
An Open Software Architecture for Virtual Reality
Interaction

Gerhard Reitmayr
Vienna University of Technology

Favoritenstrae 9-11/188/2
A1040 Vienna, Austria

reitmayr@ims.tuwien.ac.at

Dieter Schmalstieg
Vienna University of Technology

Favoritenstrae 9-11/188/2
A1040 Vienna, Austria

schmalstieg@ims.tuwien.ac.at

ABSTRACT
This article describes OpenTracker, an open software archi-
tecture that provides a framework for the different tasks in-
volved in tracking input devices and processing multi-modal
input data in virtual environments and augmented reality
application. The OpenTracker framework eases the devel-
opment and maintenance of hardware setups in a more flex-
ible manner than what is typically offered by virtual real-
ity development packages. This goal is achieved by using
an object-oriented design based on XML, taking full ad-
vantage of this new technology by allowing to use standard
XML tools for development, configuration and documen-
tation. The OpenTracker engine is based on a data flow
concept for multi-modal events. A multi-threaded execu-
tion model takes care of tunable performance. Transparent
network access allows easy development of decoupled simu-
lation models. Finally, the application developer’s interface
features both a time-based and an event based model, that
can be used simultaneously, to serve a large range of appli-
cations. OpenTracker is a first attempt towards a ”write
once, input anywhere” approach to virtual reality applica-
tion development. To support these claims, integration into
an existing augmented reality system is demonstrated. We
also show how a prototype tracking equipment for mobile
augmented reality can be assembled from consumer input
devices with the aid of OpenTracker. Once development
is sufficiently mature, it is planned to make Open-Tracker
available to the public under an open source software li-
cense.

Keywords
Tracking, Mobile Augmented Reality, Virtual Reality, XML

1. INTRODUCTION
Tracking is an indispensable part of any Virtual Reality

(VR) and Augmented Reality (AR) application. While the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
VRST’01, November 15-17, 2001, Banff, Alberta, Canada.
Copyright 2001 ACM 1-58113-427-4/01/0011 ...$5.00.

need for quality of tracking, in particular for high perfor-
mance and fidelity, have led to a large body of past and
current research, little attention is typically paid to soft-
ware engineering aspects of tracking software. Some current
systems have a modular approach that allows to substitute
one type of tracking device for another. Typically, this is
the approach taken by commercial VR products that offer
turn-key support for many popular tracking and input de-
vices, but at the cost of a limited amount of extensibility
and configuration options. In particular, they make it hard
to combine existing features in novel ways.

In contrast, research systems may offer features not found
in commercial systems, such as prediction or sensor fusion,
but are usually limited to their particular research domain
and not intended for the end user. In such systems, replac-
ing a piece of hardware or changing its configuration usually
leads to rewriting a significant portion of the tracker soft-
ware.

In the middle(-ware), there is a lack of tools that allow for
a high degree of customization, yet are easy to use and to
extend. One notable exception is the MR toolkit [21] of the
University of Alberta, which still serves as a starting point
for many VR research projects despite its aged architecture
and lack of active development. What is needed is a system
that allows mixing and matching of different features, as well
as simple creation and maintainance of possibly complex
tracker configurations.

In this article, we describe a tracking software system
called OpenTracker with the following characteristics:

• An object-oriented approach to an extensive set of sen-
sor access, filtering, fusion, and state transformation
operations

• Behavior specification by constructing graphs of track-
ing objects (similar in spirit to scene graphs or event
cascades) from user defined tracker configuration files

• Distributed simulation by network transfer of events
at any point in the graph structure

• Decoupled simulation by transparent multi-threading
and networking

• A software engineering approach based on XML [4],
which allows to use many generic tools such as [2, 11,
10] for development, documentation, integration and
configuration

• An application independent library to be integrated
into software projects to ease the burden of dealing
with tracking equipment and data

Through its scripting capability (tracker configuration files)
as well as easy integration of new tracking features, Open-
Tracker encourages exploratory construction of complex track-
ing setups. It is equally useful for end users, which can fully
exploit their hardware without any custom programming, as
well as developers, who can easily build test environments.
The modular approach gives instant access to wide range of
tracking related functionality for any application. Through
the release under the LGPL Open Source license [7], Open-
Tracker is available to a larger audience.

