
PERFORMANCE-OPTIMIZED FEATURE ORDERING IN
CONTENT-BASED IMAGE RETRIEVAL

Horst Eidenberger
Austrian Libraries Network, Ministry of Science and Transport

Garnisongasse 7/21, A-1090 Vienna, AUSTRIA
Tel: +43 1 4035158 14; fax: +43 1 4035158 30

e-mail: hme@bibvb.ac.at

Christian Breiteneder
Institute for Software Technology, Interactive Systems Group, Vienna University of Technology,

Favoritenstrasse 9-11/188, A-1040 Vienna, AUSTRIA
Tel: +43 1 58801.18851; fax: +43 1 58801.18899
e-mail: breiteneder@ifs.tuwien.ac.at

ABSTRACT

We present a method to improve the performance of
content-based image retrieval (CBIR) systems. The idea is
based on the concept of query models [1], which
generalizes the notion of similarity in multi-feature queries.
In a query model features are organized in layers. Each
succeeding layer has to investigate only a subset of the
image set the preceding layer had to examine. For the
purpose of performance acceleration we group features into
two types: features for quick elimination of rather not
similar images and features for the detailed analysis of
result set candidates. Performance optimization is based on
a model for predicting the number of images to be retrieved
and on a model describing relationships between features.
Results in our test environment show significant reduction
of query execution time.

1 INTRODUCTION

The increasing number of digital libraries and databases
with visual content requires powerful solutions for content-
based image retrieval (CBIR). In most approaches image
features are extracted, stored in a database and compared
with the features of a particular search image. The result set
of a search should only contain images the features of
which show a minimal distance in feature space (nearest
neighbor searches). However, similarity computation may
be very expensive, since feature spaces in general have a
high dimensionality. Research therefore addresses topics
such as reduction of feature space dimensionality and multi-
dimensional data structures and search methods.

The approach presented in this paper intends to gain better
search performance on top of these methods by taking into
account that a similarity search usually comprises a set of
features with distance functions of varying performance.

The reminder of the paper is organized as follows: Section
2 discusses the query model concept and explains the
underlying motivation. Section 3 introduces the
components of the performance optimization approach:

models for prediction and feature relationships and the
optimization process. In section 4 we describe how the
approach was implemented in our test environment and
discuss the results gained.

2 QUERY MODELS

Similarity in our CBIR system is defined by query models
[1]. A query model is a list of tuples of the form: feature
extraction function, distance function, threshold and weight.
The threshold is the maximum allowed distance between an
image in the database and the search image. The size of the
result set is determined by the thresholds of all elements of
a query model and not - as common in other retrieval
approaches - by an absolute number. Every entry in a query
model eliminates some images until the result set is
computed.

The underlying idea of query models was the development
of a set of robust features each addressing a specific
purpose and the employment of a feature subset for a
specific similarity search. However, using query models has
an additional advantage that was not originally thought of
and is the topic of this paper: Query models enable the
reduction of retrieval time. Features having the fastest
distance functions and / or reduce the number of images in
the result set most should be ranked higher in the query
model. Therefore it seems to be useful in a CBIR system to
have two different types of features at hand:

1. Features for the quick elimination of images that for
certain are not members in the result set. These features
are used first in every query model. A typical example
would be our feature for computing the number of
color shades in an image. In our test environment the
feature is employed to decide whether the image in
question is of natural or synthetic origin [2].

2. Features for the detailed analysis of result set
candidates. These features are likely to have more
complicated distance functions consuming more time
for computation than those of the first type. They are

therefore used later in a query model. An example for
this kind of feature would be the object layout of two
images [2].

The implementation of a query engine integrating these
ideas requires solving the following problems:

1. Prediction of the number of images a feature in the
query model passes to the next layer depending on its
position in the query model. For this purpose it is
necessary to predict the number of images a feature
will select when it is the first in a query model. In
addition, relationships among features have to be
identified in order to predict the number of images,
which two consecutive features would both reject.

2. Defining an optimization model, which takes into
account the (measured) performance of the feature
distance functions and the estimated number of images
a feature will not reject to calculate the performance-
optimized ordering of features in a query model. For
this model a suitable optimization algorithm has to be
implemented and integrated into the query engine.

3 FEATURE ORDERING

The concept of feature ordering is based upon three
components that produce the information needed for the
performance-optimized ordering:

1. Prediction model—A model to predict the number of
images retrieved that a feature would rate similar if it is
the first in the query model. The purpose of this model
is to define the starting point for each feature in the
ordering process and to select the first feature in a
query model.

