
in: Photogrammetric Engineering and Remote Sensing (PE&RS),

volume 65, number 3, pages 259{267, March 1999.

Parallel Image Processing Applied to Radar

Shape-from-Shading

Advanced parallelization techniques applied to a time-consuming

surface reconstruction algorithm lead to excellent performance on

massive parallel computers and good results on a cluster of worksta-

tions.

A. Goller, M. Gelautz, F. Leberl

Institute for Computer Graphics and Vision, Technical University Graz

M�unzgrabenstra�e 11, A-8010 Graz, Austria

Phone: +43 316 873-5025 FAX: +43 316 873-5050

e-Mail: goller@icg.tu-graz.ac.at

Abstract: Various widely used radar image processing algorithms require considerable computing resources

but can take advantage of a parallel implementation. We focus on the Shape-from-Shading (SfS) algorithm in its

application to radar images. A given serial version of the SfS algorithm was parallelized and improved to handle

large images. We experiment with parallelization techniques such as data decomposition, the manager/worker

method and dynamic load balancing with double bu�ering. The parallel version of SfS was ported to two super-

computers: Meiko's CS-2HA and Intel's PARAGON XP/S-A4 distributed memory machines, and to a Cluster

of Workstations (CoW) made up of SGI's Indies. Important results concerning the performance of the parallel

SfS implementation on those architectures are presented and compared to each other, showing that 14 processors

can speed up SfS by up to 13 times over the use of a single processor.

1 Introduction

Raw radar data are subject of radar signal processing [2] and will result in conventional image pixel arrays.

Due to the large quantity and high rate of raw radar signals it is customary to con�gure parallel processing

systems for radar signal processing. Radar image processing then is applied to improve these images, or to

extract information about the imaged surface, such as topographic shape, surface roughness, types of materials

on the surface, or changes which might occur there over time. Such information extraction often requires the

use of multiple images and of elaborate algorithms.

While radar signal processing has traditionally been implemented on special purpose parallel processing hard-

ware, radar image processing has hardly been a topic of parallel processing research. An exception is early

work with radar images from the Space Shuttle [15] and recent work in noise despeckling [1]. However, parallel

radar image processing is becoming a strategy of increasing importance and is motivated not only by complex

algorithms, but also by the need to cope with extraordinary quantities of image data, and by increased avail-

ability of a�ordable open parallel computing platforms. This need is being demonstrated with the radar image

coverage of planet Venus which was obtained by NASA in its Magellan mission in 1990{1992 (e.g. Leberl [14]).

Processing of the raw data signals acquired during the mission resulted in 400 Gbytes of image pixels.

Our interest in parallel radar image processing derives from the desire to process these images to obtain a

detailed topographic surface model or Digital Elevation Model (DEM), and to use this model for precise terrain-

corrections of the images (orthorecti�cation, geocoding). NASA created a so-called Magellan Stereo Toolkit as

a collection of sequential algorithms and functions that an individual data user could employ to process small

subsets of the Magellan images [3]. We briey review four of the most frequently used algorithms.

Image Matching establishes a set of corresponding points in two overlapping images to measure stereo-

parallaxes, mosaic images or compare multiple images of a given terrain. Various appoaches exist, which for

radar images are mainly based on correlation of pixel arrays, yet must cope with the radiometric di�erences due

to illumination di�erences. Therefore, some algorithms use additional information derived from edge �lters and

local image statistics [7]. Some of the algorithms are quite time-consuming and would therefore bene�t from a

parallel implementation. However, the structural complexity of available serial implementations is high so that

we decided that these algorithms be �rst theoretically studied before parallel code gets written.

Resampling and Gridding is used to resize DEMs and geocode images. The implemented resampling and

interpolation algorithms are not very time consuming compared to other radar image processing algorithms.

Thus, we are not concerned with parallelizing this code unless new time consuming algorithms or real-time

needs exist.

Shape-from-Shading (SfS) is based on the idea that the variation of brightness, or shading, is a result of the

terrain shape responding to the illumination by the radar sensor. A DEM becomes locally re�ned by applying

SfS. We have chosen this algorithm due to its time complexity and its algorithmic structure.

Visualization and Perspective Rendering employs the 3D DEM, adds the corresponding 2D terrain-

corrected images and produces a perspective view of the combined data set. Ideally this visualization provides

the illusion that the human viewer is located on the terrain surface or experiences a y-over in a �ctitious

aircraft. It will be useful to perform the computation in a parallel manner representing a classical computer

graphics application. Clearly this makes \rendering" a parallelization topic, however at a later time.

