
Habilitationsschrift

Collaborative Augmented Reality

eingereicht an der Technischen Universität Wien
Technisch-Naturwissenschaftliche Fakultät

von

Dipl.-Ing. Dr. techn. Dieter Schmalstieg

Wien, Februar 2001 Dieter Schmalstieg

Inhalt

Einleitung

1. D. Schmalstieg, A. Fuhrmann, G. Hesina, Zs. Szalavari, L. M. Encarnação, M.
Gervautz, W. Purgathofer:
The Studierstube Augmented Reality Project
To appear in: “Augmented Reality – The Interface is Everywhere”, SIGGRAPH
2001 Course Notes, Los Angeles, USA, August 2001.

2. Zs. Szalavari, D. Schmalstieg, A. Fuhrmann, M. Gervautz:
"Studierstube" - An Environment for Collaboration in Augmented Reality
Virtual Reality - Systems, Development and Applications, Vol. 3, No. 1, pp. 37-
49, Springer, 1998.

3. D. Schmalstieg, L. M. Encarnação, Zs. Szalavári:
Using Transparent Props For Interaction With The Virtual Table
Proceedings of SIGGRAPH Symposium on Interactive 3D Graphics '99, pp. 147-
154, Atlanta, GI, April 26-28, 1999.
2nd rank in the 1999 best paper award competition of the "Fraunhofer Haus der
Graphischen Datenverarbeitung" (Darmstadt, Germany)

4. D. Schmalstieg, A. Fuhrmann, G. Hesina:
Bridging Multiple User Interface Dimensions with Augmented Reality
Proceedings of the 3rd IEEE/ACM International Symposium on Augmented
Reality (ISAR 2000), pp. 20-30, Munich, Germany, Oct. 5-6, 2000.

5. D. Schmalstieg, G. Schaufler:
Sewing Virtual Worlds Together With SEAMS: A Mechanism to Construct
Complex Virtual Environments
PRESENCE - Teleoperators and Virtual Environments, Vol. 8, No. 4, pp. 449-
461, MIT Press, 1999.

Daß ich erkenne, was die Welt

Im Innersten zusammenhält,

Schau alle Wirkenskraft und Samen,

Und tu nicht mehr in Worten kramen.

Johann Wolfgang von Goethe, Faust

Einleitung

Virtual Reality (Virtuelle Realität) beschreibt eine Klasse von Benutzerschnittstellen,
die durch Einsatz von dreidimensionaler, oft stereoskopischer Computergraphik den
Benutzer in eine möglichst überzeugende künstliche Umgebung eintauchen läßt.
Solche Systeme übertreffen aufgrund ihrer 3D-Darstellung zwar herkömmmliche
Präsentationsmittel, schirmen den Benutzer aber vollständig von der Außenwelt ab.
Im Gegensatz dazu erlaubt Augmented Reality einen Kombination von Realität und
virtueller Umgebung. Erreicht wird dies durch den Einsatz von halbdurchlässigen
Datenbrillen, Videomischung oder speziellen Projektionstechniken.

Auf dieser Technik basiert die Studierstube, eine kollaborative computerunterstützte
Arbeitsumgebung, die seit 1996 an der Technischen Universität Wien – ursprünglich
unter der Leitung von Prof. Dr. Michael Gervautz, später unter meiner Leitung -
entwickelt und weiterentwickelt wird. Namensgebend für das Projekt ist jener Raum,
in dem Goethes Faust seinem Drang nach Wissen und Erkenntnis nachgeht.

In der Studierstube steht der kollaborative Aspekt im Vordergrund: Mehrere Benutzer
können gemeinsam virtuelle Objekte betrachten. Interaktionen eines Benutzers mit
den virtellen Objekten können von den anderen Benutzern beobachtet werden,
während sie gleichzeitig den Erläuterungen des Kollegen in der realen Welt folgen
können. Anders als bei Virtual Reality ist die natürliche Kommunikation – Sprache,
Gestik, Mimik – weitgehend unbehindert.

Die Artikel in dieser Sammlung beleuchten einzelne Forschungsaspekte des
Studierstube-Systems im Detail und geben gleichzeitig einen Abriß der
Entwicklungsgeschichte des Projekts. Schwerpunkte sind zum einen technische
Problemstellungen, wie Hardware- und Softwarekonzept, Darstellungs- und
Netzwerktechnologie, zum anderen Probleme des Benutzerschnittstellen-Design, wie
dreidimensionale Interaktion, Visualisierung und Kollaboration.

Im Forschungsprojekt Studierstube haben eine Reihe von Forschern in verschiedenen
Rollen zusammengearbeitet. Diese Zusammenarbeit, die in zahlreiche gemeinsame

Publikationen der beteiligten Forscher gemündet hat, ist prinzipiell sehr
wünschenswert. Für eine Habilitation ist jedoch die Ausweisung der
Einzelforschungsleistung verlangt. Es wurden deswegen aus den zahlreichen
Publikationen (über 20!), die – überwiegend unter meiner Beteiligung – im
Zusammenhang mit der Studierstube-Forschung entstanden sind, jene ausgewählt, bei
denen der überwiegende Anteil der Arbeit von mir selbst geleistet wurde, was sich
auch traditionsgemäß in der Rolle des ersten Autors ausdrückt. Es folgt eine
Kurzbesprechung der Artikel unter Berücksichtigung der Arbeitsaufteilung.

1. The Studierstube Augmented Reality Project

Dieser Artikel, zuletzt geschrieben, gibt einen Überblick über das ganze Projekt und
dient somit als Einleitung. Besonderer Wert wird gelegt auf den Zusammenhang der
einzelnen Bereiche und die zugrundeliegende Philosophie zur Gestaltung von
Benutzerschnittstellen. Im Brennpunkt steht die These, daß sich Augmented Reality
als Kerntechnologie zur Entwicklung einer Interaktionsumgebung eignet, welche
ähnlich produktives Arbeiten in 3D gestattet wie die Desktop-Metapher in 2D. Diese
Definition umfaßt einerseits Modell- und Informationsmanipulation, andererseits
Kommunikation und Computer Supported Cooperative Work.

Die in diesem Artikel beschriebenen Forschungsarbeiten habe ich zwischen 1998 und
2000 geleitet und koordiniert. Der Schwerpunkt liegt auf Konzepten, die ich selbst,
oft in Diskussionen mit Dr. Fuhrmann, entwickelt habe, wobei die technische
Realisierung auf viele Personen aufgeteilt war, insbesondere von mir betreute
Studierende. Den Text habe ich selbständig verfaßt.

2. "Studierstube" - An Environment for Collaboration in Augmented Reality

Dieser Artikel beschreibt die erste Phase der Versuche im Bereich Collaborative
Augmented Reality. Neben einer allgemeinen Untersuchung der Eigenschaften und
Möglichkeiten von Collaborative Augmented Reality wird der erste einfache Prototyp
eines Augmented Reality-Systems für mehrere Benutzer beschrieben, welcher auch
das Personal Interaction Panel, ein zweihändiges Eingabegerät basierend auf einer
“Pen & Paper”-Metapher, umfaßt.

An den in diesem Artikel beschriebenen ersten Projektschritten habe ich noch unter
der Leitung von Prof. Gervautz mitgewirkt. Meine Leistungen waren hier neben der
Mitentwicklung der Konzepte noch verstärkt konkrete Implementierungsarbeiten,
aber auch die Abfassung des ersten “extended abstract” mit dem gleichen Titel, das
Ende 1996 mit mir als erstem Autor im Tagungsband der Konferenz “Collaborative
Virtual Environments ‘96” in Nottingham, UK, erschien. Später wurden wir
eingeladen, einen auf dieser Veröffentlichung basierenden Artikel für das “Virtual
Reality”-Journal zu schreiben, der hier wiedergegeben ist. Die Endfassung dieses
Artikels übernahm damals Dr. Szalavári.

3. Using Transparent Props For Interaction With The Virtual Table

In einer Zusammenarbeit mit dem Fraunhofer Center for Research in Computer
Graphics in Providence, Rhode Island, USA, entstand eine Version der Studierstube-
Software für den Virtual Table, ein Virtual Reality-System mit Rückprojektions-
Darstellung. Besonderes Augenmerk wurde auf eine adaptierte Version des Personal
Interaction Panel gelegt, die durch die Verwendung von transparentem Material mit

der Rückprojektion verträglich ist. Es werden umfangreiche Benutzerschnittstellen-
Studien mit diesem Eingabegerät beschrieben.

Dieser Text markiert für mich den Beginn der zweiten Projektphase, in der ich die
Leitung der Studierstube-Forschung übernahm und wir die behandelten Themen über
den ursprünglichen Kernbereich “Collaborative Augmented Reality” hinaus
ausdehnten. Die beschriebenen Arbeiten habe ich im Sommer 1998 alleine
durchgeführt. Dr. Encarnação ist dafür zu danken, daß er diese Arbeit ermöglicht hat,
Dr. Szalavári für seine Dissertation über das “Personal Interaction Panel”, auf die ich
vom Konzept her aufgebaut habe.

4. Bridging Multiple User Interface Dimensions with Augmented Reality

Diese Arbeit beschäftigt sich mit der zweiten Generation des Studierstube-Systems,
welche gegenüber der ersten Generation konzeptuell und technisch stark erweitert ist
und insbesondere multimediale und multimodale Techniken betont. Beschrieben wird
ein Baukasten zur Erstellung dreidimensionaler Benutzerschnittstellen für mehrere
Benutzer, der auf einem verteilten graphischen System basiert und gleichzeitige
Verwendung von verschiedenen Formen der Eingabe (Tracking) und Ausgabe
(Displaytechnologie) sowie das Multitasking dreidimensionaler Applikationen
erlaubt. Mit diesem System lassen sich Ideen aus Augmented Reality und Ubiquitous
Computing, also die Verwendung vielfältiger, in die Arbeitsumgebung eingebetteter
Informationstechnik, kombinieren.

Dieses “Systems Paper” beschreibt ein komplexes Software-System, zu dessen
Realisierung neben mir auch Dr. Fuhrmann und DI Hesina wesentlich beigetragen
haben. Die Beschreibung der zugrundeliegenden Konzepte und insgesamt die
schriftliche Arbeit stammt jedoch ausschließlich von mir.

5. Sewing Virtual Worlds Together With SEAMS:
A Mechanism to Construct Complex Virtual Environments

Dieser Aufsatz beschreibt ein allgemeines Konzept zur Verschachtelung
dreidimensionaler Szenen basierend auf der Idee eines “Portals” bzw. “Wurmlochs”.
Diese Aufgabe wird sowohl in Hinblick auf ihre theoretische Implikation zur
Konstruktion von Benutzerschnittstellen als auch auf ihre praktische Umsetzung
(Darstellung, Vernetzung) untersucht. Ursprünglich als unabhängige Arbeit begonnen,
wurden die Ergebnisse später als Benutzerschnittstellen-Element in die Studierstube
integriert.

Während die ursprüngliche Idee zu den SEAMS und eine zugehörige
Machbarkeitsstudie von Dr. Schaufler stammt, trage ich die Verantwortung für die
Weiterentwicklung der Idee, ihre Implementierung im Rahmen des Studierstube-
Projekts, ihre Anwendung als Benutzerschnittstellen-Element für Augmented Reality
und schließlich die Abfassung des Artikels.

The Studierstube
Augmented Reality Project

Dieter Schmalstieg
dieter@cg.tuwien.ac.at
Vienna University of
Technology, Austria

Anton Fuhrmann
VRVis Research Center for
Virtual Reality and Visualization,
Vienna, Austria*

Gerd Hesina
Vienna University of
Technology, Austria

Zsolt Szalavári
Vienna University of
Technology, Austria

L. Miguel Encarnação
Fraunhofer CRCG, Inc.,
Providence, Rhode Island, U.S.

Michael Gervautz
Imagination GmbH, Vienna,
Austria*

Werner Purgathofer
Vienna University of
Technology, Austria

* Work done while at Vienna University of
Technology

Abstract

This paper describes Studierstube, an augmented reality
system developed over the past four years at Vienna
University of Technology, Austria, in extensive
collaboration with Fraunhofer CRCG, Inc. in Providence,
Rhode Island, U.S. Our starting point for developing the
Studierstube system was the belief that augmented
reality, the less obtrusive cousin of virtual reality, has a
better chance of becoming a viable user interface for
applications requiring manipulation of complex three-
dimensional information as a daily routine. In essence, we
are searching for a 3D user interface metaphor as
powerful as the desktop metaphor for 2D. At the heart of
the Studierstube system, collaborative augmented reality
is used to embed computer-generated images into the
real work environment. In the first part of this paper, we
review the user interface of the initial Studierstube
system, in particular the implementation of collaborative
augmented reality, and the Personal Interaction Panel, a
two-handed interface for interaction with the system. In
the second part, an extended Studierstube system based
on a heterogeneous distributed architecture is presented.
This system allows the user to combine multiple
approaches--augmented reality, projection displays,
ubiquitous computing--to the interface as needed. The
environment is controlled by the Personal Interaction
Panel, a two-handed pen-and-pad interface, which has
versatile uses for interacting with the virtual environment.
Studierstube also borrows elements from the desktop,
such as multi-tasking and multi-windowing. The resulting
software architecture resembles in some ways what could
be called an “augmented reality operating system.” The
presentation is complemented by selected application
examples.

1. Introduction
Studierstube is the German term for the

“study room” where Goethe’s famous character,
Faust, tries to acquire knowledge and
enlightenment (Goethe, 1808). We chose this
term as the working title for our efforts to
develop 3D user interfaces for future work
environments. Most virtual reality systems of
today are tailored to the needs of a single, very
specific application that is highly specialized for
that purpose. In contrast, the Studierstube project
tries to address the question of how to use three-
dimensional interactive media in a general work
environment, where a variety of tasks are carried
out simultaneously. In essence, we are searching
for a 3D user interface metaphor as powerful as
the desktop metaphor for 2D.

Our starting point for developing
Studierstube was the belief that augmented reality
(AR), the less obtrusive cousin of virtual reality
(VR), has a better chance than VR of becoming a
viable user interface for applications requiring
information manipulation as a daily routine.
Today’s information workers are required to
carry out a large variety of tasks, but
communication between human co-workers has
an equally significant role. Consequently,
Studierstube tries to support productivity,
typically associated with the desktop metaphor,
as well as collaboration, typically associated with
computer supported cooperative work
applications. To fulfill these needs, the
framework therefore has taken on many functions
of a conventional operating system in addition to
being a graphical application.

At the heart of the Studierstube system,
collaborative AR is used to embed computer-
generated images into the real work environment.
AR uses display technologies such as see-through
head-mounted displays (HMDs) or projection
screens to combine computer graphics with a
user’s view of the real world. By allowing

multiple users to share the same virtual
environment, computer supported cooperative
work in three dimensions is enabled.

This paper gives an overview of the various
avenues of research that were investigated in the
course of the last four years, and how they relate
to each other. The intent of this paper is to
provide a summary of this rather extensive
project as well as an introduction to the approach
of blending augmented reality with elements from
other user interface paradigms to create a new
design for a convincing 3D work environment.
In the first part of this paper, we review the core
user interface technologies of the initial
Studierstube work, in particular the
implementation of collaborative augmented
reality, and the Personal Interaction Panel, a two
handed-interface for interaction with the system.

In the second part, we present an extended
collaborative 3D interface that unites aspects of
multiple user interface paradigms: augmented
reality, ubiquitous computing, and the desktop
metaphor. In the third part, we illustrate our work
by reviewing some selected experimental
applications that were built using Studierstube.
Finally, we discuss how Studierstube is related to
previous work, and draw conclusions.

2. Interaction in augmented reality
The initial Studierstube system as described

in (Schmalstieg et al., 1996) and (Szalavári et al.,
1998a) was among the first collaborative
augmented reality systems to allow multiple users
to gather in a room and experience a shared
virtual space that can be populated with three-
dimensional data. Head-tracked HMDs allow
each user to choose an individual viewpoint while
retaining full stereoscopic graphics. This is
achieved by rendering the same virtual scene for
every user’s viewpoint (or more precisely, for
every user’s eyes), while taking the users’ tracked
head positions into account.

Collaborators may have different preferences
concerning the chosen visual representation of the
data, or they may be interested in different
aspects. It is also possible to render customized
views of the virtual scene for every user that
differ in aspects other than the viewpoint (for
example, individual highlighting or annotations).
At the same time, co-presence of users in the
same room allows natural interaction (talking,
gesturing etc.) during a discussion. The
combination of real world experience with the
visualization of virtual scenes yields a powerful
tool for collaboration (Figure 1).

Figure 1: Two collaborators wearing see-through
displays are examining a flow visualization data set

2.1 The Personal Interaction Panel

The Personal Interaction Panel (PIP) is a
two-handed interface used to control Studierstube
applications (Szalavári & Gervautz, 1997). It is
composed of two lightweight hand-held props, a
pen and a panel, both equipped with magnetic
trackers. Via the see-through HMD, the props are
augmented with computer generated images, thus
instantly turning them into application-defined
interaction tools similar in spirit to the virtual
tricorder of Wloka & Greenfield (1995), only

using two hands rather than one. The pen and
panel are the primary interaction devices.

The props’ familiar shapes, the fact that a
user can still see his or her own hands, and the
passive tactile feedback experienced when the
pen touches the panel make the device convenient
and easy to use. Proprioception (Mine et al.,
1997) is readily exploited by the fact that users
quickly learn how to handle the props and can
remember their positions and shapes. A further
advantage is that users rarely complain about
fatigue as they can easily lower their arms and
look down on the props.

Figure 2: The Personal Interaction Panel allows two-
handed interaction with 2D and 3D widgets in

augmented reality

The asymmetric two-handed interaction
exploits Guiard’s observations (1987) that
humans often use the non-dominant hand
(holding the panel) to provide a frame of
reference for the fine-grained manipulations
carried out with the dominant hand (holding the
pen). Many of the interaction styles we have
designed take advantage of this fact.

However, the panel not only provides a
frame of reference, but also a natural embedding
of 2D in 3D (Figure 2). Many of the artifacts we
encounter in real life, such as TV remote controls
or button panels on household items such as
microwave ovens, are essentially two-

dimensional. The PIP approach with its tactile
feedback on the panel’s surface resembles those
real world artifacts better than naïve VR
approaches such as flying menus. Consequently,
the PIP provides a way to transpose many useful
widgets and interaction styles from the desktop
metaphor into augmented reality. Such “2.5D”
widgets such as buttons, sliders or dials provide
the bread-and-butter of interaction.

Figure 3: A gesture is used to create a torus in CADesk

However, the PIP’s direct and expressive
interaction language has much more to offer:
- Object manipulation: The pen is used as a

six-degree-of-freedom pointer for object
manipulation in three dimensions. Objects can
either be manipulated directly in the virtual
space, on the panel, or in any combination of
the two. A user can instantly establish such
combinations by overlaying the fixed-world
frame of reference with the frame of reference
defined by the panel, for example, by
dragging and dropping objects from a palette
to the virtual scene.

- Gestural interaction: Perhaps the most
fundamental function of a pen and panel is
gesturing, i.e., writing and drawing. As noted
by (Poupyrev et al., 1998), using the panel as
a surface for the gestures is an efficient mode
of input in virtual environments, and even
more so in AR where a user can see his or her
hands while gesturing. Delimiting the area for
gestures on the panel’s surface allows
simultaneous symbolic input and direct object
manipulation. Figure 3 shows CADesk
(Encarnação et al., 1999a), a solid modeling
tool that has been enhanced with gesture-

based interaction using the Studierstube
framework (Encarnação et al., 1999b).

Figure 4: The panel is used to position a clipping plane
that cuts away a portion from the volumetric scan of a

human skull

Figure 5: The panel is swept through an aggregation of
particle data. During the sweep, a filter is applied to the

underlying raw data, which produces aural feedback
that can assist the user in detecting structures in the

data sets that are not visible to the human eye.

- Surface tool: The panel, a two-dimensional
physical shape that extends in three-
dimensional space, can be interpreted as a
hand-held plane or planar artifact. It can be
used as a screen showing still images,
animations, flat user interfaces (compare
Angus & Sowizral, 1995), or live images
taken from the real or virtual environment
(like the screen of a digital camcorder). For
example, in the MediDesk application
(Wohlfahrter et al., 2000), the panel can be
used to slice a volumetric model to obtain “X-
ray plates” (Figure 4). Map-type tools such as
worlds-in-miniature (Pausch et al., 1995) can
use the panel as a ground plane. The panel

can also be used to apply filters to the data
samples penetrated when sweeping the panel
through a data set (Encarnação et al., 2000).
Such filters can produce new visual
representations of the underlying data sets or
other kinds of feedback, such as sonification
(Figure 5).

2.2 Privacy in Augmented Reality

The personal in Personal Interaction Panel
was chosen to emphasize how its use allows users
to leverage the advantages of collaborative
augmented reality: Holding and manipulating the
PIP puts a user in control of the application. If
only one PIP is used, contention for control is
resolved using social protocols such as passing on
the PIP. In contrast, giving each user a separate
PIP allows concurrent work. Although using
multiple PIPs requires the system software to
resolve the resulting consistency issues, users can
freely interact with one or multiple data sets,
because every user gets a separate set of controls
on his or her PIP. Fuhrmann & Schmalstieg
(1999) describe how interface elements can, but
need not be shared by users or application
instances.

The concept of personal interaction in
collaborative environments is tied to the issue of
privacy – users do not necessarily desire all their
data to be public (Butz et al., 1998). Fortunately,
a display architecture that supports independent
per-user displays such as ours can be configured
to use subjective views (Smith & Mariani, 1997)
with per-user variations to a common scene
graph. One user may display additional
information that is not visible for the user’s
collaborators, for example if the additional
information is confusing or distracting for other
users, or if privacy is desired (consider
highlighting or private annotations). We found
the PIP to be a natural tool for guarding such
private information: For privacy, a user can make
information on the panel invisible to others. This

idea was explored in (Szalavári et al., 1998b) for
collaborative games to prevent users from
cheating (Figure 6).

Figure 6: Personal displays secure privacy when
playing Mahjongg – the left player (top view) cannot see
his opponent’s tile labels and vice versa (bottom view)

2.3 Augmented Reality for the Virtual Table
platform

Normally, AR is associated with see-through
or video-based HMDs. Unlike HMDs, large
stereo back-projection screens viewed with
shutter glasses, such as used in CAVE (Cruz-
Neira et al., 1993), wall, or workbench (Krüger et
al., 1995) setups, offer significantly better
viewing quality, but cannot produce
augmentation, as opaque physical objects will
always occlude the back projection1. To
overcome this restriction, we developed a setup
that achieves a kind of inverse augmented reality,

1 Note that this discussion does not consider front projection,
which is capable of producing so-called spatially augmented
reality, but suffers from a different set of technical complexities.

or augmented VR, for the Virtual Table (VT), a
workbench-like device, through the use of
transparent pen and panel props made from
Plexiglas (Schmalstieg et al., 1999).

Figure 7: The Personal Interaction Panel combines
tactile feedback from physical props with overlaid
graphics to form a two-handed general-purpose

interaction tool for the Virtual Table.

Using the information from the trackers
mounted to shutter glasses and props, the
workstation computes stereoscopic off-axis
projection images that are perspectively correct
for the user’s head position. This property is
essential for the use of AR as well as augmented
VR, since the physical props and their virtual
counterparts have to appear aligned in 3D (Figure
7). Additional users with shutter glasses can share
the view with the leading user, but they
experience some level of perspective distortion.
Also the virtual panel will not coincide with its
physical counterpart.

The material for the pen and pad was
selected for minimal reflectivity, so that with
dimmed lights – the usual setup for working with
the VT – the props become almost invisible.
While they retain their tactile property, in the
user’s perception they are replaced by the
graphics from the VT (Figure 8).

Our observations and informal user studies
indicate that virtual objects can even appear
floating above the Plexiglas surface, and that

conflicting depth cues resulting from such
scenarios are not perceived as disturbing. Minor
conflicts occur only if virtual objects protrude
from the outline of the prop as seen by the user
because of the depth discontinuity. The most
severe problem is occlusion from the user’s
hands. Graphical elements on the pad are placed
in a way so that such occlusions are minimized,
but they can never be completely avoided.

Figure 8: Transparent pen and pad for the Virtual Table
are almost invisible and replaced by computer graphics

in the user’s perception (Stork & de Amicis, 2000)

Using the transparent props, the Studierstube
software was ported to the VT platform.
Applications could now be authored once and
displayed on different platforms. One lesson we
learned in the process was that the format and
properties of the display strongly influence
application design, much like a movie converted
from Cinemascope to TV must be edited for
content.

It was only after a working prototype of the
VT setup was finished that we realized that a
transparent panel affords new interaction styles
because the user can see through it:
- Through-the-plane tools: The panel is

interpreted as a two-dimensional frame
defining a frustum-shaped volume. A single
object or set of objects contained in that
volume instantly becomes subject to further

manipulation – either by offering context
sensitive tools such as widgets placed at the
panel’s border, or by 2D gestural interaction
on the panel’s surface. For example, Figure 9
shows the application of a „lasso“ tool for
object selection.

Figure 9: The lasso tool allows users to select objects

in 3D by sweeping an outline in 2D on the pad. All
objects whose 2D projection from the current viewpoint

is contained in the outline are selected.

- Through-the-window tools: The transparent
panel is interpreted as a window into a
different or modified virtual environment.
This idea includes 3D magic lenses (Viega et
al., 1996) such as X-ray lenses (Figure 10),
that are essentially modified versions of the
main scene, but also SEAMS (Schmalstieg &
Schaufler, 1998), which are portals to
different scenes or different portions of the
same scene. A recent extension to the window
tools is proposed in (Stoev et al., 2000): The
panel acts as a lens into a separate locale of
the virtual environment, the pen is used to
move the scene underneath.