2. RELATED WORK
Ideas implemented in OpenTracker were drawn from sev-

eral areas:
Device abstraction is a standard requirement for 2D graph-

ical user interfaces, (e. g. GKS [12]), and sometimes in-
corporated into 3D applications [9]. There is a number of
libraries such as VRPN [15], MRToolkit [21] implementing
device abstraction for input devices typically found in VR
and AR systems. Their main goal is to provide a fixed in-
terface to the application for different devices and provide
simple services for relaying the data over the network be-
tween several hosts. However, these libraries mostly lack
any further means to process the data. Device abstraction
is also an important goal of OpenTracker. However, it goes
beyond pure abstraction using a static interface in that the
data can be re-combined in novel ways.

Many interactive systems employ sophisticated event han-
dling schemes. State changes to attributes of scene objects
are either propagated through functional dependencies (e.
g. routes in VRML [5], engines in Open Inventor [22]), or
may be handled by user supplied callback functions (e. g.
script nodes in VRML [5]). These approaches inspire the
architecture of OpenTracker, although none of them deals
specifically with tracker configurations.

Finally, an important requirement for virtual environments
is support for distributed simulation, partly to support si-
multaneous users, partly to better exploit available hard-
ware. Decoupled simulation was first introduced in MR [21],
and later used in almost any major VR software system.
Decoupled simulation can either be implemented by multi-
threading and/or symmetric multiprocessing on one host, or
by configuring a small set of hosts to work as an ensemble.
The latter approach may be inferior performance-wise be-
cause of network lag, but it is inexpensive and flexible, and
thus favored by many researchers - for example, Rekimoto’s
”hyperdragging” system [19] uses a distributed architecture
very much like our own.

3. DATA FLOW OF TRACKING DATA
In a typical VR or AR application tracking data passes

through a series of steps. It is generated by tracking hard-
ware, read by device drivers, transformed to fit the require-
ments of the application and send over network connections
to other hosts. Different setups and applications may require
different subsets and combinations of the steps described but
the individual steps are common among a wide range of ap-
plications. Examples of such invariant steps are geometric

transformations, Kalman filters and data fusion of two data
sources.

The main concept behind OpenTracker is to break up
the whole data manipulation into these individual steps and
build a data flow network of the transformations. To de-
scribe the details of this concept, we will need some theoret-
ical definitions which are discussed in section 3.1. Details of
an actual implementation are described in section 3.2.

3.1 Data Flow Concept
Each transformation is represented by a node in a data

flow graph. Nodes are connected by directed edges to de-
scribe the direction of flow. The originating node of a di-
rected edge is called the child whereas the receiving node is
called the parent. To allow more than simple linear graphs,
we introduce the following concepts.

Multiple Input Ports and References
Each node has one or more input ports and a single out-

put port. A port is a distinguished connection point for an
edge, i.e. the node can distinguish between events passing
through different node ports. The output port of one node
is connected to any of the input ports of another node. This
establishes the flow by defining directed edges in the graph.
A node receiving a new data event via one of it’s inputs
computes a new update for itself and sends the new data
event out via its output port.

Multiple input ports are desirable because computations
typically have more than one parameter. Dynamic trans-
formations, for example, are parameterized by the value of
another node and thus use the data value received by a child
to be transformed differently from the data of the parame-
terizing child. Merge nodes may select part of the data of an
event based on the input port the event used. This allows
more complex computational structures.

Additionally, an input port can be connected to several
output ports. This enables several children nodes connected
to the same input port of a node. Upon receiving an event,
the parent node can only distinguish between the input
ports, not between the actual children.