2 Shape-from-Shading

2.1 Principle

Normally, in radar image SfS the assumption is made that the amount of light reected by a particular part of

the terrain surface is only a function of its orientation and its reecting properties �0:

Ipixel = R(�; �0(�)) (1)

If we know the pixel's brightness, Ipixel, and its reective behavior, �0, then we should be able to compute the

slope � of the surface patch with respect to the radar's antenna position. Slope values �ij in each pixel ij need

to be integrated into a continuous terrain surface in such manner that it is consistent with the observed slant

ranges as well with the gray values Iij(1), Iij(2) . . . Iij(n) in n input images (1), (2) . . . (n) (see �gure 1).

Horn and Brooks [11] collected ideas about SfS in general as they existed in 1989. Whereas some early solutions

to the SfS problem relied on solving the resulting di�erential equations directly, most recent approaches are based

on the formulation of SfS as minimization problem which is mathematically treated by calculus of variations

techniques.

Generally, the reconstruction of topography from image gray values faces the following two problems: (a) The

reected energy is not only a function of the imaging geometry (e.g. local incidence angle), but also inuenced by

the reectance properties. In the particular case of terrain reconstruction in planetary sciences, the reectivity of

the surface materials is normally not known. (b) Even if the reectance behavior is known, SfS still constitutes

mathematically an underdetermined problem: A particular image gray value may have been generated by a

variety of surface orientations. In the example of SAR images, a given pixel intensity imposes only a cone

Figure 1: Images from the planet Venus, at 2Æ South, 73Æ East, geocoded using a coarse DEM obtained from

stereoscopy. The area is about 40km� 40km. Look angles are 42Æ (left image) and 23Æ (right image), pixel size

is about 75m� 75m per pixel.

constraint on the corresponding local surface facet, with the axis being the radar look direction and the half-

angle the local incidence angle. In some applications, insuÆcient knowledge of the illumination direction poses

further problems, which, hoewever, are not of concern when dealing with radar images.

Problem (a) is often circumvented by assuming the albedo to be constant in a �rst approximation. Another

technique, which is adopted in the algorithm we employ, is the use of multiple images acquired with di�erent

look angles. The uniqueness problem (b) is generally tackled by adding either additional constraints, or a priori

knowledge obtained from other sources. A frequently used constraint is the requirement of integrability, as

de�ned by

zxy(x; y) = zyx(x; y) (2)

with z(x; y) being the surface height above the (x; y) plane. In other words, the second order partial derivatives

are independent of the order of di�erentiation. If the integrability constraint is ful�lled, the surface height z

obtained by integration over surface slopes is independent of the path of integration. A second constraint is the

requirement of smoothness, which regulates the amount of allowable oscillations in the reconstructed terrain

surface.

A notable approach to the SfS problem which does not use the smoothness nor the integrability constraint was

presented recently by Wei and Hirzinger [17]. Their idea is to use a multilayer neural network to represent the

terrain surface analytically. In this formulation, the problem is converted into the task of training the network

in so that a given cost function is minimized with respect to the network weights. The obtained surface z is

solved for directly, and is therefore automatically smooth and integrable, which avoids the problems arising in

most other solutions due to the smoothness and integrability constraint.

The application of SfS to radar images, also denoted as radarclinometry, was pioneered by Wildey [19] in the

context of recovering the shape of the surfaces of other planets. In this work, uniqueness was enforced by

assuming the terrain surface to be locally cylindrical. Further research on SAR imagery was carried out by Kirk

[12], Frankot and Chellappa [6], Guindon [9], and Thomas et al. [16]. Kirk [12] used �nite elements instead

of the variational approach, and points out the computational eÆciency of his method. Guindon [9] proposes

the integration of individual SAR range lines into terrain elevation pro�les independently of each other. This

one-dimensional approach is motivated by the observation that SAR image gray values are mainly indicative of

the range component of terrain slope, rather than the full 3D surface orientation.

Frankot and Chellappa [6] presented a new solution to enforce strict integrability in an iterative SfS algorithm.

