
DIPLOMARBEIT

A Multi-Purpose Virtual Model
of the Solar System (VRMoSS)

ausgeführt am

Institut für Computergraphik und Algorithmen

der Technischen Universität Wien

unter der Anleitung von

Prof. Dr. Michael Gervautz

durch

Georg Zotti

Ghelengasse 13a

A-1130 Wien

Wien, 21. Oktober 2001 Georg Zotti

Abstract

For centuries, astronomers have presented their research results about the
structure of the Solar System with models. Most of them were small and pro-
vided an �outside look� onto the Solar System. Developments in Computer
Graphics, Virtual Reality environments, and space exploration make it pos-
sible for a user to see the Solar System as though he was �ying through space
in an � admittedly physically impossible � super-lightspeed spacecraft and
visit the planets close-up, or, see the components of the Solar System (the
Sun, planets, moons, asteroids, comets) from the distance to get a feeling of
the structure at a glance. Depending on hardware setup, this can be done on
a single high-end PC desktop with keyboard control or may include a stereo
projection, or head mounted displays and head tracking with interaction via
specially designed user interface tools.

The author has implemented such a model using the Studierstube
framework of the Institute of Computer Graphics and Algorithms of the
University for Technology, Vienna, as part of the ASH project (Access to
Scienti�c Space Heritage), one of several educational projects sponsored by
the IST (Information � Society � Technology) initiative of the European
Union.

For integration into a larger system, data and commands can be ex-
changed via a network socket connection using XML formatted messages.

Deutsche Zusammenfassung

Seit Jahrhunderten präsentieren Astronomen ihre Erkenntnisse über das
Sonnensystem anhand von Modellen. Die Entwicklung der Computergra-
phik sowie Ergebnisse von Weltraummissionen zu den Planeten gestatten
es nun, animierte Modelle des Sonnensystems zu bauen, die nicht nur (wie
die Tischplanetarien früherer Zeiten) von auÿen zu betrachten sind, sondern
den Betrachter in das Modell hineinversetzen können. Durch entsprechende
Skalierung können Übersichts- oder Detailansichten präsentiert werden.

Der Autor präsentiert ein solches Modell für das Studierstube-System
des Instituts für Computergraphik und Algorithmen, das er im Rahmen des
IST (Information � Society � Technologies) Bildungsprogramms der Europäi-
schen Union als Teil des Projektes ASH (Access to Scienti�c Space Heritage)
entwickelt hat.

Das Modell wird mittels Stereo-Projektion präsentiert, der Besucher kann
über spezielle Eingabegeräte mit der Szene interagieren und sich das Sonnen-
system und seine Teile (Sonne, Planeten, Monde, Kleinplaneten (einige de-
tailliert, tausende schematisch als Asteroidengürtel) und Kometen sowie die
jeweiligen Umlaufbahnen) in unterschiedlichen Gröÿen betrachten. Ebenso
kann der Flug der Raumsonde Rosetta (ESA) zum Kometen P46/Wirtanen
verfolgt werden. Die Applikation kann mit anderen Programmen über eine
Socket-Verbindung Daten und Kommandos im XML-Format austauschen.

VRMoSS
A Multi-Purpose Virtual Model

of the Solar System

Georg Zotti

Institute of Computer Graphics

Vienna University of Technology

ASH � Access to Scienti�c Space Heritage

Contents

1 ASH � Access to Scienti�c Space Heritage 1

1.1 Introduction . 1
1.2 Hardware Architecture . 2

1.2.1 The P-VCR Con�guration 2
1.3 Software Architecture . 7

1.3.1 Introduction . 7
1.3.2 Mission, Episodes and Tasks 7

1.4 Multi-User Server-Client Architecture 9
1.5 Collaboration and Communication 11
1.6 The Prototype Mission: ROOTS 12

1.6.1 The Solar System Model inside ROOTS 13

2 Modeling the Solar System 14
2.1 Historical Notes . 14
2.2 Modeling Distances and Sizes 20

3 Astronomical Aspects 23

3.1 Astronomical Computing . 23
3.1.1 Books and Data Sources for Astronomical Computing 23
3.1.2 Time . 24
3.1.3 Julian Day Number 25
3.1.4 Earth and Sun . 25
3.1.5 Coordinate Systems 26
3.1.6 Kepler Orbits . 30
3.1.7 Finding the Orbital Elements from the State Vector . 36

3.2 Star Data . 39
3.2.1 Astronomical Magnitudes 39
3.2.2 Spectral Classi�cation 40

3.3 Constellations . 41

4 Tools 42

4.1 Open Inventor . 42
4.1.1 Introduction . 42

i

CONTENTS ii

4.1.2 Concepts . 43
4.2 Studierstube . 48

4.2.1 The Original Studierstube 49
4.2.2 Tracking . 49
4.2.3 Interaction . 50
4.2.4 Studierstube Applications 52
4.2.5 Setup Variants . 52

4.3 XML . 53
4.3.1 De�nitions . 53
4.3.2 Document Structure 54
4.3.3 Using XML in programs 56
4.3.4 XML in ASH . 56

4.4 Advanced Rendering Toolkit (ART) 60

5 Implementation 61

5.1 The Solar System Model inside the ASH VCR 61
5.1.1 Requirements for ASH 62
5.1.2 Studierstube for VRMoSS 62
5.1.3 XML for VRMoSS . 63

5.2 Look and Feel . 63
5.3 The Software Components of VRMoSS 66

5.3.1 Classes for Double Precision Computations 66
5.3.2 The Main Controller 66
5.3.3 Keeping Time . 67
5.3.4 Switching Visibility . 67
5.3.5 The Solar System . 68
5.3.6 StarsKit . 76
5.3.7 Scaling . 80
5.3.8 Bringing an object into Focus 80
5.3.9 Direct Scene Interaction 81
5.3.10 Communication with the Outside World 81
5.3.11 Keyboard Control . 84

6 Discussion and Possible Extensions 85

6.1 Other Usage Scenarios . 85
6.1.1 Standalone Installation 85
6.1.2 Desktop Application 86
6.1.3 Multi-User Scenario in Studierstube 86
6.1.4 HalfDome Setup . 86

6.2 Possible Extensions . 87
6.2.1 Free-�y mode . 87
6.2.2 More Spacecraft Paths 87
6.2.3 Shadows . 87
6.2.4 Planet Moons . 88

CONTENTS iii

6.2.5 Sun . 88
6.2.6 Planet Textures . 88
6.2.7 Dynamical Loading of New Asteroid Data 88

6.3 Concluding Remarks . 88

Abbreviations 90

Acknowledgements 98

Chapter 1

ASH � Access to

Scienti�c Space Heritage

1.1 Introduction

To advance Europe in the �elds of science and technology, the European
Commission o�ers the IST programme (Information Society Technologies).
One of its key actions is [COR01]

to con�rm Europe as a leading force in [the �eld of multime-
dia content and tools] and enable it to realise the potential of
its creativity and culture. It will address issues such as interac-
tive electronic publishing, digital heritage and cultural content,
education and training, human language technologies and infor-
mation access, �ltering and handling.

The ASH project (Access to Scienti�c Space Heritage), proposed in late
1999, has been accepted as part of the IST programme under European
Commission contract number IST-1999-10859.

The prime objective of this project is to set up a prototype of a collab-
orative learning environment called �Virtual Control Room� (VCR), which
allows students to participate in a simulated scienti�c space mission.

The Virtual Control Room will allow European planetariums and science
theatres to o�er a unique experience to audiences in the European Union,
mediating knowledge of science, astronomy and space to the European pub-
lic.

The VCR is an edutainment facility, bridging the gap between education
and entertainment. New media are highly exploited and cut-of-the-edge 3D
interactive systems are provided.

The ASH VCR should get young people interested in astronomy, space
science, and generally in technology and nature sciences, so that more stu-
dents attend technical or scienti�c studies.

1

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 2

Project Partners The following companies and institutions are partici-
pating in the ASH project:

DELTA Danish Electronics, Light and Acoustics, Denmark. Main contrac-
tor. Experienced in collaborative software development. Responsible
for project management and the Mission Server.

SAS Space Applications Services, Belgium. Experience with real-world
space missions. Responsible for the Simulation Server.

TUV Institute of Computer Graphics and Algorithms, Technical University
Vienna, Austria. Experts in computer graphics, virtual and augmented
reality, responsible for the graphical content and user interface.

RoB Royal Observatory, Brussels, Belgium. Experience with teaching as-
tronomy. Head of the the storyboard team.

EuroP Europlanetarium Genk, Belgium. Experience with teaching astron-
omy. Member of the storyboard team.

Tycho Tycho Brahe Planetarium, Copenhagen, Denmark. Experience with
a �Control Room� used for school classes. Member of the storyboard
team.

The following introduction to the ASH project is based on the ASH System
Speci�cation Document (SSD). [TZW+01]

For budget reasons, the goal of the project was to develop a prototype
of the VCR, designated P-VCR. A commercial version is termed C-VCR.

1.2 Hardware Architecture

1.2.1 The P-VCR Con�guration

The VCR is a multi user environment based on client-server architecture
with special features like a stereo projection, wide screen displays, and 3D
interaction technology. (Figures 1.1, 1.2)

The hardware architecture considers scalability. Therefore the concept
of islands has been introduced. An island comprises of four workplaces that
are all physically embedded in a designed piece of furniture. There are three
individual workplaces and one for collaborative aims. These are the client

machines. The minimal VCR consists of just one island, the P-VCR will
have two of them, and a C-VCR might have enough places for a whole school
class. However, the con�guration also depends on the mission, since their
collaborative aspects mostly �t to a speci�c number of students. Therefore,
missions development must take the number of islands into account.

The individual workplaces are standard desktop PCs hidden in the fur-
niture (Figure 1.3). Touch screens are embedded into the top panel. If a

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 3

Figure 1.1: Artist's Concept of the ASH Virtual Control Room

Figure 1.2: Students in the VCR

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 4

Figure 1.3: An Island in the ASH Virtual Control Room

keyboard is needed, a software keyboard is displayed on the touch screen.
Each island has one local sound system consisting of two small, embedded
speakers for short noti�cation sounds. There is an extra, collaborative work-
place on each island. It also consists of a standard desktop PC with a 3D
graphics accelerator and uses a wide screen display. The collaborative results
of tasks are visualized on this display.

As central attraction, there is a large passive stereo projection collabo-
ratively used by all people in the P-VCR, termed Bigscreen (Figure 1.4). It
consists of two LCD projectors with di�erently oriented polarization �lters in
front of the lenses. The visitors wear special eyeglasses, also with polarization
�lters which are oriented so that they can separate the images, so that each
eye receives only the one image intended for it. A special screen is necessary
that preserves the polarization of the light, especially for the recommended
back projection setup that avoids problems with shadows. One advantage
of passive stereo is that the users do not need to wear high tech glasses but
cheap one-way cardboard goggles with polarization �lters, therefore avoiding
hygienic problems.

The two image streams for the stereo projection come from an extra client
(Bigscreen Client) with powerful graphics hardware. The Bigscreen is used
for special tasks and provides a 3D input device called Personal Interaction

Panel (PIP). It has been developed by the Institute of Computer Graphics
and Algorithms of the Technical University of Vienna and was evaluated
during various research projects. The PIP consists of a plastic panel and
a pen with magnet �eld sensors attached to both of them. These sensors
deliver spatial coordinates and orientation data relative to a magnet �eld

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 5

Figure 1.4: Students working on the Bigscreen

emitter to a Tracker Server. The Tracker Server transmits these data to the
Bigscreen Client via TCP/IP.

The sensors, emitter and server are termed Tracker System. It can be
conceived as a black box that delivers a stream of spatial data to be used in
3D applications.

The PIP allows direct manipulation of objects within a virtual environ-
ment in a quite natural way. The 3D representation of the panel holds ob-
jects, menus and standard GUI elements like buttons and sliders. With the
pen a user can pick objects, manipulate them and deposit them somewhere
in space. To learn more about the PIP please see [SG97a, SG97b].

In alternation with this exciting experience, the Bigscreen it is also used
to display passive media, like videos, usually in mono.

The heart of the VCR is the Mission Server (MSV), which is a multi-user
server, supplying all the multimedia data and managing the communication
between clients. For that purpose it has to run on a more powerful machine,
e.g. a dual processor unit. The Mission Server has a mass storage device
attached to it (RAID) that holds all the multimedia data and the Mission

Data Space.
Beside the Mission Server there is an extra Simulation Server (SSV). It is

a software application to run di�erent simulations, which also runs on the
machine running the MSV. It gets prompted by clients via the MSV and

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 6

Figure 1.5: Hardware architecture of the ASH VCR

returns streams of simulation results to ongoing tasks at the clients. The
simulation server has been implemented as recorder, which can record data
during mission preparation and can then stream those pre-recorded/pre-
calculated data to the clients.

To complete the hardware of the P-VCR we need network devices, a
surround sound system mainly used in accordance with the stereo projection,
the special designed furniture, nice lighting system and lots of cables. See
Figure 1.5 for a diagram of the hardware architecture of the P-VCR.

Scaling the hardware is simply done by producing more islands. However
there are some restrictions, especially concerning shared resources. The fol-
lowing list addresses problems that may arise when extending the hardware
architecture of the P-VCR to those of the C-VCR from the present point of
view. Advances in technology until the end of the project might solve most
of these problems automatically.

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 7

1.3 Software Architecture

1.3.1 Introduction

The software of the VCR has heterogeneous client-server architecture. It
consists of several distributed, self-contained components that interact via
clearly de�ned interfaces. In addition to components that have been and
will be developed within this project, there are also third party and/or open
source products.

1.3.2 Mission, Episodes and Tasks

The VCR is a multi-user learning environment exploiting principles of edu-
tainment � learning through entertaining. Knowledge about space is medi-
ated by working together as a team to accomplish a space mission.

A mission consists of a network of episodes. For the P-VCR this is just
a succession of tasks, whereas for the C-VCR also branches will be allowed.
In that case it is like an interactive movie where the results achieved in an
episode determines which episode follows.

Episodes can be reused in other missions. They are characterized by
well-de�ned pedagogical objectives, i.e., are associated with student pro�les
like age or education. Episodes contain a schedule of interactive media to
a�ect the mission state. It can be mixed with passive media, for example
watching a video or reading an HTML page.

For each episode there exists one transition. A transition is also a self-
contained entity that contains only passive media. Transitions are used
when an episode is not available, has been interrupted or skipped. With
transitions the mission time line is kept continuous. Students have to know
what happens in an unavailable episode to keep pace and have the correct
context to proceed. So a transition is a summary that shows what would have
to be done in the corresponding episode. It is mostly a passive presentation
(like a video). A transition can also be used in case a student completely
fails to accomplish an episode. In that case it documents what the student
should have done to succeed. Furthermore, transitions might be a regular
part of a mission network, for example to show a video to relax students
between two highly interactive episodes. See Figure 1.6 for how episodes
and transitions make up a mission.

The interactive media entities of an episode are called tasks. Beside tasks
there are also presentations, which are passive media entities, like a video or
an HTML page. Both types of entities are ordered in a schedule. They are
performed at clients only. In the P-VCR we have nine clients (six individual
workplaces and three collaborative workplaces). The storyboard, however,
already considers four islands, thus twelve individual and �ve collaborative
workplaces. A storyboard for a C-VCR will have to consider the setup of
the respective C-VCR.

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 8

Figure 1.6: A mission is a network of episodes and transitions

Figure 1.7: Tasks are scheduled in nine time lines to make up an episode for
the P-VCR

So there are seventeen time lines in the schedule. That means at most
seventeen tasks can run in parallel. Tasks are associated with roles and
screen quali�ers that de�ne on which client they can run. Students interact
with tasks to achieve a goal, i.e., they change the mission state. Examples
for media formats are Flash Movies, Swing applications, or VRML worlds.

There are synchronization points, where the system waits for all ongoing
tasks to �nish until the episode is continued. The time frame between two
synchronization points is called a phase. Phases have a prede�ned duration
and exactly one task for each client. Figure 1.7 shows how tasks are arranged
within an episode.

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 9

1.4 Multi-User Server-Client Architecture

The heart of the system is the Mission Server (MSV). It provides all the
media organized in tasks and episodes by accessing a �le system stored on
a RAID, the Mission Data Space (MDS). The MDS works like a web-server,
and the P-VCR indeed uses a standard Apache web server. Dynamic data
like the Mission State Information (MSI) or user data is stored in the Shared
Data Space (SDS).

The Mission State Information (MSI) is the collection of all data resulting
by �nishing a task and is important to manage the mission time �ow. User
data includes personal information like the role within the mission scenario,
performance during tasks, or results from tasks which can be used in a later
task. It can be used for evaluation and user statistics afterwards.

The MSV has a special component called Mission Manager (MMG). It
controls the �ow of episodes and MDS consistency. The MMG knows which
episode is currently running. It knows when it is �nished and which one to
start next. The MMG also recognizes when an episode is missing, skipped or
interrupted and automatically starts the corresponding transition. Besides
that it also maintains consistent Mission State Information. Each episode has
clearly de�ned initial states and default results. When an episode is missing,
skipped or interrupted, the MMG establishes a usable MSI by copying the
appropriate default results from a mirror into the data space. In this way a
reliable, fail-operational system is achieved.

