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1. Introduction 
 
The development of an image retrieval system for a new application domain requires the selection, 
adoption and integration of existing solutions and the development of new ones. The designer is 
confronted with issues as what image features are best suited, how they should be extracted, 
compared and combined, and what techniques should be employed for proper searching.  
 
In general, images - even synthetic ones - contain a huge number of different features: many 
general purpose feature extraction functions exist for color, texture and shape [4][6][12] and 
content-based image retrieval (CBIR) systems like QBIC [5] or Virage [1] use them simultaneously 
to enhance the performance. Usually, an independent query for each feature is initiated and the 
results are composed by the linear combination of their weighted distance values. This process is 
usually called merging [16]. Merging causes two major problems: 
 
1. Some feature classes are not linearly-related and therefore merging would not be a suitable 

combination algorithm. They propose a multi-layer neural network for this purpose. 
 
2. Usually the weights have to be provided by the user. In some systems the weights are fixed to 

certain values but most systems ask the user for his or her preference. The authors of [15] 
argue, that the "specification of weights imposes a big burdon on the user, as it requires the 
user to have a comprehensive knowledge of the low level feature representations used in the 
retrieval system, which is normally not the case." 

 
When using multiple features and distance functions for retrieval the results of all partial queries 
have to be joined. This is often done through weighted merging of the distance values. The authors 
introduce a method how the weights, that are used in this process can be set automatically. 
 
To solve the latter problem we implemented a model for the automatic estimation of weights by self 
organizing maps (SOM). Up to now, SOMs - although a very popular tool in many research areas - 
have hardly been used in image retrieval applications, as the authors of [14] have noticed. They 
use tree structured SOMs to index and search image databases. In [6] the creation of an Iconic 
Index through self organizing maps is suggested. We think that SOMs can be helpful in many 



areas of content-based image retrieval and plan to use them for the automatic generation of query 
models (see section 2). 
 
In many publications related to content-based image retrieval the term "feature" is used in different 
ways: First, to describe objects in an image. In this paper we we will use the term object (sub-
image) for this purpose. Second, to denote a function extracting properties of an image. Here we 
will use feature extraction function. Third, to describe a common property of an image or sub-
image. We will use feature in this sense. In query processing we use search image for the example 
image for which the user wants to obtain similar images from the database. An image which is 
compared to the search image is called a candidate image in our terminology. 
 
The paper is organized in 6 sections: In section 2 query models (introduced in [2]) are explained, 
section 3 discusses how merging is performed and how the weighting algorithm works. In section 4 
the test environment and the test results are presented. Section 5 gives a short outlook on future 
work. Finally, section 6 summarizes and rounds up the paper in a short conclusion. 
 
 
2. Query models  
 
We define similarity in our CBIR system by so-called query models. A query model is a list of 
tuples of the form: feature extraction function, distance function, threshold and weight. The 
threshold is the maximum allowed distance between an image in the database and the query 
image. The size of the result set is determined by the thresholds of all elements of a query model 
and not - as common in other retrival approches (e.g. [5]) - by an absolute number. In other words, 
every element in a query model eliminates some images that cannot be part of the result set any 
more (e.g., due to minimal distance values for other features). Therefore the threshold is an 
important part of the similarity definition. Table 1 gives an example of a query model. In the first 
step the color histogram of every image is compared to the color histogram of the search image. 
For images with a distance value lower than 0.5 it is determined whether they are symmetrical to 
their x-axis. Images satisfying also the second condition will be returned as the query result. 
  

No. Feature extraction function Distance function Max. threshold value 
1 Color histogram Euclidean distance 0.5 
2 X-axis symmetry Given? yes / no 0 

 
The idea behind query models is the filtering of an image set through a set of consecutive sieves 
(Figure 1). Each element of the query model reduces the initial image set until only those images 
are left that are most similar to the search image. 
 
One of the advantages of employing query models is the possibility to optimize the performance by 
using those features first that have a faster to compute feature function and eliminate a larger 
group of images. For example, for our coats of arms database we usually apply a simple feature 
counting the number of significant colors together with a color histogram. This fast to compute 
feature reduces the image set at least to half of its original size and improves the overall 
performance considerably. 
 



 
 

Figure 1: Image filtering 
 
From a different point of view, query models can be seen as representations of clusters within the 
image database (Figure 2). A query model defines the properties of the corresponding image 
cluster. We shall see in section 4 that images of coats of arms are indeed grouped in such clusters. 
The next section shows how clusters can be exploited in an automated weighting algorithm.  
 

