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Abstract

Optical tracking systems allow three-dimensional input
for virtual environment applications with high precision and
without annoying cables. Spontaneous and intuitive inter-
action is possible through gestures. In this paper, we present
a finger tracker that allows gestural interaction and is sim-
ple, cheap, fast, robust against occlusion and accurate. It
is based on a marked glove, a stereoscopic tracking system
and a kinematic 3-d model of the human finger. Within our
augmented reality application scenario, the user is able to
grab, translate, rotate, and release objects in an intuitive
way. We demonstrate our tracking system in an augmented
reality chess game allowing a user to interact with virtual
objects.

(a) (b)

Figure 1. Manipulation of virtual objects by
grab and release gestures: Natural inter-
action is possible using the finger tracker
described in this paper together with aug-
mented reality displays. In this image, a user
plays chess against the computer by moving
virtual chess men with his finger on a real
board.

1 Introduction

In order to convey a sense of immersion, a virtual envi-
ronment (VE) system must not only present a convincing
visual rendering of the simulated objects, but also allow to
manipulate them in a fast, precise, and natural way. Rather
than relying on mouse or keyboard, direct manipulation of
virtual objects is enabled by employing tracking with six de-
grees of freedom (6DOF). Frequently, this is done via hand-
held props (such as flying mouse or wand) that are fitted
with magnetic trackers. However, this technology can only
offer limited quality because it is inherently tethered, inac-
curate and susceptible to magnetic interference. Early on,
optical tracking has been proposed as an alternative. One
main reason why optical tracking is so attractive is because
unlike tethered magnetic tracking it supports capturing hu-
man movement without the need for active sensors, thus al-
lowing interaction without the use of props. In particular,
the tracking of hands is relevant, because it allows natural
gesturing (Figure 1).

Figure 2 shows a taxonomy of gesturing after Quek
[25, 26]. Intentional gestures can be roughly categorized
into manipulative(object movement, rotation etc.) and
communicative. While the expressive power of gestures is
mostly attributed to the communicative family of gestures,
it is the manipulative family that is mostly used in virtual
environments. The reason is that choreographing 3-d events
based on object manipulation is straightforward and imme-
diately useful, while the meaning of communicative ges-
tures is often more subtle and harder to exploit in appli-
cations. Also, communicative gesturing just like any form
of communication relies on a common language that first
needs to be mastered by the user before useful interaction
is possible (with the exception of deictic gestures [3]). We
will now examine how gestures fit into an interaction frame-
work for VEs. We follow the 3-d interaction taxonomies
developed by Hand [11] and Bowman [4] that categorize
interaction into viewpoint control, selection, manipulation,
and system control:

• Viewpoint manipulation in virtual environments is best
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Figure 2. Intentional hand and arms move-
ments can be classified as manipulative or
communicative. Communicative gestures
can be related to language (symbolic), or non-
linguistic acts. Mimetic acts simulate actions,
while deictic acts refer to a specific object.
Symbolic gestures either stand for a referen-
tial action, or are used as modalizers, often
for speech.

performed with direct head tracking [29].

• Manipulation of virtual objects (rigid objects, i. e., pri-
marily translation and rotation) is a core requirement
of most VE applications. Obviously, a very efficient
method is direct manipulation with the hand.

• To perform selection in reality, a user stretches out the
hand in the direction of the target object, then grabs
it for manipulation, which can be tracked as a deictic
followed by a mimetic gesture.

• System control describes all access to abstract func-
tions that have no obvious correspondence in the three-
dimensional environment. To provide good feedback,
visible command objects (3D icons etc.) are often used
for system control. Such system icons can be manipu-
lated with similar gestures like normal objects.