Another component of the MSV is the Episode Manager (EMG). It basi-
cally does the same for tasks as the MMG does for episodes. It knows the
schedule, triggers tasks and synchronizes at the end of phases. It also checks
for consistency concerning tasks. The completion of a task changes the MSI.
Like for episodes' default results there are default results of each task usable
to advance to the next task stored in a data mirror that are copied by the
EMG in case the task is interrupted.

This fail-operational attribute of both the MMG and EMG allows the
operator to skip or interrupt single tasks or whole episodes anytime. In
fact the system can run in �autopilot� mode. It can thus substitute results
for any student, and there is no problem if some work places stay empty.
This feature allows the VCR to operate with any number of visitors less or
equal its maximum capacity. Furthermore, it is possible to run a four-island
mission on a two-island VCR because the system takes over the tasks of
missing workplaces.

Beside the MSV there is also a Simulation Server (SSV). For the P-VCR,
it provides only pre-recorded data, but for a C-VCR it could be enhanced to
also run computationally demanding applications. Its services are launched
due to a request by the MSV. The Simulation Server then gets a stream
of input data, and streams back pre-recorded data as simulation results.
Examples for simulations are orbiting a planet or asteroid, driving a rover,

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 10

Figure 1.8: The top level view of the P-VCR software architecture

celestial mechanics and more. Detailed information on the SSV is given in
[TZW+01].

Finally there is the User Client (UCL). The UCL is responsible for com-
munication with the MSV. It does so by a corresponding instance of a Client
Manager (CMG). It interprets packages and sends requests. It can launch
sub-applications if necessary. It launches the tasks received by the MSV via
CMG and checks when tasks are �nished or interrupted, and communicates
this to the CMG.

The UCL also establishes and maintains all communication channels and
other local resources. It has a GUI consisting of a full screen frame and panels
for tools that can be used during the whole mission. This encompasses, e.g.,
a repository browser to access optional material, or a chatting tool. The
UCL for the P-VCR has been implemented in Macromedia Flash 5.

Figure 1.8 summarizes the top-level view of the software architecture.

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 11

1.5 Collaboration and Communication

Very complex CSCW software is not necessary, because we do not have a
tight and sensitive collaboration scenario. The collaborative aspects of a
mission are entirely designed by the storyboard, which de�nes the schedule
for tasks. The system does not have to resolve any problems occurring from
interdependencies.

If a student fails to produce results of a task needed by other students or
fails to �nish a phase the system goes into a wait position. After a certain
timeout the EMG can suggest to skip the task and continue. Such problems
are resolved in a quite natural manner by people communicating with each
other and deciding how to proceed. The operator can always skip tasks or
whole episodes without causing inconsistencies. As mentioned above, each
task can also be done by the system and each episode can be replaced by a
transition. Default results will be used in that case.

Collaboration implies exchange of data. The large screens on each island
are mostly used to visualize collaborative aspects. The results obtained by
working together are presented there, and students are aware of the result
of their teamwork. They see how their individual performance contributes
to the larger context. Another collaboration feature is chatting, for example
to ask colleagues who play other roles for help.

In addition to collaboration, data exchange is essential for other scenar-
ios as well. For example user input might be streamed to the Simulation
Server (SSV), which takes the data as parameters for a simulation. Simu-
lation results my be streamed from the SSV to the Bigscreen Client (stereo
projection) to a�ect a space vehicle in real time.

Communication is based on TCP/IP. Servers produce data streams and
packages and deliver them to the appropriate clients asking for these data.
From a software point of view there are four main channels:

Mission Data Base Channel download tasks, stream media like Real
Video

Shared Data Space Channel query results of tasks and mission state

Simulation Channel trigger simulation, stream simulation results

Collaboration Channel client-to-client communication, chatting, mailing

The Mission Data Base channel is implemented by HTTP communication.
Clients requests data from a web server, which returns a stream of data to
be played by the client.

The Simulation channel is also based on an ASCII-protocol, running
through a socket communication channel - also upon request, providing a
stream of data. This custom protocol is described in detail in [TZW+01].

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 12

The Shared Data Space channel and the Collaboration channel are dif-
ferent paradigms. The data here is more dynamic in nature - and is also
shared by multiple clients, all updating and retrieving at the same time. For
this, a repository of data objects (for instance, containing a set of strings in
a chat or the selected orbit from an work-isle) will be available. The Shared
Data Space (SDS) is thus not a collection of streams but a storage of named
data objects, where all components of the system can save, share, edit and
retrieve data.

1.6 The Prototype Mission: ROOTS

Discussion about the mission for the P-VCR crystallized a few key issues
that should be observed:

� it should be a deep space mission of a spacecraft exploring the Solar
System

� Europe's special interest and knowledge in space exploration should be
expressed

� the mission should �t into school curricula

Currently, one key research topic in space exploration is the question whether
there is life outside Earth. Recently speculated �nds of traces of extrater-
restrial life in structures in the Mars meteorite ALH 84001 made a mission
to Mars a possible candidate.

However, Mars has mainly been target for American and Russian (former
Soviet) space missions. Europe, on the other hand, performed a very success-
ful space mission to Halley's Comet in 1986, when the Giotto spacecraft
passed the comet's core in a close �y-by.

Moreover, the European Space Agency (ESA) is currently preparing a new
mission, Rosetta, for launch in early 2003. This spacecraft will �rst orbit
the Sun almost twice, then use �y-by maneuvers with Mars (late August,
2005), Earth (late November 2005) to gain speed, will enter the asteroid belt
between Mars and Jupiter to visit asteroid 4979 Otawara, �y-by Earth
once more for a �nal speed-up (late November, 2007) and, after a second
asteroid �y-by (140 Siwa, late July, 2008), will �nally, in late November,
2011, reach comet 46P/Wirtanen and enter an orbit around the comet. It
will map the core and �nally release a lander that further analyzes the comet
soil. [ESA]

Comets are believed to be the oldest remnants from the time the Solar
System formed about 4.5 billion years ago. By observing a comet in detail,
Rosetta shall give new insights into the origin, composition, formation and
development of the Solar System.

CHAPTER 1. ASH � ACCESS TO SCIENTIFIC SPACE HERITAGE 13

The ASH consortium agreed on developing a mission scenario that closely
follows the Rosetta mission. By following the spacecraft through the Solar
System, the students can learn about its structure and contents. Many
aspects of course material (physics, chemistry, astronomy, mathematics) can
be built into the mission material (�Stealth Learning�). The students will
get an impression how the sciences work together, and may be encouraged
to start a scienti�c career.

The mission was given the descriptive acronym ROOTS for ROsetta Ob-

serving The Solar system.

1.6.1 The Solar System Model inside ROOTS

The ASH consortium decided on developing a virtual model of the Solar
System for the ROOTS mission for several reasons.

� Presenting the Solar System as VR model immediately gives a good
impression about its parts and structure.

� The journey of the student-controlled spacecraft through the Solar Sys-
tem can be impressively visualized.

� Algorithms and data for modeling the Solar System are readily avail-
able in the literature and reasonably well understood.

� A model of the Solar System can be reused in many missions.

Thus, it was required to develop a visually appealing model of the Solar
System which could show as many aspects as possible of its contents and
structure. The program should be a fully integrated application in the ASH
VCR. It should allow active control with PIP interaction as well as remote
control for passive presentations.

Chapter 2

Modeling the Solar System

For centuries, the structure of the universe, and especially the Solar System,
has been the object of study by countless scientists. To show and explain
their results to colleagues and the general public, various forms of models
have been produced, from simple drawings on paper to delicate artwork with
clock drives of astounding accuracy in brass and gold.

Most of these models are of very limited size, e.g., printed in a book
or built to rest on a desktop, and show the Solar System as seen from the
outside.

But humans live on Earth, the third planet (counted from the Sun out-
ward) of the Solar System, thus raising demand for a model that gives an
�inside� look. Creating a correctly scaled model that can be walked through
by visitors was always much more demanding and costly, and faced the prob-
lem of having to model vast distances between the planets.

This chapter gives a short historical overview of the development of sky
simulations and gives some insight into the di�culties faced by the prospec-
tive model maker.

2.1 Historical Notes

The prime purpose for models of the Solar System is to demonstrate its
structure and the relative distances between the planets, which, until the
invention of the telescope (about 1608), could only be observed as moving
starlike points with unknown size.

When in 212 B.C.Marcus Claudius Marcellus conquered Syracuse,
one of the trophies he kept for himself was the �Sphere� of Archimedes,
a bronze device that showed the spheres of the planets in a framework of
moving circles which were probably even moved automatically by water-
driven engines and showed the planets in motion around the Earth. [Mei92]
This old conception of the world saw the cosmos as system of interlocked

14

CHAPTER 2. MODELING THE SOLAR SYSTEM 15

crystalline spheres surrounding Earth and carrying one planet each. The
outermost sphere was decorated by the stars.

The Syntaxis (better known by the title of its arabic translations, Al-
magest) of Alexandrine astronomer Claudius Ptolemæus (ca. A.D. 140)
describes Earth as immovable sphere in the center of the universe, with cir-
cular orbits carrying the planets surrounding Earth. The innermost circle
carries the Moon, then came Mercury, Venus, the Sun, Mars, Jupiter, Saturn,
and the outermost sphere of the �xed stars. To explain the observed strange
looping motions of the planets, a system of interlocked circles is used. In this
system, the planet's orbit (deferent) only carries the center of another circle,
the epicycle, on which the planet moves. All motions were circular motions
of constant speed, which was regarded the only possible form of motion for
celestial objects. Putting the center of the deferent outside Earth and adding
even more epicycles where necessary helped to explain remaining di�erences
between observation and computation. [Dre53]

The armillary sphere, an instrument with interlocked movable rings repre-
senting the celestial equator and the ecliptic, could be used as observing tool
and also to demonstrate the apparent daily motion of the sky and apparent
yearly motion of the Sun. Armillar spheres have a long history dating from
several centuries B.C. up to the 17th century. [Mei92]

Starting in the late 14th century, clockworks were constructed that could
not only show time and calendar dates, but also Moon phases and the po-
sitions of the planets. These clockworks made use of the best mechanical
models of the geocentric planetary system, which had been re�ned over the
past millennium, with excentric epicycles, oval gear wheels, etc., and reached
remarkable accuracy. [Mei92]

The year 1543 marks a milestone in the history of astronomy: Nicolaus
Copernicus published his De Revolutionibus Orbium Coelestium,
describing the heliocentric system, with the Sun in the center of the world
and the planets moving around the Sun1. However, because regular circular
motion was then still regarded as the only motion possible for celestial ob-
jects, Copernicus again had to use epicycles and excentric deferents to �t
the theory to the observations. [Dre53]

In 1596, Johannes Kepler, in his Mysterium Cosmographicum,
carefully tried to �t the spheres of the planet orbits into a framework of the
�ve Platonic bodies, reasoning the order by the respective body's �dignity�
(Figure 2.1).

Later, based on Tycho Brahe's exact observations of the planet Mars,
he had to give up circular orbits and found his famous three laws of planetary
motion, �nally abandoning the need for epicycles:

1
Copernicus was not the �rst astronomer describing this arrangement of the universe.

Aristarchus of Samos had proposed it already in the 3rd century B.C.

CHAPTER 2. MODELING THE SOLAR SYSTEM 16

Figure 2.1: Johannes Kepler tried to use the �ve Platonic Bodies to
model the planets' relative distances. [Bry18]

1. The planets orbit the Sun on almost circular elliptic orbits. The Sun
resides in one focus of each ellipse.

2. The radius vector from Sun to planet covers equal areas in equal time
spans. This means, when the planet is nearest to the Sun, it is also
fastest on its way.

3. The squared orbit periods of two planets relate to each other like the
cubed great semiaxes. p21 : p22 = a31 : a32

CHAPTER 2. MODELING THE SOLAR SYSTEM 17

Figure 2.2: Early Copernican Tellurium, completed around 1634 byWillem
Janszoon Blaeu, Netherlands. The Sun is represented as spike, an Earth
globe, surrounded by circles of an armillary sphere, rotates around the Sun.
Earth's axis keeps orientation, allowing a demonstration of the seasons.
[Mei92]

The third law, found much later than the �rst two, �nally allowed to deduce
accurate relative distances between the planets from observations of orbital
periods.

Mechanic models of that time (Figure 2.2) concentrated primarily on the
motion of the Earth around the Sun and the explanation of the seasons. The
models could be set into motion by hand cranks or clock drives.

Later models (Figure 2.3) included the Moon's motion around the Earth
and, �nally, the other planets and even moons of other planets, usually as
separate models (Lunarium, Jovilabe of Ole Rømer 1677), but sometimes
integrated in a full model of the Solar System. The Sun was sometimes

CHAPTER 2. MODELING THE SOLAR SYSTEM 18

Figure 2.3: James Ferguson's clock-driven Planetarium, London. Diame-
ter: 63cm [Mei92]

represented as lamp, allowing to see the illuminated sides of the planets and
explaining the phases of Mercury and Venus. [Mei92]

John Rowley's model, demonstrating the daily motion, seasons, lunar
phases and eclipses, built for the Earl of Orrery, is the name patron for these
machines in the Anglo-American world, which have been since then called
Orrery. [Mei92]

Since antiquity, models of the outermost sphere carrying the stars were
made from marble, metal or cloth covered wood. These celestial globes show
the stars as seen �from outside�, thus all constellations are depicted reversed
as seen from Earth. Interestingly, most sky atlases until about 1700 also
were drawn in this reversed style.

CHAPTER 2. MODELING THE SOLAR SYSTEM 19

Figure 2.4: The Gottorp Globe allowed up to 12 visitors an impression of
the night sky. The globe could be rotated to simulate the daily motions.
[Mei92]

To model the view �from the inside�, such a globe must be built large
enough for humans to enter it. In 1664, such a globe was completed for Duke
Friedrich III of Holstein and erected in Gottorp castle (Figure 2.4). The
constellations were painted on the inside wall, the stars were small silver or
gold balls. Similar globes were built until the early 20th century. [Mei92]

The invention of the projecting planetarium by Walther Bauersfeld
of Carl Zeiss in 1919 �nally combines the impression of the star globe with
a mechanic clockwork for planetary motion, showing all elements projected
on the inner wall of a dome and thus allowing to simulate the view of the sky
from every place on Earth for every historic date. The stars are projected
using holes of di�erent sizes in a metal sheet, producing light patches of
according size on the wall. To avoid unnaturalistic impressions by too large
patches, the brightest stars are projected with an extra projector. [Mei92]

The development of space exploration and space �ight also initiated fur-
ther development for simulations of celestial views. Starting in the early
1970s, computer controlled projection systems were developed which allowed
simulation of sky panoramas including the planets as seen from other loca-
tions in space.

CHAPTER 2. MODELING THE SOLAR SYSTEM 20

The new Hayden Planetarium in New York's Rose Center for Earth and
Space presents the current masterpiece in sky simulation [Mar00]. It com-
bines the latest model of the Zeiss IX planetarium projector, which uses
�ber optic to produce pinpoint-sized star images as seen from Earth, with
a Silicon Graphics Onyx2 computer-controlled Digital Dome system of
video projectors to produce views from practically any location in the known
universe.

For the average user of personal computers, countless desktop planetar-
ium programs have been developed in the last years. Many of them are lim-
ited to earth-based views, but some also allow to move in the Solar System
and even beyond. Development of a�ordable powerful graphics hardware for
the consumer market allowed ever more realism. Images, prepared by NASA
and others and obtainable from JPL's World Wide Web services, allow a
presentation of the planets and many of their moons with realistic surface
markings.

There are now even some sites on the World Wide Web which o�er online
information about the planets and provide simulated images as seen from
other points in space.

2.2 Modeling Distances and Sizes

Compared to the vast distances between the planets, the sizes of their bodies
are very small. A model of the Solar System scaled 1 : 1:000:000:000 would
cover the area of the city of Vienna, as presented by Oswald Thomas
(Figure 2.5) [Tho29, Tho56]. Using equal scale for distances and planet
diameters, Earth would be represented as only hazelnut-sized marble, o�set
150m from a model of the Sun with 1:4m diameter. Usually, therefore,
planets are modelled much larger in relation to their distances, so that details
remain visible at all.

Most planets also have moons, which should of course be included in the
model. This raises another problem: If we model the planet and moon bodies
with greatly exaggerated size but leave the distances to the moons in the
same distance scale as the rest of the system, the moons lie obviously notably
too near to, or even inside, their (enlarged) planets. If we use the exaggerated
scale also for the moons' distances, the moon orbits may reach far out to the
other planets! Thus, we either have to take a third, intermediate scale or
really carefully select the exaggerated scale to give at least some impression
of the bodies.

