. In order to achieve a good result for this ex-

ample, previous results have required either many scribbles

[9] (fig. 2(c)) or a very tight trimap [21] (fig. 5e in [21]).

Recently an intermediate solution has been suggested by

Juan and Keriven [7]: The user interactively creates a trimap

using a scribble-based interface (see fig. 1). In our work we

use the same approach since we believe it to be an intu-

itive interface and it has an advantage in speed and qual-

ity compared to the approaches above. While the user cre-

ates the trimap, a preview of the matte is computed (fig. 1

right) and shown to the user. But even before a preview is

available, the user can interactively adjust the trimap and

remove obvious mistakes in order to simplify the matting

task. In this process all images are scaled down to typically

0.3 Mpix. In a final step a high resolution matte, e.g. 6
Mpix, is computed, which in our case is a slow process. It

is important to note that in contrast to the multi-resolution

approach for hard segmentation [12], sub-pixel structure is

captured in the unknown trimap region. Additionally, the

user has a slider for controlling the trimap size which is in-

teractive due to parametric max-flow [8]. The main benefit

in speed comes from the fact that in a typical image most

pixels belong solely to either fore- or background. For these

pixels expensive matting algorithms which recover the full

range of fractional α should not be invoked. For example,

for a typical small resolution image (0.3 Mpix), [21] and

[9] have reported a runtime of about 20sec, [5] of about

200sec, and we achieve with a tight trimap a runtime of

3.5sec using [22]. Moreover, not only speed but also the

quality of the matte is improved, as shown in fig. 2(d). Our

advantage over scribbled-based systems and [7] is that we

exploit the result of a hard segmentation system such as [16]

to build better global color models, and to detect and model

physically sharp boundaries. Furthermore, we use our large

ground truth dataset to build a classifier for potential trimap

pixels, and to train parameters of our energy (in particular

we learned a predictor for the trimap size λ).

For the second task of trimap-based alpha matting we

concentrate on two challenges, which we believe have not

yet been solved: (i) working with high resolution images

and (ii) finding a good prior for α. The novel ideas are

an edge-preserving sparsity prior for α and the use of the

camera’s point spread function to model most fractional α

values in high resolution images.

Finally, using our new ground truth database we are able

to show that we outperform both existing trimap creation

approaches and trimap-based matting methods.

The paper is organized as follows. Section 2 explains our

trimap extraction method, and section 3 the trimap-based

matting approach, and finally section 4 introduces our data-

base and describes experiments.



Figure 3. Unary terms for trimap segmentation. (a) Input image with user scribbles (red-foreground, blue-background). (b) Unary

energy for the sub-blur kernel structure term and (c) color term. Dark indicates low energy and white high energy. (d) Pixels in a small

band around the F ′, B′ transition of GrabCut [16] (green line) are classified into physically sharp boundary pixels indicated in bright red

(the image was darkened for better visibility). The class prior is not visualized since it is constant over the whole image.

2. Interactive Trimap Segmentation

In the following we extend the approach of Juan and

Keriven [7]. We denote the color of pixel i as ci, its la-

bel as xi, and its α value as αi. Let I be the set of all

pixels. Formally, the three subsets F, B and U (see fig. 1)

are defined as B = {i|αi < ǫ}, F = {i|αi > 1 − ǫ} and

U = I\(F ∪B), where we choose ǫ = 5
255 . (For simplicity,

sets and labels have the same name, e.g. F.) We also intro-

duce two extra subsets F ′, B′ where B′ = {i|αi ≤ 0.5}
and F ′ = {i|αi > 0.5}. The transition from F ′ to B′ is

the 0.5 level-line of a hard segmentation. Obviously, it is

F ⊂ F ′, B ⊂ B′ and F ′ ∪ B′ = F ∪ B ∪ U = I .

In [7], an energy for the three labels F, B, U was defined

and optimized globally. Ideally we would like to define an

energy for all 5 labels: F, F ′, B, B′, U . It has the main ad-

vantage that the transition F ′, B′ is modelled to coincide

with an image edge (as in [2, 16]) whereas other transitions,

e.g. B, U , are not data dependent (e.g. Potts model in [7]).