Figure 10: Different applications of through-the-window
tools: (top) X-ray lens, (middle) focus lens that locally

increases density of streamlines in a flow visualization,
(bottom) portal to a different version of a scene

3. Convergence of user interface
metaphors
During the work on the original Studierstube

architecture, we rapidly discovered new

promising avenues of research, which could not
be investigated using the initial limited design.
From about 1998 on, we therefore concentrated
our efforts at re-engineering and extending the
initial solutions to construct a second-generation
platform building on what we had learned. The
support for the VT platform, as detailed in the last
section, was the first outcome of this work.

It gradually became clear that augmented
reality – even in a collaborative flavor – was not
sufficient to address all the user interface
requirements for the next generation 3D work
environment we had in mind. We needed to mix
and match elements from different user interface
metaphors. A vision of converging different user
interface paradigms evolved (Figure 11). In
particular, we wanted to converge AR with
elements from ubiquitous computing and the
desktop metaphor.

Ubiquitous Computing
Many different devices

Multiple locations

Augmented Reality
Users bring their computers

Multiple users share a virtual space

Desktop Metaphor
Convenient & established

Multi-tasking of applications
Multi-windowing system

? Convergence?

Figure 11: The latest Studierstube platform combines
the best elements from augmented reality, ubiquitous

computing, and the desktop metaphor

In contrast to AR, which is characterized by
users carrying computing and display tools to
augment their environment, ubiquitous
computing (Weiser, 1990) denotes the idea of
embedding many commodity computing devices
into the environment, thus making continuous
access to networked resources a reality. The VT
platform, although hardly a commodity, is an
instance of such a situated device. Yet there are
other devices such as personal digital assistants

(PDAs) that blur the boundaries between AR and
ubiquitous computing. We are interested in
exploring possible combinations of a multitude of
simultaneously or alternatively employed
displays, input, and computing infrastructures.

While new paradigms such as AR and
ubiquitous computing enable radical redesign of
human-computer interaction, it is also very useful
to transpose knowledge from established
paradigms, in particular from the desktop, into
new interaction environments. Two-dimensional
widgets are not the only element of the desktop
metaphor that we consider useful in a 3D work
environment. Desktop users have long grown
accustomed to multi-tasking of applications that
complement each other in function. In contrast,
many VR software toolkits allow the
development of multiple applications for the
same execution environment using an abstract
application programmer’s interface (API);
however, the execution environment usually
cannot run multiple applications concurrently.
Another convenient feature of desktop
applications is that many of them support a
multiple document interface (MDI), i.e. working
with multiple documents or data sets
simultaneously, allowing comparison and
exchange of data among documents. The use of
2D windows associated with documents allows
convenient arrangement of multiple documents
according to a user’s preferences. While these
properties are established in the desktop world,
they are not exclusive to it and indeed useful to
enhance productivity in a 3D work environment
as well.

The latest version of the Studierstube
software framework explores how to transpose
these properties into a virtual environment
(Schmalstieg et al., 2000). The design is built on
three key elements: users, contexts, and locales.

3.1 Users

Support for multiple collaborating users is a
fundamental property of the Studierstube
architecture. While we are most interested in
computer-supported face-to-face collaboration,
this definition also encompasses remote
collaboration. Collaboration of multiple users
implies that the system will typically incorporate
multiple host computers – one per user. However,
Studierstube also allows multiple users to interact
with a single host (e.g. via a large screen or a
multi-headed display), and a single user to
interact with multiple computers at once (by
simultaneous use of multiple displays). This
design is realized as a distributed system
composed of different computing, input (PIP) and
output (display) devices that can be operated
simultaneously.

3.2 Contexts

The building blocks for organizing
information in Studierstube are called contexts. A
context encloses the data itself, the data’s
representation and an application that operates on
the data. It therefore roughly corresponds to an
object-oriented implementation of a document in
a conventional desktop system. Users only
interact within those contexts, so the notion of an
application is completely hidden from the user. In
particular, users never have to “start” an
application; they simply open a context of a
specific type. Conceptually, applications are
always “on” (Kato et al., 2000).

In a desktop system, the data representation
of a document is typically a single 2D window.
Analogously, in our three-dimensional user
interface, a context’s representation is defined as
a three-dimensional structure contained in a box-
shaped volume – a 3D-window (Figure 12). Note
that unlike its 2D counterpart, a context can be
shared by any group of users.

Figure 12: Multiple document interface in 3D – the right
window has the user’s focus – indicated by the dark

window frame – and can be manipulated with the
control elements on the PIP.

Every context is an instance of a particular
application type. Contexts of different types can
exist concurrently, which results in multi-tasking
of multiple applications. Moreover, Studierstube
also allows multiple contexts of the same type,
thereby implementing an MDI. Multiple contexts
of the same type are aware of each other and can
share features and data. For example, consider the
miniature stages of the Storyboarding application
(section 8), which share the “slide sorter” view.

3.3 Locales

Locales correspond to coordinate systems in
the virtual environment. They usually coincide
with physical places, such as a lab or conference
room or part of a room, but they can also be
portable and linked to a user’s position or used
arbitrarily—even overlapping locales in the same
physical space are allowed and used. By
convention, every display used in a Studierstube
environment shows the content of exactly one
locale, but one locale can be assigned to multiple
displays. Every context can—but need not—be
replicated in every locale, i.e. it can appear, at
most, once in every locale. All replicas of a
particular context are kept synchronized by

Studierstube’s distribution mechanism (section
6).

3.4 Context vs. locale

At first glance, it may not be obvious why a
separation of contexts and locales is necessary.
For example, the EMMIE system (Butz et al.,
1999) envelops users and computers in a single
environment called “ether,” which is populated
by graphical data items. An item’s locale also
defines its context and vice versa. All displays
share the same physical locale. While this
approach is simple to understand and easy to
implement, the interaction design does not scale
well with the number of data items and users: As
the number of data items increases, it becomes
increasingly difficult to arrange them so that all
users have convenient access to all data items that
they are interested in. Data items may be
occluded or out of reach for convenient
interaction. Even a fully untethered setup of
displays and devices may be inconvenient if the
environment is structured in a way that forces
users to walk around in order to access frequently
required data. The larger the user group is, the
more likely it becomes that two users that are not
in close proximity will compete for a particular
data item, making optimal placement difficult or
impossible. Moreover, remote collaboration is
ruled out by the single locale approach, as the
position of a particular data item will often be
inaccessible to a remote user.

In contrast, Studierstube separates contexts
and locales for increased flexibility. Every
display uses a separate locale, i.e., a scene with
an independent coordinate system. A context is
placed in a locale by assigning to the context‘s
3D-windows a particular position within the
locale. This approach allows for several strategies
regarding the arrangement of contexts in the
relevant locales.

A strategy of making a context available
exclusively in one locale is equivalent to the

single locale approach, with the exception that the
locale is broken up into disjointed parts. Again,
users may not be able to access desired contexts
(Figure 13, top). In contrast, a strategy of
replicating every context in every locale
guarantees convenient access to a context, but
quickly leads to display clutter (Figure 13,
middle).

A
B

C

Locale 1
Locale 2

A, C?
B?, C

A B
C

C

Locale 1
Locale 2

A, C
B, C

A
AB

B
C

C

Locale 1
Locale 2

A, C
B, C

Figure 13: (top) A global arrangement of items cannot
fulfill all needs. (middle) Full replication of all items

leads to display clutter. (bottom) On-demand replication
of items allows convenient customization of locales.

Therefore replication of a context in a given
locale is optional: There may be at most one
replica of a given context in a given locale. This
strategy allows a user to arrange a convenient
working set of contexts in his or her preferred
display (Figure 13, bottom). If the displays are
connected to separate hosts in a distributed
system, only those hosts that replicate a context
need to synchronize the context’s data. If it can
be assumed that working sets typically do not
exceed a particular size, the system will scale
well.

Yet in many situations it is desirable to share
position and configuration over display
boundaries. Studierstube thus allows locales to be
shared over displays. More precisely, multiple
displays can have independent points of view, but
show images of an identical scene graph.

LAN

Host 2

Host 3

Host 1

virtual
table

Locale B

Locale A

Figure 14: Multiple locales can simultaneously exist in
Studierstube. They can be used to configure different
output devices and to support remote collaboration.

This allows for collaborative augmented
reality settings as introduced in section 2, but

even for more complex setups such as a large
projection screen display augmented by graphics
from a see-through HMD. Figure 14 shows a
non-trivial example involving one context, two
locales, three displays, and four users.

4. Implementation of the user
interface

4.1 Software architecture

Studierstube’s software development
environment is realized as a collection of C++
classes built on top of the Open Inventor (OIV)
toolkit (Strauss & Carey, 1992). The rich
graphical environment of OIV allows rapid
prototyping of new interaction styles. The file
format of OIV enables convenient scripting,
overcoming many of the shortcomings of
compiled languages without compromising
performance. At the core of OIV is an object-
oriented scene graph storing both geometric
information and active interaction objects. Our
implementation approach has been to extend OIV
as needed, while staying within OIV’s strong
design philosophy (Wernecke, 1994).

This has led to the development of two
intertwined components: A toolkit of extensions
of the OIV class hierarchy—mostly interaction
widgets capable of responding to 3D events—and
a runtime framework which provides the
necessary environment for Studierstube
applications to execute (Figure 15). Together
these components form a well-defined application
programmer’s interface (API), which extends the
OIV API, and also offers a convenient
programming model to the application
programmer (section 7).

App3App2App1

DIV

Runtime

Widgets

context m
anagm

ent

Open Inventor

User level

Studierstube
kernel
level

system
level

graphics
hardware

. . .

StbAPI

Figure 15: The Studierstube software is composed of an
interaction toolkit and runtime system. The latter is
responsible for managing context and distribution.

Applications are written and compiled as
separate shared objects, and dynamically loaded
into the runtime framework. A safeguard
mechanism makes sure that only one instance of
each application’s code is loaded into the system
at any time. Besides decoupling application
development from system development, dynamic
loading of objects also simplifies distribution, as
application components can be loaded by each
host whenever needed. All these features are not
unique to Studierstube, but they are rarely found
in virtual environment software.

By using this dynamic loading mechanism,
Studierstube supports multi-tasking of different
applications (e.g. a medical visualization and a
3D modeler) and also an MDI.

Depending on the semantics of the
associated application, ownership of a context
may or may not privilege a user to perform
certain operations on the information (such as
object deletion). Per default, users present in the
same locale will share a context. Per default, a
context is visible to all users and can be
manipulated by any user in the locale.

4.2 Three-dimensional windows

The use of windows as an abstraction and
interaction metaphor is an established convention
in 2D GUIs. Its extension to three dimensions can
be achieved in a straightforward manner (Tsao &
Lumsden, 1997): Using a box instead of a
rectangle seems to be the easiest way of
preserving the well-known properties of desktop
windows when migrating into a virtual
environment. It supplies the user with the same
means of positioning and resizing the display
volume and also defines its exact boundaries.

A context is normally represented in the
scene by a 3D window, although a context is
allowed to span multiple windows. The 3D-
window class is a container associated with a
user-specified scene graph. This scene graph is
normally rendered with clipping planes set to the
faces of the containing box so that the content of
the window does not protrude from the window’s
volume. Nested windows are possible, although
we have found little use for them. The window is
normally rendered with an associated
“decoration” that visually defines the window’s
boundaries and allows it to be manipulated with
the pen (move, resize etc). The color of the
decoration also indicates whether a window is
active (and hence receives 3D events from that
user). Like their 2D counterparts, 3D-windows
can be minimized (replaced by a three-
dimensional icon on the PIP to save space in a
cluttered display), and maximized (scaled to fill
the whole work area). Typically, multiple
contexts of the same type will maintain
structurally similar windows, but this decision is
at the discretion of the application programmer.

4.3 PIP sheets

Studierstube applications are controlled
either via direct manipulation of the data
presented in 3D-windows, or via a mixture of 2D
and 3D widgets on the PIP. A set of controls on
the PIP— a PIP sheet—is implemented as an

OIV scene graph composed primarily of
Studierstube interaction widgets (such as buttons,
etc.). However, the scene graph may also contain
geometries (e. g., 2D and 3D icons) that convey
the user interface state or can be used merely as
decoration.

Every type of context defines a PIP sheet
template, a kind of application resource. For
every context and user, a separate PIP sheet is
instantiated. Each interaction widget on the PIP
sheet can therefore have a separate state. For
example, the current paint color in an artistic
spraying application can be set individually by
every user for every context. However, widgets
can also be shared by all users and/or all contexts.
Consequently, Studierstube’s 3D event routing
involves a kind of multiplexer between windows
and users’ PIP sheets.

5. Hardware support

5.1 Displays

Studierstube is intended as an application
framework that allows the use of a variety of
displays, including projection based devices and
HMDs. There are several ways of determining
camera position, creating stereo images, setting a
video mode etc. After some consideration, we
implemented an OIV compatible viewer with a
plug-in architecture for camera control and
display mode.

The following display modes are supported:
- Field sequential stereo: Images for left/right

eye output in consecutive frames
- Line interleaved stereo: Images for left/right

eye occupy odd/even lines in a single frame
- Dual screen: Images for left/right eye are

output on two different channels
- Mono: The same image is presented to both

eyes
The following camera control modes are

supported:

- Tracked display: Viewpoint and display
surface are moving together and are tracked
(usually HMD)

- Tracker head: A user’s viewpoint (head) is
tracked, but the display surface is fixed (such
as a workbench or wall)

- Desktop: The viewpoint is either assumed
stationary, or can be manipulated with a
mouse
This approach, together with a general off-

axis camera implementation, allows runtime
configuration of almost any available display
hardware. Table 1 shows an overview of some
devices that have evaluated so far.

Tracked
display

Tracked
head

Desktop

Field
sequential

Sony
Glasstron

Virtual Table Fishtank VR
with shutter
glasses

Line
interleaved

i-glasses VREX
VR2210
projector

i-glasses w/o
head tracking

Dual screen i-glasses
Protec

Single user
dual-projector
passive stereo
w/head track.

Multi-user
dual-projector
passive stereo

Mono i-glasses
(mono)

Virtual Table
(mono)

Desktop
viewer

Table 1: All combinations of camera control and display
modes have distinct uses.

5.2 Tracking

A software system like Studierstube that
works in a heterogeneous distributed
infrastructure and is used in several research labs
with a variety of tracking devices requires an
abstract tracking interface. The approach taken by
most commercial software toolkits is to
implement a device driver model, thereby
providing an abstract interface to the tracking
devices, while hiding hardware dependent code
inside the supplied device drivers. While such a
model is certainly superior to hard-coded device

support, we found it insufficient for our needs in
various aspects:
- Configurability: Typical setups for tracking

in virtual environments are very similar in the
basic components, but differ in essential
details such as the placement of tracker
sources or the number and arrangement of
sensors. The architecture allows the
configuration of all of those parameters
through simple scripting mechanisms.

- Filtering: There are many necessary
configuration options that can be
characterized as filters, i.e., modifications of
the original data. Examples include geometric
transformations of filter data, prediction,
distortion compensation, and sensor fusion
from different sources.

- Distributed execution and decoupled
simulation: Processing of tracker data can
become computationally intensive, and it
should therefore be possible to distribute this
work over multiple CPUs. Moreover, tracker
data should be simultaneously available to
multiple users in a network. This can be
achieved by implementing the tracking
system as a loose ensemble of communicating
processes, some running as service processes
on dedicated hosts that share the
computational load and distribute the
available data via unicast and multicast
mechanisms, thereby implementing a
decoupled simulation scheme (Shaw et al.,
1993).

- Extensibility: As a research system,
Studierstube is frequently extended with new
experimental features. A modular, object-
oriented architecture allows the rapid
development of new features and uses them
together with existing ones.
The latest version of tracking support in

Studierstube is implemented as an object-oriented
framework called OpenTracker (Reitmayr &
Schmalstieg, 2000), which is available as open

source. It is based on a graph structure composed
of linked nodes: source nodes deliver tracker
data, sink nodes consume data for further
processing (e. g. to set a viewpoint), while
intermediate nodes act as filters. By adding new
types of nodes, the system can easily be extended.
Nodes can reside on different hosts and propagate
data over a network for decoupled simulation. By
using an XML (Bray et al., 2000) description of
the graph, standard XML tools can be applied to
author, compile, document, and script the
OpenTracker architecture.

6. Distributed execution
The distribution of Studierstube requires that

for each replica of a context, all graphical and
application-specific data is locally available. In
general, applications written with OIV encode all
relevant information in the scene graph, so
replicating the scene graph at each participating
host already solves most of the problem.

6.1 Distributed shared scene graph

Toward that aim, Distributed Open Inventor
(DIV) was developed (Hesina et al., 1999) as an
extension—more a kind of plug-in—to OIV. The
DIV toolkit extends OIV with the concept of a
distributed shared scene graph, similar to
distributed shared memory. From the application
programmer's perspective, multiple workstations
share a common scene graph. Any operation
applied to a part of the shared scene graph will be
reflected by the other participating hosts. All this
happens to the application programmer in an
almost completely transparent manner by
capturing and distributing OIV’s notification
events.

Modifications to a scene graph can either be
updates of a node’s fields, i.e., attribute values, or
changes to the graph’s topology, such as adding
or removing children. All these changes to the
scene graph are picked up by an OIV sensor and
reported to a DIV observer which propagates the

changes via the network to all hosts that have a
replica of the context’s scene graph, where the
modifications are duplicated on the remote scene
graph by a DIV listener (Figure 16).

Figure 16: Example of a field update in a master-slave
configuration. (1) User triggers an action by pressing a

button. (2) Corresponding callback is executed and
modified field1 of node2. (3) Event notification is

propagated upwards in scene graph and observed by
sensor. (4) Sensor transmits message to slave host. (5)

Receiver picks up message and looks up
corresponding node in internal hash table. (6) Slave

node is modified.

On top of this master/slave mechanism for
replication, several network topology schemes
can be built. A simple reliable multicasting
scheme based on time stamps is used to achieve
consistency.

6.2 Distributed context management

A scene graph shared with DIV need not be
replicated in full—only some portions can be
shared, allowing local variations. In particular,
every host will build its own scene graph from
the set of replicated context scene graphs.

These locally varied scene graphs allow for
the management of locales by resolving
distributed consistency on a per-context basis.
There exists exactly one workstation, which owns
a particular context and will be responsible for
processing all relevant interaction concerning the
application. This host’s replica is called the
master context. All other hosts may replicate the
context as a slave context.

The slave contexts’ data and representation
(window, PIP sheet etc.) stay synchronized over

the whole life span of the context for every
replica.

The replication on a per-context basis
provides coarse-grained parallelism. At the same
time the programming model stays simple and the
programmer is relieved of solving difficult
concurrency issues since all relevant computation
can be performed in a single address space.

The roles that contexts may assume (master
or slave) affect the status of the context’s
application part. The application part of a master
context is active and modifies context data
directly according to the users’ input. In contrast,
a slave context’s application is dormant and does
not react to user input. For example, no callbacks
are executed if widgets are triggered. Instead, a
slave context relies on updates to be transmitted
via DIV. When the application part changes the
scene graph of the master context, DIV will pick
up the change and propagate it to all slave
contexts to keep them in sync with the master
context. This process happens transparently
within the application, which uses only the master
context’s scene graph.
Note that context replicas can swap roles (e. g.,
by exchanging master and slave contexts to
achieve load balancing), but at any time there
may only be one master copy per replicated
context.

Because the low-level replication of context
data is taken care of by DIV, the high-level
context management protocol is fairly simple: A
dedicated session manager process serves as a
mediator among hosts as well as a known point of
contact for newcomers. The session manager
does not have a heavy workload compared to the
hosts running the Studierstube user interface, but
it maintains important directory services. It
maintains a list of all active hosts and which
contexts they own or subscribe to, and it
determines policy issues, such as load balancing,
etc.

Finally, input is managed separately by
dedicated device servers (typically PCs running
Linux), which also perform the necessary
filtering and prediction. The tracker data is then
multicast in the LAN, so it is simultaneously
available to all hosts for rendering.

7. Application programmer’s
interface
The Studierstube API imposes a certain

programming model on applications, which is
embedded in a foundation class, from which all
Studierstube applications are derived. By
overloading certain polymorphic methods of the
foundation class, a programmer can customize
the behavior of the application. The structure
imposed by the foundation class supports
multiple contexts.

sghkjkl lksdfj lkjf dg
dfsghhj fhjgjkdflhjlskd jgflkjsdfgkjvakltj
i4trrtg
dfs;lghjksdl;fhkl;sgkdh dfsgkjdsfkjg

dfgdsfghjsdghkljgfhjklg h
khjlkjnlkjl;kfjg;lksdfjbhl;kjsl

ykbjm ll;rth
fhjdlfghkk

kjhjjlknjklj
hjkhfdjkhgseizr

uivhseuityb hiouyi jrt
jhrnthj si

jitosjhimthibmriptmbdnoi

ijniojniojfoijiojhgiojfdghiom
dfoimhn
ifgjosdjigoijdiosfh
dfghklj hh h jhjhjh jkh jh iu iuh uihiuh
uhiuhij h
‘ji hnjn nun nn

kj lkjlkji

window application

PIPsheet
(per user)

sghkjkl lksdfj lkjf dg
dfsghhj fhjgjkdflhjlskd
jgflkjsdfgkjvakltj i4trrtg
dfs;lghjksdl;fhkl;sgkdh
dfsgkjdsfkjg

dfgdsfghjsdghkljgfhjklg
h

khjlkjnlkjl;
kfjg;lksdfjbhl;kjslykbjm
ll;rth
fhjdlfghkk

kjhjjlknjklj
hjkhfdjkh

Context 1

Context 2

Figure 17: A context is implemented as a node in the
scene graph, as are windows and PIP sheets. This

allows for the organization of all relevant data in the
system in a single hierarchical data structure.

Each context can be operated in both master
mode (normal application processing) and slave
mode (same data model, but all changes occur
remotely through DIV). The key to achieving all

of this is to make the context itself a node in the
scene graph. Such context nodes are implemented
as OIV kit classes. Kits are special nodes that can
store both fields, i.e., simple attributes, and child
nodes, both of which will be considered part of
the scene graph and thus implicitly be distributed
by DIV. Default parts of every context are at least
one 3D-window node, which is itself an OIV kit
and contains the context’s “client area” scene
graph, and a set of PIP sheets (one for each
participating user). In other words, data,
representation, and application are all embedded
in a single scene graph (Figure 17), which can be
conveniently managed by the Studierstube
framework.

To create a useful application with all the
properties mentioned above, a programmer need
only create a subclass of the foundation class and
overload the 3D-window and PIP sheet creation
methods to return custom scene graphs.
Typically, most of the remaining application code
will consist of callback methods responding to
certain 3D events such as a button press or a 3D
direct manipulation event. Although the
programmer has the freedom to use anything that
the OIV and Studierstube toolkits offer, any
instance data is required to be stored in the
derived context class as a field or node, or
otherwise it will not be distributed. However, this
is not a restriction in practice, as all basic data
types are available in both scalar and vector
formats as fields, and new types can be created
should the existing ones turn out to be insufficient
(a situation that has not occurred to us yet).

Note that allowing a context to operate in
either master and slave mode has implications on
how contexts can be distributed: It is not
necessary to store all master contexts of a
particular type at one host. Some master contexts
may reside on one host, some on another host—in
that case, there usually will be corresponding
slave contexts at the respective other host, which
are also instances of the same kit class, but

initialized to function as slaves. In essence,
Studierstube’s API provides a distributed
multiple document interface.

8. Applications
To evaluate the Studierstube platform, a

number of applications were developed and are
still being developed. They cover a variety of
fields, for example, scientific visualization
(Fuhrmann et al., 1998), CAD (Encarnação et al,
1999a), and landscape design (Schmalstieg et al.,
1999). In this section, three application examples
are chosen to highlight the platform’s strengths:
Section 8.1 discusses storyboard, a multi-user
design system, section 8.2 presents MediDesk, a
medical visualization tool, and section 8.3
describes Construct3D, a geometry education
tool.

8.1 Storyboard design

To demonstrate the possibilities of a
heterogeneous virtual environment, we chose the
application scenario of storyboard design. This
application is a prototype of a cinematic design
tool. It allows multiple users to concurrently work
on a storyboard for a movie or drama. Individual
scenes are represented by their stage sets, which
resemble worlds in miniature (Pausch et al.,
1995).

Every scene is represented by its own
context and embedded in a 3D-window. Users
can manipulate the position of props in the scene
as well as the number and placement of actors
(represented by colored board game figures), and
finally the position of the camera (Figure 18).

All contexts share an additional large slide
show window, which shows a 2D image of the
selected scene from the current camera position.
By flipping through the scenes in the given
sequence, the resulting slide show conveys the
visual composition of the movie.

Alternatively, a user may change the slide
show to a “slide sorter” view inspired by current

presentation graphics tools, where each scene is
represented by a smaller 2D image, and the
sequence can be rearranged by simple drag and
drop operations. The slide sorter comes closest to
the traditional storyboard used in
cinematography. It appears on the PIP for easy
manipulation as well as on the larger projection
screen.

Figure 18: Storyboard application with two users and
two contexts as seen from a third “virtual” user

perspective, used for video documentation. In the
background the video projection is visible.

The test configuration consisted of three
hosts (SGI Indigo2 and O2 running IRIX,
Intergraph TZ1 Wildcat running Windows NT),
two users, and two locales (Figure 19). It was
designed to show the convergence of multiple
users (real ones as well as virtual ones), contexts,
locales, 3D-windows, hosts, displays and
operating systems.