For example, the Copernican Planetarium, a detailed automated me-
chanical model of the Solar System, �nished in 1924 by Carl Zeiss for
the German Museum in Munich, allowed the explanation of planetary move-
ments in a room of 12m diameter. In this model, Earth orbits the Sun in
a circle of 4:43m diameter. Saturn's orbit would have a diameter of 42:45m

CHAPTER 2. MODELING THE SOLAR SYSTEM 21

Object Distance (m) Size (cm) Comparable Body

Sun � 139 Tractor wheel
Mercury 58 0.5 Small pea
Venus 108 1.2 Hazelnut
Earth 150 1.3 Hazelnut
Moon 38 cm fr. Earth 3.5 mm Tiny Pea
Mars 228 0.7 Pea

Asteroid 420 0.8 mm Millet-seed
Jupiter 778 14 Coconut
Saturn 1400 12 (Ring: 28) Coconut with thin LP record
Uranus 2900 5 Billiard ball

Neptune 4500 5.5 Billiard ball
Comet (tail) variable 16�160 m Room . . .House

Figure 2.5: A model of the Solar System, scaled 1 : 1:000:000:000, covering
the city of Vienna [Tho56]. The table gives sizes and mean distances of the
planets as modeled in the same scale, and an expressive comparison with
some well-known object. [Tho29]

CHAPTER 2. MODELING THE SOLAR SYSTEM 22

in this scale, but was modeled with only 11:25m diameter. Also, the globes
of Jupiter and Saturn are built similar in size to Earth's 12cm globe (which
itself is far too large in relation to its distance from center), instead of being
ten times larger! [Mei92]

For the naked eye looking into the sky, all planets just look like stars
added to the stellar background. Telescopes are required to see surface
markings or phase �gures. In planetarium systems, the planets are usu-
ally projected as small planet images as seen through a small telescope to
help the visitor to distinguish them from the background stars.

Current desktop planetarium programs give the user some options how
planets shall be presented. Either in natural scale (they will appear as star-
like dots), as color-coded dot, with a symbol, or fully-featured, and thus
highly exaggerated in scale.

Most programs showing the Solar System �from the outside� give an
impression of the relative sizes of the orbits. The planet sizes are widely
exaggerated to be able to see them, and usually the exaggeration is not
equal for the planets, given, e.g., the 62 : 1 size relation between Jupiter
and Pluto. Sometimes, the orbits are plotted in a logarithmic scale, e.g.,
in the National Geographic Society's online Virtual Solar Sys-
tem (see http://www.nationalgeographic.com/solarsystem/). However,
while this helps getting all orbits into a small image, it gives a very unnatural
impression of the Solar System's structure for the casual visitor.

Using a scalable VR model may free the creator of such a model from
some aspects of the problem. Getting a close-up look of the surface of an
interesting object does not require a microscope, we would just put that
object in focus and turn up the scale. To see surface features in an overview
with many objects that are physically too far apart to see details, selective
scaling can be used to increase the planets' sizes. The model could be built,
in principle, to appear very large, as long as the visitor can easily move
around so reach every point.

Of course, practically every form of fast �intuitive� movement will break
the laws of physics: moving from one planet to the next within seconds would
require travels faster than light. These problems, and the problem of image
delays due to signal time, are usually silently ignored in such models.

Chapter 3

Astronomical Aspects

The author has been interested in astronomy for many years. A few of the
astronomical aspects which went into the development of VRMoSS shall be
described in this chapter.

3.1 Astronomical Computing

3.1.1 Books and Data Sources for Astronomical Computing

In 1992, Seidelmann et al. published a revised edition of the 1961 edition
of the Explanatory Supplement to The Astronomical Ephemeris
and The Americal Ephemeris and Nautical Almanac, using new
astronomical theories and presenting new techniques for rigorous calculations
with computers. The astronomical constants used in VRMoSS were taken
from this source. [Sei92]

The current world authority for computation of planetary ephemerides

(tables of positions of astronomical objects) lies at NASA's Jet Propulsion
Laboratory (JPL). Their solutions to the positions of the planets, performed
by large-scale numerical integration and data-�tting to tens of thousands of
observations, provide positions to a few tens of meters' accuracy. A descrip-
tion of the details behind JPL's DE-200 theory can be found in Seidelmann.
[Sei92]

Belgian meteorologist Jean Meeus, who has been actively involved in
the �eld of astronomical computing since the early 1960s, presents with his
book Astronomical Algorithms [Mee91, Mee98] probably the best cur-
rently available compilation of frequently used astronomical computations,
including coordinate transformations, calculations around time and date,
planetary positions, etc. Meeus presents an analytic solution for the posi-
tions of the planets, the VSOP87 theory by P. Bretagnon and G. Fran-
cou. Its accuracy is not as high as that of the JPL ephemerides, but it can
be computed very fast and is su�cient for most astronomical applications,
including VRMoSS.

23

CHAPTER 3. ASTRONOMICAL ASPECTS 24

In 1999, Heafner [Hea99] presented a collection of algorithms with pro-
gram code in BASIC and C for various astronomical applications. Most
notably, he explains how to use the JPL ephemerides and provides com-
mented source code to access the �les in languages other than FORTRAN.
The sections most important for VRMoSS describe �nding an object's posi-
tion and speed from orbital elements and time inputs, and especially also for
the reverse operation: �nding an object's orbital elements, given its position
and speed and the time of observation.

3.1.2 Time

Civil time as it is used today is based on Universal Time (UT) or Greenwich
Civil Time1, which is coupled to the rotation of the Earth. The speed of this
rotation was considered invariable until the late 19th century. Research on
solar eclipses then showed an apparent acceleration in the Moon's angular
velocity around the Earth, which was compensated by empirical corrections

in the Lunar theories of that time. However, the invention of clocks with
ever higher precision have since shown that Earth itself does not rotate uni-
formly, but does slow down, due to tidal forces caused by the Moon and, to
a lesser extent, by the Sun. To make matters even more complicated, this
deceleration is irregular and unpredictable. Thus, UT is not a uniform time
scale.

For astronomical computations in the �eld of celestial mechanics, how-
ever, a uniform time scale is essential. The Ephemeris Time (ET), based
on planetary motions, which was used 1960�1983, was replaced in 1984 by
Dynamical Time (TD, sometimes DT), which is kept by atomic clocks.

Dynamical Time is the uniform time that appears in an object's equation
of motion. It always passes at the same rate, but, due to the e�ect of general
relativity, this rate is not equal for all observers.

We discern a Barycentric Dynamical Time (TDB) and a Terrestrial Dynam-
ical Time (TDT , later shortened to TT). However, the di�erence between
these times, always less than 0.0017 seconds, can be safely neglected for most
practical purposes. Details can be found in [Mee98] and [Hea99].

The exact value of the di�erence �T = TD � UT cannot be predicted,
but only derived by observations. Meeus [Mee98] gives a table for the
years 1620�1998, approximation formulae for the past and estimations for
the (near) future. So, to compute Earth's rotation with respect to the Sun,
one has to �nd �T for the given TD and adjust the rotation accordingly.
Currently, �T grows about one second per year.

1UT is frequently called Greenwich Mean Time (GMT). By de�nition, however, mean

time is measured from the superior transit of the mean Sun, which occurs at mean noon.
Thus, GMT and UT di�er by 12 hours!

CHAPTER 3. ASTRONOMICAL ASPECTS 25

3.1.3 Julian Day Number

The traditional civil way of specifying a instant of time, using a calendar that
breaks time into years (some of them leap years), months of unequal length
(and sometimes leap days inserted!), days, hours, minutes, and seconds,
is rather complicated to handle. For example, there is no year 0 in the
Julian Calendar used in common western historical literature2. However,
for astronomical purposes, a year 0 is accepted practice, and is equal to the
year 1 B.C., year �1 is 2 B.C., etc. Errors with handling these matters are
frequent and sometimes hard to �nd.

In the year 1582, Johann Justus Scaliger, to simplify date conver-
sions between calendars, most notably between the Julian Calendar and the
then new Gregorian Calendar, introduced a simple day count, which he named
after his father Julius: the Julian Day Number JD3. Using JD, an instant
of time can be speci�ed using a single number.

JD, as gladly accepted and used in astronomy, is the number of days
that have passed since noon of January 1st, 4713 B.C. = -4712 01 01 (Ju-
lian), 12:00 h UT 4. For instants of time given in TD, Julian Ephemeris Day

(JDE, sometimes JED) is used. Meeus [Mee98] gives simple algorithms
for conversion between JD and Gregorian and Julian Calendar dates.

3.1.4 Earth and Sun

The common use of time relates the day to the apparent daily motion of the
Sun over the sky, mirroring Earth's rotation around its axis. 24 hours after
the Mean Sun has crossed the meridian (stood highest in the sky, de�ning the
instant of Mean Noon), it again crosses the meridian.

However, Earth also has moved in space, and, re�ecting this motion, the
Sun has moved about one degree eastward in relation to the stars. This
means that it does not take full 24 hours for the stars to be in the same
position in the sky, but about 4 minutes less, or 23h56m4:1s.

Earth, by its rotation, de�nes a great circle on the celestial sphere: the
celestial equator. It is the projection of Earth's equator on the celestial sphere.

By its movement around the Sun, it de�nes another great circle: the
ecliptic, or zodiac. Mirroring this motion, this is the apparent path of the
Sun amongst the stars.

Earth's rotational axis is tilted from the normal to its orbital plane by
about 23:5 degrees. This angle is not perfectly constant, but changes very

2The Romans had no idea of the number zero, thus they always started counting with
one. Zero, and the indian-arabic way to write numbers, were only slowly introduced in
Europe starting in the 11th century.

3The term �Julian Date� should be avoided to prevent confusion with a date given in
the Julian Calendar, which is named after Julius Cæsar.

4Starting the count from noon helped avoiding errors with observations performed
during night times in Europe.

CHAPTER 3. ASTRONOMICAL ASPECTS 26

slowly. Celestial Equator and ecliptic, being great circles, necessarily inter-
sect each other at this angle at opposite points in the sky. Thus the Sun,
moving along the ecliptic, crosses the celestial equator twice during a year.

When the Sun reaches its southernmost point in the ecliptic around De-
cember 21st each year, this de�nes the beginning of winter in the northern
hemisphere (Winter Solstice). Crossing the celestial equator from south to-
wards north (around March 21st) de�nes the beginning of spring (Vernal
Equinox). Its arrival at the northernmost point (Summer Solstice) de�nes
the beginning of summer for the northern hemisphere, and the crossing into
the southern celestial hemisphere (around September 23rd), called Autumnal

Equinox, marks the beginning of autumn.
During the (north) summer half of the year, Earth's north pole is tilted

towards the Sun, thus the northern hemisphere receives more of Sun's radi-
ation. For a terrestrial observer on the northern hemisphere, the Sun stands
higher in the sky and is longer above the horizon. The north pole even is in
permanent sunlight.

In the (north) winter half of the year, Earth's south pole is tilted towards
the sun, the southern hemisphere receives more sunlight. The Sun's rays hit
the northern hemisphere at a very �at angle. For an observer on the northern
hemisphere, the Sun rises late, moves low in the sky, and sets early. The lack
of sunlight leads to a drop in surface temperature. The north pole receives
no sunlight at all.

A popular misbelief is that the seasons are related to the distance of the
Earth from the Sun. The interesting fact is that Earth is closest to the Sun
in early January, and farthest from the Sun in early July each year. However,
the eccentricity of Earth's orbit is so small that the di�erence in radiation is
insigni�cant and can safely be neglected.

3.1.5 Coordinate Systems

For positional astronomy, there are several spherical coordinate systems in
use, serving di�erent purposes. Earth is always seen as lying in the center of
a sphere of in�nite radius.

Horizontal Coordinates

An observer standing on Earth de�nes his own coordinate system: The hori-
zon de�nes a great circle. The angle between the north point on the horizon
and an observed object, as counted from north towards east, is called its az-
imuth5. The angular distance between horizon and an object on a great circle
perpendicular to the horizon is called altitude. The vertical axis, de�ned by
gravity, points up to the zenith, the point opposite the zenith, towards the
observer's feet, is called nadir.

5Some authors count azimuth from south. Care must be taken to avoid confusion!

CHAPTER 3. ASTRONOMICAL ASPECTS 27

Azimuth and altitude of a celestial object depends on the observer's lo-
cation (geographical coordinates), its real position in the sky and the current
rotational state of the Earth (which is, in fact, a function of time TD).

Sidereal Time

As described above, civil noon occurs (approximately) when the Sun crosses
the meridian. However, when we observe a single star, it will not return to
its apparent place after 24 hours, but it will be early by almost four minutes,
due to the fact that Earth has moved on its path around the Sun.

The interval it takes a star from one upper culmination (crossing the
meridian at highest altitude) to the next is termed one sidereal day. It is
exactly the time it takes Earth to rotate once around its axis with respect
to the stars, 23 hours, 56 minutes and 4.1 seconds.

If we de�ne a certain point on the celestial sphere as origin of a spherical
longitude system, each time this point reaches upper culmination can mark
the begin of a new sidereal day. Such a point has been used since antiquity:
the intersection between ecliptic and celestial equator, where the Sun on its
apparent yearly path crosses the celestial equator from south towards north.
The point is called, for historic reasons, First Point of Aries or Vernal Equinox,
and labeled with the symbol �, and is used as origin for both the equatorial
and ecliptical coordinate systems.

When the First Point of Aries crosses the local meridian, sidereal time
is zero hours. Sidereal time, due to its similarity with civil time, usually is
counted in hours, not degrees. Slightly less than a (civil) hour later, we have
one o'clock sidereal time, and so on.

Note that the year has about 365.25 solar days, but 366.25 sidereal days.
By going around the Sun, Earth loses a solar day each year.

Hour Angle

The Hour Angle of a celestial object is the interval on the sidereal time scale
that has passed since the upper culmination of its position. This makes
sidereal time equal to the hour angle of the First Point of Aries.

Equatorial Coordinates

The rotation of the Earth de�nes the Equatorial Coordinate System. The
projection of Earth's equator in the sky is called Celestial Equator. Objects
lying on the celestial equator have a declination Æ of zero degrees. Declination
is counted in degrees, positive towards the North Celestial Pole (Æ = 90Æ),
negative towards the South Celestial Pole (Æ = �90Æ).

The longitude coordinate is counted in hours, minutes and seconds from
the �rst point of Aries �: it equals exactly the sidereal time of the instant
of its upper culmination and is termed Right Ascension �.

CHAPTER 3. ASTRONOMICAL ASPECTS 28

The equatorial system is the most widely used system for stellar coor-
dinates. It is independent of the observer's location, and the computation
of its position for pointing a telescope towards the object is straightforward:
The object's hour angle is found by just subtracting its right ascension from
the current sidereal time. Aligning a telescope parallel to Earth's axis allows
to set it to the object's declination directly, and use the object's hour angle
as longitude coordinate! It was only required to adjust one telescope axis
to keep the object centered in the telescope's �eld of view, a process usu-
ally performed by a relatively simple mechanical clock running at a constant
speed. This has been astronomical practice for practically all astronomical
telescopes since the early 17th century. Of course, the necessity of mount-
ing ever growing telescopes parallel to Earth's axis, with no �exion in the
mechanical parts of the telescope, required the construction of very heavy
mounts, which made large instruments exceedingly expensive. Only starting
in the late 1980, the development of computer controls for very large instru-
ments allowed the construction of telescopes with the simpler altazimuth
mount. Nowadays, practically all new large telescopes are built with a com-
puter controlled altazimutal mount. Azimuth and altitude (for pointing a
horizontally mounted telescope) can be found by simple operations [Mee98].

Ecliptical Coordinates

The Ecliptic Coordinate System is de�ned by Earth's motion around the Sun.
The �equator� of this system is the ecliptic. Ecliptical latitudes � are counted
from the ecliptic (� = 0Æ) towards North Ecliptical Pole (� = 90Æ) and South

Ecliptical Pole (� = �90Æ).
Ecliptical Longitude � is counted in degrees along the ecliptic, starting, like

the equatorial coordinates, from the vernal equinox �, and going eastward.
Thus, the Sun's ecliptical longitude increases by about one degree per day,
and its passage through 360Æ = 0Æ marks the beginning of spring for the
northern hemisphere.

The ecliptical coordinate system is used mainly with objects of our solar
system. When dealing with coordinates in our solar system, however, the
spherical coordinates can be enriched with a radial distance r, usually given
in Astronomical Units AU6.

6The astronomical unit has been de�ned as the semi-major axis of Earth's orbit around
the Sun. It was a very convenient unit: astronomers could calculate distances without
actually knowing the real distances, using Kepler's third law (See page 16). In the 18th
and 19th centuries, several excellent estimates were performed by careful observations of
planet parallaxes (triangulation method). In the 20th century, radar allowed to make
measurements of unprecedented accuracy. The value has now been frozen to 1AU �

149:6 � 10
6
km.

CHAPTER 3. ASTRONOMICAL ASPECTS 29

These values can be easily transformed into right handed cartesian co-
ordinates, with the x coordinate pointing towards the Vernal Equinox �, y
pointing towards � = 90Æ, and z pointing towards ecliptical north:

x = r cos � cos �

y = r cos � sin� (3.1)

z = r sin�

Object coordinates in cartesian coordinates must always be given with
respect to a center. For Earth based observations, this must be Earth itself,
but the usual application for cartesian coordinates are values with respect to
the Sun. When building a model of the Solar System, heliocentric cartesian
coordinates are the natural choice.