Their idea is to project the (generally) non-integrable surface estimates obtained in each iteration step onto a

subspace which contains only integrable solutions. This leads to \nearest" integrable surface slopes which are

then input to the next iteration step. The advantage of this algorithm over other approaches which incorporate

integrability by use of a penalty function is the enforcement of strict integrability, whereas the penalty term

pulls the solution only \close" to integrability.

2.2 Chosen Implementation

For our parallelization experiments, we have chosen the algorithm presented by Thomas et al. [16], which

is an extension of the work by Frankot and Chellappa [6]: Due to the use of multiple images, the simpli�ed

assumption of constant reectance properties is no longer necessary. Furthermore, this technique has proven to

be more robust to noise. Although the algorithm has been generally formulated for a set of n images, we have

currently considered only cases with n = 2. This is consistent with the idea of using two overlapping images for

a stereoscopic surface measurement which is then followed by SfS to \re�ne" the solution.

In this algorithm, the calculus of variations problem derives from minimizing the following cost function (su-

perscripts refer to image number, assuming two images):

" =

Z Z
(I(1)(x; y)�R

(1)(zx; zy))
2 + (I(2)(x; y)�R

(2)(zx; zy))
2 + �(z2

xx
+ 2zxy + z

2
yy
)dxdy (3)

with

I actual image gray value

R predicted image gray value

z terrain height

zx slope in x (range) direction

zy slope in y (azimuth) direction

zxx second order partial derivative in x direction

zxy second order partial derivative with respect to x and y

zyy second order partial derivative in y direction

� regularization parameter

The �rst term in (3) is a measure of the di�erence between the pixel gray values I in one of the real SAR

input images and the gray values R predicted by simulation using the current estimated terrain model. The

second term refers to the other input image. The third term serves for regularization. It acts as a penalty

function that limits the amount of terrain oscillations. The solution to the minimization problem is obtained

iteratively (see �gure 3, cost compute). At each iteration step, the resulting estimates of the terrain slopes

are integrated to calculate heights (integra real). At this step, integrability is enforced according to the

method by Frankot and Chellappa [6]: The original solution for the surface slopes is projected onto a subspace

of surfaces which can be represented by a set of Fourier basis functions, and ful�lls thus automatically the

integrability constraint. This frequency domain formulation of the problem leads to the massive use of Fast

Fourier Transforms (FFTs) in the code (see �gure 3, fourt1), which we will discuss later in more detail.

The spectral domain representation facilitates also the incorporation of low frequency information obtained

from other sources, such as, e.g., stereoscopic analysis. The algorithm itself is fairly complex, but extensively

described in the literature [13, 16]. We therefore abstain from repeating its full description here.

The stereo process carried out in a preparatory step outputs two geocoded images and a preliminary DEM

with elevations at each surface point xy. These surface elevations are combined with ephemeris data and

assumptions about �0(�) (e.g. the Hagfors reection model, see [10]) to serve as input to the SfS computation,

as illustrated in �gure 2. Experience has shown that SfS should be applied to re�ne shape information obtained

from other techniques. These might be altimetry, stereoscopy or inaccurate DEMs from previous satellite

missions. However, SfS should not be the sole source of shape information, since it produces large ambiguities in

the surface shape, particularly at low frequencies [14]. As already mentioned before, the spectral representation

Shape
from

Shading

input images

flight parameters

stereoscopy

refined DEM

initial DEM

detailed view with some contour lines

surface parameters

Figure 2: Shape-from-Shading data ow

of the DEM leads itself well to merge low frequency-stereo or altimetry elevations with high-frequency SfS

elevations (see �gure 3, cos filter and frequency enforce).

2.3 Software Engineering Issues

It is important to analyze the algorithm and especially the data ow carefully, because this point shows if

and how eÆcient the algorithm can be parallelized. As illustrated in �gure 3, several subroutines are called

within the iteration loop. Logically, the loop begins at beta compute to derive the incidence angles, which are

then passed to slope calc to calculate the slopes. To process the steps Frankot and Chellappa [6] proposed

within the routines iterate real hg and integra real, the Fourier transform (fourt1) has to be called in

advance. Then, frequency domain constraints are applied for low (frequency enforce) and high frequencies

(cos filter). After the inverse FFT, the re�ned DEM is compared to the reference DEM in height chk and

the cost function [16] is calculated in cost compute as a means for iteration control.