The two users were wearing HMDs, both
connected to the Indigo2’s multi-channel output,
and seeing head-tracked stereoscopic graphics.
They were also fitted with a pen and panel each.
The Intergraph workstation was driving an LCD
video projector to generate a monoscopic image
of the slide show on the projection screen
(without viewpoint tracking), which
complemented the presentation of the HMDs.

LAN

L
A

N

Intergraph

O2

Cam.

Proj.

Indigo2

Figure 19: Heterogeneous displays—two users
simultaneously see shared graphics (via their see-

through HMDs) and a large screen projection.

Users were able to perform some private
editing on their local contexts and then update the
slide show/sorter to discuss the results. Typically,
each user would work on his or her own set of
scenes. However, we chose to make all contexts
visible to both users so collaborative work on a
single scene was also possible. The slide sorter
view was shared between both users so global
changes to the order of scenes in the movie were
immediately recognizable.

The third host—the O2—was configured to
combine the graphical output (monoscopic) from
Studierstube with a live video texture obtained
from a video camera pointed at the users and
projection screen. The O2 was configured to
render images for a virtual user whose position
was identical with the physical camera. This
feature was used to document the system on
video.

The configuration demonstrates the use of
overlapping locales: The first locale is shared by
the two users to experience the miniature stages
at the same position. This locale is also shared by
the O2, which behaves like a passive observer of

the same virtual space, while a second separate
locale was used for the Intergraph driving the
projection screen, which could be freely
repositioned without affecting the remainder of
the system.

8.2 Medical visualization

MediDesk is an application for interactive
volume rendering in the Studierstube system
(Wohlfahrter et al., 2000). As the name suggests,
its primary use lies in the field of medical
visualization. Users can load volumetric data sets
(typically CT or MRI scans), which are rendered
using OpenGL Volumizer (Eckel, 1998).
Volumizer allows interactive manipulation of
volume data, although it requires a high-end SGI
workstation for reasonable performance.

Figure 20: MediDesk allows interactive manipulation of

volumetric data, such as CT scans.

As with most Studierstube applications, a set
of buttons and sliders on the panel allows a user
to control the application, such as altering transfer
function parameters (Figure 20). The backside of
the panel serves special purposes for volume
manipulation: This allows for the design of an
intuitive interface for volume rendering, a style
inspired by a medical doctor’s X-ray workplace.

Figure 21: The lower half of the image shows the
annotating of a virtual “X-ray” print taken from the

volume on the upper right.

The use of two-handed interaction for
manipulation of medical data has been found
advantageous in the past (Goble et al., 1995). The
PIP allows a similar approach: The volumetric
data set can be positioned with the pen, while the
panel acts as a clipping plane. The user may also
freeze one or multiple clipping planes in space to
inspect isolated regions of interest. Alternatively,
cross-sections can be extracted from the volume
with the panel and subsequently appear (as
textures) on the pad, where they can be annotated
with the pen as if the panel were a notepad. These
virtual “X-ray” prints can be attached to a
physical wall for reference (Figure 21).

8.3 Geometry education

Construct3D is a prototype application for
exploring the use of collaborative augmented
reality in mathematics and geometry education
(Kaufmann et al., 2000). More specifically, we
were interested how constructive geometry
education, which still uses traditional pen-and-
paper drawing methods to teach high school and
college students the basics of three-dimensional
space, could be implemented in Studierstube. It is
important to note that this differs from typical
computer aided design (CAD) tasks. Users
trained in desktop CAD tools may have a

different background and a different set of
expectations than students involved in pen and
paper exercises.

Figure 22: A tutor teaches a student how to
geometrically construct 3D entities with Construct3D.

To assess the usability of a 3D tool like
Studierstube, we found geometry education an
interesting application field because is not so
much concerned with the final result of the
modeling, but rather with the process of
construction itself and its mathematical
foundation. We tried to evaluate the advantages
of actually seeing three-dimensional objects, as
opposed to calculating and constructing them
using two-dimensional views. We speculated that
AR would allow a student to enhance, enrich and
complement the mental pictures of complex
spatial problems and relationships that students
form in their minds when working with three-
dimensional objects. By working directly in 3D
space, it may be possible to comprehend the task
better and faster than with traditional methods.

We therefore aimed not at creating a
professional 3D modeling package but rather at
developing a simple and intuitive 3D construction
tool in an immersive AR environment for
educational purposes. The main goal was to keep
the user interface as simple as possible to
facilitate learning and efficient use. The main

areas of application of the system in mathematics
and geometry education were vector analysis and
descriptive geometry.

Construct3D uses the PIP to offer a palette of
geometric objects (point, line, plane, box, sphere,
cone and cylinder) that can be input using direct
manipulation for coordinate specification (point
and click). A coordinate skitter (Bier, 1986) aids
accurate positioning. The modeling process is
constructive in the sense that more complex
primitives can be assembled from simpler ones
(e. g., a plane can be defined by indicating a
previously created point and line). Audio
feedback guides the construction process. The use
of transparency for primitives allowed users to
observe necessary details, such as intersections.

With this application, an informal user study
with 14 subjects was conducted. The test session
consists of two parts. The first part required each
participant to solve a construction example from
mathematics education with the help of a tutor in
Construct3D (Figure 22). The example stems
from vector analysis as taught in 10th grade in
Austria. For high school students, calculating the
results would be lengthy and rather complex. In
the second part, all subjects completed a brief
survey. The survey contains an informal section
about VR in general and questions about
Construct3D.

In general, speculations that AR is a useful
tool for geometry education were confirmed. The
subjects were able to perform the task after a few
minutes of initial instruction. The majority of
comments regarding the AR interface were
encouraging. Some questions arose about how
larger groups of students could work together (we
partly relate this comment to the current tethered
setup that has a rather limited working volume).
Some comments addressed the technical quality
(such as tracking or frame rate). Most students
consider AR a useful complement (but not
replacement) to traditional pen and paper
education. Figure 22 also shows how unplanned

uses of the environment can arise—one student
spontaneously placed the printed task description
on the PIP, thus “augmenting” her PIP with a
physical layer of information.

9. Related work
The current architecture of Studierstube has

absorbed many different influences and is
utilizing—partially enhancing—many different
ideas. The most influential areas are augmented
reality, computer supported cooperative work,
ubiquitous computing, and heterogeneous user
interfaces. Here the discussion is limited to some
of the most influential work:

The Shared Space (Billinghurst et al., 1996;
Billinghurst et al., 1998b) project at University of
Washington’s HITLab has—together with
Studierstube—pioneered the use of collaborative
augmented reality. Since then, HITLab has
worked on many innovative applications blending
AR with other components into a heterogeneous
environment: Easily deployable optical tracking
allows to utilize tangible objects for instant
augmentation (Kato et al., 2000), for example, to
build wearable augmented video conferencing
spaces (Billinghurst et al., 1998a) or hybrids of
AR and immersive virtual worlds.

The Computer Graphics and User Interfaces
lab at Columbia University has a long reputation
for augmented reality research (Feiner et al.,
1993). Their EMMIE system (Butz et al., 1999) is
probably the closest relative to Studierstube. It
envelops computers and users in a collaborative
“ether” populated with graphical data items
provided by AR and ubiquitous computing
devices such as HMDs, notebooks, PDAs, and
projection walls. Communication between
stationary and mobile AR users is facilitated as
well (Höllerer et al., 1999). Except for the locale
concept, EMMIE shares many basic intentions
with our research, in particular concurrent use of
heterogeneous media in a collaborative work
environment. Like us, (Butz et al., 1999) believe

that future user interfaces will require a broader
design approach integrating multiple user
interface dimensions before a successor to the
desktop metaphor can emerge.

Rekimoto has developed a number of setups
for multi-computer direct manipulation to bridge
heterogeneous media. In (Rekimoto, 1997), a
stylus is used to drag and drop data across display
boundaries, while Hyperdragging (Rekimoto &
Saitoh, 1999) describes a similar concept that
merges multiple heterogeneous displays to create
a hybrid virtual environment.

The Tangible Media Group at MIT has
developed a number of heterogeneous user
interfaces based on the theme of tangible
(physical) objects (Ishii & Ulmer, 1997). For
example, the metaDESK (Ulmer & Ishii, 1997)
combines tangible objects with multiple displays,
implicitly defining two views into one locale. The
luminous room (Underkoffler, 1999) allows
remote collaboration using embedded displays,
while mediaBLOCKS (Ulmer & Ishii, 1998) are
tangible containers that roughly correspond to
contexts in Studierstube.

The Office of the Future project at UNC
(Raskar et al., 1998a) is concerned with the
seamless embedding of computer controlled
displays into a conventional office environment.
This system uses sophisticated front projection to
implement spatially augmented reality (Raskar,
1998b), an interesting variety of AR.

CRYSTAL (Tsao & Lumsden, 1997) is a
single-user multi-application platform. While it is
agnostic in terms of display media, it pioneers the
use of 3D-windows and multi-tasking of
applications in virtual environments.

Finally, SPLINE (Barrus et al., 1996) is a
distributed multi-user environment. From it the
term “locale” is borrowed, which in SPLINE is
used to describe non-overlapping places. While
SPLINE is neither an AR system nor a 3D work
environment (according to our use of the term), it

allows multiple users to participate in multiple
activities (i.e., applications) simultaneously.

10. Conclusions and future work
Studierstube is a prototype system for

building innovative user interfaces that use
collaborative augmented reality. It is based on a
heterogeneous distributed system based on a
shared scene graph and a 3D interaction toolkit.
This architecture allows for the amalgamation of
multiple approaches to user interfaces as needed:
augmented reality, projection displays, ubiquitous
computing. The environment is controlled by a
two-handed pen-and-pad interface, the Personal
Interaction Panel, which has versatile uses for
interacting with the virtual environment. We also
borrow elements from the desktop, such as multi-
tasking and multi-windowing. The resulting
software architecture resembles in some ways
what could be called an “augmented reality
operating system.”

Research that is currently in its initial phase
will investigate the possibilities of mobile
collaborative augmented reality. The name
Studierstube (“study room”) may be no longer
appropriate for a portable or wearable AR
platform, but a mobile 3D information platform
has exciting new possibilities, such as ad-hoc
networking for instant collaboration of
augmented users. Our goal is to allow users to
take 3D contexts “on the road” and even dock
into a geographically separate environment
without having to shut down live applications.

Acknowledgments
The Studierstube project is sponsored by the

Austrian Science Fund FWF under contracts no.
P12074-MAT and P14470-INF, by the
Fraunhofer IGD/CRCG Student and Scholar
Exchange Program, and the Fraunhofer IGD
TRADE Virtual Table 1998-1999 Program.
Special thanks to Oliver Bimber, Pedro Branco,
Hannes Kaufmann, Markus Krutz, Clemens

Pecinovsky, Roman Rath, Gerhard Reitmayr,
Gernot Schaufler, Rainer Splechtna, Stan Stoev,
André Stork, Hermann Wurnig, and Andreas
Zajic for their contributions, and to M. Eduard
Gröller for his spiritual guidance.

Web information
http://www.cg.tuwien.ac.at/research/vr/studierstube/

References
(Angus & Sowizral, 1995) I. Angus, H. Sowizral.

Embedding the 2D Interaction Metaphor in a Real
3D Virtual Environment. Proceedings SPIE, vol.
2409, pp. 282-293, 1995.

(Barrus et al., 1996) J. Barrus, R. Waters, R.
Anderson. Locales and Beacons: Precise and
Efficient Support for Large Multi-User Virtual
Environments. Proc. VRAIS ‘96, pp. 204-213,
1996.

(Bier, 1986) E. Bier. Skitters and Jacks: Interactive
3D Positioning Tools. Proc. 1986 ACM Workshop
on Interactive 3D Graphics, Chapel Hill, NC, pp.
183-196, 1986.

(Billinghurst et al., 1996) M. Billinghurst, S.
Weghorst, T. Furness III. Shared Space: An
Augmented Reality Approach for Computer
Supported Collaborative Work, Extended abstract
in Proc. of Collaborative Virtual Environments
‘(CVE’96), Nottingham, UK, 1996.

(Billinghurst et al., 1998a) M. Billinghurst, J.
Bowskill, M. Jessop, J. Morphett. A Wearable
Spatial Conferencing Space, Proc. ISWC ‘98, pp.
76-83, 1998.

(Billinghurst et al., 1998b) M. Billinghurst, S.
Weghorst, T. Furness III. Shared Space: An
Augmented Reality Approach for Computer
Supported Collaborative Work, Virtual Reality:
Virtual Reality - Systems, Development and
Applications, 3(1), pp. 25-36, 1998.

(Bray et al., 2000) T. Bray, J. Paoli, C. Sperberg-
McQueen et al. Extensible Markup Language
(XML) 1.0. http://www.w3.org/TR/REC-xml/,
2000.

(Butz et al., 1998) A. Butz, C. Beshers, S. Feiner. Of
Vampire Mirrors and Privacy Lamps: Privacy
Management in Multi-User Augmented
Environments. Proc. ACM UIST’98, pp. 171-172,
Nov. 1998.

(Butz et al., 1999) A. Butz, T. Höllerer, S. Feiner, B.
MacIntyre, C. Beshers. Enveloping Computers and
Users in a Collaborative 3D Augmented Reality,
Proc. IWAR ‘99, pp. 1999.

(Cruz-Neira et al., 1993) C. Cruz-Neira, D. Sandin, T.
DeFanti. Surround-Screen Projection-Based Virtual
Reality: The Design and Implementation of the
CAVE. Proceedings of SIGGRAPH’93, pp. 135-
142, 1993.

(Eckel, 1998) G. Eckel. OpenGL Volumizer
Programming Guide. SGI Inc., 1998.

(Encarnação et al., 1999a) L. M. Encarnação, A.
Stork, D. Schmalstieg, O. Bimber. The Virtual
Table – A Future CAD Workspace. Proceedings of
the 1999 CTS (Autofact) Conference, Detroit MI,
Sept. 1999.

(Encarnação et al., 1999b) L. M. Encarnação, O.
Bimber, D. Schmalstieg, S. Chandler. A
Translucent Sketchpad for the Virtual Table
Exploring Motion-based Gesture Recognition.
Computer Graphics Forum, pp. 277-286, Sept.
1999.

(Encarnação et al., 2000) L. M. Encarnação, R.
J.Barton III, P. Stephenson, P. Branco, J. Tesch, J.
F. Mulhearn. Interactive exploration of the
underwater sonar space in a semi-immersive
environment. Submitted for publication, 2000.

(Feiner et al., 1993) S. Feiner, B. MacIntyre, D.
Seligmann. Knowledge-Based Augmented Reality.
Communications of the ACM, vol. 36, no. 7, pp.
53-62, 1993.

(Fuhrmann et al., 1998) A. Fuhrmann, H. Löffelmann,
D. Schmalstieg, M. Gervautz. Collaborative
Visualization in Augmented Reality. IEEE
Computer Graphics & Applications, Vol. 18, No. 4,
pp. 54-59, IEEE Computer Society, 1998.

(Fuhrmann & Schmalstieg, 1999) A. Fuhrmann, D.
Schmalstieg. Multi-Context Augmented Reality.
Technical report TR-186-2-99-14, Vienna
University of Technology, 1999. Available from
ftp://ftp.cg.tuwien.ac.at/pub/TR/99/TR-186-2-99-
14Paper.pdf

(Goble et al., 1995) J. Goble, K. Hinckley, R. Pausch,
J. Snell, N. Kassel. Two-Handed Spatial Interface
Tools for Neurosurgical Planning. IEEE Computer,
28(7):20-26, 1995.

(Goethe, 1808) J. W. von Goethe. Faust. Drama, first
published 1808. English translation by D. Luke
published by Oxford University Press, 1998.

(Guiard, 1987) Y. Guiard. Assymetric Division of
Labor in Human Skilled Bimanual Action: The
Kinematic Chain as Model. Journal of Motor
Behaviour, 19(4):486-517, 1987.

(Hesina et al., 1999) Hesina G., D. Schmalstieg, A.
Fuhrmann, W. Purgathofer. Distributed Open
Inventor: A Practical Approach to Distributed 3D
Graphics, Proc. VRST ‘99, London, pp. 74-81,
Dec. 1999.

(Höllerer et al., 1999) Höllerer T., S. Feiner, T.
Terauchi, G. Rashid, D. Hallaway. Exploring
MARS: Developing indoor and outdoor user
interfaces to a mobile augmented reality systems,
Computers & Graphics, 23(6), pp. 779-785, 1999.

(Ishii & Ulmer, 1997) Ishii H., B. Ulmer. Tangible
Bits: Towards Seamless Interfaces between People,
Bits and Atoms, Proc. CHI ‘97, pp. 234-241, 1997.

(Kato et al., 2000) H. Kato, M. Billinghurst, I.
Poupyrev, K. Imamoto, K. Tachibana. Virtual
Object Manipulation on a Table-Top AR
Environment. Proc. IEEE and ACM International
Symposium on Augmented Reality, 2000.

(Kaufmann et al., 2000) H. Kaufmann, D.
Schmalstieg, M. Wagner. Construct3D: A Virtual
Reality Application for Mathematics and Geometry
Education. To appear in: Journal of Education and
Information Technologies, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2000.

(Krüger et al., 1995) W. Krüger, C. Bohn, B. Fröhlich,
H. Schüth, W. Strauss, G. Wesche. The Responsive
Workbench: A Virtual Work Environment. IEEE
Computer, vol. 28, no.7, pp. 42-48, 1995.

(Mine et al., 1997) M. Mine, F. Brooks Jr., C. Sequin.
Moving Objects in Space: Exploiting
Proprioception In Virtual-Environment Interaction.
Proc. SIGGRAPH ’97, pp. 19-26, 1997.

(Pausch et al., 1995) R. Pausch, T. Burnette, D.
Brockway, M. Weiblen. Navigation and
Locomotion in Virtual Worlds via Flight into Hand-
Held Miniatures, Proc. SIGGRAPH ’95, pp. 399-
401, 1995.

(Poupyrev et al., 1998) I. Poupyrev, N. Tomokazu, S.
Weghorst. Virtual Notepad: Handwriting in
Immersive VR. Proc. of VRAIS’98, 1998.

(Raskar et al., 1998a) R. Raskar, G. Welch, M. Cutts,
A. Lake, L. Stesin, H. Fuchs. The office of the
future: A unified approach to image-based
modeling and spatially immersive displays, Proc.
SIGGRAPH ’98, pp. 179-188, 1998.

(Raskar et al., 1998b) R. Raskar, G. Welch, H. Fuchs.
Spatially Augmented Reality. In: Proceedings of
the First IEEE Workshop on Augmented Reality
(IWAR'98), San Francisco, CA, USA, A.K. Peters
Ltd., 1998.

(Reitmayr & Schmalstieg, 2000) G. Reitmayr, D.
Schmalstieg. OpenTracker - An Open Software
Architecture for Reconfigurable Tracking based on
XML. To appear as a poster in: IEEE Virtual
Reality 2001, Yokohama, Japan, March 13-17,
2001. Extended version available as technical
report TR-186-2-00-18, Vienna University of
Technology, June 2000.

(Rekimoto & Saitoh, 1999) J. Rekimoto, M. Saitoh.
Augmented Surfaces: A Spatially Continuous
Workspace for Hybrid Computing Environments,
Proceedings of CHI'99, pp.378-385, 1999.

(Rekimoto, 1997) J. Rekimoto. Pick-and-Drop: A
Direct Manipulation Technique for Multiple
Computer Environments, Proc. UIST ‘97, pp. 31-
39, 1997.

(Schmalstieg & Schaufler, 1998) D. Schmalstieg, G.
Schaufler. Sewing virtual worlds together with
SEAMS: A mechanism to construct complex
virtual environments. Presence, 8(4): 449-461, Aug.
1998.

(Schmalstieg et al., 1996) D. Schmalstieg, A.
Fuhrmann, Zs. Szalavari, M. Gervautz.
Studierstube - Collaborative Augmented Reality,
Proc. Collaborative Virtual Environments ‘96,
Nottingham, UK, Sep. 1996.

(Schmalstieg et al., 1999) Schmalstieg D., L. M.
Encarnação, Zs. Szalavári. Using Transparent Props
For Interaction With The Virtual Table, Proc.
SIGGRAPH Symp. on Interactive 3D Graphics ‘99,
pp. 147-154, Atlanta, GI, April 1999 (patent
pending).

(Schmalstieg et al., 2000) D. Schmalstieg, A.
Fuhrmann, G. Hesina. Bridging Multiple User
Interface Dimensions with Augmented Reality.
Proceedings of the 3rd International Symposium on

Augmented Reality (ISAR 2000), pp. 20-30,
Munich, Germany, Oct. 5-6, 2000.

(Shaw et al., 1993) C. Shaw, M. Green, J. Liang, Y.
Sun. Decoupled Simulation in Virtual Reality with
the MR Toolkit. ACM Trans. on Information
Systems, 11(3):287-317, 1993.

(Smith & Mariani, 1997) G. Smith, J. Mariani. Using
Subjective Views to Enhance 3D Applications,
Proc. VRST ‘97, pp. 139-146, New York, NY, Sep.
1997.

(Stoev et al., 2000) S. Stoev, D. Schmalstieg, W.
Strasser. Through-the-lens techniques for remote
object manipulation, motion and navigation in
virtual environments. Submitted for publication,
2000.

(Stork & de Amicis, 2000) A. Stork, R. de Amicis.
ARCADE/VT - a Virtual Table-centric modeling
system. Proc. of 4th International Immersive
Projection Technology Workshop (IPT 2000), June
19-20, Ames, Iowa, 2000.

(Strauss & Carey, 1992) P. Strauss, R. Carey. An
object oriented 3D graphics toolkit, Proc.
SIGGRAPH ‘92, pp. 341-347, 1992.

(Szalavári & Gervautz, 1997) Zs. Szalavári, M.
Gervautz. The Personal Interaction Panel - A Two-
Handed Interface for Augmented Reality,
Computer Graphics Forum, 16(3), pp. 335-346,
Sep. 1997.

(Szalavári et al., 1998a) Zs. Szalavári, A. Fuhrmann,
D. Schmalstieg, M. Gervautz. Studierstube - An
Environment for Collaboration in Augmented
Reality, Virtual Reality - Systems, Development
and Applications, 3(1), pp. 37-49, 1998.

(Szalavári et al., 1998b) Zs. Szalavári, E. Eckstein, M.
Gervautz. Collaborative Gaming in Augmented

Reality Proceedings of VRST'98, pp.195-204,
Taipei, Taiwan, November 2-5, 1998.

(Tsao & Lumsden, 1997) J. Tsao, C. Lumsden.
CRYSTAL: Building Multicontext Virtual
Environments, Presence, 6(1), pp. 57-72, 1997.

(Ulmer & Ishii, 1997) B. Ullmer, H. Ishii. The
metaDESK: Models and Prototypes for Tangible
User Interfaces. In Proceedings of ACM UIST'97,
Banff, Alberta, Canada, pp. 223-232, 1997.

(Ulmer & Ishii, 1998) B. Ullmer, H. Ishii, D. Glas.
mediaBlocks: Physical Containers, Transports, and
Controls for Online Media, Proc. SIGGRAPH ‘98,
pp. 379-386, July 1998.

(Underkoffler et al., 1999) J. Underkoffler, B. Ullmer,
H. Ishii. Emancipated Pixels: Real-World Graphics
in the Luminous Room. Proc. SIGGRAPH 1999,
pp. 385-392, 1999.

(Viega et al., 1996) J. Viega, M. Conway, G.
Williams, R. Pausch. 3D Magic Lenses. In
Proceedings of ACM UIST'96, pp. 51-58. ACM,
1996.

(Weiser, 1991) M. Weiser. The Computer for the
twenty-first century. Scientific American, pp. 94-
104, 1991.

(Wernecke, 1994) J. Wernecke. The Inventor
Toolmaker : Extending Open Inventor, Release 2.
Addison-Wesley, 1994.

(Wloka & Greenfield, 1995) M. Wloka, E. Greenfield:
The Virtual Tricoder: A Uniform Interface for
Virtual Reality. Proceedings of ACM UIST'95, pp.
39-40, 1995.

(Wohlfahrter et al., 2000) W. Wohlfahrter, L. M.
Encarnação, D. Schmalstieg. Interactive Volume
Exploration on the StudyDesk. Proceedings of the
4th International Projection Technology Workshop,
Ames, Iowa, USA, June 19-20, 2000.

“Studierstube”

An Environment for Collaboration in Augmented Reality

Zsolt Szalavári, Dieter Schmalstieg, Anton Fuhrmann, Michael Gervautz

Institute of Computer Graphics
Vienna University of Technology

Karlsplatz 13/186/2, A-1040 Vienna, Austria
szalavari|schmalstieg|fuhrmann|gervautz@cg.tuwien.ac.at

Abstract: We propose an architecture for multi-user augmented reality with
applications in visualization, presentation and education, which we call “Studierstube”.
Our system presents three-dimensional stereoscopic graphics simultaneously to group of
users wearing light weight see-through head mounted displays. The displays do not
affect natural communication and interaction, making working together very effective.
Users see the same spatially aligned model, but can independently control their viewpoint
and different layers of the data to be displayed. Major field of application serves
computer supported cooperative work and enhances cooperation of experts. The paper
presents the client server software architecture underlying this system and details that
must be addressed to create a high-quality augmented reality setup.

Keywords: augmented reality, multi-user applications, collaboration, distributed
graphics

1. Introduction

Daß ich erkenne, was die Welt
Im Innersten zusammenhält,
Schau alle Wirkenskraft und Samen,
Und tu nicht mehr in Worten kramen.

To realize what holds the world
Together in its core,
I see all seeds and force of act
And search for words no more.

Johann Wolfgang von Goethe, Faust

We selected the project name “Studierstube”, after the play Faust by Johann Wolfgang
von Goethe, in which the leading character uses a study room for performing research
and philosophy: the Studierstube.