Taken together, all input modes relevant for a general vir-
tual environment can be provided by control of a 6DOF cur-
sor and a grab/select command. In this paper, we propose
to track the user’s index finger via retroreflective markers
and use the tip as a cursor. The select command is triggered
by bending one’s finger to indicate a grab or grab-and-hold
(i.e., drag) operation. The simplicity of this approach is
also its power. While the potential of optical tracking as
a superior tracking technique is generally recognized, its
complexity has prevented widespread acceptance. In con-
trast, our simple approach is at a sweet spot in the space of
possible optical tracking approaches, allowing to develop a
finger tracker that is fast, reliable, robust against occlusion,

cheap, and accurate, and that can be interfaced easily to any
VE and provides all necessary means of interaction through
gestures. It combines natural and unobtrusive interaction
through gesturing with precise and general purpose inter-
action in a mostly unrestrained virtual environment. Sur-
prisingly, to our knowledge this particular approach has not
been tried yet.

In the following, we discuss related work in section 2,
followed by an overview of our approach in section 3, and
details on the used finger model in section 4 and computer
vision algorithms in section 5. The presentation is comple-
mented by results in section 6 and section 7 concludes the
paper.

2 Related Work

In this section, we give a brief overview of gesture based
interaction methods which consider the human hand. As
mentioned before, gestures may be classified asmanipula-
tive or communicative. Our overview of the literature will
concentrate on manipulative gestures, since we are inter-
ested in systems which allow to grab, translate, rotate and
release virtual objects. The interested reader is referred to
Pavlovicet al. [14, 24] for a general survey of hand tracking
methods and algorithms for hand gesture analysis.

Considering the complexity of shapes of the human hand
which may appear in video images, the segmentation of
the human hand can be figured out as the most crucial and
time-consuming part a vision based system has to solve.
In case of manipulative gestures, the tracking of the hand
should operate in real-time. This is why system develop-
ers apply constraints either for the environment or the ap-
pearance of the human hand. We will distinguishback-
ground and foreground constraintsgenerally applied for
simplifying the segmentation process.Background con-
straint systemsare often using a uniform (uncluttered) back-
ground [28, 5, 21, 18, 6]. Other systems assume a static
or temporarily static background so that background sub-
traction [16, 32, 35] or segmentation by motion [19] can
be performed. Unfortunately, using a controlled or known
background is problematic or impossible in dynamic vir-
tual and augmented environments where the scene changes
over time.Foreground constraint systemsdetect markers at-
tached to the human hand [7, 23, 22] or classify the human
skin color [17, 10, 36]. Such systems assume controlled and
static lighting conditions and rely on the assumption that no
objects with similar color (e.g., skin/wood) appears in the
image. Projection-based virtual environments are typically
used with dimmed lights, leading to a decrease in color dy-
namics, which results in difficulties in identifying the hu-
man skin.

Template matching approaches for special hand features
like the finger tips restrict the hand in its flexibility of defor-
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mation since the finger tips should always be visible in the
camera images [28, 10]. A common approach is to restrict
the appearance of the hand to known depth values and to
disallow other objects to appear inside the interaction vol-
ume [33]. Finally, an infrared camera system can be adapted
to acquire optical signals at a controlled temperature for the
human hand [30].

After image segmentation, the hand model plays a funda-
mental role in the tracking process. We distinguish em 3-d
hand models andappearance based models. 3-d hand mod-
els use articulated structures of the human hand to estimate
the hand movements [28, 21], whereas appearance-based
models directly link the appearance of the hand movements
in visual images to specific gestures [2, 12, 32]. 3-d hand
model-based systems often provide a higher flexibility, due
to the estimation of joint angles and a higher precision. Fi-
nally, the form of output from the tracking process deter-
mines the scope of possible applications. We classify 2-d
systems [2], e.g., for controlling 2-d user interfaces [30],
systems working in 3-d by supporting relative 3-d positions
[23, 12] and systems which are using stereoscopic vision
for most accurate, absolute 3-d positions [28, 32, 33]. Ob-
viously, only absolute 3-d position is useful for our applica-
tion scenario.