Conversely, an output port can also be connected to other
nodes by using references within the graph. This establishes
new edges between a nodes output port and other nodes
input ports. However this is transparent to the child node.
It cannot selectively send events to only one parent, but all
events are distributed equally to all parents.

Edge types
The basic mechanism behind the data flow concept is

event passing. Data events are passed from the children
nodes upward to their parents. However, not all computa-
tions fit well into this model: Algorithms that operate on
a vector of tracker measurements or that require or com-
pute the tracker state at an arbitrary point in time require
different types of input or output interfaces. Examples are
smoothing algorithms that take a history of events into ac-
count, or prediction algorithms that compute an expected
measurement for a given point in time.

Therefore, we also distinguish between different edge types.
Edges are typed by typing the ports of the nodes they con-
nect. We establish the rule that only two ports of the same
type can be connected and this type is then the type of the
edge. There are three edge types: event, which is imple-
mented by event passing, event queue and time dependent.
The latter two are implemented as interfaces that are polled

by the parent node, because the data returned is parameter-
ized. In the case of the event queue interface, it is possible
to query the number of stored events and retrieve them by
index. The time dependent interface can be queried by spec-
ifying a point in time, for which the appropriate data value
is returned.

a) linear graph b) multiple ports

c) reference nodes d) putting it all together

Figure 1: Visualizations of a data flow graphs as
used in OpenTracker

Figure 1 gives some examples of data flow graphs that
can be build with OpenTracker. Part a) shows a simple
linear graph applying a geometrical transformation to a data
source, b) shows a node with several input ports, combining
the received data. Part c) is a graph using a reference node
to get a copy of the output of a node and d) combines these
features in a more complicated graph.

3.2 Implementation Speci£c Details
In an actual implementation we distinguish source nodes,

which are leaves in the graph and receive their data values
from external sources, filter nodes, which are intermediate
nodes and modify the values received from other nodes, and
sink nodes, which propagate their data values received from
other nodes to external outputs.

Source Nodes
Most source nodes encapsulate a device driver that di-

rectly accesses a particular tracking device, such as a Pol-
hemus or Ascension tracker connected to a serial interface.
Other nodes objects form bridges to complex self-contained
systems, such as the video tracking library from ARToolkit
[13]. A third type of source node emulates a tracker via
the keyboard, access network data (see section 5) or simply
responds with constant values (useful for development and
debugging).

Some source nodes have a multi-threaded execution model
to implement an efficient decoupled simulation model [21] (e.
g., when blocking I/O must be used).

Filter Nodes
Filter nodes receive values from one or more child nodes.

Upon receiving an update from one or more of their children,

they compute their own state based on the collected data.
A non-exhaustive list of filters includes:

• Transformation filters perform geometric transforma-
tions of their children’s values. These include pre- and
post-transformations and may be static or depend on
data values received from other children. The latter
allows to modify the filtered state relative to another
tracker state.

• Prediction filters allow to partially compensate for lag
in the measuring and processing tracker data.

• Noise and smoothing filters are handy to deal with
inherent inaccuracies of trackers.

• Undistortion filter are necessary e.g. to linearize dis-
tortions in the magnetic field of a magnetic tracking
device.

• Permutation filters are necessary to match data rep-
resentations from different hardware or software plat-
forms, such as equivalent, but incompatible quaternion
representations.

• Merge filters assemble new data values using differ-
ent parts of the data values of several children. Sam-
ple uses include the combination of orientation from
an inertial tracker with position information from an
acoustic tracker, or adding a button device to a closed
tracking solution such as Polhemus Ultratrak.

• Conversion filters are able to translate one data type
into another. For example, 2D positions from a desk-
top pointing device can be translated into 3D positions
by adding a constant third value.

• Clamp filter are special nonlinear transformation fil-
ters that cut off values at user-specified extrema, for
example to deliberately limit interaction to a valid
range.

