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ABSTRACT 

We present a method to improve the performance of 
content-based image retrieval (CBIR) systems. The idea is 
based on the concept of query models [1], which 
generalizes the notion of similarity in multi-feature queries. 
In a query model features are organized in layers. Each 
succeeding layer has to investigate only a subset of the 
image set the preceding layer had to examine. For the 
purpose of performance acceleration we group features into 
two types: features for quick elimination of rather not 
similar images and features for the detailed analysis of 
result set candidates. Performance optimization is based on 
a model for predicting the number of images to be retrieved 
and on a model describing relationships between features. 
Results in our test environment show significant reduction 
of query execution time. 

1 INTRODUCTION 

The increasing number of digital libraries and databases 
with visual content requires powerful solutions for content-
based image retrieval (CBIR). In most approaches image 
features are extracted, stored in a database and compared 
with the features of a particular search image. The result set 
of a search should only contain images the features of 
which show a minimal distance in feature space (nearest 
neighbor searches). However, similarity computation may 
be very expensive, since feature spaces in general have a 
high dimensionality. Research therefore addresses topics 
such as reduction of feature space dimensionality and multi-
dimensional data structures and search methods.  

The approach presented in this paper intends to gain better 
search performance on top of these methods by taking into 
account that a similarity search usually comprises a set of 
features with distance functions of varying performance.  

The reminder of the paper is organized as follows: Section 
2 discusses the query model concept and explains the 
underlying motivation. Section 3 introduces the 
components of the performance optimization approach: 

models for prediction and feature relationships and the 
optimization process. In section 4 we describe how the 
approach was implemented in our test environment and 
discuss the results gained. 

2 QUERY MODELS 

Similarity in our CBIR system is defined by query models 
[1]. A query model is a list of tuples of the form: feature 
extraction function, distance function, threshold and weight. 
The threshold is the maximum allowed distance between an 
image in the database and the search image. The size of the 
result set is determined by the thresholds of all elements of 
a query model and not - as common in other retrieval 
approaches - by an absolute number. Every entry in a query 
model eliminates some images until the result set is 
computed. 

The underlying idea of query models was the development 
of a set of robust features each addressing a specific 
purpose and the employment of a feature subset for a 
specific similarity search. However, using query models has 
an additional advantage that was not originally thought of 
and is the topic of this paper: Query models enable the 
reduction of retrieval time. Features having the fastest 
distance functions and / or reduce the number of images in 
the result set most should be ranked higher in the query 
model. Therefore it seems to be useful in a CBIR system to 
have two different types of features at hand: 

1. Features for the quick elimination of images that for 
certain are not members in the result set. These features 
are used first in every query model. A typical example 
would be our feature for computing the number of 
color shades in an image. In our test environment the 
feature is employed to decide whether the image in 
question is of natural or synthetic origin [2].  

2. Features for the detailed analysis of result set 
candidates. These features are likely to have more 
complicated distance functions consuming more time 
for computation than those of the first type. They are 



therefore used later in a query model. An example for 
this kind of feature would be the object layout of two 
images [2]. 

The implementation of a query engine integrating these 
ideas requires solving the following problems: 

1. Prediction of the number of images a feature in the 
query model passes to the next layer depending on its 
position in the query model. For this purpose it is 
necessary to predict the number of images a feature 
will select when it is the first in a query model. In 
addition, relationships among features have to be 
identified in order to predict the number of images, 
which two consecutive features would both reject. 

2. Defining an optimization model, which takes into 
account the (measured) performance of the feature 
distance functions and the estimated number of images 
a feature will not reject to calculate the performance-
optimized ordering of features in a query model. For 
this model a suitable optimization algorithm has to be 
implemented and integrated into the query engine. 

3 FEATURE ORDERING 

The concept of feature ordering is based upon three 
components that produce the information needed for the 
performance-optimized ordering: 

1. Prediction model—A model to predict the number of 
images retrieved that a feature would rate similar if it is 
the first in the query model. The purpose of this model 
is to define the starting point for each feature in the 
ordering process and to select the first feature in a 
query model.  

2. Relationship model—A model to describe the 
relationships among features by a similarity value. By 
this model and the information from the prediction 
model it becomes possible to predict the result set size 
of each feature of a query model. The prediction is 
independent from the position of the feature in the 
query model and the number and type of other features. 