However, instead of optimizing an energy for all 5 labels,

we employ a 2 step process that allows a more expressive

model and higher speed. First, we obtain a hard binary seg-

mentation into the sets F ′ and B′ using GrabCut [16]. The

energy and parameter settings are as defined in [16] and the

interested reader is refereed to the respective paper for de-

tails. Following the hard binary segmentation we compute

a trimap segmentation with labels F, B and U (sec. 2.1).

The energy function considers several image cues, and four

different types of priors are used to regularize the result (vi-

sualized in fig. 3). We show that the trimap segmentation

can be formulated as binary classification problem and min-

imized with graph cut. Finally, in sec. 2.2, we show how to

learn the parameters for trimap segmentation from a train-

ing data set. Please note that in this section we assume the

image to be of a small size, typically 0.3 Mpix.

2.1. Trimap Segmentation - Model

In this step all pixels will be assigned to one of the three

labels F, B or U . We assume that each pixel has been al-

ready classified into F ′ or B′ using GrabCut [16]. Since

F ⊂ F ′ and B ⊂ B′ a binary classification into two labels

U and Ū is sufficient, where Ū = F ∪ B. (Each pixel in Ū

is uniquely specified to be in either F or B given F ′, B′.)

Note that α should only be fractional (0 < α < 1) at the

boundary of the hard segmentation (F’ to B’ transition) and

not necessarily exactly 0.5.

We define the binary energy E for the trimap extraction as:

E(x, θ) =
∑

(i,j)∈N

θbV
b
ij(xi, xj) + V s

ij(xi, xj)

+
∑

i

U c
i (xi) + U

p
i (xi) + θb′U

b
i (xi) + θt(U

s
i (xi))

θ
s
′ (2)

where N is the set of neighboring pixels (8-neighborhood),

and θ comprises of all model parameters. The energy can

be locally optimized using graph cut [16] or parametric

maxflow [8] depending on the choice of the free parame-

ters during test time (see below). The individual terms are

defined as follows.

Color (c) The color unary term for Ū is modeled as

U c
i (Ū) = −logP (ci|θGF ) if xi = F ′, and U c

i (Ū) =
−logP (ci|θGB) if xi = B′. Here θGF and θGF are the

Gaussian Mixture Models (GMM) of fore- and background

respectively (see sec. 2.2 for computational details). In the

unknown region the color distribution of U c
i (U) is repre-

sented by a third GMM θGU by blending all combinations

of fore- and background mixtures of the respective GMMs

as in [7] (see example in fig. 3(c)). Motivated by [23],

and in contrast to [7], the distribution of the blending co-

efficients is modeled as a beta distribution whose two free

parameters were derived as (0.25, 0.25) from our training

set of ground truth alpha mattes (see sec. 4).

Class prior (p) The probability of a pixel belonging to the

class U or Ū is image dependent. For instance, an image

where the foreground object has been tightly cropped has a

different proportion of U versus Ū pixels than the original

image. We model this ratio by an unary term as:

U
p
i (xi) = λ[xi 6= U ] , (3)

i.e. a larger λ gives a larger U region. We show that predict-

ing λ during test time improves the performance consider-



ably. The learning of the predictor is discussed below (sec.

2.2). Furthermore, the parameter λ is also exposed to the

user as a slider. Due to the nestedness property [8] of the

solutions for all λ’s, the λ slider corresponds to the size of

the trimap. Note, the solution of our energy for all λ’s can

be efficiently optimized using parametric maxflow [8].

