
Content-Based Image Retrieval in Digital Libraries

Christian Breiteneder and Horst Eidenberger
Institute for Software Technology,

Vienna University of Technology, Austria, {cb, hme}@ifs.tuwien.ac.at

Abstract
Today's systems for Content-Based Image Retrieval

(CBIR) suffer from several drawbacks: First, user inter-
faces are much too complicated for average users. Sec-
ond, the quality of results tends to be low. Finally, que-
rying performance with often long reply times is unsat-
isfactory. 

We have developed a model for CBIR searches in-
tended to overcome these drawbacks where the user has
to select only one or more example images to initiate a
query. Out of the examples the actual query including
feature selection and weighting is generated automati-
cally. The results of the first query may later on be re-
fined by relevance feedback. We discuss the major com-
ponents necessary for our approach and the results
achieved in our test environment.

1. Introduction

Several of the more recent digital library projects
include subsystems for Content-Based Image Retrieval
(CBIR). Due to the nature of these projects in address-
ing large repositories, most of these subsystems
address general domains. However, digital libraries
may also cover information of very specific domains,
that require more specific solutions. Systems therefore
have to be extensible in order to include future applica-
tion domains. This kind of extensibility requires that
the general architecture and especially the user inter-
face stays the same when new system components, as
for example, new types of features are integrated. 

However, extensibility of CBIR systems are not the
crucial factor in the context of digital libraries. There
are problems inherent to CBIR that require new archi-
tectures that enable especially the support of casual
users. With this respect current CBIR systems suffer
from several drawbacks:
• Complicated interfaces—Casual users are over-

taxed by the demand for a definite opinion on simi-

larity, the selection of features and especially, by the
often necessary provision of weights. Many users
would not even try a typical CBIR interface, if they
had the opportunity to use it. To improve the accep-
tance of CBIR systems their interfaces have to be
made much simpler.

• Unsatisfactory querying performance—CBIR sys-
tems use distance functions to calculate the dis-simi-
larity between a search image and database images.
This process is often very slow and reply times in the
range of minutes may occur for large databases.

• Low result quality—By using only general features
for all types of images and asking the user to choose
features leads to low quality retrieval results. 

In this paper we outline the major components of a
CBIR system that implement various algorithms to
overcome or at least reduce these problems. The sys-
tem was developed for the application domain of coats
of arms. The system includes features for coats of
arms, models for retrieval, similarity definition and
algorithms for query definition, acceleration and
refinement. Despite being developed in a rather nar-
row and specific test environment most of the meth-
ods can be used for any other application domain. 

Section 2 summarizes related work. Section 3
describes the general concept of our approach for a
user friendly CBIR system and our model of similarity.
Section 4 addresses the implementation of algorithms,
Section 5 and Section 6 present the test environment
and the results achieved.

2. Related work

The focus of this section is on CBIR systems, the
computer centric approach and relevance feedback.
Famous CBIR systems are IBM’s QBIC [3], Virage
[1], VisualSEEk [12] and Photobook [7]. All these sys-
tems ask the user to select feature(s) and sometimes,



suitable weights. They offer Query by Example and
(most of them) sketch-based queries. 

Almost all CBIR systems follow the so-called com-
puter centric approach (CCA, [8]): querying is done
with feature and distance functions where the user has
to select features for a query and the weights to deter-
mine their relative importance. The CCA has two major
drawbacks:
• The semantic gap—This term addresses the differ-

ence between high level concepts for CBIR and the
low level features that are used for the querying ([9],
[10], [11]). The authors of [10] argue that features
will never represent similarity to a sufficient degree
and CBIR therefore can only make correlations
between a search image and result sets visible.

• Subjectivity of human perception—Different per-
sons or the same person in different situations may
judge visual content differently. This problem occurs
in various situations: different persons may judge
features (color, texture, etc.) differently, or if they
judge them in the same way they still may perceive
them in different ways.
One approach to reduce the problems of the CCA in

the field of retrieval system design is to replace the
classic one-shot query with an iterative process that uti-
lizes a user's judgement of the query results. By rele-
vance feedback the user may iteratively refine his query
and increase the quality of results ([9], [6], [12]). This
procedure helps to close the semantic gap as far as pos-
sible. In [9] a multi-feature approach is presented with
color histograms, Fourier coefficients, Tamura fea-
tures, etc. Merging of the features is done by weighted
linear merging (see Section 4) where the weights are
adjusted by the feedback of the user, which images of
the query result are relevant and which are not. 