• Store-and-forward filters are useful if transient loss of
tracking can be expected, for example if occlusion oc-
curs in optical tracking. The last measured value is
simply repeated to provide at least a reasonable and
valid state.

• Confidence filters select data values from different chil-
dren based on some measure of confidence in the ac-
curacy of the data.

Sink Nodes
Sink nodes are similar to source nodes but distribute data

rather than receive it. They include output to network mul-
ticast groups, debugging output to a user interface or thread-
safe shared memory output to integrate OpenTracker as a
library into other applications.

3.3 Time
Time is reflected in several ways in the architecture of

OpenTracker. The type system for edges supplies us with
different ways of dealing with Time, either having an event
based approach, with or without queuing of events, or by
specifying functions of tracking data as continuous functions
of time.

For the event based nodes, each event is time stamped
by the individual device driver or node that generated it.
Thus nodes can react on the temporal aspects of tracking
data. For example, a simple prediction node incorporates
the time difference between single events to correctly update
its output.

More complex aspects such as a prediction for a changing
prediction interval is satisfied by the different edge types.
An application that wants to get a calculated value for an
arbitrary point in time can query the state at that time from
a node supporting time dependent output. How this value
is calculated depends on the node’s implementation.

OpenTracker does not implement any clock synchroniza-
tion of different hosts working together in a network. There
are already well established means to solve this problem such
as the NNTP protocol.

4. SOFTWARE ARCHITECTURE OF THE
LIBRARY

The intent of OpenTracker is to provide an auxiliary li-
brary that is to be integrated into VR or AR applications.
Therefore it is kept very lightweight and customizable. The
library is designed as a class hierarchy of tracker objects,
implemented in C++. It is build around a small set of core
classes that implement the basic node interfaces, a parser
that builds the runtime structure from a configuration file
and the main loop driving the event model. Any other func-
tionality is implemented by a set of module classes that can
be easily extended or modified.

The module classes create and manage the nodes repre-
senting the functionality of the module. In the main loop of
the library each module is called to provide new events and
after an event is processed to handle results of the data flow.
For example, the implementation of a network sink node
stores any event data that it received during event propaga-
tion. Afterwards the network module checks each network
sink node for updated data values, constructs a new network
packet and sends it to the configured destination. Modules
may be implemented multi-threaded to avoid stalling the
main thread during longer computations or polling a device
with blocking I/O.

There are also nodes that perform without an underly-
ing module. Examples are filter nodes that implement ge-
ometric transformations on incoming events and pass the
transformed events to their parents.

There is no fixed interface to the integrating application
to maximize flexibility. Application programmers have to
either use on of the supplied nodes (such as a generic call
back node) or supply their own module implementing sink
nodes as interfaces to their application. Moreover, the use of
the library main loop is not mandatory. The processing can
be integrated with the applications main loop to avoid addi-
tional threads and synchronize the tracking data processing
more closely with the application. These design decisions
ensures that the library can adapted to the special needs of
every application.

The primary type of event used in the current implemen-
tation is tailored toward tracking applications. It encodes
a position in space, an orientation, button states, a time
stamp and a confidence value to describe the quality of the
data. Although this restriction to a fixed data type appears
as an limitation, it can easily be extended or generalized

Figure 2: Architecture of the OpenTracker library

because nothing in the supporting system relies on the type
of the event data.

Figure 2 shows a class diagram of the core classes. The
class Context implements the main loop and keeps reference
of all modules and the data flow data structure. It employs
an object of class ConfigurationParser to parse the configu-
ration files. Actual node implementations are derived from
Node, for example the Transformation or the TestSource
class. WrapperNode and RefNode are special nodes that
implement the port and reference functionality. State is the
default event type.

5. DISTRIBUTED TRACKING
There are several reasons why is is desirable to share

tracker data over a network:

• Using the tracker data at multiple host computers for a
distributed virtual environment (local or remote): In-
put in the form of tracker data becomes readily avail-
able through transparent network access via Open-
Tracker. The scene database still has be to kept con-
sistent through a proprietary application protocol, but
the task is much simplified.