Galactic Coordinates

The Sun is part of a huge disk, about 100:000 light years7 in diameter,
consisting of about a hundred billion stars: the Milky Way galaxy. The
Solar System lies tilted arbitrarily to the galactic equator. It is not easy to
determine this equator, as it is heavily obscured by dark clouds. A �rst
system of galactic coordinates, de�ned in the early 20th century, used the
intersection of what was the best guess on the galactic equator with the
celestial equator as starting point for galactic longitude l.

In 1959, a new system (System II) was introduced, based on a new de-
termination of the galactic equator by radio astronomy. The galactic center
is identi�ed by radio source Sagittarius A.

Galactic longitude lII is measured in degrees from the direction towards
the galactic center, in the same sense as right ascension. Galactic latitude
bII is measured in degrees as well.

This coordinate system is mainly used for applications of stellar statis-
tics, concerning the structure of the Milky Way. In the wider context, the
distribution of galaxies, quasars, etc., in the universe is also usually given in
galactic coordinates.

Precession

The orientation of Earth's axis seems to de�ne very neatly the equatorial and
ecliptical coordinate systems. However, Earth is not a sphere, but approxi-
mately a rotational ellipsoid. The Moon, on its orbit around Earth, as well
as the Sun, tugs on the equatorial bulge and tries to pull the Earth upright
from its 23:5Æ axis tilt. Like any other spinning top, Earth reacts by a side-
ways movement of its axis: Precession. Within about 26:000 years, Earth's

7One light year is the distance light travels during one Earth year, which is about
9:46� 10

12
km.

CHAPTER 3. ASTRONOMICAL ASPECTS 30

axis describes a complete conic rotation. This motion is re�ected in stellar
coordinates: all stars shift their positions by about one degree in 72 years,
or 5000 annually, in positive sense along the ecliptic, hence pre-cession.

Moreover, in addition to this lunisolar precession, the planets in�uence
Earth's orbit (planetary precession), therefore the ecliptic plane slowly rotates
around a line of nodes, currently at 4700 per century.

Because of this, all star maps and coordinates in general have to be
given with respect to a speci�ed date, the epoch. The current standard
epoch is designated J2000:0, equivalent to JD2451545:0 or January 1st,
2000, 12:00 TD.

3.1.6 Kepler Orbits

Kepler's laws of planetary motion (page 16) describe a special case of an
orbit under the in�uence of gravity: a large central mass, and a practically
massless body moving on an elliptic orbit, in one focus of which the large
mass resides.

The motion of the planets (and smaller bodies like asteroids and comets,
and also spacecraft when their thrusters are inactive) can indeed be approx-
imated with such orbits, as long as no great accuracy is needed.

The undisturbed orbit of a (massless) body around a central, massive
body can be described by six constants. The classical set of orbital elements
(Figure 3.1) consists of:

q pericenter distance, given in AU

e numerical eccentricity

i inclination with respect to some reference plane

! argument of pericenter

 longitude of ascending node

T time of passage through pericenter

When we describe the orbit of objects around the Sun, the reference plane
is always the ecliptic, the orbital plane of Earth. The pericenter, the point
of closest approach to the central body, is then called perihelion. The x-axis
in the cartesian heliocentric coordinate system points towards the vernal
equinox �, the y-axis points towards 90Æ ecliptical longitude, and the z-axis
points to the ecliptical north pole.

The ascending node
 is the ecliptical longitude of the point where the
body on its way around the Sun intersects the ecliptic plane from ecliptical
south towards north.

CHAPTER 3. ASTRONOMICAL ASPECTS 31

Figure 3.1: Illustration of the orbital elements that determine the orbit's
orientation in space. [Hea99]

The inclination i is the angle between the orbital and the ecliptic planes,
and is a value in the range [0Æ : : : 180Æ]. If the object moves around the
Sun in the same sense as the planets (direct or prograde motion; increasing
ecliptical longitude), inclination is smaller than 90Æ. If it appears to be in
a retrograde orbit around the Sun, this is expressed in the inclination lying
between 90Æ and 180Æ.

The argument of perihelion ! is the angle between the ascending node
and the point of perihelion, measured along the object's orbit. The name
argument is used to discern it from the term longitude of perihelion ~! = !+
,
which is sometimes given instead of !, especially if i is very small, and
thus di�cult to determine. For retrograde orbits, where i is near 180Æ, the
retrograde longitude of perihelion ~!r = ! �
 is then given.

These elements are, strictly speaking, only valid for the epoch (date)
which must therefore also be given. They describe the orientation of the
orbit in relation to the ecliptical system of some standard equinox, which
is currently J2000:0. The e�ects of mutual gravitational perturbations by
the planets become visible in changes in the orbit's shape and orientation.
Thus these elements, which are called osculating elements, describe the orbit
only at epoch time, and should not be used outside a limited range of dates,
depending on accuracy requirements. Changes in the elements can only be
computed by numerical simulation of the forces which act on the bodies.
Algorithms for the much simpler transformation of orbital elements between
equinoxes can be found, e.g., in [Mee98].

CHAPTER 3. ASTRONOMICAL ASPECTS 32

Figure 3.2: Shaded portion indicates actual orbit. The object is shown at
perihelion, ~! =
+ !. [Hea99]

These six elements are all that is needed for an object on an orbit, be
it elliptic (e < 1), parabolic (e = 1) or even hyperbolic (e > 1). This
generality is useful, because comets often move on orbits with these extreme
eccentricities. However, for asteroids, which orbit the Sun on orbits of usually
small eccentricity, frequently the orbit's large semimajor axis a is given instead
of q, and perihel passage T is replaced by giving a value for the object's mean
anomaly M for the epoch. M = 0 at epoch T .

The perihelion distance q can be calculated from a as

q = a(1� e) (3.2)

M is a �ctitious angle of the object measured in the plane of the orbit,
from the perihelion point to the body. M grows with a constant rate, the
mean motion n, which can be determined from a as

n =

r
�

jaj3 radians=day (3.3)

Here, a = q=(1� e)
� = k2(1 +m)
k = 0.01720209895 (Gaussian constant of gravitation)
m = Body's mass in fractions of mass of central body

Neglecting the body's mass in relation to the Sun's is a common safe ap-
proximation.

CHAPTER 3. ASTRONOMICAL ASPECTS 33

Figure 3.3: Vector P points toward the object's perihelion point. Vector Q
points 90Æ from P in the orbital plane. Here, because ! = 90Æ, Q also coin-
cides with the orbit's descending node. P and Q form an inertial reference
frame. [Hea99]

We begin the calculation of an object's position by computing two unit
vectors P and Q. P points from the Sun towards the perihelion point of
the orbit, and Q points 90Æ from P in the direction of the object's motion
(Figure 3.3). To avoid numerical problems with i near 0Æ or 180Æ, we use
the elements ~! = ! +
 and ~!r = ! �
.

Px =
1

2

�
(1 + cos i) cos ~! + (1� cos i) cos ~!r

�
Py =

1

2

�
(1 + cos i) sin ~! � (1� cos i) sin ~!r

�
(3.4)

Pz = sin! sin i

Qx = �1

2

�
(1 + cos i) sin ~! + (1� cos i) sin ~!r

�
Qy =

1

2

�
(1 + cos i) cos ~! � (1� cos i) cos ~!r

�
(3.5)

Qz = cos! sin i

Next, we need the quantities r sin � and r cos �, where r is the object's
distance from Sun and � is the true anomaly. The method of �nding those
values depends on the excentricity of the object's orbit.

CHAPTER 3. ASTRONOMICAL ASPECTS 34

Figure 3.4: Illustration of perihelion distance, true anomaly, semi-major axis,
and eccentric anomaly for an elliptic orbit. [Hea99]

Elliptical Orbits � Solving the Equation of Kepler

The mean anomaly M can be easily computed as given above. This angle is
zero at perihelion passage and grows by the angle of n each day. We now
need to determine the true anomaly � of the object. For this, we introduce
another auxiliary angle, the eccentric anomaly E (Figure 3.4). The Equation
of Kepler is then

E =M + e sinE (3.6)

This equation must be solved for E. Many iterative methods of solution
have been worked out since Kepler's time for this transcendental function.
The Laguerre-Conway method presented in [Hea99] apparently does not
always converge as fast as promised. Therefore we follow the method given
in [Mee91].

Starting with E0 =M , we compute

En+1 = En +
M + e sinEn �En

1� e cosEn

(3.7)

until En+1 � En to su�cient accuracy. All angles are expressed in radians.
Meeus demonstrates in [Mee91] that this solution is numerically unstable for

CHAPTER 3. ASTRONOMICAL ASPECTS 35

e > 0:975 and jM j < 30Æ. In these cases, instead of starting with E0 = M ,
we need a better initial value for E0, which can be found from:

� =
1� e

4e+ 0:5
(3.8)

� =
M

8e+ 1
(�� < M < �) (3.9)

z =
3

q
� + sign(�)

p
�2 + �3 (3.10)

s0 = z � �

2
(3.11)

s = s0 � 0:078s50
1 + e

(3.12)

E0 = M + e(3s� 4s3) (3.13)

The values r and �, or directly the required combinations can now be
obtained from

tan
�

2
=

r
1 + e

1� e tan
E

2
(3.14)

r = a(1� e cosE) (3.15)

r sin � = a
p

1� e2 sinE (3.16)

r cos � = a(cosE � e) (3.17)

Parabolic Orbits

In case of a parabolic orbit, the procedure is simpler. One way to proceed
[Mee98] starts with

W =
3k=
p
2

q
p
q

(t� T) (3.18)

where k = 0:01720209895 Gaussian gravitational constant
(t� T) time from perihel, days

and needs the solution of Barker's Equation

s3 + 3s�W = 0 (3.19)

We �nd

G =
W

2
(3.20)

Y =
3

q
G+

p
G2 + 1 (3.21)

s = Y � 1

Y
(3.22)

and the required �nal values by

� = 2atan s (3.23)

r = q(1 + s2) (3.24)

CHAPTER 3. ASTRONOMICAL ASPECTS 36

Near-parabolic Hyperbolic Orbit

Very rarely comets on orbits with eccentricities e > 1 appear: they move on
hyperbolic orbits. Meeus [Mee98] presents Landgraf's method, which is
based on Stumpff's Himmelsmechanik.

Start with computing s0 = tan �
2 with the algorithm for parabolic orbits

(3.22), and calculate

Q =
k

2q

r
1 + e

q
(3.25)

 =
1� e
1 + e

(3.26)

Then, with t the time from perihelion (days), iterate

sn+1 = Qt� (1� 2)
s3n
3

+ (2� 3)
s5n
5
� (3� 4)

s7n
7

+ � � � (3.27)

until sn+1 � sn. The true anomaly � and distance to the Sun are then

� = 2atan s (3.28)

r =
q(1 + e)

1 + e cos �
(3.29)

The State Vector

With values r sin � and r cos � determined, the position vector r and velocity
vector _r, which together are termed the state vector, can be calculated as

r = r cos �P+ r sin �Q AU (3.30)

_r =

r
�

p

�
(e+ cos �)Q� sin �P

�
AU=day (3.31)

where � = k2(1 +m) � k2 (neglecting the object's mass)
p = q(1 + e) semilatus rectum

3.1.7 Finding the Orbital Elements from the State Vector

Heafner [Hea99] presents a method to calculate the orbital elements from
the state vector [r_r], which, together with the state vector's epoch t, describe
the object's instantaneous position and motion around the Sun, but does
not describe any disturbations. The orbit determined by this process may
be termed instantaneous Kepler orbit.

CHAPTER 3. ASTRONOMICAL ASPECTS 37

Stump� Functions The following method makes use of the Stump� func-

tion cn(x), named after German astronomer Karl Stumpff.

cn(x) =

1X
k=0

(�1)kxk
(2k + n)!

k = 0; 1; 2; : : : (3.32)

Note that, e.g.,

c3(x
2) =

x� sinx

x3
c3(�x2) = sinhx� x

x3
(3.33)

We start by calculating the angular momentum vector:

L = r� _r (3.34)

Next, let

r = jrj (3.35)

L = jLj (3.36)

W =
L

L
(Unit vector) (3.37)

U =
r

r
(Unit vector) (3.38)

V = W �U (Unit vector) (3.39)

p =
L2

�
where � = k2(1 +m) (see Eq.3.3) (3.40)

� =
2�

r
� _r � _r (3.41)

Now, e and q can be determined directly from

e =

s
1� �L

2

�2
=

r
1� �p

�
(3.42)

q =
p

1 + e
(3.43)

For i and
, we need

� =
sin i sin

1 + cos i
=

W1

1 +W3
(3.44)

 =
sin i cos

1 + cos i
=
�W2

1 +W3
(3.45)

CHAPTER 3. ASTRONOMICAL ASPECTS 38

Then, with a function atan2(a; b), which gives the angle of tan a
b
in the

correct quadrant,

sin i =
2
p
�2 + 2

1 + �2 + 2
(3.46)

cos i =
1� (�2 + 2)

1 + �2 + 2
(3.47)

sin
 =
�p

�2 + 2
(3.48)

cos
 =
 p

�2 + 2
(3.49)

i = atan2(sin i; cos i) (3.50)

 = atan2(sin
; cos
) (3.51)

Next, with _r = _r �U and r _� = _r �V, we �nd

e sin � = _r

r
p

�
(3.52)

e cos � = r _�

r
p

�
� 1 (3.53)

from which we could �nd � = atan2(e sin �; e cos �), if this value was directly
required. Instead, we proceed with

z = tan
�

2
=

e sin �

e+ e cos �
(3.54)

cos � =
1� z2
1 + z2

(3.55)

sin � =
2z

1 + z2
(3.56)

P = U cos � �V sin � (3.57)

Q = U sin � +V cos � (3.58)

! = atan2(Pz ;Qz) (3.59)

To �nd the time of perihelion passage T , we de�ne

w = z

r
q

�(1 + e)
(3.60)

and approximate s with the �rst terms (k = [0 : : : 7] is enough) of

s = 2w
1X
k=0

(�1)k �
kw2k

2k + 1
(3.61)

CHAPTER 3. ASTRONOMICAL ASPECTS 39

Now we can use the Universal Kepler Equation

t� T = qs+ �es3c3(�s
2) (3.62)

and, using c3(:) (Equ. 3.33) and � (Equ. 3.41), solve it for T :

T = t� qs� �es3c3(�s2) (3.63)

3.2 Star Data

NASA's Astronomical Data Center (ADC) published several CD-ROMs with
astronomical catalogs.

A popular star catalog used in creation of planetarium skies is the Yale
Bright Star Catalogue, 5th edition, found on ADC's Selected As-
tronomical Catalogs, Vol. 1 [BG91].

Of the 9110 entries in the �rst edition (1908), 14 turned out to be novae
(explosive outbursts of much dimmer stars) or nonstellar objects, leaving
9096 stars which can be seen with the naked eye, making it an excellent
source for simulations of the night sky as seen from Earth (or from any
other location within the Solar System) without optical aids like binoculars
or telescopes.

The catalog provides, among other data, position data in equatorial and
galactic coordinates, data about proper motion, spectral classi�cation, color
indices (B�V), (U �B), and (R� I), where available, double/multiple star
information, cross references to other catalogs, and lots of annotations.

3.2.1 Astronomical Magnitudes

Since the times of Hipparchos (2nd century B.C.), the stars' brightnesses
have been described with magnitude values. The �rst stars that appeared
after sunset were said to be of ��rst magnitude�, then appeared stars of
�second magnitude�, and so on. The dimmest stars commonly visible with
the naked eye were classi�ed with magnitude 5.

In 1857, the English astronomer Pogson formulated a mathematical
description of the stellar magnitude scale [WZ71], which was �tted to the
classical system: The brightness di�erence between stars with radiation in-
tensities I1 and I2, which could be measured, e.g., with a photometer, is
given as

m1 �m2 = �2:5 log I1
I2

= 2:5 log
I2
I1

(3.64)

This logarithmic scale has been de�ned to �t the human eye's logarithmic
perception of brightness di�erences.

Solved for intensity ratio I1
I2
, this gives

I1
I2

= 100:4(m2�m1) (3.65)

CHAPTER 3. ASTRONOMICAL ASPECTS 40

Thus, two stars with a brightness di�erence of one magnitudo (mag) di�er
in (linear) intensity by 100:4 � 2:512, 2.5 mag di�erence correspond to a
brightness ratio of 1 : 10, and 5 mag di�erence describes a ratio of 1 : 100.
The brightest stars are now given magnitudes of zero and even negative
values. So, a star of �rst magnitude has only about 40% the brightness of a
star of zero magnitude.

3.2.2 Spectral Classi�cation

An attentive observer of the night sky can see a star not only as white
pinpoint, but often with a slight tint of color. Some stars are bluish-white,
some shine golden-orange, and a few show a distinct red.

In the late 19th century, this mystery was solved: the color represents the
wavelength of maximum intensity in the black-body radiation curve of the
star, depending on the star's surface temperature T (in Kelvin), as described
by Wien's Displacement Law:

�max =
0:002897756[m �K]

T [K]
(3.66)

The stars were classi�ed according to this maximum wavelength and by
other characteristical features in their spectra. The Harvard scheme classi�es
stars into spectral classes designated by letters O, B, A, F , G, K, M8. Each
class is further split into subclasses 0 : : : 9, so that, e.g., F9 is followed by
G0. Table 3.1 [Bur78] gives some details.