Sub-blur kernel structure (s) There are many different

reasons for a pixel to have fractional α values (i.e. belong

to U ): Motion blur, optical blur, sub-pixel structure, trans-

parency, or discretization artifacts. Here we concentrate on

optical blur. The goal is to detect thin structures which have

a width that is smaller than the size of the camera’s point

spread function (PSF). These structures give rise to frac-

tional α values but they may not be close to a physically

sharp boundary (e.g. the hair in fig. 3(b)). See explanation

in fig. 4(right). The pixels belonging to thin structures are

encoded in Us (see [15] for more details).
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Figure 4. Left: Visualizing the correlation between λ and the size

of the U region (see text for details). Right: A 1-D example of

a thin (top,left) and thick (bottom,left) hard boundary (sparse αs),

which is either 0 or 1. It is convolved with the camera’s PSF,

here a box filter, which gives α. In the bottom case two smooth

boundaries appear, i.e. some α values remain 1, which ideally

should be detected by the hard segmentation (and then handled

by the sharp boundary term). We want to build a detector for the

top case where the thin structure is smaller than the size of the

blur kernel. Roughly speaking for thin structure the magnitude of

the first derivative should be low and the magnitude of the second

derivative should be high.

Sharp boundary (b) The F ′, B′ transition determined by

GrabCut [16] often coincides with a clean, physically sharp

boundary. This means that in the vicinity of the detected

boundary (defined by the PSF) there is no other boundary

transition, hence no sub-blur kernel structure. An example

is the body of the object in fig. 3(d). At such boundaries the

width of U is equal to the width of the camera’s PSF and

thus is only a few pixels wide. We classify the alpha matte,

computed with the method of [9] in a small band around the

F ′, B′ transition, to determine the physically sharp parts of

the F ′, B′ transition . The result of this classifier is used to

model the boundary terms U b and V b (see [15] for details).

Smoothness (s) Following [16] the smoothness term is de-

fined as

V s
ij(xi, xj) =

δ(xi = xj)

dist (i, j)

(

θλ exp−β ‖ci − cj‖
2
)

, (4)

where δ is the Kronecker delta, β is as in [16] and θλ is

defined below. As we show in sec. 4, it nicely preserves

thin structures, e.g. hair, inside the unknown region.

We also enforce the U region to be 4-connected, which

is true for 98.6% of the pixels in the ground truth database.

Since enforcing connectivity is NP-hard [19], we do it by a

simple post-processing step.

2.2. Trimap Segmentation - Training

For training we have used the following heuristic error

(loss) function, which counts false negatives twice com-

pared to false positives: error = 100
n

∑

i 2[xtrue
i = U ∧

xi 6= U ] + [xtrue
i 6= U ∧ xi = U ], where xtrue is the label-

ing of the ground truth trimap and n the number of pixels.

This is motivated by the fact that a missed unknown (U)

pixel in the trimap can not be recovered during alpha mat-

ting. We see in sec. 4 that it is indeed correlated to the error

for α matting. Based on our training dataset of 20 images

(see sec. 4) we have hand tuned all the parameters in θ,

except of those discussed below, to {θb, θb′ , θs, θs′ , θλ} =

{2, 40, 1, 2, 0.1}.

We have observed that the initialization of the color mod-

els θGF , θGB is rather crucial, not discussed in [7]. The rea-

son is that the energy has typically many local minima with

a high error since e.g. a true F color can be modeled as the

blend of a true B color with another true F . Surprisingly,

even making the GMMs spatially dependent did not help to

overcome these local minima. After initialization, the color

models can be updated iteratively as in [16]. However, it is

not guaranteed that the energy decreases due to the mixture

term U c(U), and therefore we build the color models from

a guessed trimap (see below), and do not iterate.

As discussed above, λ (eq. 3) corresponds to the size of

the region U . Fig. 4(left) shows, in blue dots, the optimal

λ wrt to the size of region U of our training set. We see a

strong correlation. To exploit this, we have built a predictor

for the size of U (see below). The red dots in fig. 4 show

the predicted values of our training data, and the red line is

a quadratic function (3 parameters) fitted to them. We see

that the red(predicted) and blue(true) points are close-by.

During test time the size of U is predicted, given the test

image, and the quadratic function provides the correspond-

ing λ. Note, in practice λ is predicted after the first two F

and B brush strokes and not changed afterwards, i.e. we

do not alter our energy during the optimization. The dashed

line in fig. 4 shows the optimal average λ = 2.3 which is

independent of the size of U . It performs less well as we

see in sec. 4.