3. Click & Refine Model

Our approach, the click & refine model, aims at a
more global solution to increase the usability of CBIR
systems.
1. The first query is generated automatically. A user

selects one image or a group of images for which he
wants to find similar ones. The system is able to con-
clude from the examples a user's idea of similarity
and to select suitable features for the querying pro-
cess. 

2. Out of the results of the first query the user can find
additional relevant information by iterative refine-
ment.

Since the quality of the first query is very important
we developed models and algorithms in order to opti-
mize these results. Figure 1 summarizes the data flow
in the Click & Refine model. The main advantage of
this model is the user friendliness: the user does not
have to deal with features, similarity measures or the
number of images to return. All the user has to do is
specifying what he wants by clicking on an image and
judging the relevance of query results. We think that all
other tasks, which are involved in a query, can be suc-
cessfully automated and that the results of this highly
automated querying process are not worse but most
times better than the results an average user can achieve
with a traditional CBIR query engine. 

3.1. Query Models

The basic idea in our approach is the combined use
of several simple and robust features, that can be gen-
eral-purpose or application-specific. The selection of
features for a certain query should depend on the exam-
ple image(s) the user chooses. For this application inde-
pendent approach to define similarity user and query
related in CBIR systems we developed a general form
called query models. A query model is a set of layers,
which are used to define one aspect of a similarity term,
the overall idea of similarity is the aggregation of all
layers. Each layer consists of the following elements:

• feature extraction function

• distance function

Click & Refine querying process

Search
image(s)

User selection

Query
model

generation

Query
descrip-

tion

Query
execution

Query
refinement

Results

Relevance
judgement

Image
processing

Figure 1 Click & Refine model.



• parameter for result size determination. We use a
threshold value for the maximum distance an image
is allowed to have in order to be in of the result set. 

• weight. We use linear weighted merging to compress
the distance values of all layers to a global distance
value (see Section 4).

Figure 2 shows the information (image) flow in a
query model. Each layer acts as an image filter elimi-
nating images with a greater distance to the example
image than the threshold value. Finally, the result set
consists only of images meeting all conditions (layers).
From a different point of view query models can be
seen as representations of clusters of more than aver-
age similar images in the database. Methods to make
the clustering of a database visible include various
forms of cluster analysis and the neuronal networks-
based Self-organizing maps. Each cluster has specific
properties that are described by query models. 

Query models can be additionally exploited to
reduce the reply time in a querying process. Succeeding
layers in a query model need only process images, that
were not rejected by any predecessors. We therefore
designed and use two different types of features: fea-
tures with fast distance functions, which eliminate a
large quantity of not relevant images by coarse selec-

tion and features with complicated distance functions
for fine-graded selection. Features for coarse selection
are used as the first layers in a model and those for fine
selection employed later on. 

To perform the first query in the Click & Refine
model a query model has to be generated; features have
o be selected, threshold values and weights identified
and layers ordered. The accomplishment of these tasks
is based on the following information:
• The example image(s)—Each image or group of

images has specific properties (colors used, symme-
try, complexity, etc.). These properties have to be
identified and a decision made, if they are significant
enough to be further investigated. If yes, proper fea-
tures have to be selected and added to the query
model.

• Cluster information—The clustering structure of an
image database can be made explicit by a cluster
analysis. From the general clustering pattern and the
clusters to which examples belong to conclusions on
the features forming the clusters can be drawn.

• Expert knowledge—includes knowledge about gen-
erally useful features and relationships between fea-
tures that help to decide, which features to employ.

• Additional information—generated when images are
stored in the database: statistics about the distribu-
tion of the image features, the distance to reference
objects, etc.; useful when thresholds have to be deter-
mined.
After the first query has been executed methods for

refinement have to be placed at the users disposal. 