Each call to the subroutines in this loop results in an additional re�nement step, requiring iteration Rk to be

�nished prior to the start of iteration Rk+1. All data items used are either read-only as the initial DEM and

images, or they are rewritten in each iteration, meaning that there is nothing during iteration Rk that may be

calculated in advance. Thus, trying to parallelize this loop according to the program decomposition paradigm

(e.g. [20]) leads to a dead end.

Nevertheless, all subroutines calculate one or several values for each pixel. For simplicity, let us assume that all

images are square having n lines, each containing n pixels. If only one or a few pixels in the near neighbourhood

are necessary to compute the new one, the time complexity is O(n2), and one out of several processors may

compute just a small piece of the whole data set.

We found that the near-neighbourhood constraint is true for all subroutines except the FFT which has a

complexity of O(n2 � log(n)) [8]. Thus, the overall complexity calculates to O(i �n2 � log(n)) where i represents

the number of iterations. This estimate is mathematically correct, but says litte about real time behaviour.

Consequently, not using O()-notation leads to a better estimate for computing time T where the parameter c1
is considerably larger than c2:

T � i � (c1 � n
2 + c2 � n

2
� log(n)); c1 � c2:

sfs_main (init)

menu_real

beta_compute

fourt1 (initial DEM)

slope_calc

iterate_real_hg

integra_real

cos_filter

frequency_enforce

height_chk

cost_compute

sfs_main (read parameters)

fourt1 (reference DEM)

fourt1 (inverse)

beta_compute

fourt1

fourt1 (inverse, output DEM)

slope_calc

sfs_main (write)

Figure 3: Description of Shape-from-Shading in terms of called subroutines.

The term c1 � n
2 represents the time needed by all O(n2)-routines during one iteration. The second term

represents the time needed by the FFT, which is about 10% of the time described by the �rst term if n � 1000,

which reects a common image size. Time increases linearly by the number of iterations as can be seen from

the leading factor i.

3 Problems Handling Large Data Sets

Whilst the FFT works well for small images, the time needed by Fourier- and Inverse Fourier Transforms rises

according to their time complexity of O(n2 � log(n)). Calculating the FFT for an entire image would last too

long and is not necessary since SfS just re�nes the slope and terrain locally.

Data Decomposition is the method being applied to divide the input images and the initial DEM into

smaller parts. Figure 4 shows the partition scheme. The subimages or patches, each 128 � 128 pixels large,

overlap one another. This is necessary due to erroneous e�ects at the edges of the patches.

Data decomposition of course inuences the algorithmic behaviour. On one hand, the algorithm becomes very

suitable for parallelization. On the other hand, using just local FFTs has two further impacts: First, execution

time is reduced to O(n2), because the FFT is applied to equally sized, small parts, regardless of the total

problem size. Second, the lower frequencies, which are obtained by the FFT in the spectral domain, must be

replaced by the low frequencies of the initial reference DEM. This guarantees that the small terrain patches

which can then be calculated independently �t together after the re�nement operation.

Putting the Patches Together is nevertheless diÆcult due to SfS's behaviour at the seams: The low

frequency enforcement guarantees that the patches do not di�er with respect to medium height and average

slope. However, local disparities and oscillations occurring at the seams must be removed by an extra procedure,

called \feather". To obtain satisfying results in conjunction with an acceptable amount of overhead calculation,

the overlapping region was found to be about one quarter of the patch size. Due to the �xed size of all patches,

the overlapping region is larger at the rightmost and bottom patches see Figure 4.

Within the overlapping region, about 10 pixels are cut o� and replaced by the neighboring patch, as illustrated

in �gure 5. This is necessary because SfS tends to produce high-frequency oscillations in range direction which

are caused by the many operations in the frequency domain which is susceptible to typical \ringing" e�ects.

In order to provide a smooth transition between the patches, interpolation is done in the middle part of the

overlapping region

128

Figure 4: Data decomposition. The input data set is divided into equally large, overlapping patches which then

are re�ned independently of each other.

real DEM

symbolic
representation: Patch 2

Result

intersection:

Patch 1

Edge Effects Edge Effects
ErroneousErroneous

Interpolation Area

Overlapping Region

Figure 5: Interpolation strategy to merge adjacent DEM-patches by means of a gradual transition weighing one

patch less as one moves into its neighbour.

overlapping region, where the terrain is linearly interpolated from one patch to the other one. However, this

interpolation is not always satisfying and will be subject to further research.