Class Temperature (K) Color
O 35000 blue-white
B 20000 bluish-white
A 10000 white
F 7000 yellow-white
G 6000 yellow
K 4000-4700 orange
M 2500-3000 red

Table 3.1: The most common spectral classes of the Harvard scheme

A roman letter (see Table 3.2) adds the luminosity class.
In this system, our Sun, with its surface temperature of about 6000K, is

classi�ed as G2V .
8This letter system started just by classifying the spectra after their characteristic lines

into groups A, B, C, etc. Later, some groups were joined, and the order was changed to
put the blue-white, hot stars �rst and the red, cool stars last. There are more classes,
W , R, N , S, which are used for stars with certain special characteristics. See general
astronomical literature for details.

CHAPTER 3. ASTRONOMICAL ASPECTS 41

Class Name
Ia Most luminous supergiants
Ib Less luminous supergiants
II Bright giants
III Normal giants
IV Subgiants
V Main sequence
VI Subdwarfs

Table 3.2: Stellar Luminosity Classes [Bur78]

3.3 Constellations

Since ancient times, people have ordered patterns in the night sky into �g-
ures: the constellations. Many of these constellations, mostly depicting the
animals of the zodiac and heroes of Greek mythology, are still in use today.

Until about 1800, these �gures were always included in stellar maps,
sometimes they were painted so colorful that they even obscured the stars
[Ses91].

The atlases of the 19th century usually still show �gures, but only slightly
sketched. Between the �gures, curved lines are used to separate the area of
sky that belongs to each constellation.

Today's atlases no longer show �gures. In 1930, the International Astro-
nomical Union (IAU) �xed the number of constellations to 88 and de�ned
the constellations' areas in the sky with rectilinear borders in the equatorial
coordinate system of equinox 1875. These borders are �xed in relation to the
stars9, thus they change with precession, so that they no longer are parallel
to the equatorial coordinate grid. These borders are now plotted in modern
sky maps.

Many popular maps also use simple straight line drawings which connect
the main stars into a �gure. There is no standard for these �gures, and great
care should be taken when inventing such a set of lines. H. A. Rey [Rey76]
shows the obvious di�erence between selections that help identifying the
constellation and selections that makes identifying the �gure practically im-
possible.

9It is possible for a star to change constellation: by its own proper motion in the sky.

Chapter 4

Tools

VRMoSS has been implemented using several tools, which are presented in
this chapter.

4.1 Open Inventor

4.1.1 Introduction

Open Inventor, originally developed in the early 1990s by Silicon Graph-
ics (SGI), is one of the de-facto standard toolkits for interactive 3D graphics
applications. It is an extensive C++ class library that allows object-oriented
graphics development [Wer94a].

Open Inventor is a set of building blocks that enables the programmer
to use the powerful features of modern graphics hardware without the need
of direct OpenGL programming. The library provides database primitives,
such as shape, transformation, property, group or engine objects, interactive
manipulators like trackball and handle box, and components like viewers, a
material editor, or a light editor, which can help in modeling scenes. There
is the Inventor 3D �le format, which is very similar to VRML 1.0, allowing
data exchange with other applications.

Open Inventor is independent of the used window system and operat-
ing system. Component libraries exist for the X Window System on UNIX
platforms and for Microsoft r Win32 platforms. Open Inventor has
been written in C++ and is most used with C++, but also includes C bind-
ings. In 2000, SGI decided to distribute their version under the open source
license. Recently TGS, who had further developed Open Inventor and
added a few extensions esp. for Win32 platforms, introduced Open Inven-
tor Version 3.0, also supporting Java.

Open Inventor allows the developer of a 3D graphics appplication to
think on a high level of abstraction. The scene objects (shape, transfor-
mation, light, color, texture, . . .) are kept in a scene database, and various

42

CHAPTER 4. TOOLS 43

actions, such as drawing, bounding box calculation, or interaction, e.g., pick-
ing an object with the mouse, moving or rotating an object, or animation,
can be performed on the objects. Rendering (image generation) is performed
by OpenGL calls, thus possibly using fast graphics functions implemented
in the graphics hardware. However, Open Inventor encapsulates the de-
tails, such as OpenGL function calls, inside the objects, so the developer
usually need not trace geometric transformation matrices or dive into details
of OpenGL like status bits, thus allowing him or her to concentrate on the
application.

A great number of classes for many di�erent general graphics applica-
tions is included with Open Inventor. However, where necessary, it is
possible to extend Open Inventor with derived classes, as documented in
the Inventor Toolmaker [Wer94b].

4.1.2 Concepts

Open Inventor is an object oriented toolkit. It provides a hierarchical
class tree with a few base classes and many derived classes. Some of the
most important classes shall be given here, details can be found in [Wer94a].

Scene Basic Types

Three dimensional computer graphics requires a few standard data types
and operations not directly supported in the C++ programming language.
However, by de�ning appropriate classes and operators, Open Inventor
adds Scene Basic Types, all named Sb..., like n - (n = 2, 3, 4) dimensional
vectors SbVecnx of type �oat (x =f), double (x =d) or short (x =s), 4 � 4
matrices SbMatrix, or �smart� SbString objects with numerous convenience
methods.

Scene Objects Class Hierarchy

Figures 4.1, 4.2 and 4.3 present a graphical representation of the class hier-
archy [Wer94a].

SoBase is the base class for SoFieldContainer, from which SoNodes and
SoEngines are derived. SoNodes include, e.g., camera, light, material, tex-
ture, text, transformation, coordinate, and shape nodes.

Fields are value containers for public access. Values of the appropriate
type (integer, �oat, strings, . . .) can be written into and read from the �elds.
It is possible to connect �elds so that if a �eld value is set, the connected
�elds take the same value.

CHAPTER 4. TOOLS 44

Figure 4.1: Open Inventor Class Tree Summary (1)

Node objects and the Scene Graph

Building a 3D scene in Open Inventor, as in many 3D graphic applications,
means designing a scene graph. The node objects are kept in a tree-like
structure, more precisely in a Directed Acyclic Graph (DAG). This means
that, searching from the root node, a single node may be reached on more
than one path from the root node while traversing in a left-to-right, depth-
�rst search, but loops in a path are not allowed.

There are three basic categories for the node classes:

Shape Nodes These de�ne an actual shape (e.g., SoCube, SoSphere, SoTri-
angleStripSet), SoNurbsSurface, possibly using coordinates or other
values like colors or textures speci�ed earlier in the scene graph.

Property Nodes de�ne properties like vertex coordinates (SoCoordinate3),
object appearance (e.g. SoMaterial, which de�nes, e.g., color or trans-

CHAPTER 4. TOOLS 45

Figure 4.2: Open Inventor Class Tree Summary (2)

parency values, or SoTexture2, which speci�es a 2-dimensional texture
map), or specify a geometric operation (SoTransformation classes).
Other nodes can in�uence various rendering settings, like SoDrawStyle
or SoComplexity.

Group Nodes are containers that collect other nodes into subgraphs.

The scene graph is used by applying Actions on it. An SoAction traverses the
tree in left-to-right, depth-�rst order. Each node has its own action behavior
for the di�erent subclasses of SoAction.

CHAPTER 4. TOOLS 46

Figure 4.3: Open Inventor Class Tree Summary (3)

Nodes can be searched by type or name with a SoSearchAction, or a
mouse click onto the object performed by the user, which is translated into
a SoPickAction. Both return a SoPath to the object which speci�es exactly
the path from the scene graph root to the found node, even in case of Shared
Instancing (reuse of a subgraph). Direct access to a node is also available via
the SoNode::getByName() method.

For rendering (image generation), the scene graph is traversed by a
SoGLRenderAction. Here, the traversal of property nodes may trigger a
change in the current OpenGL state (like SoMaterial, which sets, e.g.,
color or transparency values), or a geometric transformation, or is just the
de�nition of coordinate values (SoCoordinate3) for nodes that come after
the node which is just traversed.

SoCamera nodes de�ne cameras which can be used to render all objects
that come after them in the scene graph. The image is then usually displayed
within a SoXtRenderArea on the screen, or may be stored in a �le if created
with an SoOffScreenRenderer.

A SoSeparator (derived from SoGroup) encapsulates the state changes
performed by its children, so that nodes to the right of the SoSeparator do
not see the e�ects of, e.g., transformations or color changes done by child
nodes of the SoSeparator. Thus, a SoSeparator can be used to contain all
the properties for the shapes below it, and the whole sub-tree can be seen
as an entity. However, if an application designer frequently uses objects of
similar structure (say, all having a location in space, color, texture and shape
nodes), it is recommended to use a node kit.

References and Deletion Inventor nodes are created in the usual C++
fashion (new SoNode). However, deletion is performed automatically to sim-

CHAPTER 4. TOOLS 47

plify object management. Every node keeps a Reference Count. On object
creation, the reference count is zero. Adding a node N as child to a group
node G increments the reference count of N by one. Removing N from G decre-
ments N's reference count to zero and thus causes its deletion. (An object is
deleted only if the counter goes down to zero, or newly created objects would
immediately be deleted.) Nodes are also referenced if they are included in a
SoPath, and dereferenced when the SoPath is deleted.

If G is deleted, all reference counts of its children are decremented, and
former children with a new reference count of zero are deleted as well.

By manually referencing or unreferencing nodes, the developer can in�u-
ence this scheme and prevent unwanted deletions. The scene graph's root
node has to be referenced in this way.

Node Kits

To help in de�ning 3D-objects with all their properties without having to
build every object by inserting appropriate nodes at the right places, Open
Inventor provides Node Kits. These are special nodes with �elds de�ning
their children. The node layout (structure) of the object is de�ned in the
class constructor. Not all nodes de�ned here need to exist, but if they are
inserted, they are always inserted at the right places.

Sensors

Interactive graphics require response to events. Inventor Sensors can be used
to watch for various types of events and invoke a user-supplied callback
function when that event occurs.

Data Sensors respond to changes in the data of a node's �elds, in a node's
children, or in a path. For example, whenever the value in a �eld
changes, all attached SoFieldSensor's callback functions are scheduled
for execution.

Timer Sensors respond to certain time conditions, i.e., their callback func-
tions are scheduled when a certain time or intervall has passed.

Engines

To allow calculations and combinations of �eld values as well as contiuous
changes and complex animation in the scene graph, Open Inventor allows
to interlink node �elds with Engines. There are many prede�ned Arithmetic

Engines for creating vectors and matrices from scalar values and vice versa,
linear interpolation between two scalars, vectors and matrices, and a general
SoCalculator engine which can perform simple calculations by speci�cation
of formulae via character strings.

CHAPTER 4. TOOLS 48

Animation Engines can drive connected �eld values according to some
elapsed real time.

Triggered Engines use events in special input �elds (touching of a dataless
input �eld) to switch the values in their outputs.

There are also nodes with built-in engines. For example, an SoRotor is a
combination of an SoRotation node with a built-in SoElapsedTime engine.
It can be used for circular motion of, e.g., a wheel, where its speed �eld
de�nes the rotation speed. The rotation �eld will change its angular value.

Connections Every �eld can be connected to an engine output of appro-
priate type. If a connection is tried between inappropriate types, e.g., a
SoSFString is connected from an SoEngineOutput of type SoSFFloat, the
Inventor database tries to add a Field Converter which will, in this case, set
the string value to a string representation of the �oat value.

An engine output can be connected to any number of �elds. However,
a �eld can only be connected to a single engine output or other �eld. Its
value can still be set by other means. Whichever way the �eld's value was
set, the last entry �wins�. The collection of engines and �elds that are �wired
together� in the scene graph is termed Engine Network.

Connecting a �eld to an engine output increases the reference count of
the engine. Field-to-�eld connections do not change any reference counts.
An unreferenced engine with no connected outputs is deleted.

Evaluation For e�ciency reasons, engines do not perform their function
and set the values in the �elds connected to their outputs whenever the
inputs change. They only send an invalidation message to the connected
�elds. When a �eld value has to be used, but the �eld is marked invalid, it
will call the engine that feeds the �eld, which is then evaluated, thus setting
and revalidating the �eld.

4.2 Studierstube

Since 1996, the research group for Virtual Reality of the Institute for Com-
puter Graphics and Algorithms at Vienna University of Technology, in close
collaboration with Fraunhofer CRCG, Inc., in Providence, Rhode Island,
USA, has created an experimental environment for Augmented Reality: the
Studierstube (German for �study room�, where Goethe's famous char-
acter, Faust, tried to acquire knowledge and enlightenment). [SFH+00b]

Augmented Reality Virtual Reality (VR) in its most immersive form re-
places the real world by arti�cial, virtual objects and lets the user interact
with them. Many users of VR systems feel uneasy when they exchange the

CHAPTER 4. TOOLS 49

natural environment which surrounds them in reality for a virtual environ-
ment with objects that only appear visually, but not physically.1 VR's less
obtrusive sibling, Augmented Reality (AR), adds arti�cial objects to the real
world. The user can see the real objects together with virtual additions.

Studierstube is a development environment for experiments with many
aspects of augmented reality, from AR for single users to collaborative,
multi-user setups, experimenting with new user interfaces, interaction de-
vices, and di�erent output devices (HMDs, mono-/stereoscopic projection
screens, hand-held displays, etc.). While most VR and AR projects con-
centrate on a single application context, Studierstube provides a general
environment in which several AR applications can run in parallel, each in
its own 3D window. Data exchange between windows is possible, as is col-
laboration between several users. Computation load can be distributed over
several workstations.

Studierstube is based onOpen Inventor and provides a toolkit com-
prising numerous extension classes, mainly for 3D event handling and inter-
action, and a runtime framework, providing the necessary environment for
execution of Studierstube applications.

The following sections describe the parts of Studierstube which are
relevant for the development of VRMoSS. More details can be found in
[SFH00a, SFH+00b, SG97a, SG97b] and other Studierstube research pa-
pers available at http://www.studierstube.org.

4.2.1 The Original Studierstube

The original Studierstube setup is a collaborative augmented reality sys-
tem that allows several users, gathered in a laboratory room and equipped
with head-tracked see-through head-mounted displays (HMDs), to share a
virtual space that can be �lled with three-dimensional data. All visitors
see the data in the same spatial area, and can point out interesting areas
and discuss them in a natural way while still seeing each other. By walking
around, the data can be looked at from all sides (Figure 4.4).

4.2.2 Tracking

Tracking was originally implemented with a magnet �eld tracking system. It
consists of one magnet �eld emitter for the whole room and one magnet �eld
sensor per tracked unit. Each sensor can measure position and orientation
relative to the emitter. This technique allows to produce graphics that can be

1For example, when walking around in a room, wearing a helmet with a set of built-in
stereo eyeglasses (Head Mounted Display, HMD) and audio headset, which give the user
the impression of being in a di�erent location, the user's motions could be translated into
motion in that virtual world. However, the virtual world will very likely show walls or
other obstacles on places di�erent from the physical room the user walks in, and the user
may feel to be in constant danger of tripping over a real chair or bumping into a real wall.

CHAPTER 4. TOOLS 50

Figure 4.4: Two collaborators wearing see-through displays are examining a
�ow visualization data set. [SFH+00b]

presented in a user's HMD in the correct position and orientation. However,
magnetic tracking faces the problem of magnet �eld distortion near metallic
objects, and generally limited �eld size. Further and ongoing development
includes setups with optical tracking, where the HMDs (or other tracked
devices) are equipped with markers. The system uses video cameras and
�lters the markers' positions from the video images to deduce position and
orientation.

The raw tracker data are processed by an auxiliary system component,
the tracking system, usually running on a separate machine, and output in
multicast packets on a TCP/IP network, where all connected stations can
read and process the positional data to �nd camera positions and orienta-
tions, etc.

4.2.3 Interaction

The application is controlled with a novel two-handed interface device, the
Personal Interaction Panel (PIP). It consists of a light �at panel, made from
non-magnetic materials like wood, plastic or acrylic glass, and a pen with one
or two buttons. Both devices are also equipped with magnet �eld sensors

CHAPTER 4. TOOLS 51

(a) (b)

Figure 4.5: (a) X-ray lens � (b) The panel is used to position a clipping
plane that cuts away a portion from the volumetric scan of a human skull.
[SFH+00b]

which measure position coordinates and orientation in the same magnetic
�eld as the head-tracked devices, or markers in optical tracking setups.

The system includes graphical representations of pen and panel in the
augmented world, which are overlaid in the same position as the real objects
when seen through the HMDs. While the pen usually is just represented with
a similar pen, the panel is typically augmented with user interface elements
known from two-dimensional graphical user interfaces, like buttons, sliders,
or rotating dials, or novel 3D interaction widgets. These control widgets can
be activated with the pen by either just touching them, or by touching them
and pressing one of the buttons mounted on the pen. The overlaid graphics,
termed sheets, can be designed to �t the needs of the application, and several
switchable sheets can be used if necessary.

The haptic feedback from the physical PIP greatly helps the user when
interacting with the controls in the graphical overlay. Having a panel with
sliders in one hand, operating these sliders with the pen in the other hand
is regarded much easier than �nding a similar slider �oating somewhere in
3D space.

Besides interacting with the controls on the PIP, direct manipulation of
the scene is possible. The pen can be used, e.g., to point out interesting
locations and also to put marks in the scene, or to pick an object and rotate
or drag it to a di�erent location.