Often not addressed is the necessity of tracking initial-
ization which means that the user is forced to move the hand
to a known position while performing a specific pose. Sys-
tems like [2, 12, 28] need this initialization whenever the
object detection algorithm looses track. Such an approach
is not acceptable for spontaneous and natural interaction
in virtual environments. Recently, a new algorithm called
Condenstation[15] has been developed which tries to over-
come the increasing uncertainty of a Kalman filter process.
The algorithm is based on random sampling in order to track
objects with a best fit over time, mostly independent from
discrete time slots where the probability is not optimal. In
the case ofActive Contoursit is necessary to collect alter-
native states and to prevent the system from loosing track,
because a re-initialization of the system is computational
expensive and not soluble in real-time. For the purpose of
object tracking, we have implemented a Kalman filter, able
to estimate a residual between the observed and estimated
measurements. This residual value is used as a deciding
factor whether the filter looses track or not.

3 System Overview

We did not find a human hand tracking system which ful-
fills all of our requirements. Specifically, all purely natural-
feature-based tracking systems are either not accurate for
the purpose of augmented reality or not independent from
the environment or application. To overcome these prob-
lems our optical tracking consists of retroreflective markers

operating with infrared light. The tracking system poses
minimal constraints to the environment and can be easily
adapted for other virtual reality applications. The proposed
design is intended for a fixed working area of reasonable
size (1-3m squared) where dextrous interaction can occur.
A suitable workspace is defined by the volume above a ta-
ble - this is both useful in combination with back-projection
tables [20] and augmented reality scenarios [27, 13]. In the
following we focus on an outside-in tracking system, since
occlusion problems may not be such a big problem as for
inside-out tracking and in addition a stereo rig with a higher
baseline should be more precise for the purpose of 3-d in-
teraction.

We want to require minimal effort in the setup and main-
tenance of the system. Thus it is a requirement that the sys-
tem can be used without any special lighting or background.
Moreover, a simple calibration procedure is necessary to al-
low quick installation of the system after the location or
environment has changed. To allow for a relatively unre-
strained environment, a marked glove is used for real-time
separation of the finger from the background. The glove is
fitted with retroreflective markers, which are illuminated by
an infrared light source. A stereo camera pair with infrared
lenses filters out most of the background. The infrared light
source is co-located with the camera, so that light emitted
in the direction of the retroreflective markers is directly re-
flected towards the camera in a fashion similar to [9]. After
segmentation of the 2-d marker locations, they are passed
on to the marker matching module, where markers are cor-
related using a method based on epipolar constraints and
a kinematic model of the finger. A motion estimator has
been added in order to smooth and predict the motion of the
user’s finger. Therefore, the synthesized 3-d position values
are used as periodic measurements during a Kalman filter
process. The filter itself takes parameters of a linearized
kinematic model such as velocity, acceleration and angular
velocities. These parameter values may be used in order to
predict a future pose of the user’s finger.

We will examine the used marker and finger model in
more detail, and then discuss the relevant steps in com-
puter vision processing required to transform images from
the camera into 3-d model parameters.

4 Markers and finger model

The intention of the finger tracker is to determine enough
information to robustly track the position, orientation and
pose of the user’s index finger. For real-time determination
of these parameters without the need to constrain environ-
mental conditions, we resort to using a marked (but unteth-
ered) glove. In the following, we describe our considera-
tions regarding shape and placement of these markers.

Possible marker shapes are shown in figure 3. Round or
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square reflector blips are features of the surface, which is
fine as long as the markers face the camera. However, while
interacting in virtual reality, hand and fingers are constantly
rotated in space, and markers will often turn away from the
camera. In this case, the blip would not indicate the real
position of the joint any more.

(a) (b) (c) (d)

Figure 3. Shape of markers - in contrast to
round blips on the surface (a) that do not al-
ways represent the joint position (cross) well
if rotated away from the camera, flat rings (b)
are always centered at the joint, while convex
rings (c) improve upon flat rings in that they
have better retroreflective properties. Our fi-
nal choice are displaced balls (d) that suffer
the least from self-occlusion of the fingers.