2. Relationship model—A model to describe the
relationships among features by a similarity value. By
this model and the information from the prediction
model it becomes possible to predict the result set size
of each feature of a query model. The prediction is
independent from the position of the feature in the
query model and the number and type of other features.

3. Optimization algorithm—for the ordering of features in
a query model by the performance of their distance
functions. In addition, the information from the
prediction and the relationship models are employed.

Figure 1 shows the data flow in the ordering process. The
prediction model uses a three-dimensional array to store the
distribution of the number of images in the result set per
threshold value for each feature and each class of images.
Figure 2 depicts an example of this structure for one
feature. The class of an image is detected by comparing its
feature vector to a feature-specific orientation point. For
this purpose the distance function of a feature class is used.
For example, a feature that simply counts the number of
colors in an image and stores this value in a one-
dimensional feature vector could have the orientation point
op = (1). If the distance function for this feature returns the
absolute difference between two vectors then the class of an

image with three colors (feature vector v1 = (3)) would be 2
and would be 5 for an image with six colors (v2 = (6)).

Figure 1: Ordering process

The order-distribution array is updated whenever an image
is inserted or deleted in the database. On every insert or
delete operation the following actions have to be carried out
for each feature: calculation of the image class as the
distance to the reference object, calculation of the distance
to every other image in the database and update of the order
distribution. In other words, in a system with n features
every update of the content base equals n user queries with
only one feature. This is acceptable since this computation
is not time-critical and can be performed in the background
when computational resources are available.

Figure 2: Order distribution

The prediction method was tested for fifteen different
features with one- to six-dimensional feature vectors. The
average performance was more than eighty percent and
most features had a performance of more than ninety
percent.

The basis for the relationship model is a Self-Organizing
Map (SOM; [4]) that clusters the elements of feature
vectors into groups. The fifteen features used sum up to 58
vector elements; we used 444 example images to train a
hexagonal map with eight columns and six rows. Using this
map we calculate the similarity value for two features with
the following algorithm:

1. For each element of the longer feature vector: find the
corresponding element of the second feature vector
with the smallest distance. The distance of two vector
elements is defined as the Euclidean Distance of the
two SOM-clusters the elements belong to.

2. These distance values are added to a global distance
value.

3. The relationship of two features is the standardized,
limited global distance of two features.

This similarity value is a measure for the similarity of the
elements of the feature vectors. To be usable in our model,
we feed these values together with the results from the
prediction model into a linear function. The function
calculates the size of the proportion of the basic image set
which both features would eliminate. The parameters of this
function are determined by heuristics. The size of the result
set of the second and all succeeding features is computed by
subtracting the aggregated output of this linear function
from the result set size of the first feature.

The optimization algorithm uses the results of the
prediction and the relationship model together with the
measured performance values for each feature to find the
optimal ordering for a query model. The goal function is
described in equation (1):

 ∑
=

=
Features

i
ii ApTime

0

:min (1)

where pi is the performance of feature i and Ai the size of
the image set examined by feature i. A0 is the size of the
image database. This means the goal is the minimization of
the query execution time. The values for Ai are derived
from equation (2):

 ∑
−

=
−− −==−=

1

0
011 ...

i

j
jiii RARAA (2)

Rj is the predicted number of images, which the feature j
will cut off Aj. These values are estimated using the output
of the prediction and relationship model. One might argue
that it is always suitable to use the fastest feature first in
order to minimize the product of p0 and A0. However, it is
not guaranteed that this feature will eliminate as many
images as some other feature and therefore keep A1 small.
Each feature - and especially the first - has an impact on all
succeeding features. Currently, we are not using an
optimized algorithm to solve the optimization model but try
out every possible order to find the optimal solution. The

performance values are collected during the normal
database operation and measured in milliseconds (ms).

For the implementation of the ordering algorithm we used a
database of 444 images of coats of arms. The 15 features
mentioned above include general-purpose features (color
histogram, number of colors and color shades, shape
features, etc.) as well as domain specific features (e. g.,
segmentation of arms, complexity, seal print analysis, etc.)
The retrieval environment uses IBM‘s QBIC system
(Version 2; [3]) as a kernel, SOM-PAK [4] for feature
vector element clustering and runs on a Linux workstation.

4 PERFORMANCE EVALUATION

The prediction model has an accuracy of at least 80%
(actually returned images by prediction) for each feature.
For many (those with feature vectors of only one or two
elements) it is more than 90% - 95%. For testing the
performance of our approach we compared the following
methods:

1. An unordered query model supplied by the user and
probably ordered correctly by chance. This method is
called the Probability method below (Prob.).