Finally, we use the following heuristic to guess the initial

trimap. We use the data terms U c, Us, that are available at

this point, and find the globally optimal trimap by simple

thresholding the unary energy. Note, for U c we initialize

θGF and θGB with θGF ′ and θGB′ as in [7]. On our training

image set we have obtained an average prediction error for

U of 1.5% relative to the image size.



3. High Resolution Alpha Matting

Given a trimap we describe now our approach to matting.

We base it on the method of Wang & Cohen [22] which

was shown to produce state-of-the-art results from trimaps.

They first obtain a pixel-wise estimation of α from high

confidence color samples collected from the fore- and back-

ground regions of the trimap. This estimation is translated

into two data terms WF and WB which are combined with

a pairwise smoothness term and solved using random walk.

(see [22] for a more detailed description). In our implemen-

tation, we use the matting laplacian L of [9] as a smoothness

term for the matting, as it has a better theoretical justifica-

tion, giving the following objective function:

J(α) = αT Lα+θα(α−~1)T WF (α−~1)+θααT WBα (5)

where α is treated as a column vector, WF , WB are writ-

ten as diagonal matrices and θα is the relative weighting of

the data versus the smoothness terms (we use θα = 10−3).

This objective function is minimized by solving a set of

sparse linear equations, subject to the input constraints.

Fig. 5(d) shows the result of this process for the input

in (a), which is a crop of a 7.6Mpix image of hair. The re-

sult looks too blurry compared to the ground truth in (c)1.

Note, the result of applying [9] directly, i.e. omitting the

data terms WF , WB , gives a clearly inferior result. It was

shown in [11] that an additional sparsity prior, i.e. push-

ing α towards 0 or 1, can solve some ambiguities in the

estimation of α. However, [11] employs a simple pixel in-

dependent prior, and also the prior turns eq. 5 into a com-

plicated non-linear system. Thresholding the initial α (fig.

5(f)) demonstrates the problem (loss of hair structure) of us-

ing a pixel independent prior on the blurry alpha. The result

of [11] in fig. 5(g) is pretty poor. Additionally, in [11] mat-

ting was performed on low res images where α is even less

sparse then in high res (compare fig. 5(b) and (c)).

In this work we suggest a novel sparsity prior. It is based

on a model of the imaging process, where the observed high

resolution α is the result of blurring the true sparse alpha αs

with the camera’s point spread function (PSF). Hence, the

observed α has the form α = K ⊗αs as proposed in [6] for

the case of motion blur, where ⊗ indicates convolution and

the blur kernel K models the PSF. (Note that this approxi-

mates the real image composting eq. 1.) Fig. 5(h) shows

αs derived from the ground truth α in (c) and our kernel K

(see details below). It is nearly a binary mask apart from

sub-pixel structure, discretization artifacts, object motion,

and semi-transparency (such as windows glass). Note, even

a hair, as a physical entity, is opaque if the resolution is high

enough and after deblurring. Here we assume that the object

boundary is in-focus, i.e. we model the PSF of the in-focus

1The supplementary material shows the result of applying the original

implementation of [22] which gives a more blurry result.

area. Note, even in-focus pixels are slightly blurred due to

imperfect camera optics. Note, Jia [6] computes K and αs

for motion blurred images given α by applying the method

of [9]. In our work the “loop” is closed by improving α

using αs as a prior. We show that this works well for still

images, and our framework is general enough to deal with

motion blurred images, which we leave for future work.

Starting with the high resolution α we apply the fol-

lowing steps: (a) Initialize the PSF, (b) Deblur α to obtain

sparse αs using the PSF, (c) Estimate a binary sparse alpha

αsb from αs while preserving edges, (d) Iterate (a-c) a few

times, (e) Convolve the binary αsb with the PSF and use it

to re-estimate α.2 Intermediate results of the process are in

fig.5 (i-l). Each step is now described in detail:

Estimating the PSF. We model the PSF as a symmetric ker-

nel K of size 9 × 9 with non-negative elements which sum

up to 1. Motivated by [6] we use the following heuristic to

initialize K . For all pixels in U we compute those which

may belong to a physically sharp boundary (sec. 2.1). If the

acceptance rate is above 10%, we obtain K by minimizing

the linear system ||δ(α > 0.5)⊗K−α]||2. Otherwise, a re-

liable initialization of K for the in-focus area is a Gaussian

[14] (we use σ = 1.5). After the first iteration, the linear

system is solved again using all in-focus pixels (see below),

where δ(α > 0.5) is replaced by αsb.