Replacing the pen with other artifacts opens the doors for numerous
applications. A brush can be used to paint scene objects, or a tool shaped as
�magnifying lens� can be used to provide a di�erent look on the scene, e.g.,
in a medical application, the lens may represent an X-ray viewer where the
user can look into a virtual body and see the skeleton (Figure 4.5 (a)).

The panel, on the other hand, can also be used for novel ways of interac-
tion. It can be used not only as carrier for conventional interaction widgets,
but also as separate hand-held display area, e.g., for �photos� taken with a
virtual camera mounted on the pen. One medical application working with

CHAPTER 4. TOOLS 52

Figure 4.6: Personal displays secure privacy when playing Mahjongg: the
left player cannot see his opponent's tile labels and vice versa. [SFH+00b]

data from computer tomography uses the panel even as slicing plane tool to
grab an image of a cross section through a patient's body, and the pen can
then be used to set marks on the image presented on the PIP (Figure 4.5 (b)).

Depending on the application, there may be either just one PIP set that
is physically transferred between users, or each user can have one, controlling
the application collaboratively. It is also possible to present the PIP sheets
depending on the user's role, e.g., in a collaborative game, the opponent's
PIP can be shown with details hidden to avoid cheating (Figure 4.6).

4.2.4 Studierstube Applications

Studierstube provides an application framework where applications can
be dynamically loaded for execution. Each application can have one or sev-
eral 3D windows, similar in concept to the multiple document interface on
common desktop systems. This feature has not been exploited in VRMoSS,
details can be found in the references mentioned above.

4.2.5 Setup Variants

Besides using head-tracked HMDs in a collaborative setup, which certainly
provide the most advanced setup for Studierstube applications, there are
other setups that can be used with the Open Inventor viewers that have
been developed in the Studierstube project.

Virtual Table The 3D content can be presented on a large horizontal or
tilted table with integrated video projector. Simple shutter glasses allow
collaborative operation with up to two users. Two images per user (one per
eye) are created and delivered to the screen in Field Sequential mode. The
shutter glasses are synchronized with the frame rate on the virtual table and
allow only the eye for which the image was rendered to see it. The other eye,
and both eyes of the possible second user, are blocked from view. A PIP
made from acrylic glass can be used in this setup, which allows even slightly
di�erent ways of interaction appropriate to the application.

CHAPTER 4. TOOLS 53

Stereo Projection For a single head-tracked user or multiple non-tracked
users, a passive stereo projection can be used. Two images are generated
and displayed with two video projectors through polarizing �lters, where the
polarization axes are set 90Æ apart. The users wear simple cardboard or
plastic goggles with polarizing �lters in appropriate orientation, so that the
images, which are overlaid on the screen, are �ltered and each eye gets only
one image.

Desktop VR If only CRT monitors are available, a �Fishtank VR� setup
can be used, where active stereo can be presented with shutter glasses.

Monoscopic setups The simplest setups, mainly used during application
development, consists of a monoscopic view inside one of Open Inventor's
standard viewers.

Passive stereo on a single monitor? Using a stereo Studierstube
viewer in vertical split mode on a single monitor allows stereoscopic viewing
by making use of a special viewing technique: The left eye's image is pre-
sented on the right half of the display, and the right eye's image on the left
half. Using the crossed-eyes technique, the user may be able to visually over-
lay the half images. However, this technique quickly leads to eye fatigue and
nausea for most users, and many people cannot align the images properly,
so this method cannot be recommended.

4.3 XML

Over the last years, XML (Extensible Markup Language) has evolved as
versatile and �exible standard for text document markup usable for a large
number of applications. Developed 1996�1998 as �light� version of SGML

(Standard Generalized Markup Language), it appears similar in structure to
HTML, but is not limited to a �xed, prede�ned set of tags describing text
formatting. Within a short period there appeared support for many popular
programming languages, especially Java and C++.

Development of XML and related standards is still in progress, with many
features to be developed. The following is a short description of the relevant
parts of XML used in the ASH project. More details can be found in [HM01].

4.3.1 De�nitions

XML is a meta-markup language, which means that the tags are not prede-
�ned, but can be de�ned by the application designer. This gives him or her
all freedom to give the tags meaningful names which �t in the context of

CHAPTER 4. TOOLS 54

the application, be it chemistry, second-hand cars, cooking recipes, music,
or poetry.

An XML document that conforms to the grammarmarkup rules of XML is
called well-formed. The grammar rules de�ne where tags may appear, which
names are allowed, how the markup has to be structured, etc. According
to the XML standard, an XML processor must stop and report an error as
soon as it �nds a well-formedness error, it is not allowed to try any form of
automatic correction.

An XML application is not a software application which can use XML,
like a web browser, it is an XML tag set which is used in a particular domain,
such as vector graphics, biographies, or HTML pages.

A Document Type De�nition (DTD) can be used to declare the tags per-
mitted in a certain XML application. XML documents that match the DTD
are called valid, those that don't match are invalid. The DTD syntax is lim-
ited to describe the document structure, names of tags and attributes and
the format of attribute values. Many other aspects, like range of allowed
values, cannot be speci�ed inside a DTD. The XML processor has to verify
those limitations in code. On the other hand, an XML document may not
need to be valid. Frequently, well-formedness is enough for being usable.

4.3.2 Document Structure

An XML document contains text, never binary data. Thus it can be read
by any program that can open a text �le, e.g., a text editor, and does not
require special XML editors.

An XML document consists of elements with optional attributes. The
designer of the XML application may select element and attribute names
according to the needs of the application.

An XML document should, but does not have to, start with an XML

header as very �rst line:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

This header serves two purposes: First, it declares the document to con-
sist of XML and declares the document to be coded in one of numerous
encoding systems. Second, programs capable of processing XML will look at
the �rst �ve characters (<?xml) of the document and will be able to discern
in which of the supported Unicode formats (variable-length UTF-8 or two-
byte UTF-16) the document is coded, and will also �nd the byte order for
the latter case. If no encoding is given, UTF-8, which is a strict superset of
pure ASCII, is taken by default.

The standalone tag indicates whether validation of the document re-
quires reading an external DTD �le or can be performed with an Internal

DTD subset given inside the XML document.

CHAPTER 4. TOOLS 55

Next, a valid document includes a Document Type Declaration, which is
a reference to a DTD to which the document should be compared. This
declaration can either point to an external DTD �le or can include the DTD
verbatim in square brackets. For example, the document type declaration
for an ASH mission looks like:

<!DOCTYPE mission SYSTEM "http://missionserver/ash/Mission.dtd">

Element and attribute names may contain any alphanumeric character
(even non-English letters such as ö or), underscore, hyphen and period
characters. Colons are allowed, but reserved to use as namespace separators.
A name may not start with a number, hyphen, or period. Names are case
sensitive.

An element starts with an angle bracket (<) and its name. Then fol-
low the attributes in name="value" pairs. Element and attribute names
are strings starting with a letter, optionally followed by more (lowercase)
alphanumerical and underscore characters. The attribute value is a string
always enclosed by single (') or double (") quotes. String delimiters within
the value string should be dealt with by using the according other delimiter
form (by enclosing a string containing a double quote with single quotes, and
vice versa) or using the escape sequences " for " and ' for '. The
characters < and & must be escaped by < and &, respectively. The
element declaration ends with a closing angular bracket (>). Then follow the
enclosed elements, which may consist of other structural elements or just
character strings. The element closes with the closing statement of the form
</element>. Thus, a complete element may look like

<element attribute1="value1" attribute2='The number "2"'>

<subelement1 att1="val1">

This text is part of subelement1.

<subsubelement attribute="value">

This text is part of the subsubelement.

</subsubelement>

More text in subelement1.

</subelement1>

<subelement2 attribute="value" /> <-- element is "empty" -->

</element>

If an element has no enclosed elements, it is called �empty� and needs
just one declaration of the form

<emptyelement attribute1="value1" attribute2="value2" />

A well-formed document has one root element, which may contain other
elements. The structure of an XML document allows it to be seen as one of
computer science's most common data structure: a tree.

CHAPTER 4. TOOLS 56

For database applications, con�guration �les and also for structured mes-
sages, an XML format with elements only having attributes and optionally
containing other elements, but without unstructured text inside them clearly
are most suitable.

4.3.3 Using XML in programs

A program using XML documents makes use of an XML parser. Instead of
implementing a parser from scratch, a developer may use one of several ex-
isting implementations of XML parsers. For the most common programming
languages, especially the object-oriented languages Java and C++, there are
a few implementations available, which are mostly free to use. Most of them
use one of two API models: The W3C Document Object Model (DOM) or
the Simple API for XML (SAX).

Document Object Model (DOM)

A program using the DOM (Document Object Model) will let its parser read
in a complete XML document. The parser builds a document object in mem-
ory which consists of a tree-like structure of element objects containing the
same structure and information as the XML document, and which then can
easily be acccessed to get information about elements and their attributes.

While very simple to use, problems can arise with very large documents
which have to reside in memory. Some DOM implementations require even
twice the amount of memory while the parser is running.

Simple API for XML (SAX)

The SAX (Simple API for XML) de�nes an event-based handling of XML
documents.

Originally developed for Java, SAX consists of a number of interfaces for
document handling. The interface de�nes callback methods which will be
called by the parser whenever an element or attribute has been read. The
application designer has to implement the methods de�ned in the callback
interface according to the needs of the application. Using this model, very
large documents can be handled without having to keep them in memory.

4.3.4 XML in ASH

XML is used within the ASH project in several places.

� The Missions are de�ned in AML, an XML application (see below).

� The ASH User Clients, implemented in MacroMedia Flash 5, read
con�guration �les on startup which specify con�guration data in XML
format.

CHAPTER 4. TOOLS 57

� Data exchange between the User Clients and the Mission Server (writ-
ten in Java) uses messages in XML format.

� VRMoSS uses similar messages for receiving commands and sending
status messages to the Mission Server Base. This would also allow
direct communication between the VRMoSS and a special Flash GUI
client, or some other client.

ASH Mission Language (AML)

Missions are de�ned in AML, the ASH Mission Language, an XML appli-
cation, which is used by the Mission Object's DOM parser during mission
startup. As practical example of the above short introduction to XML, the
DTD speci�cation of AML, Mission.dtd, shall be presented here:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Document Type Declaration (DTD) for an ASH mission.

This specifies AML, the ASH Mission Language, an XML application.

AML files are processed by the Mission load() method.

Author: GZ Georg Zotti, TU Vienna, Institute for Computer Graphics

Version 0.0 April 10, 2001 GZ Initial version.

Version 0.1 April 12, 2001 GZ added defaultResultUrl to transition,

changed attribute order a bit.

Version 0.2 April 19, 2001 GZ added version, description.

Put DefaultResultsUrl in episode, not transition.

Version 0.3 April 20, 2001 GZ added task name. Selection Phases cancelled.

Version 0.4 April 23, 2001 GZ Task needs duration. Phase duration removed.

Only one Task/Phase allowed

Version 0.5 Sept. 26, 2001 GZ Added time, ttime, speed attributes for phases

Use:

<!DOCTYPE mission SYSTEM "url-path-to/Mission.dtd" >

-->

<!-- mission is declared with default namespace for all its elements -->

<!ELEMENT mission (description?,episode+)>

<!ATTLIST mission xmlns CDATA #FIXED "http://www.ashproject.org/ASH"

name CDATA #REQUIRED

baseUrl CDATA #REQUIRED

version CDATA #IMPLIED

>

<!-- A description can be given about the mission.

This description could be presented in a mission selection menu.

-->

<!ELEMENT description (#PCDATA)>

<!-- The episode defaultResultUrl should contain the sum of all task defaultResults. -->

<!ELEMENT episode (transition, phase*)>

<!ATTLIST episode name CDATA #REQUIRED

defaultResultsUrl CDATA #IMPLIED

>

<!-- Each episode has exactly one transition, presented for all visitors at

CHAPTER 4. TOOLS 58

the screen indicated by station. All other screens will show e.g. mission logo.

An episode should also have phases. If not, only the transition will be available.

-->

<!ELEMENT transition EMPTY>

<!ATTLIST transition name CDATA #REQUIRED

station (bigscreen | islandscreen | localscreen) #REQUIRED

url CDATA #REQUIRED

>

<!-- phase. Duration has to be calculated as max(Task.duration+Task.delay)

A phase is only a container for all tasks to be presented at the stations.

time shall be a date string "YYYY:MM:DD:HH:MM:SS" representing UT of phase start

ttime is a similar string representing the date of the nearest important event,

say launch, thruster firings maneuvers, etc.,

to allow the famous "T-minus" notation.

speed indicates time lapse. 1=realtime, 86400=1day/second, etc.

-->

<!ELEMENT phase (task+)>

<!ATTLIST phase name CDATA #REQUIRED

time CDATA #IMPLIED

ttime CDATA #IMPLIED

speed CDATA #IMPLIED>

<!-- task: duration: seconds. Duration of the media content.

station: indicates where media output goes:

bigscreen, islandscreen[12], island[12]wp[123]

url: points to the medium (Flash file, MPG movie, ...)

defaultResultsUrl: URL that points to an XML file with default results.

may be used in case of automatic evaluation or

if student cowardly escapes from task

Meaningful obviously only for workplace stations.

delay: time delay from phase begin.

-->

<!ELEMENT task EMPTY>

<!ATTLIST task name CDATA #IMPLIED

duration CDATA #REQUIRED

station (bigscreen | islandscreen1 | islandscreen2 |

island1wp1 | island1wp2 | island1wp3 |

island2wp1 | island2wp2 | island2wp3) #REQUIRED

url CDATA #REQUIRED

defaultResultsUrl CDATA #IMPLIED

delay CDATA #IMPLIED

>

Mission Files

ROOTSMission.aml shows the layout of the mission that is developed for the
P-VCR. It references Mission.dtd in the <!DOCTYPE statement, so that a
verifying XML parser can check if the structure of the AML �le conforms to
the AML rules:

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!-- This is the prototype layout for the ROOTS mission

Authors:

GZ Georg Zotti, TU Vienna, Institute for Computer Graphics

History:

CHAPTER 4. TOOLS 59

V0.0 April 11, 2001 GZ Based on the January storyboard draft.

V0.1 April 12, 2001 GZ adapted to Mission.dtd V0.1

V0.2 April 19, 2001 GZ adapted to Mission.dtd V0.2. Added description.

V0.3 April 23, 2001 GZ adapted to Mission.dtd V0.4. Added task duration.

V0.4 April 25, 2001 GZ completed conforming to spec 4.7.0,

added baseUrl, filled in dummy URLs

V0.5 Sept. 03, 2001 GZ Phase needs date and speed to synchronize solar system

Make sure to configure the first 2 lines correctly!

-->

<!-- !DOCTYPE mission SYSTEM "http://missionserver/ASH/Missions/Mission.dtd" -->

<!DOCTYPE mission SYSTEM "Mission.dtd" >

<mission name="ROOTS" baseUrl="http://missionserver/ASH/Missions/ROOTS/">

<description>

ROsetta Observing The Solar System.

Prototype mission for the ASH Project.

This mission is related to the ESA Rosetta mission. Driven by the

search for pristine material to study for traces of life in space, the

mission includes selecting observation targets, preparing and

launching a spacecraft, controlling its trajectory, deploy landers on

Mars and an asteroid during fly-by maneuvers, and rendez-vous with a

comet plus a final landing there.