4. Implementation

To generate a suitable query model for the first shot,
we had - using the information described above - to
solve the following problems:
• Selection of suitable features. As shown in Section 6,

it is not a good strategy to apply all available features
in a query model. To define the best possible query
model those features have to be chosen that corre-
spond to the properties of the example image(s). We
have developed several methods for feature selection
depending on the number of example images (one or
several).

• Definition of a suitable threshold value for each fea-
ture. The critical issue is setting the thresholds low
enough for a good precision value and high enough
for a good recall value. We derive thresholds from

Query
modelFeature & Distance Threshold W eight

Search
im age

Feature & Distance Threshold W eight
Search
im age

Feature & Distance Threshold W eight
Search
im age

...

Result set

Image database

Figure 2 Query model.



cluster information and expert knowledge on image
classes and distance derivations (referring to a refer-
ence object).

• Selection of fitting weights for a suitable rating of the
query model layers. The weights determine the order-
ing of the images in the result set. Due to the usage of
thresholds weights have no impact on the content.
Weight definition is therefore an easier task than
threshold definition and performed by exploiting
cluster information.

• Performance-optimized ordering of the layers to pro-
duce results as fast as possible. A good optimization
algorithm is very valuable and saves considerable
time, but is not easy to implement. For our approach
we need to predict the number of results of each layer
in a query model and any threshold. 

4.1. Query Model Generation

We developed a set of algorithms for the generation
of query models from one example image and another
set for the generation from two ore more examples. In
this paper only the first case is discussed. Features are
selected by the evaluation of striking properties of the
example image and information on the cluster structure
of the image database. Thresholds are derived from a
prognosis database, which stores information on the
computation of the distance of image classes to refer-
ence objects, and from the cluster structure. To find
proper features, we developed two different methods:

• Use all features meeting the following condition:

where wf is the weight of feature f, µw the mean over
all weights and f a suitable linear function. This
method is based on feature clustering by self-organiz-
ing maps and therefore called the SOM method. Since
the weight of a feature (or layer) is a measure of its
importance it seems only reasonable to employ this
information for the feature selection.

• Use all features, that for the given example image sat-
isfy a certain condition (“striking properties”). For
example, for a feature counting the number of color
shades (described in [2]), the feature vector has only
one element, f0, we used the following condition. In
other words, this feature is used in a query model if
the number of color shades is less than 4 or greater
than 10.

For each feature a suitable condition has to be
defined. We therefore call this method the condition
method. The condition describes a pattern of feature
vector indicating the importance of a specific feature.
In an additional step we use the two methods in combi-
nation and employ all features selected by one or both
of them.

4.2. Threshold Definition

After features are selected, thresholds have to be
defined. We have developed two alternative methods
for this task:

• Setting thresholds in such a way that all features
eliminate an equal portion of the image database. For
this purpose the prediction of the number of images a
specific feature and threshold combination would
eliminate is required. For this purpose we use the pre-
diction model of the performance-optimization algo-
rithm. The method is called shared method, since all
features participate equally. The major disadvantage
of the method is the use of an absolute number
describing the size of the result set. From this number
thresholds are calculated back for all features. In
other words with this method it is not possible to take
the full advantage (better quality of results) of thresh-
olds.

• Deriving the thresholds values from features weights:
more important features should have lower threshold
values to guarantee that returned images have similar

Prognosis
database

Feature
selection

algorithm s

Q uery
m odel

Threshold
definiton

algorithm s

Features

Search
im age

Striking
proper-

ties

C luster
inform a-

tion

Figure 3 Model generation with one example image.

)(
wf

fw µ>

featureuseff →>∨< ?
00

104



properties. We defined this threshold by the equation 

where wf is the weight of feature f and F the number
of features. This method does not guarantee that the
threshold is set high enough for the considered fea-
ture to accept any image at all. In addition to the two
basic methods, we tested combinations of the two
methods.

4.3. Weight Selection

After the selection of features and thresholds for the
generated query models each layer of the models has to
be weighted. As we have seen above the weights deliv-
ered by a weighting function are important for the first
two steps of the model generation as well. The weight
is a measure for the importance of a model’s layers. In
the next paragraphs we shall show how linear weighted
merging is performed and how suitable weights can be
computed.