As an alternative solution, we tried ring-shaped markers
composed from small stripes of reflector material that are
wrapped around the finger joints. A section of the rings will
always face the camera independent of the rotation of the
joint. After some experimentation, the ring markers were
modified to have a convex rather than a flat surface (Fig-
ure 4(a)). In that way, a portion of the retroreflective sur-
face of the marker will always be oriented towards the cam-
era, allowing for a higher amount of light to be reflected
to the camera, thereby making segmentation easier. Unfor-
tunately, our experiments showed that both blip and ring
makers suffer from the fact that the joint center cannot eas-
ily be determined from the position of the markers due to
self-occlusion of the fingers.

We therefore finally settled on using displaced balls on
the back of the finger (Figure 4(b)), that have good retrore-
flective properties and are not often significantly occluded
by the fingers themselves. The use of displaced balls
was enhanced by connecting the balls with short pieces
of wire mounted to hinges in the balls to enforce a fixed
known distance between the balls. Dimensions of these
wire rods were chosen to match the distances between fin-
ger joints. This makes the glove independent of the user’s
finger lengths. Indeed, there is an offset between the mark-
ers and the real joint positions. The real kinematics can be
estimated using the user dependent finger’s segment lengths
and thickness, however, our work is focused on a user inde-
pendent and finger calibration free solution when estimating
the pose of the chain of markers. While this ”exoskeleton”

looks awkward, it has the great advantage that it follows the
behavior of the finger as a kinematic chain, but with easily
detectable joint centers. Our experiences confirmed that it
does not affect finger movement or interaction in any no-
ticeable way.

For reconstruction, we employ a 3-d finger model based
on a kinematic chain of the finger joints that directly maps
onto the markers. As the distance of the markers is known,
the system is independent of the actual dimensions of the
user’s finger (within certain limits), while the soft glove’s
material can be stretched to fit any user. The only remaining
user specific parameter is the actual offset from the users
finger tip to the last marker in the chain which is used to
determine the 6DOF ”hot spot”. To enable a user to interact
with his or her finger tip, this offset must be determined.
However, we found that most users are willing to accept
that the actual hot spot is offset by a small amount from
their finger tip, and interaction is not affected.

(a) (b)

Figure 4. Gloves fitted with retroreflective
markers

5 Computer vision processing

For performing the whole work cycle shown in figure 5,
four tasks can be figured out which are the important oper-
ations of the tracking procedure. These are the calibration,
the segmentation, the marker matching and the motion es-
timation which includes the prediction of the model. These
operations will be described in the following sections.

5.1 Camera Calibration

The calibration must be very easy to perform, because
virtual reality users typically are not computer vision ex-
perts. Therefore, our system can adaptively calibrate a
stereo rig by tracking a single moving point acquired from
each of the two cameras. As a result, the calibration data
may be entered by just waving a passive reflective marker
around. The parameters which are estimated by the cali-
bration procedure are the focal lengths of both cameras, the
translation and rotation from one to the other camera and the
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Figure 5. Processing pipeline

structure depth with regard to one camera coordinate frame.
Given a rough estimate of these parameters, the system is
able to estimate a global optimum by compairing a set of
measurements of one camera with the transformed and pro-
jected measurements of the other camera on the first cam-
era’s image plane. Details about this easy-to-use calibration
technique can be found in [8].

5.2 Segmentation

The principal task the segmentation process has to per-
form is the estimation of the center of gravity for each
marker. The center of gravity is computed from the
weighted contributions of the pixels covered by the markers
in the greyscale image. We have implemented a threshold
based segmentation, because it is simple and able to work
in real-time. Pixel values which are above a given threshold
are used to estimate the center of gravity of the marker im-
age. This segmentation is not satisfying for all purposes as
it is described above, but it works much faster than elliptic
fitting algorithms. Later on, we try to compensate for these
errors by using a Kalman filter for motion estimation.

Unlike ring markers, a spherical marker’s center of grav-
ity generally matches the joint center very well, which re-
duces uncertainty and improves the behavior of the Kalman
filter described in section 5.4.