4 Parallelization Approaches

As the data set is already split into smaller parts, now a means for distributing these parts across all computing

nodes must be found. Additionally, all nodes should be equally loaded. To reach these goals, we rely on well

established paradigms. However, parallelization only is meaningful if the code on a single node is optimized as

well.

Single CPU Optimization therefore is necessary to later obtain a good parallel code. It is also much easier

to optimize the code before parallelization. Modern computing nodes are equipped with RISC processors, most

of them even with a super scalar architecture. To facilitate all available integer and oating-point units (FPUs),

as well as to advance the usage of CPU registers and cache memory, a variety of compiler switches may be set.

Sometimes, the source code must be slightly rewritten to enable the compiler's features. In order to help the

compilers, code changes like loop splitting, loop reversal, and loop blocking as well as some scalar optimizations

were encoded by hand.

The Manager/Worker Method { a centralized approach { was taken to distribute the patches to all

available processors. One manager process does the I/O and controls all other processors, the workers. This

scheme is illustrated in the left part of �gure 6. The manager reads the whole data set, partitions it and sends

the subimages to the workers. The workers themselves perform the real re�nement calculations and then send

the data back. The manager collects the results, postprocesses and stores the re�ned and �tting patches back to

disk. Since the manager performs no \real" computation, it can control many workers concurrently. However,

the manager remains the bottleneck in both, �le I/O and communication to the workers.

Master
Process

Master
Process

ProcessesWorker

Original Images

Refined DEM

Break up into
subimages, and
distribute them

Send subimages
back to the master
which glues them

together

Distributed
Imagery Data

Figure 6: Manager/Worker method (left) combined with data decomposition (right).

Through our experiments, we found some advantages in the Master-Worker method. The simple communication

structure and the well de�ned tasks each processor has to perform led to an easy implementation. The work of

porting the code onto other platforms was small as well, because the manager easily can be tested with dummy

workers that only send back the received DEM patch.

Load Balancing appears to be a problem since the subimages are rather large, and we have to cope with

problems when applying \coarse grain size" parallelization [4, 18]. Static load balancing, which creates a schedule

prior to the distribution of the subimages, cannot be used because the tasks the workers are charged to perform

are slightly unequal in time, and not all CoW (Cluster of Workstations) workers are equally powerful.

In contrast, we used a simple paradigm for dynamic load balancing. The manager decides which subimages

to send next while the workers perform computation. An easy and suÆcient method is to take the patches in

their natural order. When a worker sends back its result, this can be seen as a request for new work. Then, the

manager sends the next available and not yet calculated subimage to this worker. At the beginning, or if some

workers request new tasks nearly at the same time, they are served in a Round-Robin fashion. We found that

the manager/worker paradigm as a basic communication structure is well suited to implement dynamic load

balancing on top of this method.

However, this simple way of dynamic load balancing su�ers at three points. The tasks are not sorted with

respect to the time they are expected to need. Thus, it is possible that one of the last tasks submitted is

one of the largest ones. This leads to the second problem. All workers must wait for completion of the last

one. The remaining work cannot be redistributed. These two problems are not really serious if there are many

more subimages than available workers and if the amount of work per task is about the same. Whilst the �rst

restriction can be met only when processing large data sets, the second one is ful�lled implicitly since all patches

are of the same size and the computations for each patch do not di�er signi�cantly from one another.

Thirdly, if many workers request tasks concurrently, the manager is overloaded for a moment. In this case,

the workers are served Round-Robin like, and some workers are forced to wait until the manager has time for

them. It happens routinely that in this time other workers request new tasks, too. Thus, the workers are

virtually synchronized. This problem also occurs at the very beginning. Assuming tasks with an equal size, this

problem cannot be solved just in time, causing the manager to be overloaded periodically. These circumstances

sometimes lead to dramatic losses in eÆciency, especially if processors are interconnected via a bus system, or

if there are other restrictions limiting the number of concurrent communications.

reply

processing

reply

buffering

phase
Master

request

time

Worker 1

Worker 2

request

Figure 7: Communications behaviour of the implemented dynamic load balancing technique introducing double

bu�ering. For simplicity, only one manager and two workers are drawn.