</description>

<episode name="Episode 1 -- Introduction: Formation of the Solar System"

defaultResultsUrl="ep01/dResults.xml" >

<transition name="Transition1" station="bigscreen" url="ep01/transition.html" />

<phase name="FindPristineMaterial" >

<task duration="120" station="bigscreen" url="ep01/Intro01.mpg" />

<task duration="150" station="islandscreen1" url="ep01/Intro-i1.swf" delay="120"/>

<task duration="150" station="islandscreen2" url="ep01/Intro-i2.swf" delay="120"/>

<task duration="240" station="island1wp1" url="ep01/taskPristineMaterial.swf"

defaultResultsUrl="ep01/taskPristineMaterial-dResults.xml" delay="120" />

<task duration="240" station="island1wp2" url="ep01/taskPristineMaterial.swf"

defaultResultsUrl="ep01/taskPristineMaterial-dResults.xml" delay="120" />

<task duration="240" station="island1wp3" url="ep01/taskPristineMaterial.swf"

defaultResultsUrl="ep01/taskPristineMaterial-dResults.xml" delay="120" />

<task duration="240" station="island2wp1" url="ep01/taskPristineMaterial.swf"

defaultResultsUrl="ep01/taskPristineMaterial-dResults.xml" delay="120" />

<task duration="240" station="island2wp2" url="ep01/taskPristineMaterial.swf"

defaultResultsUrl="ep01/taskPristineMaterial-dResults.xml" delay="120" />

<task duration="240" station="island2wp3" url="ep01/taskPristineMaterial.swf"

defaultResultsUrl="ep01/taskPristineMaterial-dResults.xml" delay="120" />

</phase>

</episode>

<episode name="Episode 2 -- Selection of target"

defaultResultsUrl="ep02/dResults.xml">

<!-- Only a transition will be implemented for the prototype ASH VCR -->

<transition name="Ground Based Observation of Comets" station="bigscreen"

url="ep02/transition.html"/>

</episode>

<!-- OTHER EPISODES OMITTED -->

<episode name="Episode 9 -- The Comet" defaultResultsUrl="ep09/dResults.xml">

<transition name="The Comet" station="bigscreen" url="ep09/transition.html"/>

<phase name="Orbit Insertion"

CHAPTER 4. TOOLS 60

gdate="2011_10_12 12:00:00" speed="1"> <!-- real time speed! -->

<task duration="300" station="bigscreen" url="ep09/orbitIntro.mpg" />

<task duration="300" station="islandscreen1" url="ep09/orbIntroIs.mpg" delay="200"/>

<task duration="300" station="islandscreen2" url="ep09/orbIntroIs.mpg" delay="200"/>

<task duration="240" station="island1wp1" url="ep09/orbit.swf"

defaultResultsUrl="ep09/orbit-dResult.xml" delay="500" />

<task duration="240" station="island1wp2" url="ep09/orbit.swf"

defaultResultsUrl="ep09/orbit-dResult.xml" delay="500" />

<task duration="240" station="island1wp3" url="ep09/orbit.swf"

defaultResultsUrl="ep09/orbit-dResult.xml" delay="500" />

<task duration="240" station="island2wp1" url="ep09/orbit.swf"

defaultResultsUrl="ep09/orbit-dResult.xml" delay="500" />

<task duration="240" station="island2wp2" url="ep09/orbit.swf"

defaultResultsUrl="ep09/orbit-dResult.xml" delay="500" />

<task duration="240" station="island2wp3" url="ep09/orbit.swf"

defaultResultsUrl="ep09/orbit-dResult.xml" delay="500" />

<task duration="45" station="islandscreen1" url="ep09/orbResult.swf" delay="740"/>

<task duration="45" station="islandscreen2" url="ep09/orbResult.swf" delay="740"/>

</phase>

<phase name="Land Probe" >

<task duration="240" station="bigscreen" url="ep09/lnd3IntroBig.mpg" />

<task duration="240" station="islandscreen1" url="ep09/lnd3IntroI.mpg" delay="150"/>

<task duration="240" station="islandscreen2" url="ep09/lnd3IntroI.mpg" delay="150"/>

<!-- OTHER TASKS OMITTED -->

</phase>

<!-- OTHER PHASES OMITTED -->

</episode>

<episode name="Episode 10 -- Summary and Discussion">

<!-- This episode will not be implemented for the prototype ASH VCR -->

<transition name="What we have learned" station="bigscreen"

url="ep10/transition.swf"/>

</episode>

</mission>

4.4 Advanced Rendering Toolkit (ART)

Software libraries from the Advanced Rendering Toolkit (ART) [TW+01],
developed by the research group for photorealistic rendering at the Institute
of Computer Graphics and Algorithms, were used in early experiments to
create a natural looking star map which could be used as texture map on a
sphere. Later, the stellar background was changed to an Open Inventor
SoPointSet. Commands from the ART libraries were again used to calculate
the color values for the stars.

Chapter 5

Implementation

5.1 The Solar System Model inside the ASH VCR

A virtual model of the Solar System has been chosen by the ASH consortium
for several reasons:

� Presenting a model of the Solar System immediately gives a good im-
pression over the structure, parts and relative positions of the objects
inside: the Sun, nine planets, their moons, the asteroid belt, and se-
lected asteroids and comets. Therefore, it can serve as a common in-
troduction episode for every mission scenario, where the students will
be presented basic facts of general interest.

� Most space science missions are satellite observatories orbiting Earth.
Every space exploration mission leaving Earth orbit currently (and, it
should be safe to say, for long times to follow) is reasonably con�ned
to a target lying within the Solar System1. So, to understand what
scientists are doing in space exploration, we have to see where we go.

� A model of the Solar System can be used to visualize the spacecraft's
�ight path through the planets' realm, and can help to explain why
spacecrafts often take many years to reach their goals, and why there
are �launch windows�, i.e., sometimes rather short time spans where a
space mission must be launched to be able to �y by intermediate targets
(planets, asteroids) to gain speed, change the spacecraft's direction
towards the �nal targets, and increase scienti�c output by observation
of that intermediate target.

1The missions Pioneer 10, Pioneer 11, Voyager 1 and Voyager 2, all have left the
area of the Solar System where the large planets reside. However, their primary targets
were the outer planets of our Solar System, and they will have long stopped operation
when they reach neighboring stars.

61

CHAPTER 5. IMPLEMENTATION 62

5.1.1 Requirements for ASH

VRMoSS will represent the central Bigscreen application for the ASH Vir-
tual Control Room, shown on a large (about 3 � 2m) screen in a back pro-
jection setup.

It should give a vivid impression of the Solar System, allowing to get an
impression of its structure (planet orbits, asteroid belt) as well as getting
closeup views of single objects. For the ROOTS mission, the �ight of the
Rosetta spacecraft had to be included, and a realistic comet model had to
be presented.

The model should support intuitive exploration and looking for task so-
lutions as well as passive presentations. Therefore, it is used in two operation
modes:

Exploration Mode Interactive control of the presented scene with the Per-
sonal Interaction Panel (PIP)

Demonstration Mode Automated demonstrations by commands sent via
the Mission Server

5.1.2 Studierstube for VRMoSS

Given the extensive set of components, Open Inventor and the Studier-
stube API were the natural choice for the development of VRMoSS.

VRMoSS Setup

The ASH VCR is an environment for dozens of temporary visitors. For
hygienic reasons, it was early decided not to use head-tracked HMDs, but
only a stereo projection setup with simple discardable cardboard goggles.
This also has the advantage that all visitors can share the stereo impression
at the same time.

Mainly for cost reasons, at least the P-VCR uses only a single PIP set.
This of course might pose a problem when all students of a school class want
to take over control. The storyboard should come up with a solution for
this, maybe by rewarding students with some time at the PIP. It has yet to
be decided whether a C-VCR could possibly provide a PIP per island.

The program runs on the ASH VCR Bigscreen client, a high-end dual-
processor PC running the Microsoft r Windows 2000 operating system.
An NVidia GeForce 2MX Twin View graphics board drives two bright
LCD projectors in a passive (polarization) stereo back-projection setup. The
screen consists of a special material which does not destroy the polarization.

CHAPTER 5. IMPLEMENTATION 63

The ASH PIP

The ASH PIP was cut from orange acrylic glass in a form to �t the left half of
the letter A in the ASH logo. The screen representation re�ects the outline
of the form with a thin line in the ASH design's orange, and is transparent
elsewhere.

The pen is similar to the default Studierstube pen, but colored to
�t the ASH design. The physical pen comes with the Polhemus 3space
IsoTrak II magnet tracker system used in ASH and has one button.

5.1.3 XML for VRMoSS

Because XML is used in other parts of ASH (see section 4.3.4), the commu-
nication messages between VRMoSS and the ASH Mission Server should
be formatted in XML.

VRMoSS makes use of the Xerces-C++ libraries, version 1.5.0, pro-
vided by the Apache project (http://xml.apache.org). The messages,
which consist of short strings with single empty XML elements, are read
from a network socket into a character bu�er, fed to a DOM parser, and the
returned DOM document object is analyzed to access the message contents.

5.2 Look and Feel

The ASH VCR setup with passive stereo on the Bigscreen is obviously less
immersive than a Studierstube setup with HMDs. All visitors of the VCR
see the same image, and best stereo impression will be along the symmetry
axis of the Bigscreen. The screen shows a full screen image without a frame
or menu (Figure 5.1).

The PIP user is positioned in front of the screen, near the optical axis.
The scene on the screen represents a window into the Solar System. The
stereo setup is adjusted so that the object which is presented in focus seems
to hover at about eye level height in front of the screen. The background,
like stars, constellations, the Milky Way, appears behind the plane of the
screen.

The point of interest lies about halfway between the user and the screen.
Interesting objects of the Solar System are brought into this point by select-
ing the respective object with a (virtual) button mounted on the PIP. The
object will stay in the point of interest even if it is moving in the scene, e.g., a
planet moving around the Sun. The whole scene will be shifted accordingly.

The pen can be used to rotate and slightly shift the scene. Pointing the
pen into the scene (keeping it o� the PIP) and pressing the pen button locks
the scene to the pen. When the user turns and moves the pen, the scene
turns with it.

CHAPTER 5. IMPLEMENTATION 64

Figure 5.1: The Solar System. This overview shows orbits of the planets,
several asteroids and comets (blue), and the path of the Rosetta spacecraft
(green)

The calendar date and time (DT , see section 3.1.2) is shown on the PIP.
The PIP is the only place where arti�cial objects like sliders or buttons,
or text not directly used as object labels, may appear. The user interface
presented on the PIP can be used to switch between objects to display, and
to in�uence other aspects of the presentation. The PIP allows selection of
several sheets with di�erent controls. The �rst PIP sheet contains the main
controls:

� The Sun, planets, comet and spacecraft are presented in a row of but-
tons of the respective shapes. Larger planets are represented by slightly
larger buttons.

The user can use the pen to point into a planet button, which is lighting
up. Pressing the pen button will bring the selected object into the point
of interest.

� The speed slider is used to in�uence simulation speed. It allows to
set simulation speeds between �1000 and +1000 calendar days per
animation second. The settings are translated in a logarithmic scale,

CHAPTER 5. IMPLEMENTATION 65

therefore slow speeds can be controlled with very �ne resolution: if
needed, speed can be set to less than one calendar second per animation
second.

This allows presentation of fast processes like rotation of the planets
and very slow processes like the orbit motion of the outer planets,
which take up to many decades for a single tour around the Sun.

� The scale slider provides global scaling of the whole Solar System
model. It allows to show the Solar System in overview as well as
zooming into a small object like a comet.

� The planet scale slider allows to enlarge the planets when the Solar
System is shown in overview. The planets are so small in relation to
the distances between them that this feature seemed to be necessary
to see more than single pixels of the planet in overview.

The second PIP sheet shows additional setting options:

� Constellation lines (stick �gures) can be shown to help identifying the
constellations.

� The constellations can be labelled in several styles: The IAU 3-letter
abbreviations, full names in Latin, or full names in English.

� A painted celestial map from the 17th century, with the classical mytho-
logical characters of the constellations, can be shown.

� Up to 10000 asteroids (small planets, planetoids) can be added. These
are represented by simple points at correct positions. The asteroid belt
appears as toroidal region �lled with objects, and the Troian groups,
asteroids gravitationally locked in Jupiter's orbit, can be seen. With
greater simulation speeds, di�erences in orbital speed become obvious.

The asteroids usually should be shown only temporarily, because sim-
ulation of many asteroids can severely a�ect performance.

� The transparency of the planets' orbits can be controlled from invisible
to opaque.

� The ecliptic can be presented as red dotted line within the stellar back-
ground.

Other PIP sheets may be added depending on the mission scenario.

CHAPTER 5. IMPLEMENTATION 66

5.3 The Software Components of VRMoSS

The VRMoSS is the only interactive stereo component in the ASH VCR,
thus it was not necessary to exploit the capabilities of dynamical loading of
several applications. VRMoSS has been developed as standalone application
making use of some elements of the Studierstube API, namely a UserKit,
providing pen, PIP and display de�nitions for a single user, and a customized
DragKit which contains the whole scene content.

VRMoSS has two main scene parts: the Solar System and a star sphere
around it. All objects are represented as specialized node kits, which al-
lows to think in higher level building blocks and simpli�es object instantia-
tion. Most node kits in VRMoSS have matching private engines which,
once connected to a application-central timekeeping node (a �eld in the
MainController), automatically put their moving objects into the right
places.

Following is a detailed description of the components of VRMoSS. Be-
fore explaining the implementation of the visible parts of the application,
some basic items for timekeeping and application control have to be de-
scribed.

5.3.1 Classes for Double Precision Computations

Open Inventor has no native support for double precision computations.
For astronomical computations, especially for time keeping with the simple
JD count (see section 3.1.3), it was necessary to create a Field which can
contain double values.

The Inventor Toolmaker [Wer94b] delivers an example implementa-
tion for such a �eld, SFDouble, which was adequate for VRMoSS.

To allow automatic conversion betweens �eld values, e.g., to connect a
numeric �eld to a text output �eld, Field Converters had to be implemented.
SFDoubleConverter connects a �eld or engine output of class SFDouble to
an SoSFFloat or an SoSFString �eld, while SoSFFloatSFDoubleConverter
can feed an SFDouble �eld from an SoSFFloat �eld or engine output.

5.3.2 The Main Controller

The MainController is the central control node of VRMoSS. It is the �rst
node of the scene graph, supplies the moving scene objects with a central
DT time value (see sections 3.1.2 and 5.3.3) via its jde �eld and provides
numerous other �elds which, by connection to other parts of the application,
a�ect many issues of presentation. The control �elds are connected to the
interface widgets on the PIP, with a possible conversion engine in between.
The scene is in�uenced by direct �eld connections, forwarding the settings
performed on the PIP, by commands called by a PIP button callback (or

CHAPTER 5. IMPLEMENTATION 67

keypress callback, when keyboard interaction is used), or by commands called
by the XML processor (see section 5.3.10).

5.3.3 Keeping Time

As is common in astronomical applications, time is internally handled by the
MainController by using the Julian Day Number JD (see section 3.1.3).

The time in VRMoSS is provided by the MainController by adding the
time which has elapsed since the last time update, multiplied by the value
in the jdeSpeed �eld, to the value in the jde �eld. This �eld is of type
SFDouble to allow sub-second time resolution. This process is performed as
sensor callback on the elapsed time �eld, so it is called whenever the Open
Inventor scheduler processes callbacks pending in the idle queue.

To show the current instant of time on the PIP in common date for-
mat with year, month, day, hour, minute and second, a custom engine,
DecomposeJDEngine, was created. It has an input, jdIn, and separate
outputs year, month, day, hour, minute (all of type SoSFShort), second
(SoSFFloat), and dateString (SoSFString), which is the output for a print-
ed date representation which �ts the ASH design. Two more inputs can be
used to �ne-tune the string: monthStrings (SoSFBool) can be used to de-
cide whether the months should be printed as numbers (FALSE) or 3-letter
abbreviations (TRUE). The input timeLabel (SoSFString) contains the time
system in use, which will usually be DT. If UT is provided (see section 3.1.2)
and/or time zone corrections are made before feeding the JD into jdIn,
timeLabel should be set to UT or the respective zone designation. Default
is DT.

5.3.4 Switching Visibility

Many slider controls on the PIP are used to show various parts of the scene,
like orbits or constellation lines, in di�erent �brightnesses�, which is ac-
tually implemented by changing the part's material transparency. When
such a part's is set fully transparent, its data would still be part of the
scene graph. To increase performance (thus improve the frame rate), a
FloatSwitcherEngine has been created.

Its inverseOutput is connected to the transparency �eld in a SoMat-

erial node below a SoSwitch containing a graphically demanding part of the
scene. When the engine's input value falls below its threshold value, the
switchOutput changes so that a SoSwitch hides its single child or switches
between two children.

CHAPTER 5. IMPLEMENTATION 68

Mercury

Venus Jupiter

Earth

Sun Mars Uranus Pluto

NeptuneSaturn

SmallObjectKit
WORLD_SCALE

WORLD_TRANSLATION

PointLight

Material

Coordinate3

MaterialBinding

DrawStyle

PointSet

RotationXYZ

(axis orientation)
RotationXYZ

RotationXYZ

(rotation)
Texture2

Scale

Sphere

PointSetDrawStyle

PickStyle

LightModel

Material

MaterialBinding

Coordinate3

ASTEROIDS

topSeparator

SolsysKit

ShapeHints

ShapeHints

Material

MaterialBinding

LightModel TriangleStripSet

Coordinate3

IndexedLineSet

MaterialBinding

ORBITS

Figure 5.2: Structure of SolsysKit

5.3.5 The Solar System

Except for the starry background, all of the objects shown in VRMoSS
belong to our Solar System. The implementation conceptually discerns the
objects depending on the way their positions are determined.

The scene objects are contained in custom subclasses of SoNodeKit which
makes instantiation, especially of comets and asteroids, rather easy. Each of
these node kits makes use of a central engine for calculation of the object's
position depending on the JDE value provided by the MainController.

SolsysKit

The SolsysKit is a node kit with rather open structure. It is the container
for all of the objects of the Solar System. Its central SolsysEngine (see
page 70) provides positions and rotational data for all planets, the Moon,
Jupiter's satellites and the Sun. Another engine, AsteroidsEngine (see
page 70), creates the positions of the objects in the Asteroid Belt.

It has just one separator (see Figure 5.2) which contains:

World Scale SoScale to scale the Solar System with all objects

World Translation SoTranslation to move object of interest into center

Sun Light SoPointLight at Sun's position, so that the planets are correctly
illuminated

Planet Points In the overview presentation of the Solar System, the plan-
ets would be so small that they would completely vanish from the
screen. To keep the planets visible at least as dot, an SoPointSet is

CHAPTER 5. IMPLEMENTATION 69

used, with according SoMaterial and SoCoordinate3 nodes setting
colors and positions.