5.3 Matching of markers

In addition to the segmentation, we need a mechanism
which correlates extracted features of both images. Due to
reflections on specular surfaces, noise can be included in
the list of segmented features and should be detected by the
matching module.

Application of epipolar constraint does not solve the
complete matching problem, which is problematic in cases
where the corresponding feature for a marker in the first im-
age is not the feature which has the closest distance to the
epipolar line in the second image. This can lead to erratic
matching that combines image features which are not cor-
related in reality. Since the epipolar constraint module can
not detect such ambiguous cases based on the distance of a
feature from the epipolar line, all matching features which
lie within a small neighborhood of the epipolar line must be
considered as candidates for 3-d points.

Detection of correct 3-d points and their assignment to
finger joints is done by analysis of the 3-d position values
we retrieve with the previously described uncertainty. By
using knowledge about the distances between the markers
on the user’s finger and some further constraints, the system
is able to estimate the finger’s pose:

• The first constraint is based on the assumption that the
marker positions are located approximately in one 3-
d plane. While it is indeed possible to move a finger
sideways to some degree, this constraint is sufficiently
satisfied by the rigid marker skeleton.

• The second constraint is based on the non-ambiguous
sequence of pre-known marker distances.

search area

marker 3
marker 2

marker 1

marker 0

Figure 6. Marker matching

Figure 6 illustrates the procedure of marker matching.
A random 3-d marker position is chosen. In the next step,
the algorithm searches for a second marker position which
has been located close to the surface of a sphere with a ra-
dius determined by the known marker distance. If no such
marker position can be found, the algorithm starts with an-
other arbitrarily chosen 3-d marker position. If a marker
can be found close to the sphere’s surface, a second sphere
is used to find the third marker position and so on. The
procedure is successful if a full path including four markers
has been found, if the identified 3-d locations are located
within a given threshold to a 3-d plane and if the shape of
the polygon constructed from the joint positions is convex.
One additional constraint which enhances the performance

5



of the system is based on knowledge retrieved from the mo-
tion prediction, which is described below in section 5.4.
Consider the case when a complete path between the mea-
surements could not be estimated in the presence of occlu-
sion. Here, we derive the marker matching by the prediction
of the Kalman filter process. The measurements close to
the predicted values are taken as the new marker positions,
while for occluded markers we may be able to use the pre-
dicted values. However, a better solution can be estimated
using some biological constraints. If the finger tip marker
or the marker furthermost to the fingertip is lost, we use a
calculated marker position using the approximation that the
first joint angleβi close to the finger tip is two thirds of the
second joint angleαi. This constraint may also be used to
estimate an inner marker position.

Palm
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pp
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2

3

Figure 7. Finger coordinate system

For the following sections we assume a coordinate sys-
tem defined by the finger pose (figure 7). The finger is lo-
cated in thexy-plane and the origin is at pointp0, with the
x-axis pointing in the direction ofp1. As common for kine-
matic chains, the coordinate system forp1 is defined rela-
tive to the reference frame ofp0. Analogously, the reference
system ofp2 is defined relative top1. p3 is only necessary
to define the direction of thex-axis in the reference frame
of p2. In case the user’s finger is bent, the global rotation
matrix of the finger at framei can be calculated as follows

ex,i =
p1,i − p0,i

‖p1,i − p0,i‖
(1)

ez,i =

[
p3,i − p0,i

]
× ex,i

‖
[
p3,i − p0,i

]
× ex,i‖

(2)

ey,i = ez,i × ex,i (3)

First, we calculateex,i as the norm of the vector fromp0,i

to p1,i. Since all markers should lie on a plane, we can use
p3,i to define a second vector used to compute they- andz-
axis of this coordinate system by applying the cross product
of vectors. The result gives the base vectors of the global
finger reference frame which can be combined in a global
rotation matrix at time framei. The vectorsex,i,ey,i, and
ez,i form the columns of the matrix.