To solve this problem, we extended the dynamic load balancing with double bu�ering. In �gure 7 a manager is

shown with only two workers for simplicity. Initially, every worker gets one piece of work. Instead of requesting

a new task after the �rst one was �nished, the worker requests immediatly a second one. This overloads the

manager heavily at �rst, but the workers do not care because they already have tasks to compute. The manager

has now plenty of time to submit all requested tasks while the workers are calculating the �rst problem. Thus,

all workers can start their next task immediately after they have �nished their former one, and they can request

a new task in advance. As can easily be concluded, this method theoretically reduces the idle time of workers

down to zero.

5 Hardware Description

For this project, we have access to three di�erent computing platforms, located in Vienna and Graz. All

platforms are equipped with a set of general purpose microprocessors. Thus, they all can be classi�ed as MIMD

computers [5]. All nodes run an extended UNIX operating system. Communication is according to the message

passing paradigm, since the memory is distributed across all nodes.

Meiko CS2-HA | Computing Surface 2 { High Availability from Meiko is located at a European Union

facility, the European Centre for Parallel Computing at Vienna (VCPC). This supercomputer is equipped with

128 compute nodes each performing 100 MFLOP/s. Disk capacity is about 40 Gbyte, and each node is equipped

with 64 Mbyte RAM. The network is scalable and thus can be easily extended adding 8*8 crosspoint switches

(ELITE chips)1.

Paragon XP/S-A4 is the second computer we can access. This supercomputer from Intel contains 56

compute nodes, each equipped with 16 Mbyte RAM, and working at 75 MFLOP/s. Paragon is equipped with

15 Gbyte disk space and the processors are interconnected via a 2D mesh. Paragon is located at the University

Computing and Information Services Center (EDVZ) at Technical University Graz.

SGI Indy-CoW is an Indy-workstation cluster from SGI. Each Indy performs about 100 MFLOP/s and is

interconnected with a 10 Mbit/s Ethernet line. A Power Challenge computer managing 47 Gbyte disc space is

also connected to the Ethernet and serves as master processor. However, this cluster is by no means a standalone

facility. Although performance was measured mainly during weekends and over night, results depend on the

usage of the various workstations at that time.

6 Performance Assessment

Figure 8 shows the eÆciency obtained on each computing system, measured for various values of p and s. p

represents the number of processors involved, and s is the number of patches into which the whole data set was

decomposed.

Utilizing more than half of all processors is commonly agreed to be an acceptable eÆciency for parallel applica-

tions. In all three diagrams, the eÆciency never drops below this 50%-level in the area of interest (see �gure 8

bottom right). This area excludes parts where s < p, since then the number of patches to distribute is smaller

than the available number of processors. Consequently some processors must be idle. Areas where s � p are

also out of interest because load balancing cannot work properly under such circumstances. Due to the coarse

grain parallelization applied we have to exclude the �rst row (s = 1) and half of the second row (s = 12; p � 7).

The upper left diagram in �gure 8 shows the eÆciencies measured for the Paragon supercomputer. EÆciency

is very close to 1 whenever s is large enough to keep the load balancing mechanism working. This hold for the

region having s > 4 � p. Paragon can thus be said to be the best and most stable system examined.

Next best is the Meiko supercomputer (upper right diagram). Execution times varied; repeatedly running SfS

with the same input data led to signi�cantly di�erent timings due to the operating system's way to invoke

parallel processes. We therefore took the average of 5 runs to obtain the one-processor timings. However, we

just measured the time once for all other parameter settings resulting in a rather spiky diagram, even showing

eÆciencies larger than 1.

The eÆciency of the CoW already decreases at a low number of processors, which can be seen in the lower

left diagram. Mostly independent of the problem size s, the eÆciency decreases linearly with the number of

processors p, showing a communication bottleneck. It is not only the poor communications bandwith of Ethernet

but also the bus topology that only allows one process to send data any time. Particularly the latter fact causes

many bus collisions when several workers try to request new work nearly at the same time.

To obtain a better impression of the achieved performance gain, all three platforms were compared to an ideal

parallelization, which only can be acchieved theoretically. A DEM of size 1024� 1024 pixels or 121 patches was

therefore re�ned on up to 14 processors. Execution time on one processor is about 112s on a Meiko, 128:5s on

a Paragon and 500s on an Indy workstation.

In �gure 9 the speedup is shown pointing out again the very good utilization of the computing nodes on Meiko

and Paragon. Supercomputers are likely to perform well in this area of image processing due to their high

bandwith communication links, but also the CoW may be used as an inexpensive alternative.