Alpha Debluring and Binarization. To get the sparse al-

pha αs from α and K we use the image-debluring imple-

mentation of [10] (see fig. 5(i)). From αs we construct the

binary sparse alpha αsb as follows. We observed that ap-

plying a per-pixel sparsity such as thresholding αs removes

many features, such as hair, from the matte. A much better

binarization can be obtained by preserving the edges of αs

(fig. 5(j)). To achieve this, we use the following MRF, and

solve it with graph cut (since E is submodular):

E(αsb) =
∑

i Ui(α
sb
i )+θα1

∑

{i,j}∈N Vij(α
sb
i , αsb

j ), (6)

where αsb is a binary labeling and N denotes an 8-

connected neighborhood. The terms Ui and Vij are given

by

Ui(fi) = |αsb
i − αs

i | + θα2|α
sb
i |; (7)

Vij(fi, fj) = δ(asb
i 6= asb

j ) + θα3(α
sb
i − αsb

j )(αs
j − αs

i )

with the constants (θα1, θα2, θα3) = (5, 0.2, 0.002). The

data term encourages the labeling to be similar to αs (with

a small preference towards 0). The pair-wise term consists

of both a regular smoothness and an edge-preserving term.

Note that this edge-preserving smoothness is very differ-

ent from the standard smoothness. Actually, with the edge-

preserving term only, the global optimum contains typically

thin (1-pixel wide) structures.

2In the formulation of [11] α can be replaced by αs and K , however,

we found it to be experimentally inferior to our approach.



Figure 5. The matting process. (see detailed description in text). The key idea is that our final α matte (l) is derived from the initial matte

of [22] (d) by imposing a new edge-preserving sparsity prior (k), which is better than a simple pixel independent prior (f).

Re-estimating α using the Sparsity Prior. By convolving
the binary αsb with K , we construct a new sparsity prior sα

on the values of α (fig. 5(k)). This prior is added simply by
replacing the data terms in eq. 5 with the new terms:

W
′

B(i) = WB(i) + θα4sα; W ′

F (i) = WF (i) + θα4(1− sα),

where θα4 = 5 is the relative weight of the new prior. The

final alpha matte, shown in fig. 5(l), is less blurry than the

initial matte in (d).

Handling Multiple PSFs. Due to depth variations there

may be more than a single PSF along the object boundary.

Ideally, this problem is handled by recovering depth at each

pixel. In our work, however, we estimate a single PSF and

assume it can describe well all in-focus pixels. The spar-

sity prior for other pixels is set to 0. First, we compute for

each pixel the gradient of αs, normalized by the range of

values in a window (11 × 11) around each pixel. Then we

compute the in-focus mask by thresholding this score (we

used 0.4). Note that for out-of-focus regions our method

is equivalent to regular matting methods and therefore can

overcome multiple PSFs.

3.1. Multi-Resolution Estimation of the Matte

To obtain high quality alpha mattes of 6 Mpix images

with reasonable time and memory requirements, we use a

multi-resolution framework with three levels: 0.3 Mpix, 1.5
Mpix and 6 Mpix. The matte in lower resolutions is used as

a week regularization for higher resolutions. At the higher

resolution, α was solved by processing the image in over-

lapping windows. Using the low resolution matte as regu-

larization has two advantages: (a) it encourages a smooth

transition between windows (for that reason, this prior got a

higher weight along window boundaries), (b) it pushes the

solution towards the global optimum, which is essential for

handling non-informative windows. Note, we computed the

data terms of [22] in full resolution using the entire image

since runtime and memory was reasonable.

4. Experimental results

We first introduce our database and then compare our

approach to state-of-the-art methods. Note, more results are

available in the supplementary material.