3. Optimization algorithm—for the ordering of features in 
a query model by the performance of their distance 
functions. In addition, the information from the 
prediction and the relationship models are employed. 

Figure 1 shows the data flow in the ordering process. The 
prediction model uses a three-dimensional array to store the 
distribution of the number of images in the result set per 
threshold value for each feature and each class of images. 
Figure 2 depicts an example of this structure for one 
feature. The class of an image is detected by comparing its 
feature vector to a feature-specific orientation point. For 
this purpose the distance function of a feature class is used. 
For example, a feature that simply counts the number of 
colors in an image and stores this value in a one-
dimensional feature vector could have the orientation point 
op = (1). If the distance function for this feature returns the 
absolute difference between two vectors then the class of an 

image with three colors (feature vector v1 = (3)) would be 2 
and would be 5 for an image with six colors (v2 = (6)).  

 

Figure 1: Ordering process 

The order-distribution array is updated whenever an image 
is inserted or deleted in the database. On every insert or 
delete operation the following actions have to be carried out 
for each feature: calculation of the image class as the 
distance to the reference object, calculation of the distance 
to every other image in the database and update of the order 
distribution. In other words, in a system with n features 
every update of the content base equals n user queries with 
only one feature. This is acceptable since this computation 
is not time-critical and can be performed in the background 
when computational resources are available. 
 

 

Figure 2: Order distribution 

The prediction method was tested for fifteen different 
features with one- to six-dimensional feature vectors. The 
average performance was more than eighty percent and 
most features had a performance of more than ninety 
percent. 



The basis for the relationship model is a Self-Organizing 
Map (SOM; [4]) that clusters the elements of feature 
vectors into groups. The fifteen features used sum up to 58 
vector elements; we used 444 example images to train a 
hexagonal map with eight columns and six rows. Using this 
map we calculate the similarity value for two features with 
the following algorithm: 

1. For each element of the longer feature vector: find the 
corresponding element of the second feature vector 
with the smallest distance. The distance of two vector 
elements is defined as the Euclidean Distance of the 
two SOM-clusters the elements belong to. 

2. These distance values are added to a global distance 
value. 

3. The relationship of two features is the standardized, 
limited global distance of two features. 

This similarity value is a measure for the similarity of the 
elements of the feature vectors. To be usable in our model, 
we feed these values together with the results from the 
prediction model into a linear function. The function 
calculates the size of the proportion of the basic image set 
which both features would eliminate. The parameters of this 
function are determined by heuristics. The size of the result 
set of the second and all succeeding features is computed by 
subtracting the aggregated output of this linear function 
from the result set size of the first feature. 

The optimization algorithm uses the results of the 
prediction and the relationship model together with the 
measured performance values for each feature to find the 
optimal ordering for a query model. The goal function is 
described in equation (1): 
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where pi is the performance of feature i and Ai the size of 
the image set examined by feature i. A0 is the size of the 
image database. This means the goal is the minimization of 
the query execution time. The values for Ai are derived 
from equation (2): 
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Rj is the predicted number of images, which the feature j 
will cut off Aj. These values are estimated using the output 
of the prediction and relationship model. One might argue 
that it is always suitable to use the fastest feature first in 
order to minimize the product of p0 and A0. However, it is 
not guaranteed that this feature will eliminate as many 
images as some other feature and therefore keep A1 small. 
Each feature - and especially the first - has an impact on all 
succeeding features. Currently, we are not using an 
optimized algorithm to solve the optimization model but try 
out every possible order to find the optimal solution. The 

performance values are collected during the normal 
database operation and measured in milliseconds (ms). 

For the implementation of the ordering algorithm we used a 
database of 444 images of coats of arms. The 15 features 
mentioned above include general-purpose features (color 
histogram, number of colors and color shades, shape 
features, etc.) as well as domain specific features (e. g., 
segmentation of arms, complexity, seal print analysis, etc.) 
The retrieval environment uses IBM‘s QBIC system 
(Version 2; [3]) as a kernel, SOM-PAK [4] for feature 
vector element clustering and runs on a Linux workstation.  