1http://www.vcpc.univie.ac.at/meiko/overview/MeikoOverview.html

1 2 4 7 1 0 1 4

1

1
2 2

5 5
5 1
2

1 2
3

1 5
9

8

1
1

3
4

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ef
fi

ci
en

cy

p

s

P-S-Plane for i=8

1 2 4 7
1 0

1 4 1

1 2

2 5

5 5

121

0

0,2

0,4

0,6

0,8

1

1,2

ef
fi

ci
en

cy

p

s

P-S-Plane for i=8

1 2 4 7 1 0 1 4 1

1 2

2 5

5 5
121

231

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ef
fi

ci
en

cy

p

s

P-S-Plane for i=8

��������
��������
��������

��������
��������
��������

����������������
����������������
����������������

����������������
����������������
����������������

104 7 14

s

1

12

25

p

231

121

55

1 2

Area of In
terest

Figure 8: EÆciency with a certain number of processors (p) versus problem size (s). Paragon (top left) and

Meiko (top right) perform well in all areas of interest (bottom right, shaded area has p � s). The eÆciency of

the CoW (bottom left) decreases when several processors are used. (i represents the number of iterations.)

7 SfS Results

Fast execution is valuable, but carefully comparing the results to those from the sequential version are mandatory

to prove the correctness of the parallelized program. Since we already modi�ed the sequential algorithm to handle

large data sets, correctness must be checked via a comparison of (a) the original and the modi�ed sequential

algorithms and (b) the sequential and parallel versions.

The outputs for comparison (b) are identical. However, since it was impossible to re�ne large images before this

project, there were no data for comparison (a) available. We therefore had to validate the output of the modi�ed

sequential program for large images by a human quality control process: It is important that the transition

from one re�ned patch to its neighbours is smooth, and that oscillations at the rim of each patch are removed

completely.

In �gure 10 we compare the input DEM as obtained from stero processing and subsequent resampling, and the

SfS-re�ned output DEM in a rather analytical way. Each immediate jump from white to black corresponds to a

contour line. Contour lines are set every 250m. To illustrate the terrain's behaviour within these lines, fractions

1 2 4 7 1 0 1 4
SGI Cluster

Paragon

Meiko

Ideal

0

2

4

6

8

1 0

1 2

1 4

S
p

ee
d

u
p

Number of Processors
Computer

 Name

Speedup of Concurrent SfS on
Meiko, Paragon and SGI Cluster

Figure 9: Performance comparison of all platforms relative to an ideal parallelization.

Figure 10: Contour plots of both the initial DEM (left) and the re�ned DEM (right) from the surface of Venus.

One transition from black to white corresponds to 250m. The original images are shown in �gure 1.

of the steps between the contour lines are shaded linearly as di�erent gray values.

A better visual impression can be received looking at the DEMs from a perspective view point near the lower

left corner, as shown in �gure 11. Triangulation artefacts and plain, arti�cially looking slopes are replaced by

a more realistic terrain shape.

Figure 11: Perspective visualization of both the initial DEM (left) and the re�ned DEM (right) of �gure 10. All

scales are in km.

8 Conclusion and Outlook

An existing serial version of a time-consuming radar image shape-from-shading algorithm was �rst extended to

handle large data sets using the principle of data decomposition, and then parallelized by employing a man-

ager/worker algorithm with load balancing based on double-bu�ering. The parallel implementation was ported

to a Meiko CS-2HA, an Intel Paragon XP/S-A4, and a cluster of SGI Indy workstations (CoW). Performance

measurements on these platforms have shown that Meiko and Paragon perform very well with an eÆciency of

more than 98% using up to 16 processors, which was the maximum number of computing nodes available for

our experiment. The eÆciency of the CoW was found to decrease signi�cantly already at less than 10 proces-

sors, reecting mainly a communication bottleneck on the Ethernet. However, due to the good performance in

smaller con�gurations, the CoW might be used as an inexpensive alternative to supercomputers if only a few

computing nodes are available in any case.

Based on the knowledge obtained from this implementation, we intend to proceed with the parallelization of

other computationally intensive algorithms used in image processing. Work will be focused on radar image

processing algorithms such as matching, gridding, and resampling to process Magellan's massive 400 Gbytes

of image data and to obtain a DEM from these images. Prior to that step, signal processing code must be

improved to compute more accurate images from raw radar echoes. Speci�cally, this elaborate task also has to

be parallelized, exploiting insight and results from this ongoing work.