This paper deals with an attempt to combine two very important recently developed
evolving fields:

- The potential of combining of everyday’s reality with the power of computer has
gone through a dramatic evolution in the last years. The method for visual
improvement or enrichment of the surrounding environment by overlaying spatially
aligned computer-generated information onto a human’s view, called Augmented
Reality (AR), has potential for a broad range of applications, including mobile
context-sensitive information systems, scientific visualization, in-place display of
measurement data, medicine and surgical planning, education, training and
entertainment.

- The primary goal to provide insight into a complicated problem by the enrichment of
simulation data, that is mapped and rendered to a displayable image (Figure 1) has
become important to numerous fields of science outside of computer graphics and
augmented reality. Scientific visualization tries in recent time on projects of higher
and higher complexity.

Figure 1: Visalization pipeline (Nielsen, 1990)

As a highly interdisciplinary field, scientific visualization frequently requires experts with
different background to cooperate. Collaborators may have different preferences
concerning the chosen visual representation of the data, or they may be interested in
different aspects. An efficient collaboration requires that each of the researchers has a
customized view of the data set. At the same time, presence in the same room is
preferred because of the natural interaction during a discussion. These requirements can
uniquely be fulfilled in an augmented reality system which combines real world
experience of the collaborators and physical equipment with the visualisation of the
synthetic data.

Compared to visualization in immersive virtual reality, augmented reality allows the use
of detailed physical models, the properties of which cannot be met by their virtual
counterparts: arbitrarily detailed visual representation, no visual or temporal artifacts and
force-feedback for free. Only those aspects of the model that cannot be seen in reality
have to be added by the computer system: For example, one could take the physical
model of an airplane or airplane wing to investigate the flow around this object, which is
simulated by computer and added to the display. Manipulation of the real world model
(e. g. its orientation) is more intuitive and simpler to support than a purely virtual
environment. A related example would be the use of a humanoid torso or puppet that is
overlaid with medical information from inside the human body in the style of (Bajura,
1992).

Interaction
in AR

Displayable
Image

Simualtion
Data

Derived
Data

Abstract
Visualization

Object

Data
Enrichment

Enhancement

Visualization
Mapping Rendering

Augmented
Reality

This combination of conventional experimental work with scientific visualization and
augmented reality technology leads to the concept of an augmented laboratory, which
would provide a superior research environment in which to conduct experiments that are
executed solely inside the computer, while maintaining a conventional and familiar work
setup.

The “Studierstube” approach concentrates on the seamless combination of a physical
world workspace and an augmented environment for multiple users in three dimensions,
with unaffected social communication channels and an augmented user interface that
supports natural handling of complex data at interactive rates. In this type of distributed
multi-user systems adequate communication strategies for continuous synchronization
and real-time performance are required that also allow the interaction with a shared
geometric database.

2. Related Work

The evolution of augmented reality started in the early days of computer graphics,
Sutherland pioneered research on head mounted displays (Sutherland, 1968). His work
still inspires the virtual reality research community of today. Although only capable of
simple vector drawings, his prototype head mounted display was the first binocular see-
through system, effectively the first augmented reality system. Feiner et al. (Feiner, 1992)
(Feiner, 1993) described a knowledge based augmented reality system. As a
demonstration, they chose to configure the system to support people with the
maintenance of laser printers. However, a lot of effort is required to generate accurate
models, and extremely precise registration is required. Bajura et.al. (Bajura, 1992)
described a medical visualization system based on augmented reality techniques. A see-
through head mounted display (HMD), also developed at UNC (Holmgren, 1992),
allows geometrically correct superposition of ultrasound data of the unborn onto the
belly of the mother-to-be, so the gynecologist can examine the position of the unborn
within the mother. Another medical application of AR has been presented by State et. al.
(State, 1996) for ultrasound guided needle biopsy of the breast. Sharma and Molineros
(Sharma, 1996) prensent a system for mechanical assembly guidance using annotations
attached to real world scenery.

Scientific visualisation in virtual reality becomes increasingly a field of interest for many
researchers. In the early 90ies at UNC within the GROPE project a group around Fred
Brooks produced a haptic arm-like device and a large stereo display for the visualization
and manipulation of chemical data (Brooks, 1990). Their nanomanipulator (Taylor,
1993) allows precise manipulation of a scanning tunneling microscope and works also
with force feedback. Another important milestone for the combination of VR and
Scientific Visualization was the development of the virtual wind tunnel at NASA-AMES
by Steve Bryson. Using a BOOM device and a data glove as interaction tool (Bryson,
1991), scientists were able to see and interact with true stereoscopic images of a flow
field visualization. A follow-up project, the distributed windtunnel (Bryson, 1993) was
developed, which divided computation in a distributed system for better efficiency, and
allowed multiple users to experience the simulation at the same time. Collaboration in a
distributed virtual environment, not limited to scientific visualization has been proposed
by Fahlén et. al. (Fahlén, 1993).

Not considering distribution of virtual environments on large scale, we can state that
most existing augmented applications are single user setups, or do not exploit the multi-
user character of their systems. The CAVE-System (Cruz-Neira, 1993 a) (Cruz-Neira,
1993 b) and the responsive workbench (Krüger, 1995) are the most prominent examples.
The CAVE uses to view. In the CAVE users see stereoscopic 3-D scenes with LCD-
shutter glasses on large projection walls surrounding them. One user is head-tracked, so
that the images on all walls correspond to this viewer’s position. The viewers have the
impression to be surrounded by 3-D virtual scene. A disadvantage of this system is that
the presented images fit to the head position only for one viewer; noticeable visual
artifacts exist for all other viewers. The responsive workbench uses one display area,
which is built in a table top. Like in the CAVE,viewers wear LCD shutter glasses and
only one user can see the objects in correct stereoscopy. Furthermore, a relatively steep
viewing angle is necessary to achieve a good 3D impression, i.e. the viewers have to stay
close to the table.

3. The “Studierstube” approach

We propose a system capable of visualization of three-dimensional scientific data for
multiple simultaneous viewers within one room. The choice of this setting limits the
complexity of the problem, as the “real world” is limited to a room, but the “virtual
world”. Each viewer wears see-through HMDs providing a stereoscopic real-time
display, and can freely walk around in order to observe the augmented environment from
different viewpoints. The coarse determination of each user’s viewpoint is provided by
magnetic head-tracking and refined by optical tracking.

Figure 2. Three people wearing see-trough glasses at a meeting, viewing a virtual globe. Note that the
table is an object in the real world, the globe just an image projected into the space by the
head-set.

The mixture between real and virtual visual experience, created in our system by see-
trough HMDs, is a key feature of our system. Thus, it is possible to move around freely
without fear to bump into obstacles, as opposed to fully immersive displays, where only
virtual objects can be perceived. This enables a work group to discuss the viewed object,

because the participants are seeing one another and can therefore communicate in the
usual way.

We exploit the possibilities of augmented reality with the methods of data layers,
spatially linked annotations and mobile tracked objects on the example of visualization of
three-dimensional data sets, as described in the later sections.

Interaction with the augmented part of the scenery is maintained using high-level
interaction metaphors and tools, like the Personal Interaction Panel (PIP) (Szalavári,
1996). We incorporate this new two-handed input device that supports a multitude of
interaction styles and is particularly well suited for augmented reality applications. It
unifies general control functions of Studierstube, usual 3D manipulation tasks, as well as
application specific interaction methods. The PIP is composed of position and orientation
tracked lightweight, notebook sized hand-held panel and a pen and carries instant
augmented elements for interaction.

3.1 Properties of our system

The following key properties summarize the attributes of our system:

Virtuality
Viewing and examining of objects that are not accessible directly or that do not exist in
the real world can be carried out in this environment. Investigation of datasets using
information visualization becomes a task of handling almost “real” objects. Size,
complexity, physical properties are just parameters in a simulatation, no longer are they
constraints for the analysis.

Augmentation
Real-world objects can be augmented with spatially aligned information. This allows
smooth extension of real objects with virtual properties in design processes, like
variations of new parts for an existing system. Superimposed information can also
incorporate enhancing elements for real objects, like descriptions or advices in training or
education situations, which we call annotations.

Multi-user support
A situation where multiple users congregate to discuss, design, or perform other types of
joint work is generally categorized as CSCW (computer supported cooperate work).
Much work has been devoted to the question how conventional software and desktop
computers can be enhanced with measures to support effective group interaction.
Fortunately, a benefit of augmented reality is that sophisticated groupware mechanisms
are not really needed to perform real work. Normal human interactions (verbal, gestures,
etc.) are easily possible in an augmented reality setup, and they are probably richer than
any computer-governed interaction can ever be.

Independence
Unlike the CAVE and the Workbench, control is not limited to a guiding person, while
other users act as passiv observers. Each user has the option to move freely and
independently of the other users. In particular, each user may freely choose a viewpoint
with stereoscopy for correct depth perception. But not only observation is independent,
also interaction can be performed on a personal base. The semi-immersive character of

our augmentation helps to keep human communication channels unblocked, improving
the quality of collaboration.

Sharing vs. Individuality
Investigated objects are in general shared among users, in the sense of visibility, this
means that all participants can see the same coherent model, consistent in its state over
time. By presenting the visual sensation directly to each user with the lightweight see-
trough HMDs, the displayed data set can also be different for each viewer, as required by
the application’s needs and the individual’s choice. Personal preferences on different
layers of information can be switched on and off, as described in the next sub-section.

Interaction and Interactivity
With the support of augmented tools like the proposed PIP, visualized data can be
explored interactively. Changes inherent in the scientific simulation can be viewed
immediately. The visual components of the panel in one users hand can be kept private,
invisible for other users, or public, sharing even 3D information by direct visibility or
projection to projection walls, as described in the next section.

3.2 Augmented features

We incorporated layers and annotations as augmented features to our system, and
introduce an information sharing surcfaces - the projection wall. Furthermore we show
uses of mobile tracked objects in an augmented environment.

Layers
We incorporate layers similar in concept to the ones found in technical illustration
programs or CAD packages and the work of Fritzmaurice (Fritzmaurice, 1993). Data is
separated into disjoint sets according to semantic considerations (e.g. floor plan with
walls only - furniture - measurements). Display can be turned on and off for every layer
individually. This concept is fundamental for allowing individuals to customize the
display to their needs. Users may see the same model and at the same time not see the
same model, as everyone sees a different set of aspects of the same thing. Aside from
personal taste and interest, this is useful if professional people (e.g. an architect) talk to
inexperienced people (e.g. customer), or if people with different interest (e.g. designer
and engineer) collaborate.

Annotations
Augmentation is not necessarily limited to 3D graphics added to the physical world.
General multi-media data can be useful (e.g. sound cues), but what we consider
absolutely essential to support are textual annotations. While it is often true that
illustrations and graphics make difficult concepts clearer than textual explanations can,
for complicated models a legend that explains important parts and gives names is just as
important. The system will provide a possibility to link text to specific 3D points of a
model. The text is then displayed “in place”, but in 2D overlaid onto the 3D image
similar to (Rekimoto, 1995). As the user moves, his viewpoint, the text stays screen-
aligned so that it is always clearly readable. The system takes care that multiple text
elements do neither overlap nor occlude each other. By means of the layer mechanism,
individual annotation sets can be switched on and off. The annotation concept will be
especially useful if physical props (e.g. demonstration objects or mock-ups for

education) are used, but it will also improve the quality of purely virtual presentations.
Annotations can be created, edited and directly placed or moved in the augmentation
with the Personal Interaction Panel. A three dimensional drag and drop mechanism gives
a natural interactive feeling of handling spatially aligned multi-media data.

Projection walls
By allowing the users to keep individual items of data on their PIPs, sharing this data
with other users becomes possible, similer to the “whiteboard” concept in (Fahlén,
1993). This can be done either directly by making modifications on the shared model
itself, like placing public multi-media annotations in space, or by using projection walls.
These walls are static, virtual objects in the Studierstube and are logically connected to a
user’s PIP. Thereby, a single user interaction tool is transformed into a multi-user
presentation space.

Tracked mobile objects
Static objects become part of the augmentation in a simple setup phase. Geometric
properties such as size and position have to be registered for inclusion in an environment.
To include a real world object completly in the system and an ongoing simulation, the
system needs to have information about changes in position, orientation and state in
addition to the static properties, so that they can interact with other parts of the
augmentation.

For this reason we introduce tracked mobile objects, as functional part of our system,
which can be moved, held in hand by users, passed on from user to user and so forth.
Typically, the number of such objects will be small, but their role in the application will
be significant. Main usage of mobile objects are manipulation tools such as the PIP, and
physical models (mock-ups) that are augmented with supplementary information not
physically available (e.g. isolines of stress). Technically, the position of these objects is
determined by a dedicated tracking sensor, and a representation of the physical model is
rendered in background color to resolve the occlusion problem among physical and
virtual objects.

4. System Overview

We consider our system to work in a stationary environment, e.g. a room, so we can
assume a sufficient network bandwith for communication between parts of our client-
server approach, both for geometric and application data, as well as supporting
information like tracker data. The representation of this data and communication
concerning the changes, as well as interaction between users and system are crucial
factors calling for detailed presentation.

4.1 Data representation and modeling

We propose three different kinds of 3D models, each for a different purpose:

Registration data
Registration data describes the geometry of the presentation room (walls, windows,
doors etc.) along with features to be recognized and matched with images of the real
world. Because this kind of data is completely static (does not change at all), it can be

prepared for fast matching and the tracking correction algorithm. There is a trade-off
between accuracy and time requirement which can be tuned by varying the complexity of
the underlying model. Very simple models will be very fast in processing time but may
fail for good registration. Complex models may lead to precise registration but the time
required for that task may be large.

Data representing mobile objects
Within the our environment the system also supports mobile objects, which can have
virtual data representing or supporting them. This type of data differs from static
registration data, as it has to be update in real-time during operation.

Display data
Data presented or added to the environment is generally handled as display data. This
data is shared between the Studierstube and the underlying simulation. Simualtion
engines have to provide visual output in the same format, so that inclusion in the
geometric database of the Studierstube is rather uncomplicated, but major changes to
this database can still be controlled directly by the application.

For the purpose of our implementations we composed all geometry descriptions in the
emerging public standard for 3-D geometry, Open Inventor (Strauss, 1992).

4.2 Client-Server Approach

We propose a software architecture for our augmented reality system, which is based on
a client-server structure. A server holds a database of all data types, including
registration, mobile object and display or application data. Users connect to the server
via a network using client software. The client obtains a replica of the database from the
server, which is used by the client locally to render the image presented to the user.

Except for special customizations, the view that concurrent users have of the scene
(position, color of objects etc.) must be consistent. As there are multiple local copies of
an object, if any change is made to the presented scene (e.g. color of an object changed),
changes must be propagated to other replicas. This is done by sending a message to the
server, which in turn distributes them to the other participants. As such update events
only happen occasional (note that tracker data is handled separately!), the improved
consistency outweighs the longer communication involving a server.

Tracker data is managed by a special tracker demon. The quality of tracking is crucial to
the quality of the experience, so a separate machine is dedicated to the tracking. The
tracker demon is continuously running, and clients can connect at will to obtain a stream
of tracker data. Our system involves multiple tracked points (head tracking for multiple
users, hand/pointer tracking, tracking of mobile objects). All the data from these tracked
points influences the state of the scene and is therefore propagated to the connected
clients as a bundle, which improves throughput and consistency of the data.

A simulation engine is required to provide the data for the scientific visualization task in
our implementation. This data can be precomputed and loaded into the system at
runtime. Simple visualizations such as analytical dynamical systems can be hand-coded.
However, a capable simulation system is better suited to address the diverse needs of
multiple visualisation tasks, and also eases development. In previous projects, we have
used AVS (AVS, 1992) to create scientific visualization data. Its data flow concept

allows export of the data in almost any desired format and lends itself naturally to an
integration into our system architecture.

A loose coupling is defined between AVS as the computational back end and the
visualization server that coordinates interaction with the model in the Studierstube.
Visualization data is exported from AVS to the visualization server that takes care of
distribution of the data among the Studierstube’s clients. Computational steering is
achieved by using special input modules for AVS that accept new values for simulation
parameters from the Studierstube. If re-generation of the model or its parts with
modified parameters is reasonably fast, real-time or near real-time steering can be
achieved.

Modifications of the visualization data that do not involve the simulation (such as
rotating the simulated model) can be carried out in a close loop by the Studierstube
system alone and do not pass data between Studierstube and AVS. Such simple
interactions are not affected by the performance penalty created by invoking a complex
software system such as AVS and can therefore always be carried out with real-time
response and high fidelity.

The proposed overall system architecture can be seen in Figure 3.

Tracker Server

User
Client

User
Client

T
T

T

T

T
T

T

T

T

see-trough HMD

tracker receiver

Simulation Engine
(AVS)Environment Server

PIP

PIP
Physical Model

Geometry Export

Computati onal Steering

Figure 3. System architecture: The augmented reality environment is maintained by a server that takes
care of the synchronisation needs of the clients and interoperates with the simulation
backend. The clients are responsible for displaying the environment. A tracker server
manages input devices.

The distribution and consistency of the shared geometric database plays a significant role
in the quality of our system. To handle coherence and merge the interaction of multiple
users and communication between server and simulation engine, we base the intercourse
between all parts of our client-server environment on sophisticated protocols and
message passing algorithms. We are currently developing an in-house communication
standard for connection of three dimensional user interfaces to visualization.

4.3 Interaction tools

Interaction with the augmented part of the scene is performed with the Personal
Interaction Panel is a unique tool that combines physical and virtual attributes: The
physical nature of the pen and panel make it a very simple, yet effective and precise
device for interaction, that supports tactile feedback and has good ergonomics.
However, the surface of the panel is a virtually unlimited information display of
computer generated (augmented) information.

There are many different possibilities to use the PIP as interaction tool in the augmented
environment, we will show features for general tasks and in the application section those
supporting our implementation of a scientific visualisation environment.

The pen alone can be used for any 3D pointing operation and direct manipulation, where
a 3D mouse (6 degrees of freedom) is normally used. This feature is integrated with the
extended PIP functionality, so that the PIP supports a superset of “standard” 3D
operations in virtual and augmented reality.

A conventional 2D computer display can be projected onto the board, supporting a 2D
desktop metaphor better than “flying menus” so traditional 2D user interaction and
parameter manipulation is possible. In addition to “flat” 2D user interface elements,
three-dimensional widgets that “float” above the panel’s surface are supported (e.g.,
selection of a point on a sphere), clipboard funcionality and drag-and-drop in 3D can
also be implemented.

Pen and panel can be used as video camera and control monitor, respectively: The
direction of pointing of the pen orients a virtual camera, the resulting live image is shown
on the PIP for immediate feedback or snapshots can be made by holding the panel
against the virtual scene. The panel can also be used as a magnifying lens or filter in the
style of (Bier, 1993) showing an enlarged or otherwise enhanced view (e.g. X-ray).

Multiple navigation metaphors are supported by two handed interaction as featured by
the PIP: Among them are use of hand-held miniatures (compare (Pausch, 1995))
specifying direction of movement with the pen or “spaceship” control gadgets (2-D
buttons or 3-D widgets) on the panel’s surface.

The general controls for Studierstube can easily be made available by the PIP, so
reconfiguration of the application can largely be achieved without leaving the augmented
environment. For example, loading a new model can be done with a file selector
presented on the PIP.

5. Implementation

Our current limited implementation of the described system above consists of an
environment for two users. The hardware configuration includes i-Glasses head mounted
see-trough displays and a Polhemus Fastrak tracking device connected to a tracker
server PC. Tracker data is transmitted over Ethernet using TCP/IP protocols and
multicast technology. Rendering is done on Silicon Graphics workstations (Maximum
Impact graphics) using Open Inventor libraries. The hardware of the Personal Interaction
Panel consists of a lightweight wooden panel and a plastic pointer, both tracked in
position and orientation with Fastrak receivers. From our current implementation we can
conclude, that for high-fidelity augmented reality, precise registration of the real world

with the augmented display is crucial, and our current static registration is barely
sufficient. Nevertheless, our experiences show that users feel comfortable and working in
the environment is pleasant. Concerning the tracking problem enhancement of
registration by hybrid tracking technology is currently under developed in cooperation
with the Vision Group of the Graz University of Technology as part of a parallel project.

6. Applications

The “Studierstube” approach is powerful enough to support a wide range of different
applications, like every kind of industrial, commercial or didactic presentation, scientific
visualization and computer supported cooperative work (CSCW), allowing
communication among participants in the most natural way, while displaying the subject
of their work in front of them.

6.1 Applications in Scientific Visualization

As described above, we want to set the focus of our applications to scientific
visualization. Augmented reality for scientific visualization can provide an intuitive, even
transparent, interface for computational steering. Consequently, a test case is needed that
is simple enough for interactive steering even on conventional workstations, yet complex
enough to be interesting to researchers working in the field. Therefore, we will
investigate analytically defined dynamical systems. The simulation of such systems
requires the numerical approximation of differential equations, which can be done fast
enough for computational steering and therefore suits our needs. Following a previous
cooperation with researchers from econometrics, we will initially concentrate on
population models, where for example the interaction between population growth,
economic activity and environmental impact is modeled (Gröller, 1996). Changing
certain parameters of such systems only slightly may have significant impact on the long
term behavior, making interactive computation steering essential for the understanding of
such systems.

Figure 4. The Wonderland Model (Gröller, 1996) on the Personal Interaction Panel in Studierstube

Standard methods for flow visualization including stream lines, stream surfaces, particles,
tufts, iconic representations of local properties (glyphs) will be tested to illustrate the
flow. The use of a true three-dimensional display is beneficial to the understanding,

because with 2-D images it is difficult to grasp the dynamics. Nevertheless, so far mostly
2-D sections have been used.

We will enhance the expressive power with display and interface techniques exploiting
the augmented reality setup. This will include using the PIP metaphor (see above)
custom tailored for interaction with the dynamical system. The PIP will be used as a
probing tool to define 2-D cross sections, Poincare sections, 2-D projections and to
specify the origin of particles introduced into the flow, and at the same time can serve as
a screen for the resulting images. Phase space representations can be displayed right on
top of the PIP and exchanged among researchers. The augmented reality setup also
allows the use of an additional high-resolution CRT monitor for the display of high
quality 2-D images (e.g., the mentioned cross sections) without leaving the augmented
environment.

The PIP’s pen can also be used as a probing tool to display local properties of the
visualization data at the point indicated by the pen’s tip. Corresponding values of the
parameters and graphical representations (glyphs) can be displayed on the panel with
interactive update.

Besides the PIP, designated physical tools can be used to control application parameters
with high fidelity and force feedback. For example, parameters of a 3-D phase space can
be defined by position and orientation tracked mobile objects, like telescopic antennas
corresponding to the principal axes, allowing free choice of orientation and scaling.

7. Conclusions and Future Work

We presented a collaborative augmented environment setup supporting interactive
scientific visualization for multiple users. Our system provides 3D display of synthetic
data and augmentation of physical objects with geometrically aligned information. Co-
workers wear position and orientation tracked see-trough head mounted displays,
allowing independent choice of viewpoint. Interaction is performed using the Personal
Interaction Panel, a two-handed interface for augmented reality.

The system provides a natural working atmosphere, by enriching reality with spatially
aligned information while leaving natural communication channels in principle
unaffected. Annotations enhance understandability of the discussed topic while
customization of different data layers support cooperation of experts from different
fields. Direct exploration and modification in visualization provides improved insight in
complex problems.

Although experiments with unskilled users show promising results on acceptance,
enhanced registration and correct matching of real environment and ovarlaid graphics is
required using hybrid tracking technology. Our restricted implementation supporting two
users should be extended to a number of participants, allowing more complex
collaborative situations. Connection to external modules with standardised protocols for
image and interaction data will provide a wide variety of different applications.

8. Acknowledgements

This work has been supported by the Austrian Science Fund (FWF) under project
number P-12074-MAT.

9. References

AVS (1992). AVS Developers Guide - Release 4. Advanced Visualisation Systems Inc.

Bajura, M., Fuchs, H. and Ohbuchi, R. (1992). Merging Virtual Objects with the Real
World: Seeing Ultrasound Imaginery within the Patient. In proceedings of
SIGGRAPH’92: 203-210.

Bier, E., Stone, M., Pier, K., Buxton, W. and DeRose, T. (1993). Toolglass and Magic
Lenses: The See-through Interface. In proceedings of SIGGRAPH’93: 73-80.

Brooks, F. Jr. et. al. (1990). Project GROPE - Haptic Displays for Scientific
Visualisation. In proceedings of SIGGRAPH’90: 177-185.

Bryson, S. (1991). The Virtual Wind Tunnel. In proceedings of IEEE Visualization’91:
17-25.

Bryson, S. (1993). The Distributed Virtual Windtunnel. In SIGGRAPH’93 Course
Notes 43: 3.1-3.10.

Cruz-Neira, C., Sandin, D. and DeFanti, T. (1993 a). Surround-Screen Projection-Based
Virtual Reality: The Design and Implementation of the CAVE. In proceedings of
SIGGRAPH’93: 135-142.

Cruz-Neira, C. et al. (1993 b). Scientists in Wonderland: A Report on Visualization
Applications in the CAVE Virtual Reality Environment. In proceedings of the IEEE
1993 Symposium on Research Frontiers in Virtual Reality: 59-67.

Fahlén, L.E., Brown, C.G., Ståhl, O. and Carlsson, C. (1993). A Space Based Model for
User Interaction in Shared Synthetic Environments. In proceedings of
INTERCHI’93: 43-48.

Feiner, S., MacIntyre, B. and Seligmann, D. (1992). Annotating the Real World with
Knowledge-Based Graphics on a See-Through Head-Mounted Display. In
proceedings of Graphics Interface’92: 78-85.