2. Heuristics where the query models are ordered by the
performance values of the features. This method does
not take into account the number of images a feature
eliminates. It is called the Performance method (Perf).

3. Our optimization algorithm without the relationship
model. This method supposes all features being
independent from each other. In other words, the set of
images two features would both eliminate would be
always empty. This method is called OrdA.

4. The optimization algorithm with the relationship model
(OrdARel).

The performance of a model is defined as the number of
cases, in which the suggested ordering was correct divided
by the total number of tests. Figure 3 shows the
accumulated performance of these four variations of query
models with two to ten layers. For each graph 1000 tests
were performed with generated but likely query models.

Figure 3: Ordering performance

OrdA and OrdARel produce an almost linear performance
graph whereas the other methods show an exponential

decrease. Therefore the quality of these algorithms must be
rated higher.

The average performance of OrdA for query models with at
most 10 layers is about 73%. This is more than 50% better
than the performance heuristics, which again is 15% better
than the Prob. method. When using the relation model
together with the prediction model to estimate the Rj the
performance improves by further 8% to 81%. This means
that our algorithm produces the correct order in more than 8
of 10 cases, which is about as good as the basic
performance of the prediction model.

Figure 4 shows the magnitude of error in the case a model
fails. For OrdA and OrdARel the error in query execution
time is smaller than 10% in 70% of all cases. Surprisingly,
the error - when feature relations are taken into account - is
often a little bit higher than for OrdA. The Perf. method is
not depicted in this figure because it appears almost linear.

Figure 4: Ordering errors

Using the OrdARel algorithm for query model ordering
reduces the time a query consumes in our test environment
from an average of 190.7 ms for the performance heuristics
to 64.6 ms for the OrdARel algorithm. This is an
improvement of 126.1 ms or 66% in comparison to the
performance heuristics. Optimally - if the ordering was
always correct - a query would take 58.7 ms which would
only be 6.1 ms faster than OrdARel (9.4%). The
computation time of the optimization algorithm itself is
already included in these values and results are therefore
almost optimal.

This research on performance-optimized feature ordering
was performed within the context of a content-based image
retrieval system for coats of arms. Our test database
consists of only 444 images and the query engine uses 15
features. A more thorough investigation and evaluation of
the improvement our approach provides would definitely
require tests with considerably larger image databases. This
will be one of the tasks we plan for the future.

However, we are very optimistic that our approach would
result in similar improvements—even for a considerably
larger database: First, 15 features—divided into two logical
groups—should be sufficient for judging the performance
of query models with a maximum of ten layers. Queries in
most current retrieval systems and most of the queries we

issue manually do not consist of such a high number of
features. Second, if we had more images in the database, we
would observe two major consequences:

1. The elements of the order distribution would have a
higher variance and therefore the output of the
prediction model would allow for easier distinction of
different features.

2. The clustering of feature vectors elements would be
more precise if more example images were considered.
However, since coats of arms are images of a very
specific nature we consider it unlikely that a larger
database would result in a very different clustering.
The error of the relationship model introduced by a
small test base should therefore be rather small.

5 CONCLUSION

We presented an approach to improve the performance in
content-based retrieval systems. The idea is based on the
concept of a query model, an ordered list of feature
extraction functions associated with distance function,
threshold and weight. The approach further employs two
types of features: one for quick elimination and one for
detailed investigation of features and two models for the
prediction of the size of the result set and for the
specification of feature relationships. An optimization
algorithm uses these inputs to produce a performance-
optimal ordering of features in a query model.

All algorithms are implemented in a C/C++ library in our
test environment on a Linux workstation. The environment
consists of QBIC, SOM-PAK, 15 feature classes and our
coats of arms test database. Results for performance
improvement are quite promising: the average time
consumed by a query is reduced by 66% and close to the
optimum.

References

[1] Breiteneder, C., Eidenberger, H., "A Retrieval
System for Coats of Arms", International
Symposium on Intelligent Multimedia and Distance
Education, Baden-Baden, 1999.

[2] Breiteneder, C., Eidenberger, H., "Content-based
Image Retrieval of Coats of Arms", Proc. of the
1999 International Workshop on Multimedia Signal
Processing, Helsingör, 1999.

[3] Flickner, M., Sawhney, H., Niblack, W., Ashley, J.,
Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee,
D., Petkovic, D., Steele, D., Yanker, P., "Query by
Image and Video Content: The QBIC System",
IEEE Computer, 1995.

[4] Kohonen, T., Hynninen, J., Kangas, J., Laaksonen,
J., SOM-PAK: The Self-organizing Map Program
Package, Helsinki, 1995.