The experiences gained in this work also will be valuable to process data from Earth-orbiting satellites equipped

with either electro-optical or radar sensors. Concurrent algorithms will become mandatory for processing high

resolution data from future satellites.

9 Acknowledgements

This work is �nanced by the Austrian Research Funds \Fonds zur F�orderung der wissenschaftlichen Forschung

(FWF)" within the Research Program \Theory and Applications of Digital Image Processing and Pattern

Recognition", Project 7001, Task 1.4 \Mathematical and Algorithmic Tools for Digital Image Processing".

References

[1] Addison, C., et al. (1996) PULSAR: Parallel Noise Despeckling of SAR Images; High-Performance Computing and

Networking (HPCN96) Conference Proceedings, in Lecture Notes in Computer Science 1067, Springer Verlag, pp.

177-182

[2] Curlander, J., R. McDonough (1991) Synthetic Aperture Radar: Systems and Signal Processing; John Wiley & Sons,

647 pp.

[3] Curlander, J., K. Maurice (1992) Magellan Stereo Toolkit User Manual; Vexcel Corporation, Boulder, CO

[4] Fox, G., M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker (1988) Solving Problems On Concurrent Processors,

vol. 1 - General Techniques And Regular Problems, Prentice-Hall International, London, 592 pp.

[5] Flynn, M. J. (1972) Some computer organizations and their e�ectiveness; IEEE Transactions on Computing, C-21,

pp. 940-960

[6] Frankot, R., R. Chellappa (1989) A Method for Enforcing Integrability in Shape-from-Shading Algorithms, in B.

Horn, M. Brooks (eds.), Shape-from-Shading, MIT Press, Cambridge, pp. 89-122

[7] Gelautz, M., G. Jakob, G. Paar, S. Hensley, F. Leberl (1996) Automated Matching Experiments with Di�erent Kinds

of SAR Imagery, Proc. of IGARSS 96, Lincoln, NE, pp. 31-33

[8] Gonzalez, R. C., R. E. Woods (1992) Digital Image Processing, Addison-Wesley, chap. 3.4, pp. 119-127

[9] Guindon, B. (1990) Development of a Shape-from-Shading Technique for the Extraction of Topographic Models

From Individual Spaceborne SAR Image, IEEE Trans. Geoscience and Remote Sensing, vol. 28 no. 4, pp. 654-661

[10] T. Hagfors (1964) Backscattering from an Undulating Surface with Applications to Radar Returns from the Moon;

Journal of Geophysical Research, vol. 69, no. 1, pp. 3779-3784

[11] Horn, B., M. Brooks (1989) Shape-from-Shading; MIT Press, Cambridge, Massachusetts, 569 pp.

[12] Kirk, R. (1987) A Fast Finite-Element Algorithm for Two-Dimensional Photoclinometry, Thesis, California Institute

of Technology, Pasadena, California

[13] Leberl, F. (1989) Radargrammetric Image Processing, Artech House, Norwood, Massachusetts, 569 pp.

[14] Leberl, F. W., J. K. Thomas, K. E. Maurice (1992) Initial Results From the Magellan Stereo-Experiment. J. Geo-

physical Research, pp. 13675-13687

[15] Ramapriyan, H. et al. (1986) Automated Matching of SIR-B Images for Elevation Mapping, IEEE Trans. Geoscience

and Remote Sensing, vol. GE-24 no. 4, pp. 462-472

[16] Thomas, J., W. Kober, F. Leberl (1991) Multiple Image SAR Shape-from-Shading; Photogrammetric Engineering

and Remote Sensing, vol. 57, no. 1, pp. 51-59

[17] Wei, G., G. Hirzinger (1994) Learning Shape-from-Shading by Neural Networks; Proceedings of \Mustererkennung

1994", eds. W.G. Kropatsch and H. Bischof, Informatik Xpress, Tech. Univ. Vienna, pp. 135-144

[18] Wenzel, L. (1991) Parallele Programmierkonzepte; Franzis Verlag, Muenchen

[19] Wildey, R. (1986) Radarclinometry for the Venus Radar Mapper; Photogrammetric Engineering and Remote Sensing,

vol. 52, no. 1, pp. 489-511

[20] Zomaya, A. Y. (Ed.) (1996) Parallel and Distributed Computing Handbook; McGraw-Hill Series on Computer Engi-

neering, chap. 9