Feiner, S., MacIntyre, B. and Seligmann, D. (1993). Knowledge-Based Augmented
Reality. Communications of the ACM 36(7): 53-62.

Fritzmaurice, G.W. (1993). Situated Information Spaces and Spatially aware Palmtop
Computers. Communications of the ACM 39(7): 39-49.

Gröller, E., Wegenkittl, R., Milik, A., Prskawetz, A., Feichtinger, G. and Sanderson,
W.C. (1996). The Geometry of Wonderland. Accepted for publication in the journal
Chaos, Solitons & Fractals.

Holmgren, D. (1992). Design and Construction of a 30-Degree See-Through Head-
Mounted-Display. Technical Report 92-030 at the University of North Carolina,
available at ftp://ftp.cs.unc.edu./pub/technical-reports/92-030.ps.Z .

Krüger, W., Bohn, C., Fröhlich, B., Schüth, H., Strauss, W. and Wesche, G. (1995). The
Responsive Workbench: A Virtual Work Environment. IEEE Computer 28(7): 42-48.

Nielsen, G., Shriver, B. and Rosenblum, L. (eds.) (1990). Visualization in Scientific
Computing (Los Alamitos/California: IEEE Computer Society Press).

Pausch, R., Burnette, T., Brockway, D. and Weiblen, M. (1995). Navigation and
Locomotion in Virtual Worlds via Flight into Hand-Held Miniatures. In proceedings
of SIGGRAPH’95: 399-401.

Rekimoto, J. and Nagao, K. (1995). The World through the Computer: Computer
Augmented Interactions with Real World Environments. In proceedings of UIST ‘95:
29-36.

Sharma, R., Molineros, J. (1996). Interactive Visualization and Augmentation of
Mechanical Assembly Sequences. Proceedings of Graphics Interface ’96: 230-237.

State, A., Livingston, M.A., Garrett, F., Hirota, G., Whitton, M.C., Pisano, E.D. and
Fuchs, H. (1996). Technologies for Augmented Reality Systems: Realizing
Ultrasound-Guided Needle Biopsies. In proceedings of SIGGRAPH’96: 439-446.

Strauss, P. and Carrey, R. (1992). An Object Oriented 3D Graphics Toolkit. In
proceedings of SIGGRAPH’92: 341-347.

Sutherland, I. (1968). A Head-Mounted Three Dimensional Display. Fall Joint
Computer Conference, In proceedings of AFIPS Conference 33: 757-764.

Szalavári, Zs. and Gervautz, M. (1996). The Personal Interaction Panel - A Two-
handed Interface for Augmented Reality. Technical Report TR186-2-1996-20 at the
Institute of Computer Graphics, Vienna University of Technology, available at
ftp://ftp.cg.tuwien.ac.at/pub/TR/96/TR-186-2-96-20Paper.ps.gz .

Taylor, R. M. et. al. (1993). The Nanomanipulator: A Virtual Reality Interface for a
Scanning Tunneling Microscope. In proceedings of SIGGRAPH’93: 127-134.

Presented at 1999 ACM Symposium on Interactive 3D Graphics (I3DG’99),
April 26-28, 1999, Atlanta, GA

Page 1 of 7

Using Transparent Props For Interaction With The Virtual Table

Dieter Schmalstieg1, L. Miguel Encarnação2, and Zsolt Szalavári3

1Vienna University of Technology, Austria
2Fraunhofer CRCG, Inc., Providence, RI, USA

3Imagination GmbH, Vienna, Austria

Abstract
The Virtual Table presents stereoscopic graphics to a user in a
workbench-like setting. This paper reports on a user interface and
new interaction techniques for the Virtual Table based on
transparent props— a tracked hand-held pen and a pad. These
props, but in particular the pad, are augmented with 3D graphics
from the Virtual Table’s display. This configuration creates a very
powerful and flexible interface for two-handed interaction that can
be applied to other back-projected stereographic displays as well:
the pad can serve as a palette for tools and controls as well as a
window-like see-through interface, a plane-shaped and through-
the-plane tool, supporting a variety of new interaction techniques.

1. INTRODUCTION
While the desktop metaphor is well-understood and represents an
effective approach to human-computer interaction for document-
oriented 2D tasks, transplanting it to 3D reveals inherent
limitations (e.g. [8]). In contrast, interfaces that incorporate true
3D input and output technologies, e.g., six degree of freedom
(6DOF) sensors and stereoscopic displays seem more promising,
even though the use of advanced interface devices does not
guarantee a superior user interface.
We present a system that uses transparent props for two-handed
interaction on the Barco BARON [4] Virtual Table (VT), a
tabletop VR display based on a workbench metaphor [14]. The
hand-held transparent props are a pen and a pad and related to
earlier research on the Personal Interaction Panel (PIP) [24], an

1Vienna University of Technology, Institute of Computer Graphics,
Schönbrunner Strasse 7/A/1, A-1040 Vienna, Austria (email:
dieter@cg.tuwien.ac.at)

2Fraunhofer Center for Research in Computer Graphics, Inc., 321 S. Main
St., Providence, RI 02903, USA (email: mencarna@crcg.edu)

3Imagination GmbH, Schönbrunner Strasse 7/A/1, A-1040 Vienna, Austria
(email: zsolt@cg.tuwien.ac.at)

augmented reality interface. While augmented reality systems use
semi-transparent or video-based head-mounted displays to overlay
computer graphics onto real-world objects (e.g., [10] or [3]), our
system overlays transparent physical props onto the back-
projected display of the VT. to achieve a kind of inverse
augmented reality, which we call augmented VR. The VT thereby
provides an enhanced workspace with capable multipurpose tools.
As Wloka & Greenfield [27] point out, the tactile feedback that
the physical props provide makes the tools feel real.

Figure 1: The transparent pen and pad props.

Our system unifies several previously isolated approaches to 3D
user interface design, such as two-handed interaction and the use
of multiple coordinate systems, but more importantly it allows for
the experimentation with the affordances [17] of transparent props
that— with the exception of [25]— are generally unexplored. Our
interface supports the following important features:

• two-handed interaction

• multi-purpose physical props

• embedding 2D in 3D

• use of multiple coordinate systems (i.e., of the table and the
pad)

• transparent tools, especially window-tools and through-the-
plane tools.

Each of the listed properties allows the design of distinct forms of
interaction. This paper describes our efforts to explore these
possibilities of transparent props for 3D interaction. After an
overview on related work in Section 2, we describe the system
setup used for our experiments in Section 3. We then report on the
interaction techniques supported by our transparent props in
Section 4. Our ideas are illustrated by examples from a Virtual
Landscaping application developed to depict the capabilities of

Presented at 1999 ACM Symposium on Interactive 3D Graphics (I3DG’99),
April 26-28, 1999, Atlanta, GA

Page 2 of 7

our platform. In Section 5 we give some implementation details
and finally present results and observations of the system in
practice.

2. RELATED WORK
Our approach was originally inspired by the work of Szalavári &
Gervautz [24] on the Personal Interaction Panel. This work
explored the use of (opaque) pen and pad props in a head-
mounted, see-through augmented reality system, called
Studierstube [21]. Other researchers use pen and pad props,
though either in fully immersive or desktop setups: Sachs et al.
[19] describe a system for the design of 3D curves and shapes.
Angus & Sowizral [2] report on their use of pen and pad props for
embedding traditional 2D GUIs in a 3D immersive system.
Billinghurst et al. [7] describe 3D Palette, a virtual content
creation tool using pen and pad props in a fishtank VR setup.
Several researchers reported on the use of two-handed interaction.
For tabletop VR devices, Cutler et al. [9] have developed a two-
handed object manipulation framework using two gloves or a
glove and a stylus. Other uses of two-handed interaction for object
design and manipulation can be found in [16] and [11]. These
designs are based upon Guiard's observation of how humans
distribute work between the two hands [12].
The window-based tools we have developed are related to the
toolglass and magic lenses proposed by Bier et al. [6] and
extended to 3D by Viega et al. [26], but their approach has some
drawback in terms of generality and is not fully embedded into a
VR system. Our window-based toolshaving real extension into
all 3 dimensionsshare the goals of 3D magic lenses, but are
based on the more flexible implementation of SEAMS originally
developed for navigation of virtual environments [20].
Our work also shares aspect with both the active and passive lens
of the metaDESK [25]. The metaDESK passive lens is a
transparent prop, but does not use stereoscopic graphics and is not
used for general-purpose interaction like the props in our system.
Wloka & Greenfield [27] point out that using tools are equally
expressive as using one's hands. They propose the use of a one-
handed multi-function tool, the virtual tricorder, which inspired
our work as well.
Finally, Pierce et al. [18] report on image-plane interaction
techniques for immersive virtual environments and let users
interact with 2D projections of 3D objects, an approach related to
our through-the-plane metaphor.

3. SYSTEM SETUP
The system we have developed uses the Barco Baron Virtual
Table as its display device. This device offers a 53”x40” display
screen built into a table surface and connects to an SGI Indigo2
Maximum Impact workstation. Together with CrystalEyes shutter
glasses from StereoGraphics, a large stereo display of very high
brightness and contrast is available.
The transparent props we use are an 8”x10” Plexiglas sheet and a
large, pen-shaped, plastic tube (Figures 1,2) which is additionally
fitted out with a button. Both props as well as the shutter glasses
are equipped with 6DOF trackers (Ascension Flock of Birds) for
position and orientation tracking. For details on tracker
calibration, refer to Section 5.
Using the information from the trackers, the workstation
computes stereoscopic off-axis projection images that are
perspectively correct for the user’s head position. This property is

essential for the use of augmented VR, as the physical props and
their virtual counterparts have to appear aligned in 3D.

Figure 2: The Virtual Table’s display creates the illusion of
graphics aligned with the pen and pad.

The material for the pen and pad was also selected for minimal
reflectivity, so that with dimmed lights— the usual setup for
working with the VT— the props become almost invisible. While
they retain their tactile property, in the user’s perception they are
replaced by the graphics from the VT. Our observations and
informal user studies indicate that virtual objects can even appear
floating above the Plexiglas surface, and that conflicting depth
cues resulting from such scenarios are not perceived as disturbing.
Conflicts occur only if virtual objects protrude from the outline of
the prop as seen by the user because of the depth discontinuity.
The most severe problem is occlusion from the user’s hands.
Graphical elements on the pad are placed in a way so that such
occlusions are minimized, but they can never be completely
avoided.
The pen was chosen to be relatively large to provide room for
graphics displayed inside the pen. In that way, the pen also
provides visual feedback such as showing the tool is currently
associated with. So far, however, we have made only basic use of
this capability and have instead focused on the pad as a carrier for
the user interface.

4. THE TRANSPARENT PROPS’ DESIGN
SPACE
The focus of our work is to explore the user-interface and
interaction possibilities of the transparent pad as a distinct object.
While the two-handed pen-and-pad metaphor is asymmetric [12]
and the pad is assigned the more “passive” role (e. g., it is held in
the non-dominant hand), it has much more interesting affordances
than the pen. Pen and pad have a relationship similar relationship
to mouse pointer and window in a conventional desktop system.
However, the difference to the desktop is not only that pen and
pad operate in 3D, but also that the pad is directly controlled by
the user’s non-dominant hand and can therefore additionally be
used as an active tool.
The pad therefore represents an embedding of 2D in 3D, as
already pointed out by Angus & Sowizral [2]. Yet its possibilities
extend far beyond that by combining several individual
metaphors:

Presented at 1999 ACM Symposium on Interactive 3D Graphics (I3DG’99),
April 26-28, 1999, Atlanta, GA

Page 3 of 7

• Tool and object palette: The pad can carry tools and controls,
much like a dialog box works in the desktop world (as e.g. in
Smartscene [13]). It can also offer collections of 3D objects to
choose from.

• Window tools: As the user can see through the pad into the
scene, the pad becomes a see-through tool (as e.g. the Virtual
Tricorder [27]).

• Through-the-plane tool: The user can orient the “window”
defined by the pad and then manipulate objects as seen
through the pad, i. e. manipulate the 2D projections of objects
on the pad.

• Volumetric manipulation tool: The pad itself can be used for
active object manipulation (as e.g. the WIM [22]) exploiting
the fact that the pad has a spatial extent (unlike the point
represented by the pen tip).

These options co-exist in the design space of our user interface
and together form a very powerful and general framework for 3D
interaction. Due to the fact that the physical and geometric
properties of the pad are of very basic nature, it is possible to use
all the metaphors mentioned above for application tasks without
confusing the user. Our transparent props form a two-handed
multi-purpose tool in the spirit of Wloka & Greenfield [27].

4.1 Tool and Object Palette
In its basic use, the pad serves as a palette offering various tools
and controls. The pad resembles a dialog box in a desktop system
by grouping various application controls such as buttons, sliders,
dials etc. Since the pad is hand-held, it is always in convenient
reach for the user, which is an advantage if working on different
areas of the table. It is easy to remember where the controls are,
and the pad can even be put aside temporarily without causing
confusion.
Controls are manipulated with the pen, which is also used to select
tools. The active part of a chosen tool is generally associated with
the pen, while the pad acts as a passive counterpart for many
tools.

Figure 3: In its basic function, the pad serves as a palette for tools
and controls. Shown is an RGB color selection tool.

The basic mode of our sample landscaping application is object
placement. The pad serves as an object browser presenting a
collection of objects to select from. Objects are then dragged and
dropped into the scene via direct 3D manipulation. Additional
controlssome implemented as space-saving pop-up button
barsallow to scale, colorize, and delete objects. 2D controls and
3D direct manipulation naturally blend as the pad represents a 2D
surface similar to many real-world control containers of other

application areas (e. g., a remote control, a radio, a dishwasher’s
front panel).
Another interesting property is the multiple surfaces of reference
with which the user simultaneously interacts, a fact also observed
as being beneficial by Ullmer & Ishii [25]. A sample use is the
drag and drop operation from the pad to the table space. We make
further use of this property with the window and through-the-
plane tools.

4.2 Window Tools
Because it is transparent, our pad prop invites users to look
through it. Consequently, we chose to experiment with a set of
functions which we call window tools. Conceptually, they are
very similar to 3D magic lenses introduced by Viega et al. in [26].
However, we have their work in two significant ways: First, the
underlying implementation does not have the limitations of the
original work (see Section 5) and have real extension into all 3
dimensions. Second, our two-handed interaction allows us to
manipulate objects seen through the lens instead of just the magic
lens itself. Our window tools are therefore more related to the
toolglass of Bier et al. [6]. This approach is not unlike that of a
watchmaker using a magnifying glass together with other toolsa
task that naturally fits into a workbench-like environment.
Instead of manipulating controls and objects on the pad, the user
manipulates objects on the table surface under the pad, which
divides the table space into two ‘design’ spaces.
In our landscaping application, we have implemented a cable TV
tool that provides the user with X-ray vision (Figure 4). The user
can look under the surface of the landscape representing an island
(using wireframe rendering) and use the pen to lay wire and
connect houses to a cable TV network. The X-ray tool is bound to
the backside of the pad, making use of the pad’s two-sided
property, thus having the X-ray tool always available. (Which side
of the pad the user looks at is easily determined by examining the
pad’s normal vector).

Figure 4: The cable TV routing tool is a special “X-ray” view
attached to the back of the pad and allows the placement of wires
underneath the island.

While the X-ray tool is an example of a modified view of the
environment, a window can also show different content. Windows
in the desktop world usually show different content: multiple
windows can either be entirely unrelated, or they can show data
from different points in space (different viewpoints) or time
(different versions). CAD systems normally use four windows

Presented at 1999 ACM Symposium on Interactive 3D Graphics (I3DG’99),
April 26-28, 1999, Atlanta, GA

Page 4 of 7

with different viewpoints, and text tools like xdiff show a side-by-
side comparison of different versions of data.

(a) (b)

(c) (d)

 (e)

Figure 5: The snapshot tool allows the user to manage a
collection of scenes that are viewed from different perspectives
and in different stages of development. Note how the scene in the
snapshots is not flat, but a real 3D view (compare a to b and d),
how a scene variant is visible as a snapshot for comparison (c),
and how multiple snapshots can be kept, floating in windows
above the virtual scene (e).

We built this idea into our landscaping application using a
snapshot facility. In normal mode, the view through the window
(pad) is identical to the normal scene. However, a particular view
(or more precisely, viewpoint) of the scene can be locked on the
pad (Figure 5a). This snapshot not a flat photograph, but a real 3D
scene that can be viewed from an arbitrary angle and distance by
moving the pad or one’s head (compare Figure 5b and d to Figure
5a).
Such a snapshot may be decoupled from the pad and left floating
in the scene at any position, and possibly be picked up again later.
By strategically placing multiple of such snapshots in the scene, a
user can inspect multiple views at once from inside a virtual
environment, a strategy equivalent to the aforementioned multiple
views of CAD systems.

Changes to the objects are reflected in all views simultaneously.
However, if the user indicates so, the scene observed through the
window can be isolated from the scene shown on the table and
from other windows’ scenes; thus multiple individual scenes are
seen simultaneously. This feature resembles a multiple document

interface from the desktop world, an aspect that to our knowledge
has not been explored for VR system so far.
When scenes are isolated in multiple windows, changes to one
scene are not reflected in another scene. It is therefore possible to
modify the main scene on the VT while the scene in the window
remains the same: it becomes a historical reference.
For the landscaping applications, multiple versions of
development (or possible design alternatives) can be presented
side by side with little effort by the user. This feature is
potentially very useful for any kind of 3D-design application. By
picking up a floating window that is carrying a particular variant
of a scene and unlocking the frozen viewpoint of the window (i.e.
the scene through the window is again rendered with the same
viewpoint as the scene on the VT), a special kind of portable
magic lens for in-place comparison of two variants is created. An
example is shown in Figure 5c, where the large building has been
deleted in the main scene but is still visible through the window
tool.
The possibilities of the snapshot tool are summarized in Figure 6
in the form of a state diagram.

Figure 6: State diagram for managing scenes using the window
tools of the landscaping application.

4.3 Through-The-Plane Tool
The look-through affordance of the transparent pad allows the
development of yet another class of user interface tools that we
call through-the-plane tools. They are related to the image plane
techniques reported by Pierce et al. [18]. Image plane techniques
manipulate 3D objects based on their 2D projection on a plane
perpendicular to the line of sight. The pad as a through-the-plane
tool differs from this approach in two important aspects:
1. The 2D plane onto which objects are projected is easily

manipulated by moving or rotating the pad without the need to
move one’s point of view.

2. The physical surface of the pad provides a clear definition of
the 2D manipulation plane and a tactile surface for making
gestures with the pen. (Image plane techniques require a user
to make hand gestures in the air without a clearly defined
depth of the plane.)

As a consequence of these properties, we have not experienced
problems with ambiguities resulting from the stereo projection as
reported in [18], although the problem itself remains.

No window

Window = Scene
seen through pad

Window
connected to pad

Floating window

New window Maximize
window

Freeze Unfreeze

Disconnect Connect

Presented at 1999 ACM Symposium on Interactive 3D Graphics (I3DG’99),
April 26-28, 1999, Atlanta, GA

Page 5 of 7

In the landscaping application, we have implemented two tools
using the pad as an through-the-plane tool. The first tool is a
context sensitive information and manipulation dialog. The user
may point the pad into the scene, and the object closest to the
tool’s center (in the 2D space of the tool) is selected. The object’s
description is displayed, and context-sensitive controls are
displayed on the pad.
In Figure 7, different collections of colorize buttons appear,
depending on the type of an object.

Figure 7: The context sensitive tool uses 2D manipulation
through the pad. Depending on the position of the pad, objects in
the scene get selected, and context sensitive color controls are
offered.

Many desktop applications, such as illustration programs, use
context-sensitive menus and toolbars that appear and disappear as
different objects are selected. The context-sensitive tool brings
these possibilities into a VR system. Note that context-sensitive
manipulation requires two steps in a one-handed desktop system:
The user selects an object, looks for context-sensitive controls to
appear somewhere on the screen, and then manipulates the
controls. Although marking menus as proposed by Kurtenbach &
Buxton [15] are an already much more effective one-handed
interaction, they still require the employment of the user’s hand
for menu marking and then selection. In contrast, only one two-
handed step is required in our system, yet controls still always
appear near the selected object. Manipulation of pad and pen can
be almost instantaneous and is cognitively more similar to
context-sensitive pop-up menus, but without the corresponding
disadvantages (e.g., display often obscured by menu, mouse
button must be held and cannot be used for interaction).

Figure 8: The lasso tools uses the pad as a plane through which
objects in the scene are targeted.Instead of selecting objects in the
scene, they can then be selected through a 2D circular gesture on
the pad. An outline drawn on the pad being held into the scene
defines a conical sweep volume that has its tip in the eye point

and its contour defined by the gesture. All object contained within
this volume are selected (Figures 8,9).
Again, the lasso tool is just one example for a wide design space
of tools based on 2D gestures for 3D objects (e.g., objects may be
deleted by “crossing them out”). The through-the-plane tool
allows us to reuse all the ideas for 2D manipulation of 3D that are
known in the desktop world (cf. e. g., draggers and manipulators
of Open Inventor [23]). It remains to be verified, however, in
which cases this 2D manipulation is more capable than direct 3D
manipulation. From our observations we conclude that the power
of such 2D gesture tools lies in manipulation at-a-distance, for
example when attempting to manipulate objects on one side of the
table when standing at the other side.

Lasso Outline

Selected
 objects

Eye point

pad

pen

Virtual table

Figure 9: The lasso defines a conical sweep volume to select
objects.

4.4 Volumetric Manipulation Tool
Most of the tools we have described so far use the pad to provide
the context or frame of reference with the pen (more specifically,
the pen tip) being the active part, quite in the spirit of Guiard’s
observations [12]. However, the pad can be an active (one-
handed) tool in its own right.
What sets the pad apart from conventional 3D manipulation tools
like a bat, wands, stylus, or buttonball, is its dimension: all these
devices have a zero-D (point-shaped) “hot spot” for triggering
actions. A laser pointer like tool (which is a popular metaphor for
selecting objects at a distance) uses a ray and therefore has a
dimension of one. Errors introduced by human inaccuracy make it
difficult to perform precise manipulation with tools of essentially
no spatial extent, which lack correspondence to real world tools.
This is why techniques such as 3D snap-dragging [5] were
developed to overcome the mentioned difficulties.
Instead of artificially enhancing the input, we propose to use a
tool with a spatial extent, which more naturally resembles real
world tools. The 2D surface of the pad can serve such a purpose.
As an example, we have implemented a fish net selection tool for
the landscaping application. By sweeping the tool through the
scene, the user may select objects (Figure 10, top), which are all
objects that are intersected with the pad. Since it is undesirable
for the user’s landscaping efforts to be destroyed as a result of
actual objects becoming caught in the fish net, small 3D replicas
of the objects are “caught” in the net (or rather, shown on the
pad’s surface). The replicas are placed in the position on the pad
where the object was penetrated, and an “arrange” button aligns
the replicas in a regular grid for better overview (Figure 10,
bottom).

Presented at 1999 ACM Symposium on Interactive 3D Graphics (I3DG’99),
April 26-28, 1999, Atlanta, GA

Page 6 of 7

We have found that sweeping a path with the pad is surprisingly
effective for the selection of objects that lie in front of the
projection plane of the table, especially when a large number of
objects must be selected quickly but selectively. We attribute this
ease of usability to the users’ real world experience with similar
tools.

Figure 10: The fish net tool makes use of the pad as a tool with
spatial extent. By sweeping it through the scene, objects are
selected (top image) and replicas of the objects appear on the pad
for further manipulation.

Sometimes it may happen that an object is involuntarily selected
together with others. If this occurs, the small replicas on the pad
can be discarded by wiping them off the pad, and the
corresponding object becomes deselected.
Although we have not yet implemented them, we have imagined
several other volumetric manipulation tools that could be used,
such as a shovel, a ruler, and a rake. Another possible area of
applications are deformation tools for objects made of clay
(similar to features found in MultiGen’s SmartScene [13]).

5. IMPLEMENTATION
Software architecture. Our system is based on the Studierstube
[21] software framework. It is realized as a collection of C++
classes extending the Open Inventor toolkit [23]. Open Inventor’s
rich graphical environment approach allows rapid prototyping of
new interaction styles, typically in the form of Open Inventor
node kits. Tracker data is delivered to the application via an
engine class, which forks a lightweight thread to decouple
graphics and I/O. Off-axis stereo rendering on the VT is
performed by a special custom viewer class. Open Inventor’s
event system has been extended to process 3D (i. e., true 6DOF)
events, which is necessary for choreographing complex 3D
interactions like the ones described in this paper. The .iv file
format, which includes our custom classes, allows convenient
scripting of most of an application’s properties, in particular the
scene’s geometry. Consequently very little application-specific

C++ codemostly in the form of event callbackswas
necessary.

Calibration. Any system using augmented props requires careful
calibration of the trackers to achieve sufficiently precise
alignment of real and virtual world, so the user’s illusion of
augmentation is not destroyed. With the VT this is especially
problematic, as it contains metallic parts that interfere with the
magnetic field measured by the trackers. To address this problem,
we have adopted an approach similar to the one described by
Agrawala et al. [1] and Krüger et al. [14]: The space above the
table is digitized using the tracker as a probe, with a wooden
frame as a reference for correct real-world coordinates. The
function represented by the set of samples is then numerically
inverted and used at runtime as a look-up table to correct for
systematic errors in the measurements.

Window tools: The rendering of window tools differs from the
method proposed by Viega et al. [26] in its use of hardware stencil
planes. After a preparation step, rendering of the world “behind
the window” is performed inside the stencil mask created in the
previous step, with a clipping plane coincident with the window
polygon. Before rendering of the remaining scene proceeds, the
window polygon is rendered again, but only the Z-buffer is
modified. This step prevents geometric primitives of the
remaining scene from protruding into the window. For a more
detailed explanation, see [20].