4.3.1 Weight Selection Principles
Usually, (e.g., in [4]), when multiple features for a

query are employed, the result set is ranked by the
weighted sum of the distance values (position value).
This evaluation method assumes that all distance func-
tions are standardized upon the same range (in our case
the interval [0,1]). The major advantage of this method
is the simple calculation and application, the major dis-
advantages are the fact that not all features show a lin-
ear relationship and that linear merging therefore is not
a suitable method to join such features, and that in most
systems weights have to be provided by the user.

A distance function is actually a measure for dis-
similarity, the distance between a search image and a
candidate image should therefore be small for impor-
tant features but may be greater for less important ones.
Weights should help to rank the result set. The most
similar image should be next to the query image and
less similar ones should be placed at a greater distance.
Therefore important features should have higher
weights than less important ones to “punish” a greater
distance for an important feature by a greater value for
the product of distance and weight.

If we would not use thresholds to limit the range of
possible distance values, it could be possible that
images appear in the result set that are similar in most

aspects of the defined query model but not similar in
some of them. Then it would be the task of the weight-
ing process to order images at the end of the result set.
This could hardly be achieved by the linear weighting
method described above. It follows that using thresh-
olds shifts the importance of the weighting algorithm
from an essential part of a retrieval system to a less
important operation.

Our idea is to cluster the image database by the glo-
bal feature vectors (merged sum of all feature vectors)
and to use the contribution of each feature to the natural
cluster structure for the selection of suitable weights.
Clustering was performed with a self-organizing map.
The weight of a feature is calculated as the sum of dis-
tances (of the feature) between the cluster that contains
the search image and all neighboring clusters. There-
fore the weight is a measure for the contribution of a
feature for the discrimination between the search
images cluster and its neighbors. 

4.3.2 Weight Selection Algorithm
The weighting algorithm consists of the following

steps:
1. Clustering of image database. For each image in a

database all feature vectors are calculated. Then the
various feature vectors are exported, merged into a
single global vector (representing one image) and
normalized. The normalized vectors of all images
are fed into the cluster map calculation algorithm for
self-organizing maps (SOM-PAK) producing a map
with hexagonal layout. As a consequence each clus-
ter has at most six neighbors. A cluster is repre-
sented by a feature vector pointing to its center
(median). The Euclidean distance is used as similar-
ity measure for clusters.

2. Calculation of weights. The cluster to which the
search image belongs to is identified and the weights
for all features calculated as the Euclidean distance
between search image and neighboring clusters. We
experimented with two different approaches: the dis-
tance between search image cluster and neighboring
clusters and the distance between the search image
itself and neighboring clusters. In our tests we found
that the first method is clearly better than the second
one. 

3. Application of weights. In the test environment
weights are used as proportions; for example, for a
query model with two features the weights (2, 1)
equal the tuple (4, 2). Two different approaches were
tested for the application of weights: the distance of
a feature to all neighbors and the reciprocal value of
the sum of distances of all other features in the query



















−=
∑

=

F

i
i

f
f

w

w
ft

0

1



model. Tests have shown that the first method is at
least as good as the more complicated second one.
Therefore the first method was chosen for the final
version of the algorithm.

The final implementation of the weighting algo-
rithm is a function, that for a specific search image and
feature delivers a real value to describe the importance
of the feature for a query on the search image. The
major problem of our algorithm in a vivid system is the
employment of information stemming from static clus-
tering methods. Possible approaches to reduce this
problem are a recalculation of the cluster map after N
inserts or time T (may be computational expensive) or
to cluster a set of reference objects instead of the whole
database (inaccurate). 

5. Test Environment

Our test environment for the Click & Refine model
is based on IBM's QBIC system (version 2). Despite its
advantages we had to make a lot of changes and exten-
sions to the original system. One was the search engine
for query models, which uses the generation algo-
rithms that were implemented as C/C++ libraries. This
query engine (NetSrv) produces in addition to a result
set a lot of useful statistics for the evaluation of our
algorithms. Another major part of the test environment
are the various web interfaces for Click & Refine and
the algorithm tests. The clustering of feature vectors
and elements was done with SOM-PAK, where hexago-
nal maps were used with a linear neighborhood kernel
(see [5]). Figure 4 shows the major components of the
test environment: the search and the input interface.
The important databases in the system are the image
database, the feature database and the prognosis data-
base.