• With the same approach, multi-processing based on
inexpensive PCs becomes possible with little configu-
ration effort. This is useful to achieve some degree of
load balancing. In particular, computationally expen-
sive functions such as filtering or undistortion can be
assigned to either sender or receiver, depending on the
computational budget.

• Network support makes it easy to span multiple oper-
ating systems, in particular if a specific tracking device
or service is only available at one particular host (e.g.,
an SGI O2 has fast video hardware but a slow CPU,
whereas for a PC the opposite may be true).

OpenTracker allows multiple senders and receivers of tracker
data to communicate asynchronously through the use of IP
multicasting (Figure 3). This approach effectively imple-
ments decoupled simulation in a distributed over several
hosts, since each of the senders and receivers can operate
independently. It is even possible for a single host to oper-
ate as a sender and receiver at the same time, by picking up
data, then modifying it and re-sending it to the network on
another network channel.

Magnetic tracker Optical tracker

Rendering hosts User 1 User 2 …

Figure 3: Distributing tracking data send to differ-
ent rendering hosts

While there is a preferred network protocol for Open-
Tracker, support for additional formats can be easily im-
plemented. In the following, we give some examples as to
how a networked setup can be used:

• A tracker server (typically a cheap PC with lots of
serial I/O boards running Linux) samples an Ascension
Flock of Birds at highest rate and sends the resulting
data stream via multicast to several clients using this
data to animate a collaborative virtual environment.

• The Polhemus Ultratrak uses a proprietary network
format and IP unicast packages. Unfortunately, its
closed architecture does not support input devices with
buttons such as a stylus or 3D-mouse. Therefore, we
added a tracker object to the client that is able to
decode the Ultratrak protocol. A button source reads
button values from a standard parallel interface, and
a merge filter combines these two sources to emulate a
complete VR input device.

• A combination of vision tracking and magnetic track-
ing – see section 7 for details.

6. SOFTWARE ENGINEERING WITH XML
XML, the eXtensible Markup Language, is the emerg-

ing standard primarily aimed at web-based applications and
software systems [4]. XML is a markup definition language
that allows to define hierarchical markup languages with so-
called document type definitions (DTD). With the appropri-
ate DTD, standard XML tools can be used to conveniently
edit, type check, parse, and transform any XML file.

Thus, providing a simple DTD for describing the data flow
graphs of tracker nodes opens access to software libraries and
tools that simplify several steps of the development cycle:

• A visual DTD editor can be used to design and main-
tain the DTD.

• An XML parser [2] enforces content format on the
tracker configuration file while building the correspond-
ing structure in memory, thus automatically perform-
ing many of the consistency checks that have otherwise
to be hand-coded.

• The same parser implements an API to manipulate the
data structure at runtime and still keep it consistent
with the DTD. Such a runtime structure can easily be
written out to a valid configuration file again.

• A convenient XML editor such as [11, 10] with a graph-
ical user interface allows the end user to design the
tracker configuration without having to master the
syntax. It also enforces the correct content format,
reducing syntax and semantic errors made by users.

• Integration with high-level software engineering tools
that create code or configuration files from specifica-
tions is simplified by the use of XML. Even automatic
reverse engineering of complex configurations is easier
relying on a defined structure than from pure source
code.

• Using the extendible style language (XSL) [1, 6], auto-
matic textual and even graphical documentation can
be created from a tracker configuration file, for exam-
ple by using the free graph drawing utility dot [3] (see
Figure 1).

Markup languages are generally used to annotate tex-
tual documents with structural information. Thus a gen-
eral XML document consists of text grouped and structured
with tags. Markup languages defined in XML consist of ele-
ments, essentially expressed as tags, and a structural model
(the content model) of the possible ways these elements may
be nested. Moreover, elements are annotated by name-value
pairs called attributes.