6. CONCLUSIONS AND FUTURE WORK
We have presented a system that uses transparent propsthe pen
and padfor two-handed interaction with the Virtual Table, a
desktop VR system. The system exploits the fact that the VT can
display 3D graphics aligned with the props, turning them into
multi-purpose tools. In this sense, transparent props seem even to
be a tool for the guiding person in a Surround-Screen Projection-
Based Virtual Reality System (SSVR), who's viewpoint is tracked,
and therefore in correct stereoscopic relation to the interface on
the panel's surface. We consider such a configuration an
interesting next step for our research.
We have explored and prototyped various interaction metaphors,
most of which are inspired by the physical properties of the props
and analogies to the desktop metaphor. Our experiments have led
us to believe that the rich set of user-interface designs developed
for the desktop world in the last decade can be transposed to VR
systems if proper attention is paid to the requirements of 3D.
Our system was informally tested with several users, most of
which had computer (desktop) experience but little experience
with VR systems. They generally found our design very appealing
and were able to perform simple landscaping tasks after a few
minutes of initial instruction. We did not observe any difficulties
in understanding the tools. Complaints mainly addressed technical
inadequacies like tracker error, lag or frame rate. Fatigue resulting
from prolonged use of the props did not seem to be an issue.
However, since most test sessions did not last longer than 20
minutes, this usability aspect will require further investigation.
One significant disadvantage we found lies in the restriction of the
VT to a single head-tracked user, as oftentimes multiple users
wanted to use the system concurrently. As a side note, a possible
solution to this problem is presented in [1] for two users yet the
described approach probably does not scale beyond a few users.
A promising area of future work encompasses the window tools
we have discussed in Section 4.2. The snapshot tool built into the
landscaping application makes only very basic use of the

Presented at 1999 ACM Symposium on Interactive 3D Graphics (I3DG’99),
April 26-28, 1999, Atlanta, GA

Page 7 of 7

possibilities of window tools. We observe that there is a trend in
computer systems towards “browser” tools that invoke adequate
representations for different flavors of multimedia data, and we
speculate that windows in the style we have shown may prove to
be an adequate metaphor to organize data in a browser for 3D
scenes. Furthermore, the windows can also serve as containers for
distinct 3D applications, with possibilities such as object drag and
drop between them. We also intend to explore the possibilities of
creating a workspace, the 3D equivalent to a multi-windows
desktop.

ACKNOWLEDGMENTS
This work has been sponsored by the Fraunhofer CRCG Student
and Scholar Exchange Program (SSEP) and the Austrian Science
Foundation (FWF) under contract number P-12074-MAT. Special
thanks to Michael Gervautz for supporting the way to this
research with the PIP, and to Anton Fuhrmann, Markus Krutz,
Hermann Wurnig and Andreas Zajic for their contributions to the
implementation.

REFERENCES
[1] M. Agrawala, A. Beers, B. Fröhlich, P. Hanrahan, I.

McDowall, M. Bolas: The Two-User Responsive
Workbench: Support for Collaboration Through Individual
Views of a Shared Space. Proceedings of SIGGRAPH, 1997.

[2] I. Angus and H. Sowizral: Embedding the 2D Interaction
Metaphor in a Real 3D Virtual Environment. Proceedings
SPIE, vol. 2409, pages 282-293, 1995.

[3] M. Bajura, H. Fuchs, and R. Ohbuchi. Merging Virtual
Objects with the Real World: Seeing Ultrasound Imaginery
within the Patient. Proceedings of SIGGRAPH'92, (2):203-
210, 1992.

[4] Barco BARON, URL: http://www.barco.com/projecti/-
products/bsp/baron.htm 1997.

[5] E. Bier: Snap-dragging in three dimensions. Proceedings of
the 1990 Symposium on Interactive 3D Graphics, pp. 193-
203. ACM SIGGRAPH, March 1990.

[6] E. Bier, M. Stone, K. Pier, W. Buxton, and T. DeRose.
Toolglass and Magic Lenses: The See-through Interface.
Proceedings of SIGGRAPH'93, pages 73-80, 1993.

[7] M. Billinghurst, S. Baldis, L. Matheson, and M. Philips. 3D
Palette: A Virtual Reality Content Creation Tool.
Proceedings of ACM VRST'97, pages 155-156, 1997.

[8] S. Bryson and C. Levitt: The virtual windtunnel: An
environment for the exploration of three-dimensional
unsteady flows". Proceedings Visualization'91, pages 17-24,
1991.

[9] L.D. Cutler, B. Fröhlich, and P. Hanrahan: Two-Handed
Direct Manipulation on the Responsive Workbench.
Proceedings of SIGGRAPH Symposium on Interactive 3D
Graphics `97, RI, USA, pages 39-43, 1997.

[10] S. Feiner, B. MacIntyre, and D. Seligmann. Knowledge-
Based Augmented Reality. Communications of the ACM,
36(7):53-62, 1993.

[11] J. Goble, K. Hinckley, R. Pausch, J. Snell, and N. Kassel:
Two-Handed Spatial Interface Tools for Neurosurgical
Planning. IEEE Computer, 28(7):20-26, 1995.

[12] Y. Guiard. Assymetric Division of Labor in Human Skilled
Bimanual Action: The Kinematic Chain as Model. Journal of
Motor Behaviour, 19(4):486-517, 1987.

[13] Homan. SmartScene: Digital Training - Learn the System by
Being Part of the System. Technical report, available from
http://www.multigen.com/

[14] W. Krüger, C. Bohn, B. Fröhlich, H. Schüth, W. Strauss, and
G. Wesche: The Responsive Workbench: A Virtual Work
Environment. IEEE Computer, 28(7):42-48, 1995.

[15] G. Kurtenbach, G. and W. Buxton: User learning and
performance with marking menus. Proceedings of ACM
CHI'94 Conference on Human Factors in Computing
Systems (1994), pp. 258-264.

[16] D. Mapes and J. Moshell: A Two-Handed Interface for
Object Manipulation in Virtual Environments. Presence,
4(4):403-416, 1995.

[17] D. Norman: The Psychology of Everyday Things. New York,
Basic Books, 1988.

[18] J.S. Pierce, A. Forsberg, M. J. Conway, S. Hong, R.
Zeleznik, and M.R. Mine: Image Plane Interaction
Techniques in 3D Immersive Environments. Proceedings of
SIGGRAPH Symposium on Interactive 3D Graphics `97, RI,
USA, pages 39-43, 1997.

[19] E. Sachs, A. Roberts, and D. Stoops: 3-Draw: A Tool for
Designing 3D Shapes. IEEE Computer Graphics &
Applications, pages 18-26, 1991.

[20] D. Schmalstieg, G. Schaufler: Sewing Virtual Worlds
Together With SEAMS: A Mechanism to Construct Large
Scale Virtual Environments. Technical Report TR-186-2-87-
11, Vienna University of Technology, 1998.

[21] D. Schmalstieg, A. Fuhrmann, Z. Szalavari, M. Gervautz:
"Studierstube" - An Environment for Collaboration in
Augmented Reality. Extended abstract appeared Proc. of
Collaborative Virtual Environments '96, Nottingham, UK,
Sep. 19-20, 1996. Full paper in: Virtual Reality - Systems,
Development and Applications, Vol. 3, No. 1, pp. 37-49,
1998.

[22] R. Stoakley, M. J. Conway, and R. Pausch: Virtual Reality
on a WIM: Interactive Worlds in Miniature. Proceedings
1995 Conference on Human Factors in Computing Systems
(CHI’95), pages 265-272, 1995.

[23] P. Strauss and R. Carey: An Object Oriented 3D Graphics
Toolkit. Proceedings of SIGGRAPH'92, (2):341-347, 1992.

[24] Zs. Szalavári and M. Gervautz: The Personal Interaction
Panel - A Two Handed Interface for Augmented Reality.
Computer Graphics Forum (Proceedings of
EUROGRAPHICS'97), 16(3):335-346, 1997.

[25] B. Ullmer and H. Ishii: The metaDESK: Models and
Prototypes for Tangible User Interfaces. In Proceedings of
ACM UIST'97, Banff, Alberta, Canada, pages 223-232,
1997.

[26] J. Viega, M. Conway, G. Williams, and R. Pausch: 3D Magic
Lenses. In Proceedings of ACM UIST'96, pages 51-58.
ACM, 1996.

[27] M. Wloka and E. Greenfield: The Virtual Tricoder: A
Uniform Interface for Virtual Reality. Proceedings of ACM
UIST'95, pages 39-40, 1995.

Bridging Multiple User Interface Dimensions with Augmented Reality

Dieter Schmalstieg
Vienna University of Technology,

Austria
dieter@cg.tuwien.ac.at

Anton Fuhrmann
Research Center for Virtual Reality
and Visualization, Vienna, Austria

fuhrmann@vrvis.at

Gerd Hesina
Vienna University of Technology,

Austria
hesina@cg.tuwien.ac.at

Figure 1: Collaborative work in Studierstube: 3D
painting application window (with focus, middle) and

object viewer window (without focus, lower right)

Abstract

Studierstube is an experimental user interface system,
which uses collaborative augmented reality to
incorporate true 3D interaction into a productivity
environment. This concept is extended to bridge multiple
user interface dimensions by including multiple users,
multiple host platforms, multiple display types, multiple
concurrent applications, and a multi-context (i. e., 3D
document) interface into a heterogeneous distributed
environment. With this architecture, we can explore the
user interface design space between pure augmented
reality and the popular ubiquitous computing paradigm.
We report on our design philosophy centered around the
notion of contexts and locales, as well as the underlying
software and hardware architecture. Contexts
encapsulate a live application together with 3D (visual)
and other data, while locales are used to organize
geometric reference systems. By separating geometric
relationships (locales) from semantic relationships
(contexts), we achieve a great amount of flexibility in the
configuration of displays. To illustrate our claims, we
present several applications including a cinematographic
design tool which showcases many features of our system.

Figure 2: Two Studierstube users working jointly on
multiple applications in front of a large screen, usually

with passive stereo glasses (not shown)

1. Introduction

Technical progress in recent years gives reason to believe
that virtual reality (VR) has a good potential as a user
interface of the future. At the moment, VR applications
are usually tailored to the needs of a very specific domain,
such as a theme park ride or virtual mock-up. We believe
that augmented reality (AR), the less obtrusive cousin of
VR, has a better chance to become a viable user interface
for everyday productivity applications, where a large
variety of tasks has to be covered by a single system.
Rather than forcing a user to deal exclusively with a
virtual environment, less rigid approaches like UNC’s
office of the future [12] embed VR and AR tools in a
conventional work environment.

In a more general sense, this principle is known as
ubiquitous computing [22], describing a world where
computers are embedded in large numbers in our everyday
surrounding, allowing constant access to networked
resources. Some researcher argue that AR is the opposite
of ubiquitous computing, because users carry their
computing devices – such as head-mounted (HMDs)
displays - to the places they go to rather than expecting
the computing devices to be there already.

We believe that these two concepts are just extremes
on a scale, and that a lot of useful user interface concepts
can be found in between. Our current work on the
Studierstube project, which started as a pure augmented
reality setup [15], focuses on experimenting with the
possibilities of new user interfaces that incorporate AR.
For efficient experimentation, we have implemented a
toolkit that generalizes over multiple user interface
dimensions, allowing rapid prototyping of different user
interface styles. The Studierstube user interface spans the
following dimensions:

1.1. Multiple users

The system allows multiple users to collaborate (Figure 1,
Figure 2). While we are most interested in computer-
supported face-to-face collaboration, this definition also
encompasses remote collaboration. Collaboration of
multiple users implies that the system will typically
incorporate multiple host computers. However, we also
allow multiple users to interface with a single host (e.g.
via a large screen display), and a single user to interface
with multiple computers at once. On a very fundamental
level, this means that we are dealing with a distributed
system. It also implies that multiple types of output
devices such as HMDs, projection-based displays, hand-
held displays etc. can be handled and that the system can
span multiple operating systems.

1.2. Multiple contexts

Contexts are the fundamental units from which the
Studierstube environment is composed. A context is a
union of data itself, the data’s representation and an
application which operates on the data. Contexts are thus
structured along the lines of the model-view-controller
(MVC) paradigm known from Smalltalk’s windowing
system [6]: Studierstube’s data, representation, and
application correspond to MVC’s model, view, and
controller, respectively. Not surprisingly, this structure
makes it straightforward to generalize established
properties of 2D user interfaces to three dimensions.

In other words, a context encapsulates visible and
invisible application-specific data together with the
responsible application. The notion of an application is
therefore completely hidden from the user, in particular,
users never have to “start” an application, they simply
open a context of a specific type. Compared to the
desktop metaphor, this approach is much closer to the
concept of an information appliance, which is always
“on” (compare [2]).

In a conventional desktop system, the data
representation of a document is typically a single 2D
window. Analogously, in our three-dimensional user
interface, we define a context’s representation as a three-
dimensional structure contained in a certain volume – a

3D-window. Unlike its 2D counterpart, a context can be
shared by any group of users, and even more importantly,
can be present in multiple locales simultaneously by
replication.

Every context is an instance of a particular application
type. Contexts of different types can exist concurrently,
which results in multi-tasking of multiple applications, a
feature which is well established within the desktop
metaphor, but rarely implemented in virtual environments.
Moreover, Studierstube also allows multiple contexts of
the same type to co-exist, allowing a single application to
work with multiple data sets. In the desktop metaphor, this
feature is generally known as a multiple document
interface. Note that it differs from simply allowing
multiple instances of the same application which are
unaware of each other. Multiple contexts of the same type
are aware of each other can share features and data. For
example, consider the shared “slide sorter” from section 5.

LAN

Host 2

Host 3

Host 1

virtual
table

Locale B

Locale A

Figure 3: Multiple locales can simultaneously exist in
Studierstube. They can be used to configure different
output devices and to support remote collaboration

1.3. Multiple locales

Locales correspond to coordinate systems in the virtual
environment. They usually coincide with physical places
(such as a lab or conference room, or parts of rooms), but
they can also be portable and associated with a user, or
used arbitrarily – we even allow (and use) overlapping
locales in the same physical space. We define that every
display used in a Studierstube environment shows the

content of exactly one locale. Every context can (but need
not) be replicated in every locale; these replicas will be
kept synchronized by Studierstube’s distribution
mechanism.

To understand why the separation of locales and
contexts is necessary, consider the following examples:
• Multiple users are working on separate hosts. They can

share contexts, but can layout the context
representations (3D-windows) arbitrarily according to
screen format and personal preferences. This is made
possible by defining separate locales, as the position of
3D-windows is not shared across locale boundaries
(Figure 3). The hosts can be in separate buildings for
remote collaboration, or they can be placed side by
side. In the latter case, locales would probably overlap,
as users might see several or all screens.

• A user wearing a see-through HMD is looking at a
large projection screen through the HMD. Both display
devices (HMD, projection screen) can be set to use the
same locale, so the graphics in a user’s HMD may
augment the projection screen’s output. Of course this
setup is view-dependent and works for only one user,
so alternatively, the projection screen may use a
separate locale, and present graphical elements which
are complementary to the HMD output.

By separating locales (geometric relationships) from
contexts (semantic relationships), we achieve a great
amount of flexibility in the configuration of displays. This
not only allows to connect multiple Studierstube
environments over a network for remote collaboration, but
also to set up an environment with multiple co-located,
i. e., overlapping locales. Consider as a scenario a
spacecraft mission control center with dozens of
collaborating operators assembled in a large hall. Every
involved user will assume a specific role and require
specific tools and data sets, while some aspects of the
mission will be shared by all users. A naïve approach of
embedding all users in a single locale means that users in
close proximity can work in a shared virtual space, while
other users who desire to participate are too far away to
see the data well, and are not within arm’s reach for
manual interaction. By separating contexts from locales, a
remote user can import the context into a separate locale,
and interact with it conveniently. While our available
resources do not allow us to verify such large-scale
interaction, in section 5 we present some results that back
up our considerations.

The system presented in this paper must be understood
as an experimental platform for exploring the design space
that emerges from bridging multiple user interface
dimensions. It can neither compete in maturity and
usability with the universally adopted desktop metaphor
nor with more streamlined, specialized virtual
environment solutions (e. g., CAVEs). However,

Studierstube demonstrates a design approach for next
generation user interfaces as well as solutions on how to
implement these interfaces.

2. Previous work

Almost a decade ago, Weiser introduced the concept of
ubiquitous computing as a future paradigm on interaction
with computers [22]. In his vision, computers are
constantly available in our surrounding by embedding
them into everyday items, making access to information
almost transparent. In contrast, augmented reality systems
focus on the use of personal displays (such as see-through
head-mounted displays) to enhance a user’s perception by
overlaying computer generated images onto a user’s view
of the real-world.

Collaborative augmented reality enhances AR with
distributed system support for multiple users with multiple
display devices, allowing a co-located joint experience of
virtual objects [3, 15]. Some researchers are
experimenting with a combination of collaborative AR,
ubiquitous computing and other user interface concepts.
Prominent examples include EMMIE developed at
Columbia University [4, 8], work by Rekimoto [13], and
the Tangible Bits Project at MIT [9, 21]. These systems
share many aspects with our approach for a collaborative
augmented reality system making use of a variety of
stationary as well as portable devices.

Working with such a system will inevitably require
transfer of data from one computer’s domain to another.
For that aim, Rekimoto [14] proposes multi-computer
direct manipulation, i. e. drag and drop across system and
display boundaries. To implement this approach, a
physical prop (in Rekimoto’s case, a pen) is used as a
virtual “store” for the data, while in reality the data
transfer is carried out via the network using the pen only
as a passive locator. Similar transfer functions are
available in EMMIE [4]. Such use of passive objects as
perceived media containers is also implemented by the
Tangible Bits group’s mediaBlocks [21].

Other sources of inspiration for multiple dimensions in
3D user interfaces are CRYSTAL [20], which allows
concurrent execution of multiple applications in the same
three-dimensional workspace, and SPLINE [1], which
introduced the concept of multiple locales within one
large virtual environment. Note that unlike SPLINE,
Studierstube’s allows multiple locales to overlap.

3. Background: Studierstube

The original Studierstube architecture [15, 18] was a
collaborative augmented reality system allowing multiple
users to gather in a room and experience the sensation of a
shared virtual space that can be populated with three-
dimensional data. Head-tracked see-through head-

mounted displays (HMDs) allow each user to choose an
individual viewpoint while retaining full stereoscopic
graphics.

Figure 4: The Personal Interaction Panel combines
tactile feedback from physical props with overlaid
graphics to form a two-handed general purpose

interaction tool.

The personal interaction panel (PIP), a two-handed
interface composed of pen and pad, both fitted with
magnetic trackers, is used to control the application [19].
It allows the straightforward integration of conventional
2D interface elements like buttons, sliders, dials etc. as
well as novel 3D interaction widgets (Figure 4). The
haptic feedback from the physical props guides the user
when interacting with the PIP, while the overlaid graphics
allows the props to be used as multi-function tools. Every
application may display its own interface in the form of a
PIP ”sheet”, which appears on the PIP when the
application is in focus. The pen and pad are our primary
interaction devices.

While the original Studierstube architecture from [18]
incorporated simple distribution mechanisms to provide
graphics from multiple host computers and shared data
from a separate device (tracker) server, the initial
networking approach later turned out to be insufficient for
the evolving distribution requirements. An even more
limiting factor was that the toolkit allowed to run only a
single application and a single context at a time. Our
efforts towards a follow-up version resulted in support for
projection-based platforms [16] and a toolkit for
distributed graphics [7]. This paper presents the results of
a two-year long redesign process of Studierstube
incorporating all these features into a new framework.

4. Implementation

Our software development environment is realized as a
collection of C++ classes built on top of the Open

Inventor (OIV) toolkit [17]. The rich graphical
environment of OIV allows rapid prototyping of new
interaction styles. The file format of OIV enables
convenient scripting, overcoming many of the
shortcomings of compiled languages without
compromising performance. At the core of OIV is an
object-oriented scene graph storing both geometric
information and active interaction objects. Our
implementation approach has been to extend OIV as
needed, while staying within OIV’s strong design
philosophy.

App3App2App1

DIV

Runtime

Widgets

context m
anagm

ent

Open Inventor

User level

Studierstube
kernel
level

system
level

graphics
hardware

. . .

StbAPI

Figure 5: The Studierstube software is composed of
an interaction toolkit and runtime system. The latter is

responsible for managing context and distribution.

This has lead to the development of two intertwined
components: A toolkit of extensions of the OIV class
hierarchy (mostly interaction widgets capable of
responding to 3D events), and a runtime framework which
provides the necessary environment for Studierstube
applications to execute (Figure 5). Together, these
components form a well-defined application
programmer’s interface (API), which extends the OIV
API, and also offers a convenient programming model to
the application programmer (section 4.4). Applications are
written and compiled as separate shared objects (.so for
IRIX, .dll for Win32), and dynamically loaded into the
runtime framework. A safeguard mechanism makes sure
only one instance of each application is loaded into the
system at any time. Besides decoupling application
development from system development, dynamic loading
of objects also simplifies distribution as application
components can be loaded by each host whenever needed.
All these features are not unique to Studierstube, but
rarely found in virtual environment software.

By using this dynamic loading mechanism,
Studierstube supports multi-tasking of different

applications (e.g. a painting application and a 3D
modeler), but also multiple concurrent contexts associated
with the same application (Figure 6). This approach is
similar to popular desktop systems such as the multiple
document interface.

Figure 6: Multiple document interface in 3D – the right
window has the user’s focus and can be manipulated

with the current PIP sheet.

Depending on the semantics of the associated application,
ownership of a context may or may not privilege a user to
perform certain operations on the information (such as
object deletion). Per default, users present in the same
locale will share a context. A context – represented by its
3D-window - is owned by one user, and subscribed by
others. Per default, a context is visible to all users and can
be manipulated by any user in the locale.

4.1. 3D-windows

The use of windows as abstraction and interaction
metaphor is a long-time convention in 2D GUIs. Its
extension to three dimensions seems logical [5, 20] and
can be achieved in a straightforward manner: Using a box
instead of a rectangle seems to be the easiest way of
preserving the well-known properties of desktop windows
when migrating into a virtual environment. It supplies the
user with the same means of positioning and resizing the
display area and also defines its exact boundaries.

A context is normally represented in the scene by a 3D-
window, although we allow a context to span multiple
windows. The 3D-window class is a container associated
with a user-specified scene graph. This scene graph is
normally rendered with clipping planes set to the faces of
the containing box, so that the content of the window does
not protrude from the window’s volume. Nested windows
are possible, although we have found little use for them.
The window is normally rendered with associated
”decoration” that visually defines the windows extent and
allows it to be manipulated with the pen (move, resize
etc). The color of the decoration also indicates whether a

window has a user’s focus (and hence receives 3D event
from that user). Like their 2D counterparts, 3D-windows
can be minimized (replaced by a three-dimensional icon to
save space in a cluttered display), and maximized (scaled
to fill the whole work volume and receive input events
exclusively). Typically, multiple context of the same type
will maintain structurally similar windows, but this
decision is at the discretion of the application
programmer.

4.2. PIP sheets

Studierstube applications are controlled either via direct
manipulation of the data presented in 3D-windows, or via
a mixture of 2D and 3D widgets on the PIP. A set of
controls on the PIP – a PIP sheet - is implemented as an
OIV scene graph composed primarily of Studierstube
interaction widgets (such as buttons etc.). However, the
scene graph may also contain geometry (e. g., 2D and 3D
icons) that are useful to convey user interface state or
merely as decoration.

input

Figure 7: Multiplicity relationships in Studierstube -
control elements on the PIP are instantiated
separately for every (user, 3D-window) pair

Every type of context defines a PIP sheet template, a kind
of application resource. For every context and user, a
separate PIP sheet is instantiated. Each interaction widget
on the PIP sheet can therefore have a separate state. For
example, the current paint color in our artistic spraying
application (Figure 6) can be set individually by every
user for every context. However, widgets can also be
shared by all users, all contexts, or both. Consequently,
Studierstube’s 3D event routing involves a kind of
multiplexer between windows and users’ PIP sheets
(Figure 7).

4.3. Distributed execution

The distribution of Studierstube requires that for each
replica of a context all graphical and application-specific
data is locally available at each host which has a replica.

In general, applications written with OIV encode all
relevant information in the scene graph, so replicating the
scene graph at each participating host already solves most
of the problem.

For that aim, we have created Distributed Open
Inventor (DIV) [7] as an extension (more a kind of plug-
in) to OIV. The DIV toolkit extends OIV with the concept
of a distributed shared scene graph, similar to distributed
shared memory. From the application programmer’s
perspective, multiple workstations share a common scene
graph. Any operation applied to a part of the shared scene
graph will be reflected by the other participating hosts. All
this happens to the application programmer in an almost
completely transparent manner by capturing and
distributing OIV’s notification events. A scene graph need
not be totally replicated – local variations (compare [10])
in the scene graph can be introduced, which is among
others useful for fine-tuning low-latency operations such
as dragging.

More importantly, local variations allow us to resolve
distribution on a per-context base. A context is owned by
one workstation (called a master context), which will be
responsible of processing all relevant interaction on the
application, while other workstations (in the same locale
and in other locales) may replicate the context (as a slave
context).

The roles that contexts may assume (master or slave)
affect the status of the context’s application part. The
context data and its representation (window, PIP sheet
etc.) stay synchronized over the whole lifespan of the
context for every replica. The application part of a master
context is active and modifies context data directly
according to the users’ input. A slave context’s
application is dormant and does not react to user input (for
example, no callbacks are executed if widgets are
triggered). Instead, a slave context relies on updates to be
transmitted via DIV. Note that context replicas can swap
roles (e. g., by moving master contexts to achieve load
balancing), but at any time there may only be one master
copy per replicated context.