Ri =
(
ex,i ey,i ez,i

)
(4)

5.4 Modeling and Estimating Motion Kinematics

For developing a robust finger tracker it is important to
achieve good estimates of the finger pose, even though mea-
surements are imprecise and include distortions. Measure-
ments such as the marker positions are assumed to contain
white noise. The Kalman filter used in our implementa-
tion is responsible for filtering the motion model parameters
values. Whenever the system equations1 do not fit the real
motion process well, the residual between real motion and
motion model will be interpreted as random system noise.
The Kalman filter as used in our implementation is rather a
filter which extracts a kinematic state from periodic noisy
measurements than a predictor of future marker positions
used for speeding up the segmentation. Our implementa-
tion is using the Kalman filter in order to enhance the finger
pose matching for the current frame. The process of marker
and finger pose matching consists of a minimal path search
of estimated 3-d point distances and is known to be NP-
complete. Searching only a small number of markers does
not really suffer from this fact, but even a moderate num-
ber of falsely detected marker positions (reflections etc.)
can quickly affect computational performance of the search.
The Kalman filter is a good tool to overcome this problem
by predicting new 3-d marker positions. Based on this pre-
diction the algorithm can directly select markers in loca-
tions likely to contain valid 3-d points. As mentioned before
and shown in figure 7, our measurement vectorxi at time
framei includes the location of four 3-d marker positions.

xi =
(
p0,i p1,i p2,i p3,i

)
(5)

These measurements are not correct due to noise from cal-
ibration and segmentation errors. We assume this noise is
white noiseηi added to the correct measurementx′i.

xi = x′i + ηi (6)

Consider figure 8 for the transformation of marker po-
sitions p0,p1,p2 and p3 from time framei − 1 to time
frame i. For each point of the marker model a transla-
tion Ti−1 and rotationRi−1 is performed. This incremen-
tal and relative rotation is modeled using angular velocities

ω =
(
ωx ωy ωz

)T
. We are applying equation 7

q =
ωx
2
i+

ωy
2
j +

ωz
2
k +

√
1−

ω2
x + ω2

y + ω2
z

4
(7)

introduced by Azarbayejani and Pentland [1] to transform
the angular velocities into a quaternion representation of
the rotationRi−1. For the translational as well as for the
rotational components it is assumed that each pointpj,i−1,
j := [1..4] undergoes a motion with constant angular ve-
locity and with constant translational acceleration. In other

1In our case the motion kinematic equations.
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Figure 8. Marker transformation

words we use a linearized kinematic model for motion esti-
mation, which is simple and less computationally intensive
than using the accurate model. However, this linearization
is only effective for a short period in time. Therefore, real-
time motion capturing is neccessary and the precision de-
creases with the frame rate. Using this linearization, the
translationTi−1 can be expressed as

Ti−1 = vi−1 ∆t+
1
2
ai−1 ∆t2 (8)

wherev =
(
vx vy vz

)T
is the translational velocity,

a =
(
ax ay az

)T
is the constant translational accel-

eration and∆t is the time intervalti− ti−1. To estimate the
finger’s motion kinematics, the bending of joints has been
modeled by applying a rotationRα,i−1 for the first joint and
Rβ,i−1 for the second joint.Rα,i−1 is defined as a rotation
around thez-axis using the angleαi−1:

Rα,i−1 =

 cos(αi−1) − sin(αi−1) 0
sin(αi−1) cos(αi−1) 0

0 0 1

 (9)

The rotationRβ,i−1 is defined similar.
Consider once again the incremental transformation

shown in figure 8, where the rotation depends on the angu-
lar velocity and the translation depends on the translational
velocity and translational acceleration as described before.
As we assume to have a linearized motion, we are able to
calculate the new marker positions if we know the following
parameters collected in the state vector

si =
(
vi ai ωi αi βi

)T
(10)