OpenTracker maps elements to nodes and attributes to
members of these nodes. We are not using any textual con-
tent but purely rely on the content model provided by the
DTD. An open source XML parser [2] builds a tree of ele-
ments representing the given configuration file. OpenTracker
walks the tree and creates a new node for each element based
on the elements name. The string values of the attributes
are parsed according to the objects class and the correspond-
ing members are set. Attributes typically describe such data
as the parameters of a transformation. The parent - child
relationship of the data flow graph is directly mapped onto
the parent - child relationship of XML elements.

The content model enforces interface and semantic con-
straints on the specified graph. As described in section 3.1
edges and the corresponding node ports are typed and there-
fore restrict the possible combinations in the construction
of the graph. These constraints are expressed in the DTD
and are checked by an XML parser or enforced by an XML
editor. Also restrictions on the number of children are de-
scribed in the DTD. Source nodes typically do not have any
children as they rely on data from external sources to com-
pute their own data. A number of filter nodes get the value
of a single child node, transform it and pass it on. In con-
trast, confidence filters use any number of children to com-
pute their data value.

The reference structure is created by using unique ID at-
tributes on elements and referencing these IDs in reference
elements. Again XML enforces the uniqueness of these IDs
and the parser library simplifies the search for the referenced
elements.

While children of nodes with only one input port are di-
rectly mapped to children elements in the XML file, children
of different input ports need to be addressed differently. This
is handled using wrapper elements. Any group of children
that is connected to a specific input port is wrapped by an
additional XML element. This element in turn is the direct
child of the node of interest. These elements are closely re-

ConsoleSink

Pip

StbSink

EventTransform

Ref

ARToolKitSource

pip.tag

ConsoleSink

Pen

StbSink

Data Base

DynamicTransformation

EventTransform

WacomGraphireSource

ConsoleSink

Viewpoint

StbSink

EventTransform

TestSource

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE OpenTracker SYSTEM "opentracker.dtd">
<OpenTracker>

<configuration>
<ARToolKitConfig camera-parameter="camera_para.dat"/>

</configuration>
<ConsoleSink comment="Pip">

<StbSink station="0">
<EventTransform scale="0.001 0.001 0.001">

<ARToolKitSource tag-file="pip.tag" />
</EventTransform>

</StbSink>
</ConsoleSink>
<ConsoleSink comment="Pen">

<StbSink station="1">

<EventTransform scale="-2.1 -2 0" translation="0.14 0.1 -0.01">
<WacomGraphireSource device="1"/>

</EventTransform>

</StbSink>
</ConsoleSink>
<ConsoleSink comment="Viewpoint">

<StbSink station="2">
<EventTransform rotation="1 0 0 0">

<TestSource frequency="25"/>
</EventTransform>

</StbSink>
</ConsoleSink>

</OpenTracker>

DEF="Camera"

<EventDynamicTransform>

</EventDynamicTransform>

<TransformBase>

</TransformBase>
<Ref USE="Camera"/>

Figure 4: Example configuration file and resulting graph. (This figure is reproduced in color on page 000.)

lated to the node’s element and are typically the only possi-
ble children elements. They are mapped to special wrapper
nodes that can be distinguished by the node implementa-
tion. Otherwise they are transparent to the actual data
processing.

Figure 4 gives an example of such a configuration file,
using all of the features described before. The interesting
constructs are highlighted and cross linked with the corre-
sponding nodes in the resulting data flow graph.

7. APPLICATIONS
We have successfully used OpenTracker in a number of ex-

perimental setups either using it as our sole source of track-
ing data or integrating it with an existing setup.