A major part of the test environment consists of the
19 features for the application domain of coats of arms
(implemented as C++ classes, derived from the QBIC
standard feature class). They fall into three groups: gen-
eral color features (number of colors, coats of arms
color histogram, etc.), sketch-based features (object
layout feature, etc.) and application specific features
(seal print, arms segmentation, etc.). Out of these 19
features 15 are used in the generation algorithms.

6. Tests and Results

6.1. Feature Ordering Tests

To test the ordering algorithms thousand synthetic
query models with 2 to 10 layers and meaningful
threshold values were generated, the optimal order
(with the knowledge from the database, etc.) calculated
and results compared. The performance of the algo-
rithms is defined as the ratio of correct orderings and
total orderings. Figure 5 shows the performance of four
different algorithms: 

• Random ordering (“Prob.” method)—query models
are not ordered at all.

• Performance heuristic (“Perf.” method)—query mod-
els with faster distance functions are used first.

• Ordering algorithm without relationship model

Figure 4 Test environment.

Feature
database

(QBIC)

Im age
database

Search in terface

Libraries for
generation ,
w eighting ,

ordering, ...

Query m odel
search
engine

Cluster
algorithm

(SOM -PAK)
Input interface

Insertion
algorithm

W ebGUI

Feature
classes

Figure 4 Test environment.

Figure 5 Results for feature ordering algorithms.



(“OrdA” method)—relationships between features
are not considered.

• Ordering algorithm with relationship model (“Ord-
ARel” method).

The graphs show the decreasing cumulated perfor-
mance of query models with 2 to 10 layers. The overall
performance of the Prob. method is only 5%, the Perf.
method reaches 20%, OrdA has a performance of about
75% and OrdARel of more than 81%. In other words
the ordering algorithm produces the correct order in
more than 80% of all cases. Tests have shown that
using the OrdARel algorithm for feature ordering
reduces the average query time in our test environment
from 190.7 ms to 64.6 ms for the OrdARel method.
This is an improvement of 126.1 ms (66%). If the
ordering were always correct a query would take 58.7
ms which would only be 6.1 ms faster than OrdARel
(9.4%).

6.2. Weight Definition Tests

Tests of the weighting algorithm were performed in
the following steps: First, for each test query the five
best images out of the first 12 result images were cho-
sen. Second, for each of these images and the two
weighting methods the distance from the actual posi-
tion to the ideal position was calculated (error sum).
The two weighting methods were: constant weights: -
all weights are equal (1) and SOM weights: - all weights
are derived by the weighting algorithm. Finally, the
performance was calculated. The performance of a
weighting method is defined as the ratio of actual error
sum and the maximum possible error sum (in our case:
45). For the tests we developed a special web interface,
which shows the result set of a query twice: with con-
stant and SOM weights.

The constant weights had a performance of 84%.
The performance of the weighting algorithm turned out
to be about 92% resulting in an improvement over con-
stant weights of more than 8%. It is important to keep
in mind that these values can only be compared with the
test algorithm we are employing.

6.3. Query Model Generation Tests

For testing the generation algorithm we use recall
and precision with the focus to optimize recall and
keeping precision reasonable.

We first tested the quality of the basic methods for
feature selection and threshold definition. To test the
feature selection methods we made several queries for
each feature selection method and various threshold
definition methods. Additionally, we compared the per-
formance of our algorithms with the case of using all
available features together. Besides the bad query com-
putation performance of the latter method it turned out
that the recall of this method is much worse than the
ones of our algorithms. 

The best recall was produced by the condition
method (79%). This is considerably higher than the
recall for the second basic method, the SOM method
(56%). The reason why these values are rather poor is
that they are averaged over all threshold definition
methods. We will see later, that the best combination of
basic methods produces quite acceptable results. Using
all features may result in such a bad recall (25%)
because similarity here is defined globally and not
according to the specific qualities of the given image
class.