These parameters are estimated during a Kalman filter pro-
cess. Thus, we are using the ”hat”(ˆ)-notation for estimated
parameters and are able to express the marker movements

by the following equation:

p̂0,i = p0,i−1 + v̂∆t+
1
2
â∆t2 (11)

p̂1,i = p̂0,i + R̂ip1,i−1 (12)

p̂2,i = p̂1,i + R̂iR̂α,i
(
p2,i−1 − p1,i−1

)
(13)

p̂3,i = p̂2,i + R̂iR̂α,iR̂β,i
(
p3,i−1 − p2,i−1

)
(14)

These equations can be seen as an estimation process of fu-
ture measurements at time framei while previous measure-
ments given at time framei− 1 are known:

xi =
(
p0,i p1,i p2,i p3,i

)T
(15)

Whenever a new measurement is available, the Kalman fil-
ter is performing a correction step (also calledmeasure-
ment update) to keep the residual between measurements
and estimated measurements as low as possible by mini-
mizing the error using a least square approach. The function
f
(
x′i, ŝi|i−1

)
which is dependent on the current estimated

state and the last measurement vector should be minimized
and is given in equation 16.

f
(
x′i, ŝi|i−1

)
=


p′0 − p̂0,i

p′1 − p̂1,i

p′2 − p̂2,i

p′3 − p̂3,i

 = 0 (16)

After measurement updatea new prediction can be per-
formed. This step is also calledtime update, because this
procedure is projecting the current state forward in time.
Considering our application context, a linear transformation
of the state vector is applied which is given by:

v̂i|i−1 = v̂i−1 + âi−1∆t
âi|i−1 = âi−1

ω̂i|i−1 = ω̂i−1

α̂i|i−1 = α̂i−1

β̂i|i−1 = β̂i−1

The strength of the Kalman filter is its feasibility to model
noise, even allowing the system to filter state values in noisy
environments. The existence of noise is assumed for two
different processes.

• The measurement includes a white noise such that the
expectation value is zeroE(ηi) = 0 and noise in-
cluded in one measurement is independent from noise
of another measurement.

E(ηiη
T
j ) =

{
Ληi i = j

0 i 6= j
(17)

Ληi describes the covariance matrix of measurement
noise at time framei.
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• The filter models system noise that results from im-
precise system equations. For instance, the linearized
kinematic motion model is not describing the real mo-
tion. Thus, there is a difference between the linearized
and the real motion which can be modeled as a white
system noise similar to equation 17. We denote the
covariance matrix of system noiseQi.

Figure 9 shows the complete extended Kalman filter pro-
cess as applied for finger tracking purposes.

Initialization ofP0|0, ŝ0|0,Q, andΛη0

Time Update:

ŝi|i−1 = H ŝi−1 (18)

Pi|i−1 = HPi−1H
T

+Q (19)

Measurement Update:

Ki = Pi|i−1M
T
i

(
MiPi|i−1M

T
i + Λξi

)−1
(20)

ŝi = ŝi|i−1 −Kif
(
xi, ŝi|i−1

)
(21)

Pi = (I −KiMi)Pi|i−1 (22)

?

?

-

?

?

xi

ŝi

ŝi−1

Figure 9. The extended Kalman filter

As a first step, an initialization of the filter is necessary.
Therefore, the covariance matrix of the state vectorP0|0,
the state vector itself, the system and measurement noise
matrices need to be specified. Afterwards, the state vector
and its covariance matrix can be projected forward in time
using:

H =


I3 ∆t I3 0 0
0 I3 0 0
0 0 I3 0
0 0 0 I2

 (23)

The next step is to correct the state and covariance matrix
Pi whenever a new measurement is available. Therefore,
the Kalman gain matrixKi is calculated which is used as
a relative weighting of the trust in real measurements vs.
the estimated system state. Since equation 16 is non-linear,
we have to apply the extended Kalman filter, which requires

calculation of the Jacobian matrixMi

Mi =
∂f
(
xi, ŝi|i−1

)
∂si

(24)

and the new measurement noise matrixΛξi which is influ-
enced by the derivative of the functionf

(
xi, ŝi|i−1

)
.