 
 

Figure 2: Clusters and query models 
 
 
 
 
 
 



3. Merging of features through self organizing maps 
 
This section describes how merging is performed and how suitable weights can be computed. In 
addition, we present some of the feature extraction functions. The results of feature extraction 
functions are composed into feature vectors that are used in the SOM ([13]) calculation. 
 
Usually, (e.g., in [5]), when using multiple features for an image query, the result set is ordered by 
the weighted sum of the distance values (position value). The position value for each database 
object is defined by equation 1: 
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In this formula F is the number of features, wi the weight for feature i and di the distance value 
between the query object and the database object for feature i. This evaluation method assumes 
that all distance functions are standardized on the same range (in our case the interval [0,1]). 
Actually, a distance function is a measure for dis-similarity, that’s why the distance between a 
search image and a candidate image should be small for important features but may be greater for 
less important ones. The weights should help to order the result set. The most similar image 
should be next to the query image and less similar ones should be placed at a greater distance. 
Therefore important features should have higher weights than less important ones to “punish” a 
greater distance for an important feature by a greater value for the product of distance and weight. 
 

 
Figure 3: Clustered image space 

 
If we would not use thresholds to limit the range of possible distance values, it could be possible 
that images appear in the result set that are similar in most aspects of the defined query model but 
not similar in some of them. Then it would be the task of the weighting process to order images at 
the end of the result set. This could hardly be achieved by the linear weighting method described 
above. It follows that using thresholds shifts the importance of the weighting algorithm from an 
essential part of a retrieval system to a more or less cosmetic operation. 
 
Our idea is to cluster the image database and to use the contribution of each feature for the cluster 
structure for the selection of suitable weights. Clustering was performed by a self organizing map. 
The weight of a feature is calculated as the sum of distances (of the feature) between the cluster 
that contains the search image and all neighboring clusters. Figure 3 shows a clustered image 
space where six features (F1 - F6) are used. The weighting algorithm consists of the following 
steps: 



 
1. Clustering of image database 

For each image in the coats of arms database [3] all features are calculated. Then the various 
feature vectors are exported, merged into a single vector (representing one image) and 
normalized. The normalized vectors of all images are fed into the map calculation algorithm in 
SOM-PAK ([13]) which produces a map with hexagonal layout. This means that each cluster 
has (max.) six neighbors. A cluster is represented by a feature vector pointing to its center. 

 
2. Calculation of weights 

First, the cluster to which the search image belongs is identified and the weights for all features 
calculated (distance between search image and neighboring clusters). We experimented with 
two different approaches depicted in Figure 4: the distance between search image cluster and 
neighboring clusters (1) and the distance between the search image itself and neighboring 
clusters (2). We found in our tests that the first method is clearly better than the second one. 
Therefore the results in section 5 are computed by method 1. For the distance calculation itself 
the Euclidean distance was used. 

 

 
 

Figure 4: Weight calculation methods 
 
3. Application of weights 

In the test environment weights are used as proportions; for example, for a query model with 
two features the pair of weights (2, 1) equals the pair (4, 2). Two different approaches were 
tested for the application of weights: the distance of a feature to all neighbors (1) and the 
reciprocal value of the sum of distances of all other features in the query model (2). Again, tests 
have shown that the first method is at least as good as the (more complicated) second one. We 
therefore used only the first method for the tests discussed in section 4. 

 
We would like to close this section with some remarks on the features used to gain the vectors for 
the SOM calculation process. Besides the ones discussed in [2] and [3] (color histogram, symmetry 
features, segmentation, etc.) we used combined features as the one in Figure 5. This feature 
divides a shield into its elements and calculates a color histogram for each sub-region. The 
distance function analyzes whether two images have the same layout and returns 1 otherwise. In 
case of the same layout for each region the Euclidean distance between the two histograms is 
calculated and the average value returned.  
 

 
 

Figure 5: Combined segmentation and color histogram feature 
 
Another feature uses the various symmetry features to find all symmetries in a given image (see 
Figure 6). The distance function for this feature examines whether two images share all or at least 
some symmetries. A third feature uses our object feature ([3], [18]) to determine the complexity of 



an image. The complexity is defined by the number of objects in an image, the number of edges 
and mean and variance of the length of the edges and the angle between them.  
 