For example, in an experimental pen-and-pad interface,
we combined a vision tracking approach (ARToolkit) for the
pad with a magnetic tracker (Ascension Flock of Birds) for
the pen. Two separate servers for video and magnetic track-
ing were sending their measurements over the network to a
rendering host, where the combined data was picked up by
an OpenTracker component (Figure 3). The tracking data
from this source was transformed to register with the tracked
objects and fed into Studierstube, an augmented reality envi-
ronment recently described in [20]. The rendering was then
overlayed onto the video input from the camera. Figure 5
shows resulting image.

Another setup combines simple consumer devices to give
a similar interface. Here a Wacom graphic tabled is tracked
with ARToolkit and used as the pad, whereas the pen’s po-
sition is measured only by the tablet. Thus the pen can only

be used on the pad. This is enough to manipulate 2D user
interfaces displayed on the pad (Figure 6). Note that the
pen’s position in space is derived by combining the pen’s
location on the tablet and the tablet’s position and orien-
tation in space. Again this behavior was scripted with a
simple configuration file (shown as an example in Figure 4).
Also the library was integrated directly with Studierstube,
instantly allowing access to the used devices.

Finally, OpenTracker was used extensively to integrate
different input devices in a mobile AR setup [18]. The sys-

Optical

marker

Magnetic

tracker

Figure 5: Different tracking devices integrated
transparently. (This figure is reproduced in color
on page 000.)

Figure 6: A graphics tablet and a pen yield a simple
pen-and-pad interface. (This figure is reproduced in
color on page 000.)

tem uses an InterSense InterTrax2 orientation sensor and a
web camera for fiducial tracking of interaction props mounted
on a helmet worn by the user. The main user interface is a
pen and pad setup using a Wacom graphics tablet and its
pen. Both devices are optically tracked by the camera using
markers. Similar to the last setup, the 2D position of the
pen (provided by the Wacom tablet) is incorporated into
the processing to provide more accurate tracking on the pad
itself. OpenTracker deals with all the complex transforma-
tions between the coordinate systems of the input devices
and passes data in a world stabilized reference system to
the AR application for rendering. Figure 7 shows a user
overlayed with the AR environment he is working in.

Figure 7: A user interacting with an AR application
using a mobile setup. (This figure is reproduced in
color on page 000.)

Besides accommodating a wide range of hardware config-
urations, 3D interaction techniques can be implemented in
OpenTracker and be used transparently to the application.
For example, Head-directed navigation [8] can be added by
implementing a node that computes position changes from
incoming orientation data. Similarly interaction techniques
such as amplifying rotations [16, 17] can be achieved. Once
such nodes are realized, these interaction techniques are im-
mediately available to existing setups.

Integration with software engineering tools and approaches
such as described in [23], [14] should be possible. Employing
XML to describe the configurations allows integration with
other tools because the standard software needed to process
XML files is available. Simple generating and parsing of
XML allows the generation of configurations from specifi-
cations or reverse-engineering of existing configurations into
these tools. This can results in a full round trip approach
to engineering virtual environments.

8. CONCLUSIONS AND FUTURE WORK
None of the important properties of OpenTracker – such

as filtering, decoupled simulation, or configuration languages
– are genuinely new. Yet we were surprised in being unable
to find a publicly available solution truly suited for the needs
of a virtual reality developer – a lack which led to the concep-
tion of OpenTracker. While to capabilities of OpenTracker
are utterly unspectacular, we found them much needed.

The described applications show the versatility of our ap-
proach. Not only device abstraction is achieved, but com-
plex dependencies and interactions between the devices can
be described and configured. This happens transparently to
the application and simplifies the developers task.

Much remains to be done. Although the current version is
stable and integrated in our standard applications, it is far
from complete. The set of supported device drivers should
be exhaustive and up to date. There are also several other
interesting extensions, such as generic event type to include
other types of data or reconfiguration of the tracker graph
at runtime. We thus invite contributors all over the world
to help improving this open source project.