Λξi =
∂f
(
xi, ŝi|i−1

)
∂x′i

Ληi
∂f
(
xi, ŝi|i−1

)
∂x′i

T

(25)

6 Experimental results

Experiments with real sequences of marker based finger
motions were done on an Athlon 800 MHz processor using
ELTEC’s PcEye2 frame grabber board and two PULNiX
TM-560 PAL cameras. The finger tracking operates in real-
time with 25 frames per second2 and an accuracy of 0.5 to 2
mm in the range of one square meter. The angular accuracy
is difficult to analyse because it is dependent on the bend-
ing of the user’s finger. Analysing the jittering in rotational
values while having a bent finger, the angular error is below
one degree in average.

We have connected the tracking system via sockets with
theStudierstube[31] augmented reality system. The latency
of the whole system is about 50 to 100 ms. We can com-
pensate this latency while using predicted marker positions.
However, the accuracy of the system is reduced to 5 mm
precision while predicting 80 ms forward in time.

The application we have used for rendering is a virtual
chess application where chess men are displayed as virtual
objects and the chess board is real. In order to grab a virtual
chess man the user has to move his finger to the middle of
one square and intersect the marker located at the finger tip
with the virtual chess man and bend the finger in order to
grab the virtual object. While holding the finger bent, the
user is able to drag (translate and rotate) the chess man and
release it by stretching out the finger. This kind of interac-
tion was found to be intuitive and easy to learn because it
is similar to a real grab gesture the user performs. Compare
figure 1(a) for an image of the collision of the user‘s
finger with a chess man and figure 1(b) for an image while
performing the grab gesture and dragging the virtual object.
During fusion of real images and virtual images there is
one thing that is not perfect in regard to a fully immersive
illusion of the user, which are incorrect placements of the
virtual objects in regard to the real objects like the human
hand. Considering figure 10, the grabbed chess man should
be located at the finger tip, but it appears on the palm.
Future augmented reality systems should handle occlusions
of virtual objects. This may be solved by estimating depth
values of the real scene, however, this is a time-consuming

2The frame rate is limited by the update rate of the camera.
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Figure 10. Fusion of the real and virtual world

reconstruction problem, which is currently not solvable
in real-time. A video of the finger tracking in combi-
nation with a chess application can be downloaded from
http://www.ims.tuwien.ac.at/pages/research/vr/fingertracker/.

In regard to the robustness of the tracking, a source of
problems of vision-based tracking systems is occlusion. In
our tracking environment the cameras are positioned more
or less orthogonal to each other. Thus, there is no need for
our tracking system to detect four markers in each camera
image (see figure 11). We are able to estimate the finger

(left camera image) (right camera image)

Figure 11. Occlusions of markers

pose if one marker in each camera image plane is lost, or
if two markers in one of the images are invisible. With our
finger tracking system the interaction with virtual environ-
ments is performed wireless and more intuitive than with
most other devices commercially available. One marker
which is transiently lost causes no dramatic problems, but
to allow two handed interactions more cameras are needed
to be robust with regard to occlusions.

7 Conclusion and Future Work

We have presented an optical finger tracking system with
high precision for three-dimensional input in virtual en-
vironments. It allows spontaneous and intuitive interac-
tion through gestures and is simple, cheap, fast and robust
against occlusions. The proposed tracking system does not
need any initialization for tracking and there is no need to
adapt the finger model to different users, since we are us-
ing a “exo-skeleton” model fixed to a glove. The system is
operating in a relatively unrestrained environment.

Until know, we have not done any evaluation with regard
to ergonomics and comfort. However, from a practical point
of view the marked glove fits to different users as long as
the cotton glove suits the user’s hand. The “exo-skeleton”
seems to disturb the user only in situations in which the
sphere markers collide with other real objects. Therefore,
the “exo-skeleton” should be designed using smaller sphere
markers than in our current implementation. The tracking
method is expandable for two hand user input, but since oc-
clusion is a well-known computer vision problem, multiple
cameras will be necessary to solve hand-hand occlusions.
Future plans include investigating how to track the contours
of the human hand without having restrictions about the
complexity of the background.
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