Ground Truth Database. Recently, two small databases

were introduced [22, 11]. The database we use is consider-

ably larger and, we believe, of higher quality. The data in

[11] is of intermediate quality, probably due to noise3. In

[22] most examples are natural (outdoor) images, which is

a very realistic scenario, however the ground truth α was

created using a variety of matting methods along with ex-

tensive user assistance. We believe that such a dataset is

biased especially if used, as in our work, for training.

Our dataset has 27 α mattes obtained using triangula-

tion matting [18] from the RAW sensor data (10.1 Mpix;

Canon 1D Mark III). The objects have a variety of hard and

soft boundaries (e.g. fig. 6) and different boundary lengths,

e.g. a tree with many holes (see supplementary material).

The final mattes, of average size 6 Mpix, consist of the

cropped out objects. To create training and test images we

composed the true foreground masks with different natural

background images with varying degree of difficulty: color

ambiguity of fore- and background and backgrounds with

different degrees of focus. Then the set was split into 10
training and 17 test images. To obtain 20 training images,

2 different backgrounds were used. Finally, we created for

each image a set of potential user inputs in the form of scrib-

bles and trimaps. For each image we have casually drawn

large scribbles that cover all major colors in the image but

are not close to the object boundary.

3In the matte of fig. 8 in [11] 42% of true foreground pixels have an α

value below 0.98, in our case this occurred only for 1% of pixels.



Comparison of Trimap Extraction Methods. We had to

down-scale our 6 Mpix images to a size that most competi-

tors can handle, which was 0.3 Mpix (e.g. 700 × 560) - the

limit of the publicly available system of [9]4. We compare

our approach to six other methods [7, 22, 9, 11, 5, 4]5. Note,

with respect to [21] we only have results for two images, fig.

6 and 2 (see also fig. 5 in [21]). However [5], to which we

compare to, has shown that they slightly outperform [21].

The reason for including matting systems [22, 9, 11, 5, 4]

in this comparison is to show that we gain not only in speed

but also in quality in terms of the final α matte. The trimap

error rate was defined in sec. 2.2 (measured in percentage

wrt image size), and the error for an α matte is defined be-

low. The trimap error for systems which directly produce a

matte was done by transforming the matte into a trimap. In

order to compute a matte from our trimaps, and those of [7],

we use our matting approach with low resolution input and

without sparsity prior (essentially [22]). For this experiment

the input was the set of user-defined scribbles.

Qualitative results are in fig. 1,2, and 6, and quantita-

tive results are in table 1. We see that matting systems

[22, 9, 11, 5] are obviously considerably slower. Note,

our approach and [7] need for small resolution alpha mat-

ting additional 3.5sec on average (not reported in table 1).

Also, we see that our method with optimal λ takes on av-

erage 0.8sec longer to compute all solutions for the range

of λ ∈ (0, 5), but obviously it improves the usability of our

method. Considering error rates, we see a correlation be-

tween the trimap- and α matte error, which motivates our

heuristically defined error functions. We see that our sys-

tem clearly outperforms all other approaches both in terms

of trimap error and α matte errors. Also, predicting λ in

our system works better than using a fixed λ. As expected,

choosing for each image the optimal λ gives best perfor-

mance. Finally, ground truth trimaps (last row) give by far

the lowest α matte errors, which shows that the problem

of good trimap generation is vital for successful α matting.

Note, the low rate of [11] might be explained by the fact that

it was not designed for a scribble-based interface, but a mat-

ting component picking interface. It is not even guarantied

that the scribbles will be assigned to the correct α.

Comparison of Trimap-based Matting Methods. We

used the following error function for the α matte, which

penalizes more heavily an over-estimation of α:

100

n

∑

i

[1.5δ(αi ≥ αtrue
i )+0.5δ(αi < αtrue

i )]|αi−αtrue
i |,

where αtrue is the true α and n the number of pixels in U.