The replication on a per context-base provides coarse-
grained parallelism. At the same time the programming
model stays simple, as the programmer is spared to solve
difficult concurrency issues and all relevant input can be
processed in a single address space.

Once the low-level replication of context data is taken
care of by DIV, the high-level context management
protocol is fairly simple: A dedicated session manager
process serves as a mediator among hosts as well as a
known point of contact for newcomers. The session
manager does not have a heavy workload compared to the
hosts running the Studierstube user interface, but its
directory services are essential. For example, it maintains
a list of all active hosts and which contexts they own or

subscribe, it gets to decide about policy issues such as
load balancing etc.

Finally, input is managed separately by dedicated
device servers (typically PCs running Linux), which also
perform the necessary filtering and prediction. The tracker
data is then multicast in the LAN, so it is simultaneously
available to all hosts for rendering.

sghkjkl lksdfj lkjf dg
dfsghhj fhjgjkdflhjlskd jgflkjsdfgkjvakltj
i4trrtg
dfs;lghjksdl;fhkl;sgkdh dfsgkjdsfkjg

dfgdsfghjsdghkljgfhjklg h
khjlkjnlkjl;kfjg;lksdfjbhl;kjsl

ykbjm ll;rth
fhjdlfghkk

kjhjjlknjklj
hjkhfdjkhgseizr

uivhseuityb hiouyi jrt
jhrnthj si

jitosjhimthibmriptmbdnoi

ijniojniojfoijiojhgiojfdghiom
dfoimhn
ifgjosdjigoijdiosfh
dfghklj hh h jhjhjh jkh jh iu iuh uihiuh
uhiuhij h
‘ji hnjn nun nn

kj lkjlkji

window application

PIPsheet
(per user)

sghkjkl lksdfj lkjf dg
dfsghhj fhjgjkdflhjlskd
jgflkjsdfgkjvakltj i4trrtg
dfs;lghjksdl;fhkl;sgkdh
dfsgkjdsfkjg

dfgdsfghjsdghkljgfhjklg
h

khjlkjnlkjl;
kfjg;lksdfjbhl;kjslykbjm
ll;rth
fhjdlfghkk

kjhjjlknjklj
hjkhfdjkh

Context 1

Context 2

Figure 8: A context is implemented as a node in the
scene graph, as are windows and pip sheets. This

allows to organize all relevant data in the system in a
single hierarchical data structure.

4.4. Application programmer’s interface

The Studierstube API imposes a certain programming
model on applications, which is embedded in a foundation
class, from which all Studierstube applications are
derived. By overloading certain polymorphic methods of
the foundation class, a programmer can customize the
behavior of the application. The structure imposed by the
foundation class makes sure the application allows
multiple contexts to be created (i. e., offers the equivalent
to a multiple document interface), each of which can be
operated in both master mode (normal application
processing) and slave mode (same data model, but all
changes occur remotely through DIV).

The key to achieve all this is to make the context itself
a node in the scene graph. Such context nodes are
implemented as OIV kit classes. Kits are special nodes
that can store both fields, i. e., simple attributes, and child
nodes, both of which will be considered part of the scene
graph and thus implicitly be distributed by DIV. Default
parts of every context are at least one 3D-window node,
which is itself an OIV kit and contains the context’s
“client area” scene graph, and an array of PIP sheets,

which are also special scene graphs. In other words, data,
representation, and application are all embedded in a
single scene graph (Figure 8), which can be conveniently
managed by the Studierstube framework.

To create a useful application with all the properties
mentioned above, a programmer need only create a
subclass of the foundation class and overload the 3D-
window and PIP sheet creation methods to return custom
scene graphs. Typically, most of the remaining application
code will consist of callback methods responding to
certain 3D events such as button press or 3D direct
manipulation events. Although the programmer has great
freedom to use anything that the OIV and Studierstube
toolkits offer, it is a requirement that any instance data is
stored in the derived context class as a field or node, or
otherwise it will not be distributed. However, this is not a
restriction in practice, as all basic data types are available
in both scalar and vector format as fields, and new types
can be created should the existing ones turn out to be
insufficient (a situation that has not occurred to us yet).

Note that allowing a context to operate in both master
and slave mode has implications on how contexts can be
distributed: It is not necessary to store all master contexts
of a particular type at one host. Some master contexts may
reside on one host, some on another host – in that case,
there will be corresponding slave contexts at the
respective other host, which are also instances of the same
kit class, but initialized to function as slaves. In essence,
our API provides a distributed multiple document
interface.

Figure 9: Storyboard application with two users and
two contexts as seen from a third “virtual” user used
for video documentation. In the background the video

projection is visible.

5. Results

To demonstrate our framework, we chose the application
scenario of Storyboard design. This application is a
prototype of a cinematic design tool. It allows multiple

users to concurrently work on a storyboard for a movie or
drama. Individual scenes are represented by their stage
sets, a kind of world in miniature [11].

Every scene is represented by its own context, and
embedded in a 3D-window. Users can manipulate the
position of props in the scene as well as the number and
placement of actors (represented by colored board game
figures), and finally the position of the camera (Figure 9,
Figure 10).

All contexts share an additional large slide show
window, which shows a 2D image of the selected scene
from the current camera position. By flipping through the
scenes in the given sequence, the resulting slide show
conveys the visual composition of the movie.

Slide
Sorter

Focused
Context

Unfocused
Context

Scene
Selection

New
Context

Delete
Context

Actor

Pen

Camera

Film
Set

Toggle
sorter/show

on projection

Toggle
sorter/show

on PIP

Actor
Selection

Figure 10: The Storyboarding application allows the
3D placement of actors, props, and cameras. The

slide sorter shows a storyboard of all camera “shots”

Alternatively, a user may change the slide show to a “slide
sorter” view inspired by current presentation graphics
tools, where each scene is represented by a smaller 2D
image, and the sequence can be rearranged by simple drag
and drop operations. The slide sorter comes closest to the
traditional storyboard used in cinematography. It appears
on the PIP for easy manipulation as well as on the larger
projection screen.

Using the distributed Studierstube framework, we ran
the Storyboard application in different configurations.

5.1. Heterogeneous displays

Our first configuration (Figure 9, Figure 11) consisted of
three hosts (SGI Indigo2, Intergraph TZ1 Wildcat, SGI
O2), two users, and two locales (Figure 12). It was
designed to show the convergence of multiple users (real

ones as well as virtual ones), contexts, locales, 3D-
windows, hosts, displays and operating systems.

The two users were wearing HMDs, both connected to
the Indigo2’s multi-channel output, and seeing head-
tracked stereoscopic graphics. They were also fitted with a
pen and pad each. The Intergraph workstation was driving
an LCD video projector to generate a monoscopic image
of the projection screen (without viewpoint tracking) on a
projection wall. The slider show/sorter 3D-window was
hidden from graphics output on the HMDs, so the users
could see the result of their manipulation of the miniature
scenes on the large bright projection exploiting the see-
through capability of the HMDs.

SGI Indigo2
Impact

driving HMD

Intergraph
Wildcat
driving

video projector

SGI O2
driving
video

recorder

video
recorder

HMD

Pen

PIP

video projector

tracker
server

video
camera

Figure 11: Hardware setup for the heterogeneous
display experiment

Users were able to perform some private editing on their
local contexts, then update the slide show/sorter to discuss
the results. Typically, each user would work on his or her
own set of scenes. However, we choose to make all
contexts visible to both users, so collaborative work on a
single scene was also possible. The slide sorter view was
shared between both users, so global changes to the order
of scenes in the movie were immediately recognizable.
The third host – the O2 – was configured to combine the
graphical output (monoscopic) from Studierstube with a
live video texture obtained from a video camera pointed at
the users and projection screen. The O2 was configured to
render for a virtual user, whose position was identical with
the physical camera. This feature was used to document
the system on video. The configuration used two locales,
one shared by the two users and the O2, while a separate
locale was used for the Intergraph driving the projection
screen (again viewed by a virtual user). The additional
video host allowed us to perform live composition of the
users’ physical and virtual actions on video, while the
video projector driving the projection screen could be

freely repositioned without affecting the remainder of the
system (Figure 12).

LAN

L
A

N

Intergraph

O2

Cam.

Proj.

Indigo2

Figure 12: Heterogeneous displays – two users
simultaneously see shared graphics (via their see-

through HMDs) and a large screen projection

5.2. Symmetric workspace

The second example was intended to show multi-user
collaboration in pure augmented reality with multiple
hosts. The Storyboarding application was executed in a
more conventional augmented reality setup consisting of
two hosts (Indigo2, Intergraph), two users, and one locale
(Figure 13). Both users were wearing HMDs again, but
the first user was connected to the Indigo2, while the
second user was connected to the Intergraph. In this
configuration, the slide show/sorter was included in the
graphics shown via the HMD rather than projected by a
separate video projector.

LAN

IntergraphIndigo2

Figure 13: A symmetric workspace configuration uses
homogeneous displays (2 HMDs) to present a shared

environment to multiple users in one locale

While the obtainable frame rate was significantly higher
than for the first configuration, since rendering load for

the two users was distributed over two hosts, no high
resolution wide field-of-view projection was available for
the slide show/sorter. Consequently, only one locale was
necessary since users shared the same physical space.

5.3. Remote collaboration

The third example was created to show remote
collaboration of multiple users. In this setup, we built a
second Studierstube environment in the laboratory next
door to experiment with the possibilities of remote
collaboration. We then let two users collaborate remotely
using the Storyboard application.

LAN LAN

Intergraph Indigo2

Locale B
(2nd room)

Locale A
(1st room)

Figure 14: Remote collaboration: Two geographically
separated users experience a shared environment

Note that the results are preliminary in the sense that all
hosts were connected to the same LAN segment, and
network performance is thus not representative of what
one would get over a wide area network connection.
However, this was not the current focus of investigation.

The system consisted of two hosts (Intergraph in the
first laboratory, Indigo2 in the second), two users and two
locales (Figure 14). Each user was wearing a HMD
connected to the local workstation. In contrast to
configuration from section 5.2, two locales were used as
the users did not share a physical presence. The sharing of
context, but not locale, allowed them to rearrange their
personal workspace at their convenience without affecting
collaboration.

5.4. Multiple applications

Finally, Figure 1 and Figure 2 show users working with
multiple applications such as spraying, painting, and
object viewing tools on two possible platforms: HMDs
and a large polarized stereo projection wall.

6. Discussion

As observed by Tsao and Lumsden [20], in order to be
successful for everyday productivity work situations,
virtual environment systems must allow “multi-tasking”

and “multi-context” operation. By multi-tasking they
mean that the virtual environment can be re-configured to
execute a particular application, i. e., there is a separation
of VR system software and application software.

MediaBlocks

EMMIE

Studierstube
SPLINE

CRYSTAL

Multi-user +
multi-host

Multi-task +
multi-context

Multi-locale

Figure 15: Extended taxonomy for multiple
dimensions of user interfaces with some related work

(adapted from CRYSTAL).

Multi-context operation goes beyond that by allowing
multiple applications to execute concurrently rather than
sequentially. They also point out that this resembles a
development earlier experienced for 2D user interfaces,
which evolved from single-application text consoles to
multi-application windowing systems. It is no surprise that
by “judicious borrowing”, many useful results from 2D
user interfaces become applicable to 3D, as is evident
with Studierstube’s PIP, 3D-windows, or 3D event
system.

However, the CRYSTAL system from [20] does not
incorporate true multi-user operation, and consequently
has no need for multiple locales. Extending the taxonomy
from CRYSTAL, Figure 15 compares some relevant
work. For example, MIT’s mediaBlocks [21] allow a user
to work with different manipulators, which are dedicated
devices for specific applications, and the mediaBlocks
themselves are a very elegant embedding for context data.
However, although principally possible, no multi-user
scenarios were demonstrated.

In contrast, SPLINE [1] is designed towards multi-user
interaction. While SPLINE completely immerses a user in
a purely virtual world and thus does not meet our
definition of a work environment, it features multiple
locales that correspond to activities (for example, chat
takes place in a street café, while train rides take place on
a train).

The closest relative to our work is Columbia’s EMMIE
[4]. Except for explicit support of locales, EMMIE shares
many basic intentions with our research, in particular
concurrent use of heterogeneous media in a collaborative
work environment. Like ourselves, the authors of EMMIE
believe that future user interfaces will require a broader
design approach integrating multiple user interface

dimensions before a successor to the desktop metaphor
can emerge.

7. Conclusions and future work

We have presented Studierstube, a prototype user
interface that uses collaborative augmented reality to
bridge multiple user interface dimensions: Multiple users,
context, and locales as well as applications, 3D-windows,
hosts, display platforms, and operating systems.
Studierstube supports collaborative work by coordinating
a heterogeneous distributed system based on a distributed
shared scene graph and a 3D interaction toolkit. This
architecture allows to combine multiple approaches to
user interfaces as needed, so that it becomes easy to create
a 3D work environment, which can be personalized, but
also lends itself to computer supported cooperative work.

Our implementation prototype shows that despite its
apparent complexity, such a design approach is principally
feasible, although much is left to be desired in terms of
quality and maturity of hard- and software. However,
addressing issues such as display update rate and tracking
accuracy is out of scope of this work.

Our future interest will focus on bringing the element
of mobility into the Studierstube environment. While the
name Studierstube (“study room”) may be no longer
appropriate, we envision a portable 3D information space
that allows ad-hoc networking for instant collaboration of
augmented users. Our goal is to allow users to take 3D
contexts “on the road” and even dock into a
geographically separate environment without having to
shut down live applications.

Acknowledgments
This project was sponsored by the Austrian Science Fund
FWF under contract no. P-12074-MAT. Special thanks to
Markus Krutz, Rainer Splechtna, Hermann Wurnig, and
Andreas Zajic for their contributions to the
implementation, to Zsolt Szalavári and Michael Gervautz
for inventing the PIP, and to M. Eduard Gröller for his
spiritual guidance.

Web information
http://www.cg.tuwien.ac.at/research/vr/studierstube/

References
1. Barrus, J., R. Waters, R. Anderson. Locales and Beacons:

Precise and Efficient Support for Large Multi-User Virtual
Environments. Proc. VRAIS ‘96, pp. 204-213, 1996.

2. Billinghurst M., J. Bowskill, M. Jessop, J. Morphett. A
Wearable Spatial Conferencing Space, Proc. ISWC ‘98, pp.
76-83, 1998.

3. Billinghurst M., S. Weghorst, T. Furness III: Shared Space:
An Augmented Reality Approach for Computer Supported
Collaborative Work, Virtual Reality: Virtual Reality -
Systems, Development and Applications, 3(1), pp. 25-36,
1998.

4. Butz A., T. Höllerer, S. Feiner, B. MacIntyre, C. Beshers.
Enveloping Computers and Users in a Collaborative 3D
Augmented Reality, Proc. IWAR ‘99, pp. 1999.

5. Feiner S., C. Beshers. Worlds Within Worlds: Metaphors for
Exploring N-Dimensional Virtual Worlds, Proc. UIST '90,
pp. 76-83, 1990.

6. Goldberg A., D. Robson. Smalltalk-80: The language and
its implementation. Addison-Wesley, Reading MA, 1983.

7. Hesina G., D. Schmalstieg, A. Fuhrmann, W. Purgathofer.
Distributed Open Inventor: A Practical Approach to
Distributed 3D Graphics, Proc. VRST ‘99, London, pp. 74-
81, Dec. 1999.

8. Höllerer T., S. Feiner, T. Terauchi, G. Rashid, D. Hallaway.
Exploring MARS: Developing indoor and outdoor user
interfaces to a mobile augmented reality systems, Computers
& Graphics, 23(6), pp. 779-785, 1999.

9. Ishii H., B. Ulmer. Tangible Bits: Towards Seamless
Interfaces between People, Bits and Atoms, Proc. CHI ‘97,
pp. 234-241, 1997.

10. MacIntyre B., S. Feiner. A Distributed 3D Graphics Library,
Proc. SIGGRAPH ‘98, pp. 361-370, 1998.

11. Pausch R., T. Burnette, D. Brockway, M. Weiblen.
Navigation and Locomotion in Virtual Worlds via Flight
into Hand-Held Miniatures, Proc. SIGGRAPH ’95, pp. 399-
401, 1995.

12. Raskar R., G. Welch, M. Cutts, A. Lake, L. Stesin, H. Fuchs.
The office of the future: A unified approach to image-based
modeling and spatially immersive displays, Proc.
SIGGRAPH ’98, pp. 179-188, 1998.

13. Rekimoto J. A Multiple Device Approach for Supporting
Whiteboard-based Interactions, Proc. CHI ‘98, pp. 344-351,
1998.

14. Rekimoto J. Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments, Proc.
UIST ‘97, pp. 31-39, 1997.

15. Schmalstieg D., A. Fuhrmann, Zs. Szalavari, M. Gervautz.
Studierstube - Collaborative Augmented Reality, Proc.
Collaborative Virtual Environments ‘96, Nottingham, UK,
Sep. 1996.

16. Schmalstieg D., L. M. Encarnação, Zs. Szalavári. Using
Transparent Props For Interaction With The Virtual Table,
Proc. SIGGRAPH Symp. on Interactive 3D Graphics ‘99,
pp. 147-154, Atlanta, GI, April 1999.

17. Strauss P., R. Carey. An object oriented 3D graphics toolkit,
Proc. SIGGRAPH ‘92, pp. 341-347, 1992.

18. Szalavári Zs., A. Fuhrmann, D. Schmalstieg, M. Gervautz.
Studierstube - An Environment for Collaboration in
Augmented Reality, Virtual Reality - Systems, Development
and Applications, 3(1), pp. 37-49, 1998.

19. Szalavári Zs., M. Gervautz. The Personal Interaction Panel -
A Two-Handed Interface for Augmented Reality, Computer
Graphics Forum, 16(3), pp. 335-346, Sep. 1997.

20. Tsao J., C. Lumsden. CRYSTAL: Building Multicontext
Virtual Environments, Presence, 6(1), pp. 57-72, 1997.

21. Ullmer B., H. Ishii, D. Glas. mediaBlocks: Physical
Containers, Transports, and Controls for Online Media,
Proc. SIGGRAPH ‘98, pp. 379-386, July 1998.

22. Weiser M. The Computer for the twenty-first century.
Scientific American, pp. 94-104, 1991.

Dieter Schmalstieg
dieter@cg.tuwien.ac.at
Vienna University of Technology
Vienna, Austria

Gernot Schaufler
gs@graphics.lcs.mit.edu
Massachusetts Institute of
Technology
Cambridge, MA

Sewing Worlds Together With
SEAMs:
A Mechanism to Construct Complex Virtual

Environments

Abstract

This paper introduces the Spatially Extended Anchoring Mechanism (SEAM) as a 3-D
user-interface metaphor to connect virtual worlds and manage scalability in distributed
virtual environments. SEAMs provide a visual and navigable connection between
worlds to manage both the complexity of rendering and network communication
typically occurring in such environments. In the context of augmented reality, SEAMs
can be applied as a 3-D window interface. A rendering algorithm is described which
performs well on the graphics accelerators of standard personal computers.

1 Introduction

The idea of using virtual environments (VEs) as a communication me-
dium or as a work environment is found intriguing by many supporters, and it
has already been demonstrated that such technology can be successfully used
for large audiences (Pausch, Snoddy, Taylor, Watson, & Haseltine, 1996).
However, widespread commercial success of VEs is still not evident.

Why is it that the idea of cyberspace as first presented over a decade ago in
William Gibson’s novel Neuromancer (Gibson, 1984) is so enormously appeal-
ing, yet we see little manifestation of these ideas in our everyday technological
environment? At least a partial answer may be found by comparing a future cy-
berspace to the most successful networked application of today, the World Wide
Web (WWW).

One important property of the WWW that sets it apart from all previous me-
dia is the possibility of relatively simple participation by every user. The possi-
bility to communicate with everyone else instead of just consuming the pre-
sented content (as with, for example, TV) fuels both individual and commercial
interest and leads to the continuing fast growth of the Internet, the largest
computer network to date. Distributed content development has the tremen-
dous organizational advantage that no central authority is required for coordi-
nation (a requirement known to slow development efforts). This is a key factor
in building truly scaleable virtual environments. For virtual environments, this
means that users should be able to create 3-D environments and bring them
online to allow others to interactively explore their creations and use them as a
meeting place.

The document-oriented nature of the WWW makes the use of hyperlinks a
Presence, Vol. 8, No. 4, August 1999, 449–461

r 1999 by the Massachusetts Institute of Technology

Schmalstieg and Schaufler 449

natural choice for navigation. We are used to the finite
extent of documents, and to crossreferences within them
that help us to navigate through larger collections of
data. In contrast, a virtual environment mimics 3-D
space, which is not per se decomposed into individual
regions, but continuous. Unfortunately, distributed de-
velopment requires that individuals concurrently and
independently work on different regions of the virtual
environment. These regions can be assembled into a
continuous whole, but this approach requires a central
coordination authority to control who gets to develop
which region, which is difficult if not impossible to
achieve on a global scale. (The WWW is already troubled
by the comparatively simple issue of domain names.)

Alternatively, a VE may be broken down into parts
without continuity among them. This has the advantage
that unlimited space is available for every part, and is the
approach taken by today’s VEs on the Internet, based on
the Virtual Reality Modeling Language VRML (Hart-
man & Wernecke, 1996). Traveling from one world to
another is done by teleportation—instant transport to
another position, which in VMRL is coupled to anchor
objects, which allow the user to trigger the teleporta-
tion. In our experience, the use of teleportation is often
confusing as one often triggers it accidentally and it does
not have any correspondence to real-world travel. Bow-
man, Koller, and Hodges (1997) make the only formal
evaluation documented in the literature, and our postu-
lation that teleportation leads to disorientation is con-
firmed. However, teleportation has the advantage over
continuous VEs that large distances can be covered in an
instant, a property which we would like to retain.

In this paper, we will present a new mechanism for the
construction, organization and navigation of complex
virtual environments. The Spatially Extended Anchor
Mechanism (SEAM) is a tool for the distributed devel-
opment of continuous VEs without the need for a cen-
tral authority. It allows instant travel over large distances
without a disruption of continuity (Figure 1). We will
point out how it can be used in distributed VEs of differ-
ent origin and intent, from simple current VRML
browsers to environments for large user communities in
the sense of NPSNET (Macedonia, Zyda, Pratt, Brutz-
man, & Barham, 1995). We will also demonstrate how

SEAMs are a superior mechanism for building immersive
user interfaces based on 3D Magic Lenses (similar in
spirit to Viega, Conway, Williams, & Pausch, 1996),
which can be used to create another type of complex
virtual environment.

2 The Spatially Extended Anchor
Mechanism (SEAM)

The SEAM is a new modeling primitive to define
the relationship between virtual worlds. A SEAM may be
defined as a ‘‘door into another world.’’ An example is
shown in Figure 1. The name was chosen to indicate
that it is an extension of the well-known WWW anchors
of VRML and because it expresses the function of geo-
metrically connecting different spaces. The extent of the
SEAM is defined by a single polygon, the SEAM poly-
gon, which can be arbitrarily positioned. A complete
SEAM definition is composed of a SEAM polygon, a
reference (URL) to the world behind the SEAM, and a
transformation matrix specifying the geometric relation-
ship between the two worlds.

A user may not only look but also walk through the
SEAM to enter another world or reach through the
SEAM to manipulate another world. Hence, SEAMs are
useful in a number of ways: as a mechanism to visually
and spatially concatenate worlds, as a navigation meta-
phor, and as a 3D user-interface element.

Using SEAMs to connect VEs gives the authors of
virtual worlds and the administrators of Internet-based
distributed 3-D applications great freedom in the design
and organization of their content. It also solves the
problem of disorienting navigation via teleportation,
because it is possible to look into the adjacent world be-
fore entering it and because there are no discontinuities
in movement. Yet, SEAMs resemble teleportation in that
they allow efficient coverage of large distances. SEAMs
allow conventional Euclidean relationships among
worlds to be established, but also to connect worlds in
ways impossible with Euclidean geometry.

SEAMs improve on the idea of ‘‘magic mirrors’’ or
‘‘wormholes’’ frequently found in science fiction or fan-
tasy by providing a more continuous transition between

450 PRESENCE: VOLUME 8, NUMBER 4

worlds. Movies like Mary Poppins, Yellow Submarine or
Stargate, books like Through the Looking Glass (Carroll,
1872), or TV shows like ‘‘Star Trek: Deep Space 9’’ or
‘‘Babylon 5’’ (Figure 2) use the disruption in the transi-
tion to create tension and drama which is not always in-
tended in a continuous virtual environment.

3 Related Work

Previously proposed VE research systems have
aimed at the subdivision rather than the concatenation
of virtual worlds: very large VEs are often subdivided

into more manageable chunks (called ‘‘regions,’’
‘‘cells,’’ or ‘‘locales’’) to exploit spatial coherence. This
subdivision is used for visibility determination in real-
time rendering and for reduction of network communi-
cation in distributed VEs. To our knowledge, little at-
tention has been paid to using subdivision for modeling
and organization of virtual environments.

Closest to our intentions is Diamond Park/Spline,
developed at MERL (Barrus, Waters, & Anderson,
1996). It decomposes the virtual universe into ‘‘locales’’
that are associated with separate coordinate systems.
Special attention was paid to precision in modeling and
simulation. The work also introduced some consider-

Figure 1. SEAMs allow one to see and go from one world (round trees) into another (cone trees) and vice versa. Shown are a

schematic view (left) and a screen shot (right).

Schmalstieg and Schaufler 451

ations for world modeling and arrangement of locales
that are similar to SEAMs, but that avoid the problems
of visibility and overlapping worlds by using bent corri-
dors and anterooms.