Next we investigated the performance of the differ-
ent threshold definition methods. Again, we tested each
method with every available feature selection method
and calculated the mean for recall and precision. The
recall of the shared method is much higher (74%) than
the one of the alternative method (41%). Surprisingly,
the combined method improves the recall by 3%. 

After testing the basic methods we verified all possi-
ble combinations to identify the best algorithm for
automatic query model generation. Additionally, we
compared the results of the generated models to the
results a human expert could achieve. Figure 6 shows
the resulting recall and precision values.

The best combination comprised the two best basic
methods: feature selection by striking properties and
threshold definition by the shared method with addi-
tional cluster information. A recall value of 94% and a
precision value of 68% were gained.

Image class and query environment experts reached
a recall of 83% with a precision of 91%. The decrease
in the recall compared with the best generation algo-
rithm can be explained by the way the expert tests
where performed: we used the best generated query
model and tried to improve the precision by adapting
the threshold values without significantly dropping the
recall. This test is an application of the Click & Refine
model.



7. Conclusion

We presented a new, more user-friendly approach to
content-based image retrieval that is based on the Click
& Refine model. The central concept is the liberation of
users from providing parameters as e.g., features and
weights. Queries are automatically generated from
example images. The central concept of the approach is
the query model. Query models allow for

• the subjective definition of similarity. They integrate
classic CBIR concepts with our threshold approach to
improve the results of image retrieval search engines. 

• the reduction of querying time.

• the easy combination of different features with vari-
ous complexity, purpose or application domain.

The concepts were implemented and tested in vari-
ous algorithms for 

• the automatic generation of query models (from
example images, cluster information, expert knowl-
edge, etc.); the generation of query models includes
feature selection, threshold definition and weight
selection., 

• performance-optimized ordering, 

• a query engine for query models and 

• features for the application domain in our test envi-
ronment: coats of arms. 

References

[1] Bach, J., Fuller, C., Gupta, A., Hampapur, A.,
Horowitz, B., Humphrey, R., Jain, R., Shu, C., “The

Virage image search engine: An open framework for
image management”, Proc. SPIE Storage and Re-
trieval for Image and Video Databases, 1996.

[2] Breiteneder, C., Eidenberger, H., “Content-based
Image Retrieval of Coats of Arms”, Proc. of the 1999
International Workshop on Multimedia Signal Pro-
cessing, Helsingör, pp. 91-96, 1999. 

[3] Flickner, M., Sawhney, H., Niblack, W., Ashley, J.,
Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D.,
Petkovic, D., Steele, D., Yanker, P., “Query by Image
and Video Content: The QBIC System”, IEEE Com-
puter, 1995.

[4] IBM QBIC homepage; 
http://wwwqbic.almaden.ibm.com/

[5] Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.,
SOM-PAK: The Self-Organizing Map Program
Package, Helsinki, 1995.

[6] Nastar, C., Mitschke, M., Meilhac, C., “Efficient
Query Refinement for Image Retrieval”, Proceed-
ings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 1998.

[7] Pentland, A., Picard, R. W., Sclaroff, S., “Photobook:
Content-Based Manipulation of Image Databases”,
SPIE Storage and Retrieval Image and Video Data-
bases II, 1994.

[8] Rui, Y., Huang, T., Chang, S., “Image Retrieval: Past,
Present and Future”, International Symposium on
Multimedia Information Processing, Taiwan, 1997.

[9] Rui, Y., Huang, T., Ortega, M., Mehrotra, S., “Rele-
vance Feedback: A Power Tool for Interactive Con-
tent-Based Image Retrieval”, IEEE Transactions on
Circuits and Systems for Video Technology, 1998.

[10]Santini, S., Jain, R., “Beyond Query By Example”,
ACM Multimedia, 1998.

[11]Santini, S., Jain, R., “Integrated Browsing and Que-
rying for Image Databases”, IEEE Multimedia Mag-
azine, 1999.

[12]Smith, J. R., Chang, S., “VisualSEEk: a fully auto-
mated content-based image query system”, ACM
Multimedia, 1996.

[13]Wood, M., Campbell, N., Thomas, B., “Iterative Re-
finement by Relevance Feedback in Content-Based
Digital Image Retrieval”, ACM Multimedia, 1998.

Figure 6 Precision and recall for query model generation.