4 PERFORMANCE EVALUATION 

The prediction model has an accuracy of at least 80% 
(actually returned images by prediction) for each feature. 
For many (those with feature vectors of only one or two 
elements) it is more than 90% - 95%. For testing the 
performance of our approach we compared the following 
methods: 

1. An unordered query model supplied by the user and 
probably ordered correctly by chance. This method is 
called the Probability method below (Prob.). 

2. Heuristics where the query models are ordered by the 
performance values of the features. This method does 
not take into account the number of images a feature 
eliminates. It is called the Performance method (Perf). 

3. Our optimization algorithm without the relationship 
model. This method supposes all features being 
independent from each other. In other words, the set of 
images two features would both eliminate would be 
always empty. This method is called OrdA. 

4. The optimization algorithm with the relationship model 
(OrdARel). 

The performance of a model is defined as the number of 
cases, in which the suggested ordering was correct divided 
by the total number of tests. Figure 3 shows the 
accumulated performance of these four variations of query 
models with two to ten layers. For each graph 1000 tests 
were performed with generated but likely query models. 

 

Figure 3: Ordering performance 

OrdA and OrdARel produce an almost linear performance 
graph whereas the other methods show an exponential 



decrease. Therefore the quality of these algorithms must be 
rated higher.  

The average performance of OrdA for query models with at 
most 10 layers is about 73%. This is more than 50% better 
than the performance heuristics, which again is 15% better 
than the Prob. method. When using the relation model 
together with the prediction model to estimate the Rj the 
performance improves by further 8% to 81%. This means 
that our algorithm produces the correct order in more than 8 
of 10 cases, which is about as good as the basic 
performance of the prediction model.  

Figure 4 shows the magnitude of error in the case a model 
fails. For OrdA and OrdARel the error in query execution 
time is smaller than 10% in 70% of all cases. Surprisingly, 
the error - when feature relations are taken into account - is 
often a little bit higher than for OrdA. The Perf. method is 
not depicted in this figure because it appears almost linear. 

 

Figure 4: Ordering errors 

Using the OrdARel algorithm for query model ordering 
reduces the time a query consumes in our test environment 
from an average of 190.7 ms for the performance heuristics 
to 64.6 ms for the OrdARel algorithm. This is an 
improvement of 126.1 ms or 66% in comparison to the 
performance heuristics. Optimally - if the ordering was 
always correct - a query would take 58.7 ms which would 
only be 6.1 ms faster than OrdARel (9.4%). The 
computation time of the optimization algorithm itself is 
already included in these values and results are therefore 
almost optimal. 

This research on performance-optimized feature ordering 
was performed within the context of a content-based image 
retrieval system for coats of arms. Our test database 
consists of only 444 images and the query engine uses 15 
features. A more thorough investigation and evaluation of 
the improvement our approach provides would definitely 
require tests with considerably larger image databases. This 
will be one of the tasks we plan for the future.  

However, we are very optimistic that our approach would 
result in similar improvements—even for a considerably 
larger database: First, 15 features—divided into two logical 
groups—should be sufficient for judging the performance 
of query models with a maximum of ten layers. Queries in 
most current retrieval systems and most of the queries we 

issue manually do not consist of such a high number of 
features. Second, if we had more images in the database, we 
would observe two major consequences: 

1. The elements of the order distribution would have a 
higher variance and therefore the output of the 
prediction model would allow for easier distinction of 
different features.  

2. The clustering of feature vectors elements would be 
more precise if more example images were considered. 
However, since coats of arms are images of a very 
specific nature we consider it unlikely that a larger 
database would result in a very different clustering. 
The error of the relationship model introduced by a 
small test base should therefore be rather small. 

5 CONCLUSION 

We presented an approach to improve the performance in 
content-based retrieval systems. The idea is based on the 
concept of a query model, an ordered list of feature 
extraction functions associated with distance function, 
threshold and weight. The approach further employs two 
types of features: one for quick elimination and one for 
detailed investigation of features and two models for the 
prediction of the size of the result set and for the 
specification of feature relationships. An optimization 
algorithm uses these inputs to produce a performance-
optimal ordering of features in a query model.  

All algorithms are implemented in a C/C++ library in our 
test environment on a Linux workstation. The environment 
consists of QBIC, SOM-PAK, 15 feature classes and our 
coats of arms test database. Results for performance 
improvement are quite promising: the average time 
consumed by a query is reduced by 66% and close to the 
optimum. 
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