  
Figure 6: Symmetry description feature 

 
 
4. Test environment and results  
 
The test environment uses the IBM QBIC system [5] [8] as a kernel. Among its advantages are an 
easy to use C++-API and input filters for many image formats. The kernel was extended by a 
practical web-interface (a perl CGI-script), a search engine for query models (similar to QbQBE), 
the possibility to define thresholds and to limit the result size accordingly and some C-libraries for 
vectorization, object evaluation, etc. Features were programmed as C++-classes. Figure 7 depicts 
the test environment: 
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Figure 7: Test environment 
 
The web interface consists of a query section for the definition of query models and two picture 
sections (to show the search results in weighted and not weighted ordering). The interface was 
derived from our standard GUI for database queries [3] and optimized for the evaluation of 
weighting algorithms. A typical screenshot of the interface is given in Figure 9. The coats of arms 
of our test database (444 pictures) were taken from a heraldry server in the netherlands [9]. Most 
of them are German civic arms and show the shield only. For each image 16 features resulting in a 
feature vector with 58 elements were calculated. All feature values were normalized to the interval 
[0,10]. The SOM was built by the tools in SOM-PAK (see [13]) with the following parameters: 
 

Parameter Value 
Grid type  hexagonal 
Map dimensions 8 x 6 bins 
Neighbourhood kernel bubble 

 
For this small map it did not seem necessary to use the "gaussian" neighborhood kernel (see [13]). 
During the test session 50 tests with 550000 learning steps per test where performed. The average 



quantization error (see [13]) for the best solution was 7.466932. Each bin of the chosen map 
contains between 2 and 30 images. A typical bin is depicted in Figure 8. The cluster consists of 
images with similar color histograms, no field division and average complexity. 
 

 
 

Figure 8: Typical image cluster 
 
Verification was performed by the following steps: First, for each test query the five best images 
out of the first 12 result images were chosen. Second, for each of these images and the two 
weighting methods the distance from the actual position to the ideal position was calculated (error 
sum). The two weighting methods were: constant weights: - all weights are equal (1) and SOM 
weights: - all weights are derived from a SOM using the algorithm described in the previous section 
(2). Finally, the performance is calculated. The performance of a weighting method is defined as 
the ratio of actual error sum and the maximum possible error sum (in our case: 45).  
 

 
 

Figure 9: Screenshot of the weighting GUI 
 



Figure 9 shows a typical screenshot of the weighting interface (developed specifically for the 
verification process). The first image is the search image. The query model consisted of two 
features: symmetry over the y-axis and similar low complexity. The latter was judged to be more 
important by the weighting algorithm and images with lower complexity were ordered ahead of 
more similar ones. It should be noticed that in this example the query model has not the purpose to 
describe similarity as perceived by humans.  
 
Figure 10 shows the performance results for both methods: The performance of the SOM weights 
method is about 92% resulting in an improvement over constant weights of more than 8%. It is 
important to keep in mind that these values can only be compared by the verification algorithm we 
are employing. If we looked at the first twenty instead of the first twelve images the performance 
would probably be lower. However, the performance of the constant weights method in this case 
would be lower too and the improvement still significant. 
 

 
 

Figure 10: Weighting performance 
 
 
5. Present and future research  
 
When using thresholds it is not necessary to calculate every feature for every image in the 
database. In order to minimize the run-time of retrieval it is desirable to use features first that have 
the fastest distance functions and produce the smallest result sets. We have developed an 
algorithm to optimize run-time of a retrieval process in this sense. This algorithm consists of two 
parts: 
 
1. a model predicting the likely result set size for each feature. Here the position of a feature in the 

query model is taken into account. 
2. an optimization algorithm using the estimated size of the result set and the (known) 

performance of a distance function and calculating the optimal ordering. 
 
Evaluation has shown that ordering performed by this algorithm is correct in more than 80% of all 
cases.  
 
One of the main goals of the project is the automatic generation of query models. For this purpose 
we have implemented several algorithms for feature selection and threshold definition. These 
algorithms use the self organizing map described above and expert knowledge to derive the most 
suitable query model for a search image. It will be one of the next steps to tune and evaluate these 
algorithms and compare the results to those gained by a domain expert. 
 
 
 
 



6. Conclusion  
 
This paper shows how merging by linear combination of weighted distance values can be 
performed. A weighting algorithm is presented for the automatic computation of suitable weights for 
image features. These features are arranged in query models. The algorithm bases on a self 
organizing map which describes the "natural" clusters within an image database. We showed that 
using the contribution of a feature to the cluster structure as weight improves the ordering of query 
results. The implementation uses IBM QBIC system as kernel and runs under LINUX.  
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