For more information, check out the project home page:
http://www.studierstube.org/opentracker/

Acknowledgments
This project was sponsored by the Austrian Science Fund
FWF under contract no. P-14470-INF. Special thanks to
Anton Fuhrmann for his perpetual will to comment, to Ivan
Viola and Matej Mlejnek for their contribution to the im-
plementation and to Mark Billinghurst and Hirokazu Kato
for ARToolkit.

APPENDIX

A. REFERENCES
[1] S. Adler et al. Extensible stylesheet language (XSL)

1.0. http://www.w3.org/TR/xsl/.

[2] Apache. Xerces XML parser.
http://xml.apache.org/xerces-c/index.html.

[3] AT&T. Graphviz.
http://www.research.att.com/sw/tools/graphviz/.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, et al.
Extensible markup language (XML) 1.0.
http://www.w3.org/TR/REC-xml/.

[5] R. Carey and G. Bell. The Annotated VRML 2.0
Reference Manual. Addison-Wesley, 1997.

[6] J. Clark. XSL transformations (XSLT) version 1.0.
http://www.w3.org/TR/xslt, 1999.

[7] F. S. Foundation. Lesser GNU Public License.
http://www.gnu.org/copyleft/lesser.html, February
1999.

[8] A. Fuhrmann, D. Schmalstieg, and M. Gervautz.
Strolling through cyberspace with your hands in your
pockets: Head directed navigation in virtual
environments. In Proc. of the 4th EUROGRAPHICS
Workshop on Virtual Environments, pages 216–227.
Springer-Verlag, June 1998.

[9] T. He and A. Kaufman. Virtual input devices for 3D
systems. In Proc. IEEE Visualization’93, pages
142–148. IEEE, 1993.

[10] IBM. Xeena XML editor.
http://www.alphaworks.ibm.com/tech/xeena.

[11] Icon Information Systems GmbH. XMLSpy.
http://www.xmlspy.com.

[12] ISO. Graphical kernel system (GKS). IS 7942, 1985.

[13] H. Kato and M. Billinghurst. Marker tracking and
HMD calibration for a video-based augmented reality
conferenencing system. In Proc. (IWAR’99), San
Francisco, CA, USA, October 1999. IEEE.

[14] G. J. Kim, K. C. Kang, H. Kim, and J. Lee. Software
engineering of virtual worlds. In Proc. VRST’99, 1999.

[15] U. of North Carolina at Chapel Hill. VRPN - virtual
reality peripheral network.
http://www.cs.unc.edu/Research/vrpn/.

[16] I. Poupyrev, T. Otsuka, S. Weghorst, and T. Ichikawa.
Amplifying rotations in 3D interfaces. In Proc. ACM
CHI’99, pages 256–257, 1999.

[17] I. Poupyrev, S. Weghorst, and S. Fels. Non-isomorphic
3D rotational techniques. In Proc. ACM CHI’2000,
pages 546–547, 2000.

[18] G. Reitmayr and D. Schmalstieg. Mobile collaborative
augmented reality. In Proc. ISAR 2001, New York,
USA, October 29–30 2001.

[19] J. Rekimoto and M. Saitoh. Augmented surfaces: A
spatially continuous workspace for hybrid computing.
In Proc. CHI’99. ACM, 1999.

[20] D. Schmalstieg, A. Fuhrmann, and G. Hesina.
Bridging multiple user interface dimensions with
augmented reality. In Proc. ISAR 2000, pages 20–29,
Munich, Germany, October 5–6 2000. IEEE and ACM.

[21] C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled
simulation in virtual reality with the MR toolkit.
ACM Transactions on Information Systems,
11(3):287–317, July 1993.

[22] P. Strauss and R. Carey. An object oriented 3D
graphics toolkit. In Proc, ACM SIGGRAPH’92. ACM,
1992.

[23] J. S. Willans and M. D. Harrison. A ’plug and play’
approach to testing virtual environment interaction
techniques. In Proc. EGVE 2000, June 2000.

		2001-09-28T10:32:57+0100
	Gerhard Reitmayr
	I am the author of this document