Visibility preprocessing for real-time rendering was
first advocated in (Airey, Rohlf, & Brooks, 1990). A vir-
tual environment is decomposed into cells for which
mutual visibility is precomputed. Several approaches for
exploiting visibility to accelerate rendering were pro-
posed (for example in the work of Teller and Séquin
(1991) and Luebke and Georges (1995).)

A large body of work has been dedicated to the opti-
mization of network communication, which is crucial for
large-scale VEs with a large number of participants. Vir-
tual environments are subdivided either regularly based
on visibility or into arbitrary regions. To reduce the
amount of communication as much as possible, network
protocols have been developed based on a multicasting
topology such as NPSNET (Macedonia et al., 1995) or
DIVE (Carlsson & Hagsand, 1993), a client-server to-
pology such as NetEffect (Das, Singh, Mitchell, Kumar,
& McGhee, 1997) or hybrids of both such as RING
(Funkhouser, 1996) or Community Place (Lea, Honda,
Matsuda, & Matsuda, 1997). Multicasting allows effi-

cient delivery of messages to many participants. How-
ever, it loses much of its efficiency when transported
over a wide area network, and is not generally supported
on today’s Internet. Furthermore, maintenance of mul-
ticast group membership is costly in terms of perfor-
mance and only tractable for special types of application
(Macedonia et al., 1995). Client-server architectures
perform efficient message filtering, but they can suffer
from bottlenecks if the server is overloaded. Hybrid to-
pologies can merge the advantages of both, but no
single approach has yet been adopted by Internet users
as a standard. In Section 6, we will discuss how SEAMs
can be a useful tool for implementing distributed VEs
that are independent of the networking approach.

4 Rendering SEAMs

In this section, we explain how SEAMs are effi-
ciently rendered using standard hardware acceleration.
Technically, a SEAM is a polygon through which a live
image of another world is visible. Currently, we employ
one polygon per SEAM, but there is no conceptual rea-
son why a SEAM could not be a polygonal mesh or a

Figure 2. Examples for connections of different worlds: Yellow Submarine (top left), Stargate (bottom left),

advertisement by Superscape, Inc. (bottom middle), Through the Looking Glass (right).

452 PRESENCE: VOLUME 8, NUMBER 4

nonplanar primitive. The polygonal nature of the
SEAM, however, allows us to exploit the capabilities of
hardware-assisted polygon renderers (Neider, Davis, &
Woo, 1993).

4.1 Terminology

To aid in the explanation of the rendering method,
we will introduce a few terms. (See also Figure 3.) The
world that currently contains the user and the SEAM is
called primary world, and the world behind the SEAM is
called secondary world. Any world that can only indi-
rectly be accessed via multiple SEAMs is called a higher-
order world. The union of all worlds is called the virtual
universe. SEAMs can be unidirectional (there is only a
connection from the primary to the secondary world),
or bidirectional (the connection is two-way). A one-sided
SEAM can be observed only from the front, and is invis-
ible from the back (in the primary world), whereas a two-
sided SEAM is visible from the back. (It may show the
secondary world, but it may also be rendered opaque,
e. g., as a gray polygon.)

4.2 Rendering a Single SEAM

The standard approach to rendering three-dimen-
sional scenes (the primary world) is to render each ob-
ject in turn, solving the problem of occlusion with a Z-

buffer. A SEAM object requires us to render a picture of
yet another scene (the secondary world) onto the
SEAM’s surface in a view-dependent manner.

Our approach for rendering a SEAM generates the
image of the secondary world at the right position in the
image of the primary world. For correct visibility, the
rendering of the image of the secondary world must be
restricted to the area covered by the visible portion of
the SEAM polygon in the image of the primary world
(Figure 4). This approach is similar to a method sug-
gested by McReynolds and Blythe (1997).

The mentioned confinement of the secondary world’s
image to the area of the SEAM polygon is realized using
a mask in the ‘‘stencil buffer’’ (Neider et al., 1993),
which can allow or disallow graphics output on a per-
pixel basis. The details of the rendering are as follows
(Figure 4):

The geometry is given as a directed acyclic1 graph
(scene graph). The scene graph of the primary world is
traversed and rendered. When a SEAM is encountered,
the associated polygon is passed to the rendering hard-
ware for scan conversion. For all pixels of the SEAM
polygon found to be visible, the mask (stencil buffer) is
set to 1, the frame buffer is set to the background color
of the secondary world (clear screen), and the Z-buffer is

1. May be a directed cyclic graph if recursive references are allowed
(secondary or higher-order world is the same as primary world).

Figure 3. Different types of SEAMs.

Schmalstieg and Schaufler 453

set to infinity (clear Z-buffer). Note that these image
modifications are carried out only for the visible portion
of the SEAM surface and that the second and third steps
can be carried out in a single pass.

After this preparation, rendering of the secondary
world is performed inside the stencil mask created in the
previous step (so that the secondary world is not drawn
outside the SEAM area), and with a clipping plane coin-
cident with the SEAM polygon (so that the secondary
world does not protrude from the SEAM).

Finally, before rendering of the primary world contin-
ues, the SEAM polygon is rendered again, but only the
computed depth values are written into the Z-buffer.
Thereby the SEAM is ‘‘sealed.’’ The resulting Z-values
are all smaller than any Z-value of the secondary world.
Consequently, no geometric primitive of the primary
world located behind the SEAM will overwrite a visible
pixel from the secondary world rendering.

4.3 Rendering Nested SEAMS

In a more complex case, a number of virtual
worlds is connected using multiple SEAMs (Figure 5).

From certain viewpoints, users may be able to see not
only a secondary world, but another SEAM leading to a
third world, and so forth. Evidently, we need to modify
the rendering algorithm to support recursive traversal of
worlds during rendering. This is relatively straightfor-
ward. Traversal of multiple worlds connected by SEAMs
is done in depth-first order, starting from the primary
world. For every world, the algorithm proceeds as out-
lined above, except that the mask for a SEAM is created

Figure 4. Process of rendering a SEAM.

Figure 5. Nested SEAMs.

454 PRESENCE: VOLUME 8, NUMBER 4

by incrementing the stencil mask value by one in the
process of getting to the SEAM under consideration,
thereby progressively reducing the set of pixels that may
be affected. The visible area of the SEAM consists of the
pixels where the mask value is equal to the recursion
depth necessary to reach the SEAM.

An efficient implementation requires that only those
worlds of which at least a small portion is visible are pro-
cessed by the rendering algorithm. Otherwise, a large
universe of concatenated worlds would require a poten-
tially infinite number of primitives to be rendered, most
of which are not visible at all. The problem is equivalent
to the visibility problem for occluded interiors. Poten-
tially visible set (PVS) methods (Airey et al., 1990) de-
compose a large geometric database into regions with
visibility coherence (most of the geometry contained in
such a region is visible from most viewpoints inside the
region). Fortunately, the difficult part of PVS algo-
rithms—identifying reasonable regions and the portals
that connect them—is trivially solved for a virtual uni-
verse connected by SEAMs, because regions correspond
to worlds and portals correspond to SEAMs, which are
both included in the world description.

The simple and efficient algorithm proposed by
Luebke and Georges (1995) solves the visibility problem
in real time. It projects the portals (SEAMs) into screen
space and intersects the screen-aligned bounding boxes
(bbox). Typically, only a few SEAMs are visible in se-
quence, and so the aggregated bbox quickly decreases in
size (Figure 6). An empty aggregated bbox indicates
that no object can be visible through the considered se-
quence of SEAMs from the given viewpoint. Further
optimization is done by determining the visibility of in-
dividual objects against the aggregated bbox. This is use-
ful both for rendering and networking as scene graph
traversal and rendering and network communication are
only necessary for the visible portions of the universe.

5 SEAMs in Distributed and Multiuser
Virtual Environments

SEAMs were conceived to support a virtual uni-
verse inhabited by a very large community of users.

Large-scale multiuser VEs require a careful design of the
underlying network architecture. Using today’s Internet
technology, multiuser VEs are mostly being built with
client-server technology. A server may continue to simu-
late a virtual world, even if no participants are present in
it. Each server provides via the Internet a part of the vir-
tual universe (a world). It is responsible for the simula-
tion of this world and can decide on the development of
the simulation within this world.

A network architecture for the management of a dis-
tributed virtual universe faces a number of problems that
may severely compromise performance and scalability. In
the following sections, we discuss how to share a virtual
universe constructed using SEAMs with Internet users
and support live interaction of potentially large audi-
ences.

5.1 Building a Continuous
Distributed Universe

Consider the simple case of a single user traveling
in a virtual universe composed of individual worlds con-
nected via SEAMs. If multiple users are present in this
universe, let us assume for the moment that they cannot
perceive each other. Network communication for this
configuration is necessary only to transmit the scene de-
scriptions to the user. The user’s client manages replicas
of the primary world and of those higher-order worlds
that can be seen through the SEAMs. This approach
leaves the client with the simple task of rendering the
worlds for the user. Servers need to consider SEAMs

Figure 6. Visibility algorithm.

Schmalstieg and Schaufler 455

only so far as they have to instruct connected clients of
the SEAMs’ position and secondary worlds behind
them.

Network communication can be reduced by transmit-
ting only those parts of a world that are actually required
for rendering (Schmalstieg & Gervautz, 1996). As the
transmission of a world description may take some time,
clients must anticipate their needs and gather data to
have it available in time for rendering. The primary
world must be available in any case, but the download of
higher-order worlds can be delayed. Only potentially
visible worlds need to be considered for downloading,
similar to the strategy presented by Funkhouser, Sequin,
and Teller (1992).

5.2 Compatibility with Multiuser
Network Architectures

In this section, we discuss how multiuser network
architectures work together with SEAMs. We first give a
review of the approaches to VE networking briefly men-
tioned in Section 3, and show how they can be used to-
gether with SEAMs. We will also explain how multiuser
applications can be constructed from these networking
approaches.

For true multiuser support, a user must be able to per-
ceive the activities of other users as well as the static
world description. Every user is assigned a visual repre-
sentation (an avatar) in the virtual environment. For cor-
rect simulation, users must be aware of each other,
which has been called the ‘‘players and ghosts’’ approach
to simulation (Blau, Hughes, Moshell, & Lisle, 1992).
Users have to keep each other informed about their re-
spective actions, in particular changes in position.

In the implementation of multiuser virtual environ-
ments, an important issue is scalability. A substantial
body of related work has been dedicated to the optimi-
zation of network communication. We will discuss one
example for each of the relevant approaches.

• Multicasting in NPSNET: NPSNET (Macedonia,
1995) is a system for large-scale military simulation.
It uses a hexagonal decomposition of the area. Each

hexagonal region is associated with a network multi-
cast group, so that simulation updates (e. g., avatar
position) in a particular region are communicated to
effected participants only.

• Hybrid client-server/peer-to-peer topology in
RING: Funkhouser’s RING system (Funkhouser,
1996) is aimed at the simulation of densely occluded
environments (e. g., building interiors). It uses a
hybrid client-server/peer-to-peer network topology.

• Client-server architectures on the Internet: NetEf-
fect (Das et al., 1997) and Internet game servers
(Origin, 1997) are virtual environments aimed spe-
cifically at simultaneous participation of thousands
of users via the Internet. It is based on a client-
server architecture, and uses sophisticated methods
such as message filtering and dynamic load balanc-
ing in a network of servers to achieve a high degree
of scalability.

One may not overlook that the choice for client-server
architectures on the Internet is also guided by commer-
cial considerations such as access control and billing.
However, currently operational solutions indicate the
assumed scalability problem of servers (they may become
a bottleneck) does not seem as pressing as it did some
years ago.

We stress that SEAMs are compatible with all net-
working architectures outlined above as long as they
subdivide a virtual universe into individual worlds.
SEAMs do not resolve the scalability issue itself, but they
provide an important building block in the design of
large-scale multiuser VEs. Constructing a virtual uni-
verse with SEAMs also allows visibility constraints to be
exploited (as outlined in Section 4.3) to reduce the
amount of necessary communication and hence improve
scalability.

In brief, SEAMs extend the general possibilities of a
multiuser, multiworld implementation with the follow-
ing options:

• Non-Euclidean connections between worlds can be
created to allow the construction of worlds other
than the typical building interiors or dungeons. Ar-
bitrary SEAMs can be used in virtual worlds in the

456 PRESENCE: VOLUME 8, NUMBER 4

same way anchors are now used in VRML; in fact, a
VRML browser may be extended to render anchors
as SEAMs rather than static objects. TV screens,
billboards, and other artifacts can become doors to
other worlds (compare color plate 1).

• Maintenance of the virtual environment is com-
pletely distributed. Unlike RING for example, there
is no need for a global map of the overall environ-
ment. New servers can be added to and removed
from the running systems, and SEAMs can be
opened into existing worlds. Thus, there is a natural
match with the structure of the Internet.

5.3 Applying SEAMs
in Multiuser Worlds

SEAMs allow the connection of virtual worlds in
almost any desired fashion. However, the most useful
applications do not necessarily result from exploiting this
freedom to the fullest by building bizarre, geometrically
impossible universes. A universe that is geometrically
plausible may be easier to comprehend, and users will
not lose orientation. Yet employing SEAMs for such a
setup allows independent modeling of the individual
worlds by different parties, and facilitates load distribu-
tion onto different servers.

Good examples for such a natural decomposition into
adjacent regions include the rooms of a house, with indi-
vidual rooms modeled as worlds and with SEAMs as
doors. A room is a relatively small unit of simulation and
can be simulated with great accuracy. The same principle

applies on a larger scale to a virtual city. A frequently
mentioned application for VEs that can be constructed
much more elegantly with SEAMs is a virtual shopping
mall, in which individual vendors offer commerce and
clients are invited to browse and make a selection. This
type of virtual universe is best presented as geometrically
consistent, so that users are not surprised by what they
see. Consequently, in such settings, SEAMs should al-
ways be two-sided, so that users may switch back and
forth between worlds as expected. SEAMs should be
fitted into doorways or aligned with architectural open-
ings, so that the user does not even notice the transition
from one world to another. Free-standing SEAMs and
other supernatural constructs are better avoided. This
rule may sometimes intentionally be broken: in the
shopping mall example, individual shops may be larger
from the inside than from the outside, to provide space
for shoppers. If users can access the shop through only
one SEAM entrance, they may not even notice the im-
plausibility (Figure 7, right). This idea has also been dis-
cussed by Barrus et al. (1996), but their system cannot
accommodate neighboring overlapping worlds, which
can easily be achieved with SEAMs.

Regular spatial setups like the hexagonal subdivision
of NPSNET can be constructed with large bidirectional
SEAMs. Every hexagon is a world with six SEAMs at the
borders. Care must be taken that the playfield represen-
tation (e. g., terrain) is continuous at the borders (Fig-
ure 7, left). As users may theoretically see infinitely far
over a flat landscape, there must be an artificial horizon,

Figure 7. (left) hexagonal world decomposition; (right) using space in a virtual shopping mall.

Schmalstieg and Schaufler 457

so that users can see through only a few SEAMs, possibly
in combination with fog as an artificial limit.

If plausibility is not of importance, SEAMs can be
used as improved 3-D hyperlinks. One-sided SEAMs can
be used to reach any virtual world. In that way, ‘‘jump
points’’ from one world to another can easily be created,
e. g., in the form of a room with multiple doors. The
advantage over teleportation is that users are able to see
into worlds before they enter them, avoiding confusion
and allowing inspection of activities. A user may peek
into multiple ‘‘chat worlds’’ to find out where his or her
friends are. Users can construct their personal ‘‘world
access room’’ linked to other worlds in analogy to a
WWW bookmark file. Other applications of this type
include a traveling brochure where holiday destinations
can be experienced not only from pictures but also in
3-D. (See color plate 1.) If one-sided SEAMs are used,
the users already present in the secondary world should
not be confronted with a new avatar that suddenly pops
into the world, but a more appealing presentation (e. g.,
fade-in) would be preferable.

6 SEAMs as a User-Interface Tool

Besides their application in virtual worlds, SEAMs
can be used as a user-interface primitive for immersive or
augmented-reality environments. They are the 3-D
equivalent to a 2-D window interface, but with the
unique property that a user may reach into them to ma-
nipulate live 3-D applications. In our augmented-reality
environment ‘‘Studierstube’’ (Szalavári, Schmalstieg,
Fuhrmann, & Gervautz, 1998), we have implemented
an application that arranges SEAMs in the working
range of a user wearing a head-mounted display and a
3-D manipulation tool (Szalavári & Gervautz, 1997).
(See color plate 4.)

Furthermore, SEAMs can be used as 3-D magic
lenses. Magic lenses are unconventional ‘‘see-through’’
user-interface elements that extend the metaphor of a
magnifying glass to any sort of useful visual transforma-
tion of the data provided by the application. This para-
digm was introduced in 2-D by Bier, Stone, Pier, Bux-
ton, & DeRose (1993), and later extended to 3-D magic

lenses by Viega et al. (1996). In this section, we show
that SEAMs are an equivalent to 3-D magic lenses, but
without the shortcomings and limitations of the original
implementation mentioned by Viega et al., as detailed
below.

SEAMs are used to display a secondary world some-
where in a primary world. These worlds can have com-
pletely different content, but both worlds can also be
different representations of the same content. In the
latter case, a SEAM is perceived as a lens that modifies
the content viewed through it.

For example, color plate 5 shows a flat X-ray magic
lens revealing the skeleton underneath the skin of a vir-
tual human. A volumetric lens is shown in color plate 7,
where a magic box is used for focusing: streamlines of a
complex dynamical system are shown at two different
levels of density; a user-selected focus defined by the ex-
tent of a magic box shows higher streamline density than
the surrounding (Fuhrmann & Gröller, 1998). The
magic box is composed of six SEAMs.

The rendering method for 3-D magic lenses adopted
in the original implementation of Viega et al. (1996) was
based on hardware clipping planes alone and has several
drawbacks that severely affect the generality of the ap-
proach:

• Trivial rendering is possible only for convex poly-
gons up to six sides. A simple round lens such as
depicted in color plate 5 is not possible.

• A separate rendering pass of the same scene is neces-
sary for each side of the lens, which can be a consid-
erable overhead for real-time applications.

• Concave lenses or lenses with more than six sides
must be decomposed into convex pieces and require
even more rendering passes. The authors report that
this solution has not been implemented.

All the mentioned restrictions are easily overcome by
using the stencil buffer along with the clipping planes, as
our SEAMs implementation does. Only a single render-
ing pass is necessary, resulting in improved performance.
Consequently, it is much easier to develop and use both
flat and volumetric magic lenses, as our examples sug-
gest. Ultimately, SEAMs can become the immersive

458 PRESENCE: VOLUME 8, NUMBER 4

Figure 8. Color plates.

equivalent to windows in conventional desktop systems,
as the experiment depicted in color plate 4 suggests.

7 Implementation and Results

Our SEAMs implementation has been done in
C11 and Open Inventor (Strauss & Carey, 1992). The
SEAM primitive was embedded into what Open Inven-
tor calls a ‘‘node kit.’’ Using Open Inventor software,
our applications run on any platform with OpenGL sup-
port. As reasonably powerful OpenGL accelerator cards
have recently become available at commodity prices to
PC users, there is no obstacle to widespread use.

On top of the mentioned software setup, a simple
multiuser VE was constructed (color plate 6). Worlds are
constructed according to the VRML or Open Inventor
file format, but are linked with SEAMs rather than an-
chors (as mentioned before, anchors can be interpreted
and displayed as SEAMs). The result from an informal
evaluation conducted using this implementation is that
SEAMs are indeed a useful navigation paradigm that is
generally preferable to instantaneous teleportation.

Our experimental multiuser support was limited to
moving through the virtual universe (walk-through). We
have implemented two variants of network support for
multiple users: one based on multicasting, and one based
on a client-server approach. As expected, multicasting is
more efficient in delivering simulation data to the par-
ticipants for a crowd of avatars that can see each other;
message filtering performed by a server delivers better
performance for more-complex virtual universes with
many worlds, where visibility culling on SEAMs can be
employed. We set up a trial using a crowd of computer-
controlled participants (‘‘bots’’) together with two hu-
man users on two workstations connected via a nondedi-
cated 10mbps ethernet and could successfully handle
approximately fifty participants with several position up-
dates per second.

8 Conclusions and Future Work

We have introduced a new mechanism for connect-
ing virtual environments: SEAMs, which are essentially
doors into another world. The key advantages are

• A technically new—yet culturally familiar—meta-
phor for navigating in virtual environments;

• A principle that allows to build and organize com-
plex virtual worlds, and link them to other worlds
without a centralized organizing authority; and

• Application as 3-D windows and magic lenses to
construct user interfaces

Future work will involve creating more applications that
make use of SEAMs and to experiment with different
policies for the organization of a virtual universe.

Acknowledgments

This work has been supported by the Austrian Science Fund
(FWF) under project numbers P-11392-MAT and P-12074-
MAT. Special thanks to Anton Fuhrmann for his help. Further
information and more visual results can be found at http://
www.cg.tuwien.ac.at/research/vr/seams/.

References

Airey, J. M., Rohlf, J. H., & Brooks, F., Jr. (1990). Towards
image realism with interactive update rates in complex vir-
tual building environments. Computer Graphics, 24(2),
41–50.

Barrus, J., Waters, R., & Anderson, R. (1996). Locales and
beacons: Precise and efficient support for large multi-user
virtual environments. Proceedings of VRAIS’96, 204–213.

Bier, E., Stone, M., Pier, K., Buxton, W., & DeRose, T.
(1993). Toolglass and magic lenses: The see-through inter-
face. Proceedings of SIGGRAPH’93, 73–80.

Blau, B., Hughes, C., Moshell, J., & Lisle, C. (1992). Net-
worked virtual environments. SIGGRAPH Symposium on
Interactive 3D Graphics, 25(2), 157–160.

Bowman, D., Koller, D., & Hodges, L. (1997). Travel in im-
mersive virtual environments: An evaluation of viewpoint

460 PRESENCE: VOLUME 8, NUMBER 4

motion control techniques. Proceedings of VRAIS’97,
45–52.

Carlsson, C., & Hagsand, O. (1993). DIVE—A platform for
multi-user virtual environments. Computers & Graphics,
17(6), 663–669.

Carroll, L. (first edition: 1872). Through the Looking Glass.
(New York: MacMillan Publishing).

Das, T. K., Singh, G., Mitchell, A., Kumar, P. S., & McGhee,
K. (1997). NetEffect: A network architecture for large-scale
multi-user virtual world. Proceedings of ACM Symposium on
Virtual Reality Software and Technology (VRST’97), 157–
163.

Fuhrmann, A., & Gröller, E. (1998). Real-Time Techniques
for 3D Flow Visualization. IEEE Visualization ’98.

Funkhouser, T. (1996). ‘‘Network Topologies for Scaleable
Multi-User Virtual Environments.’’ Proceedings of IEEE
Virtual Reality Annual International Symposium
(VRAIS’96) 222–229.

Funkhouser, T. (1984). Network topologies for scaleable
multi-user virtual environments. Proceedings of VRAIS’96,
222–229.

Funkhouser, T., Sequin, C., & Teller, S. (1992). Management
of large amounts of data in interactive building walk-
throughs. SIGGRAPH Symposium on Interactive 3D Graph-
ics, 11–20.

Gibson, W. (1984). Neuromancer. New York: Berkley Com-
munications Group.

Hartman, J., & Wernecke, J. (1996). The VRML 2.0 Hand-
book. Addison-Wesley.

Lea, R., Honda, Y., Matsuda, K., & Matsuda, S. (1997). Com-
munity place: Architecture and performance. Proceedings of
ACM VRML’97, 41–50.

Luebke, D., & Georges, C. (1995). Portals and mirrors:
Simple, fast evaluation of potentially visible sets. Proceedings
SIGGRAPH Symposium on Interactive 3D Graphics, 105–
106.

Macedonia, M., Zyda, M., Pratt, D., Brutzman, D., &
Barham, P. (1995). Exploiting reality with multicast groups.
IEEE Computer Graphics and Applications, 15(3), 38–45.

McReynolds, T., & Blythe, D. (1997). Programming with
OpenGL: Advanced rendering. SIGGRAPH’97 (course
notes).

Neider, J., Davis, T., & Woo, M. (1993). OpenGL—Program-
ming Guide, The Official Guide to Learning OpenGL. Addi-
son Wesley.

Origin (1997). Ultima Online. Online computer game.
Pausch, R., Snoddy, J., Taylor, R., Watson, S., & Haseltine, E.

(1996). Disney’s Aladdin: First steps toward storytelling in
virtual reality. Proceedings of SIGGRAPH’96, 193–204.

Schmalstieg, D., & Gervautz, M. (1996). Demand-driven ge-
ometry transmission for distributed virtual environments.
Computer Graphics Forum (Proc. EUROGRAPHICS ’96)
15(3), 421–433.

Strauss, P., & Carey, R. (1992). An object oriented 3D graph-
ics toolkit. Computer Graphics (Proceedings SIGGRAPH’92),
341–347.

Szalavári, Zs., & Gervautz, M. (1997). The personal interac-
tion panel—A two-handed interface for augmented reality.
Computer Graphics Forum (Proc. of EUROGRAPHICS’97,
16(3), 335–346. Budapest, Hungary.

Szalavári, Zs., Schmalstieg, D., Fuhrmann, A., & Gervautz, M.
(1998). ‘‘Studierstube’’—An environment for collaboration
in augmented reality. Virtual Reality—Systems, Development
and Applications, 3(1), 37–49.

Teller, S., & Séquin, C. (1991). Visibility preprocessing for
interactive walkthroughs. Proceedings of SIGGRAPH’91,
25(4), 61–69.

Viega, J., Conway, M., Williams, G., & Pausch, R. (1996). 3D
magic lenses. Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST’96), 51–58.

Schmalstieg and Schaufler 461