It has been shown in [22, 11] that [22, 9] are the best

performing methods for this task. Fig. 7 and 5 show qual-

itative results of [22, 9, 11] on crops of high resolution im-

4For [11] we had to even scale down the images to 0.15 Mpix. For

comparison, the obtained result was then up-scaled to 0.3 Mpix images.
5[22, 9, 11, 5, 4] was the authors implementation and [7] our own.

Method av. error worst 25% time

Grady et al. ’05 [4] (24.3, 19.8) (33.6, 28.6) 5

Levin et al. ’07 [11] (17.9;9.5) (28.3;17.8) 20

Guan et al. ’06 [5] (13.4;9.0) (22.7;16.5) 300

Levin et al. ’06 [9] (11.4;6.9) (19.0;13.3) 18

Wang et al. ’07 [22] (11.0;8.4) (22.5;19.0) 50

Juan et al. ’05 [7] (7.6;4.6) (13.8;12.0) 1.5

Our (fixed λ = 2.3) (2.5;1.2) (4.9;2.3) 1

Our (predict λ) (2.3;1.0) (4.5;1.9) 1

Our (optimal λ) (2.2;0.7) (4.5;1.5) 1.8

True trimap (0.0;0.4) (0.0;0.8) -
Table 1. Comparison of trimap methods. In brackets is our

trimap error and our α matte error (definition in text). All num-

bers are averaged over all (worst 25%) test images. Times are in

seconds and were measured on the same machine (2.2 GHz).

Method Large Small Our True

Our impl. Levin ’06 [9] 1.5 1.2 1.3 0.71

Our impl. Wang ’07 [22] 1.7 1.0 1.0 0.68

Ours 1.3 0.8 0.9 0.67
Table 2. Comparison of trimap-based matting methods. The

average error over all test images for different trimaps (see text).

ages. Since we were not able to get all competitors working

for our high resolution images, we adapted our method to

simulate: (i) [22], by removing our sparsity prior, and (ii)

[9], by setting WF , WB to 0 in eq. 5. Quantitative re-

sults for high resolution images are shown in table 2 for dif-

ferent trimaps: ground truth, our trimaps (optimal λ)6, and

small(large) trimaps (dilation of the ground truth trimap by

22(44) pixels). We see that we outperform other methods,

more significantly for larger trimaps. The improvements

might look small but it is very important to note that our

results are overall considerably less blurry than others (e.g.

fig. 7). This visual improvement is, however, not captured

well in our error metric, which motivates new research in

this field. Table 2 also shows that our scribble-based trimaps

are better than large, hand drawn trimaps with a brush of ra-

dius 88 respectively. Note, the α mate error in table 1 and

2 can deviate due to differently sized input images. Finally,

in our un-optimized implementation a full 7 Mpix α matte

computation takes between 10 − 25 minutes depending on

the size of the unknown region.

5. Conclusions

We have presented a new approach for alpha matting of high

resolution images via interactive trimap extraction. Using

our new database we could confirm that we improve on

state-of-the-art methods for both trimap extraction and al-

pha matting. The main contribution for matting was an α

6For a fair comparison of our trimaps to dilated trimaps, we brushed

additionally over false negative pixels, i.e. pixels marked as unknown in

the ground truth trimap but not in our trimap, with a brush of radius 44. On

average we had to brush only 0.5% of pixels in the image. Note, a small

dilated trimap contains 15% of all image pixels.



Figure 6. Comparison of trimap methods. In this example the object has a combination of sharp edges and large fuzzy regions. The first

and second row depict the trimaps and final composites respectively. All results were generated from the scribbles shown in the top left

image, except of column 5 where we adjusted λ and used 3 extra scribbles (bottom left image) to demonstrate the capability of our method

to easily generate an almost perfect result. In brackets is our trimap and α matting error. Our results outperform the competitors, where we

show only the top 2, the others were worse, both in terms of error rates and visually (see supplementary material).

Figure 7. Comparison of α matting methods. (a) A crop of a 7.7 Mpix image of a region with a woollen scarf. The input trimap (small

dilation of 22 pixels) is superimposed: black(inside) and white(outside). (b-f) Results of various methods with respective α matte error.

prior which imposes sparsity on α while preserving gradi-

ents.
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