Planet Models Each planet description is enclosed in a SoSeparator con-
taining all elements for the planet and possible moon or ring system
descriptions.

Asteroid Belt An SoSeparator containing SoCoordinate3, SoMaterial

and SoPointSet nodes is used to represent up to thousands of aster-
oids. The positions come from the AsteroidsEngine described below.

Planet Orbits Nine SoTriangleStripSets represent the orbits of the plan-
ets. The vertices were found by letting each planet orbit the Sun once
with step width of (orbitalPeriod=360Æ) and writing positions with
slightly larger and slightly smaller distances to �le.

These �at structures tend to vanish from view if seen from the side or
in too small scale (overview presentations). To keep them visible, the
inner edge has been enforced by an SoIndexedLineSet, reusing the
same vertex data.

Small Objects Single asteroids and comets with orbits and bodies of irreg-
ular shape can be added as well as spacecrafts.

All these objects (described below) are added into the SolsysKit to
a�ect them with scaling, transformation and sunlight.

The Planets Each planet is modeled as textured rotating SoSphere, with
its axis tilted according to [Sei92]. Jupiter and Saturn are also shown �at-
tened (ellipsoidal) by their fast rotation. Earth's moon is presented in the
right orientation at the correct position as described in [Mee98], Jupiter's
moons are shown to rotate with bound rotation. (They rotate once around
their axis while orbiting Jupiter.)

Textures NASA's Jet Propulsion Laboratory hosts a website (http:
//maps.jpl.nasa.gov/) where authors of computer models of the Solar Sys-
tem can �nd texture maps for all planets and many moons. Most of these
textures are based on results from NASA space missions, like the Mariner
missions of the early 1970s to Venus and Mercury, the Viking missions to
Mars in the mid-1970s, or the Pioneer 10/11 and Voyager missions to
the outer planets. Only Pluto has not yet been visited by a spacecraft. The
texture provided for Pluto is an artist's concept, based on images of Nep-
tune's satellites. Mercury has been mapped only on one hemisphere. The
texture repeats the surface of the known hemisphere onto the unmapped
one.

The texture for Saturn's ring has been created by the author with Adobe
PhotoShop, based on a ring map in [PC88].

CHAPTER 5. IMPLEMENTATION 70

Figure 5.3: Presenting the Asteroid Belt with VRMoSS. Also clearly visi-
ble are the Troians, 2 groups of asteroids (circled) which are gravitationally
bound to Jupiter and precede or follow the giant planet (arrowed) near spe-
cial points of its orbit (Lagrange points).

SolsysEngine The planets' positions are generated using this custom en-
gine, which has a time input, jde (SFDouble, Julian Day number, connected
from the MainController), and several position and rotation outputs that
are connected to planet transformation and rotation nodes in the SolsysKit.

SolsysEngine is essentially a wrapper class to the respective calls of
the appropriate functions from the C source disk to Astronomical Algo-
rithms [Mee91]. The spherical positions, accurate to within a few arcsec-
onds, are then converted to rectangular heliocentric ecliptical coordinates.

Of course, the algorithm for calculation of the planets' positions has its
temporal restrictions. The model should not be switched to times outside
a few thousands of years around J2000:0, or the planets will be shown on
wrong positions.

The Asteroid Belt To visualize the asteroid belt (Figure 5.3), thousands
of minor planets orbiting the sun mainly between Mars and Jupiter, the cus-
tom AsteroidEngine reads 20:000 sets of orbital elements from a �le in its
initClass() method and, in its evaluate() method, computes as many of

CHAPTER 5. IMPLEMENTATION 71

the asteroids' positions as needed. The engine has inputs jde (SFDouble,
Julian Day number) and number (SoSFInt32, conrolling the number of aster-
oids for which positions will be calculated) and outputs position and color

(both SoMFVec3f). To save execution time, the accuracy of the solution of
Kepler's equation here is only about one degree, which is still perfectly ad-
equate for the purpose of showing the motions of thousands of (unlabeled)
objects.

The orbital elements for the asteroids have been taken from http://

www.naic.edu/~nolan/astorb.html. These elements are actually osculating
elements, thus strictly only usable for a few weeks around the epoch. Position
is computed as described in section 3.1.6.

The asteroids are represented as an SoPointSet, with one asteroid per
point. The color values are calculated as shades of gray depending on mag-
nitude parameter H as found in the elements.

The Small Objects

As mentioned in section 3.1.6, we can model the motion of a small body
in the Solar System around the sun as undisturbed Kepler orbit, as long as
the respective object remains far away from large bodies that can in�uence
its motion by gravitation. The motion can be calculated from six orbital
parameters, which, strictly, are only valid at the speci�ed epoch, but can be
used for a short period (weeks) around this time. For comets, these orbital
elements, as de�ned in section 3.1.6, are q, e, i, !,
 and T . Traditionally,
for asteroids, having elliptical orbits, these elements are a, e, i, !,
, andM ,
from which, together with the epoch, perihel date T can be deduced, while
q can be calculated from a and e.

On the other hand, from a single set of position and speed data (the state
vector), together with time of measurement, orbital elements q, e, i, !,

and T can be deduced following procedures described in section 3.1.7. Such
data are available for a number of spacecrafts from ESA and NASA.

We see that asteroids, comets and spacecrafts share the property of being
describable with an undisturbed Kepler orbit, so a common abstract base
class can be used which de�nes all common parts. Each derived node kit
class has an accompanying engine class driving the respective content.

BaseSmallObjectKit A small object in VRMoSS is represented with at
least two parts: its orbit and the body itself. An abstract node kit class,
BaseSmallObjectKit, de�nes all parts needed for all small objects (See Fig-
ure 5.4).

An abstract BaseSmallObjectEngine de�nes the necessary inputs and
outputs to use for the kit classes derived from BaseSmallObjectKit. The
engine, heart of the node kit, calculates the object's position, orbit lineset
coordinates, and orbit rotation values.

CHAPTER 5. IMPLEMENTATION 72

BaseSmallObjectKit

topSeparator

orbitSwitch

orbitSeparator

orbitNode

orbitInclination

..PeriArg

..Material

..LightModel

..Complexity

..DrawStyle

orbitShape

bodySwitch

bodySeparator

bodyAxisLongitude

bodyAxisInclination

..AxisRotation

bodyMaterial bodyPointSet

objectPosition

..DrawStyle

bodyTexture

bodyScale bodyShapeSep

Figure 5.4: Structure of BaseSmallObjectKit

The object's orbit is rendered as SoLineSet The orbit's visibility is con-
trolled with the kit's orbitVisibility �eld, with a FloatSwitcherEngine

(see section 5.3.4) translating the �eld value into the orbit's transparency. If
switched to fully transparent, the orbit part is switched o� altogether.

The object's body is represented by a SoPointSet with one point plus
the contents of the bodyShapeSep part of the kit.

SmallObjectKit This does not de�ne new parts, but includes a real Small-
ObjectEngine, which provides object position, speed and orbit lineset ver-
tices. This node kit can be used to represent an asteroid in detail.

In the last years, several asteroids have been visited by spacecrafts or
observed from Earth with radar. From these data, Scott Hudson of Wash-
ington State University has created 3D models of some asteroids in POVray
format, which are freely available at http://www.eecs.wsu.edu/~hudson/
Research/Asteroids/models.html. The data were converted with Maya
(Alias Wavefront) to be usable with Open Inventor. Shape infor-
mation for the asteroid can be inserted into the bodyShapeSep part of the
SmallObjectKit.

CometKit In addition to the parts of a normal SmallObjectKit, orbit and
body, a CometKit has the parts that make comets so special (see Fig. 5.5).

1. A tail part with a gas tail that points always strictly away from the sun
and a dust part that also points away from the sun, but lags behind
depending on the comet's speed.

2. The body has �hot spots� where gas evaporates when struck by sun-
light. This emission is modeled with a particle system.

CHAPTER 5. IMPLEMENTATION 73

tailSwitch

textureSwitch

tailShapeHints

tailLightModel

tailComplexity

gasTail

gasTailRotation

gasTailTranslation

gasTailMaterial

gasTailShape

dustTail

dustTailRotation

dustTailTranslation

dustTailMaterial

dustTailShape

tailSeparatororbit parts objectPosition body parts

CometKit

topSeparator

Figure 5.5: The CometKit class adds a tail part to the BaseSmallObjectKit
and expands the body part with representations of outgassing activity (not
shown).

Figure 5.6: The core of a Comet. Note the outgassing activity, implemented
as particle system of screen-aligned textured rectangles.

CHAPTER 5. IMPLEMENTATION 74

These special parts were included into VRMoSS from work done mainly
by the author's colleagues, Zsolt Marx and Gottfried Eibner, at the
Institute of Computer Graphics and Algorithms. Each tail is represented
as textured paraboloid, where length and size are computed by the Comet-

Engine (another subclass of SmallObjectEngine) depending on the comet's
distance from Sun and absolute magnitude H10, coming with the comet orbit
elements. Tail rotation, an animated texture for the tail and the animation
of the particles representing the gas and dust emitted from the comet core
(see Figure 5.6) are driven by sensor callbacks. The animated tail texture is
shared by all instances of CometKit.

Orbital elements for comets are available at http://ssd.jpl.nasa.gov/
data/ELEMENTS.COMET (as of August 8th, 2001).

SpacecraftKit The abstract SpacecraftKit class adds a spacecraft's pre-
computed track to the parts de�ned in BaseSmallObjectKit (see Fig. 5.7).
The vertex coordinates for the track line set have to be provided by the re-
spective subclass of SpacecraftEngine. A SpacecraftEngine will read in
its initClass() method a data �le with date, position and speed values and
can then interpolate the spacecraft's position. Additionally, at every instant,
the instantaneous Kepler orbit is calculated to allow the visualization via the
SpacecraftKit's orbit parts.

Before launch date, the spacecraft's position should be connected to
Earth's, and probably all parts of the kit should be switched to invisibil-
ity.

trackMaterial

trackLightModel

..DrawStyle

orbitShape

trackSwitch

trackSeparator
orbit parts

SpacecraftKit

topSeparator

objectPosition body parts

Figure 5.7: Structure of SpacecraftKit

RosettaKit The RosettaKit node kit, subclass of SpacecraftKit, uses
the RosettaEngine to show the position and orientation of the ESARosetta

CHAPTER 5. IMPLEMENTATION 75

spacecraft. The spacecraft model, which is the bodyShapeSeparator part of
the kit, shows the shape of the spacecraft modeled as cube with antenna and
with solar panels. The body is turned so that the antenna which is mounted
to the body always points towards Earth, and the solar panels point towards
the sun as directly as possible, considering the mentioned main orientation.

Before launch date, the spacecraft's position is connected to Earth's po-
sition. After launch, the path and spacecraft body parts are switched visible,
and the probe position is found by interpolation between 4 values with La-
grange's method: Having 4 times t0, t1, t2, t3 and corresponding object
positions x0, x1, x2, x3, the position xt, corresponding to a time t, where
t1 < t < t2, can be found as

xt = x0
(t� t1)(t� t2)(t� t3)

(t0 � t1)(t0 � t2)(t0 � t3)
+ x1

(t� t0)(t� t2)(t� t3)
(t1 � t0)(t1 � t2)(t1 � t3) (5.1)

+ x2
(t� t0)(t� t1)(t� t3)

(t2 � t0)(t2 � t1)(t2 � t3)
+ x3

(t� t0)(t� t1)(t� t2)
(t3 � t0)(t3 � t1)(t3 � t2)

The orbit part of the RosettaKit show the instantaneous Kepler orbit

derived from the current state vector (see section 3.1.7). This shows very
clearly that most of the time the spacecraft moves along an undisturbed
Kepler orbit, but when near Mars and Earth (twice), the track is in�uenced
by the respective planet's gravity so that the spacecraft apparently �changes
lane� and switches to a di�erent Kepler orbit.

When the spacecraft comes near comet Wirtanen, it �res brie�y a rocket
engine to enter an orbit around the comet (Figure 5.8). This is modeled
as semitransparent cone which is switched on during a short time, then the
rocket, track and orbit lines are switched o�, and the spacecraft position is
transferred into a circular orbit around the comet where it will stay forever
thereafter.

The ASH ROOTS mission storyboard required a dramaturgic addition:
at one point, the solar panels should lose their orientation so that a power
failure will occur. The additional input, solarPanelsMisalignment (an
SoSFFloat), can be used to show this.

The path of ESA'sRosetta spacecraft was found on http://planetary.
so.estec.esa.nl/RSOC/trajectory_data.html. This �le gives dates with
position and speed values for a Rosetta trajectory simulation performed
by ESA.

CHAPTER 5. IMPLEMENTATION 76

Figure 5.8: The Rosetta spacecraft approaching comet 46P/Wirtanen. The
main engine is just �ring in this scene, bringing the spacecraft into orbit
around the comet (upper center). Note the speckled band of the Milky Way.

5.3.6 StarsKit

To enhance the impression of being in the Solar System, it was necessary
to add a background with stars and the Milky Way. VRMoSS does not
simulate the space between the stars, thus it was su�cient to model the
rest of the universe as large sphere. The radius of this sphere had to be
smaller than the far clipping plane distance of the stereo viewer, thus it was
necessary to exclude the starry sphere from any scaling operations.

The Stars

From the data given in the Yale BSC5 (see section 3.2), vertex and color
values for an SoPointSet were generated with an auxiliary program using
the ART toolkit (see section 4.4). This point set consists of a spherical
arrangement of 9096 points of di�erent colors, closely resembling the starry
sky. Invalid entries, i.e., catalog errors, were sorted out in the process.

However, the stars' brightnesses could not be implemented exactly as
commanded by the astronomical magnitude scale (see section 3.2.1), and
also the colors needed special attention.

CHAPTER 5. IMPLEMENTATION 77

Brightness The BSC contains stars down to mag 6.5, which can be ob-
served with keen eyesight under very good conditions. If we draw all stars of
magnitude zero and brighter as �white� (8-bit RGB 255/255/255) and try to
implement the brightness drop-o� of 1 : 2:5 (a loss of 60% of brightness) per
magnitude step, stars of 6th magnitude would be drawn with RGB 1/1/1,
which is practically black. Experiments have shown, however, that stars, if
modeled in the described form, appear too dim: most monitors and projec-
tors have nonlinear response to signal strength and do not show dim color
well (gamma problem).

To remedy this situation, a smaller brightness drop-o� had to be found
by a series of experiments with di�erent color values, using the model:

b = mag_stepm (5.2)

Here, b describes the linear brightness of the star, normalized to 0 : : : 1.
Stars of magnitude 0 and brighter have b = 1. mag_step, 0:4 in nature,
varied between 0:6 and 0:9. The best value was found to be around 0:75.
Higher values made di�erences between stars of di�erent magnitude unclear,
smaller values made dim stars too dark to be seen clearly.

Still, the starry sky looked too dark, so an additional brightness brighter
was added to the stars before applying formula 5.2:

b = mag_stepm�brighter (5.3)

The best combination, which is now used, is mag_step = 0:75 and
brighter = 0:5.

Colors The color indices included in the BSC would be easily usable to
�nd RGB colors for the stars. These indices describe di�erences in the mag-
nitudes comparing measurements through narrow band pass �lters which are
directly correlated with color impression. However, the data are incomplete,
therefore their spectral classes (see section 3.2.2) have been used in the prepa-
ration of the stellar colors. The stars without valid entries are handled as
being white.

To represent these spectral classes, table 5.1 was devised. The respec-
tive RGB triplet was multiplied with the brightness value from equation 5.3
and renormalized to (0 : : : 1; 0 : : : 1; 0 : : : 1) to get the �nal RGB color value
for each star. This color is contained in the rgb �eld of the StarsKit's
SoBaseColor node.

The Constellations

As mentioned in section 3.3, it is important to use an expressive selection
of stars to represent the constellations with stick �gures. The author has
decided to create his own set of lines, based on the books of Thomas [TT45]

CHAPTER 5. IMPLEMENTATION 78

Spectral class Red Green Blue
O 0.8 1.0 1.2
B 0.9 1.0 1.1
A 1.0 1.0 1.0
F 1.05 1.05 0.9
G 1.1 1.1 0.8
K 1.2 1.0 0.8
M 1.45 0.9 0.65

Table 5.1: The �gures represent multipliers for RGB values.

and Rey [Rey76] and own imagination, which should really help to identify
the depicted constellations.

The lines are implemented as SoIndexedLineSet and reuse the stars'
coordinates as vertices.

As additional aid for identi�cation, labels have been added, implemented
as SoText2 nodes translated into their respective locations in the starry
sphere. A SoSwitch is used to select one SoSeparator which itself contains
the translation and text nodes. Figure 5.9 demonstrates the constellation
lines and labels.

The Milky Way

The BSC includes only the brightest stars which can be seen individually
with the naked eye. The di�use glow of the billions of stars of the Milky
Way had to be reproduced with di�erent means.

In [EH88], Elsässer and Haug presented maps of stellar densities in
the Milky Way. From the map showing the visual distribution, an image
was prepared using Adobe PhotoShop. The stars were created as �noise�
which is properly brightened in areas of higher stellar density. This map is
used as texture for an SoQuadMesh, which represents the inside of parts of a
globe.

The map in [EH88] is given in the old Galactic Coordinate system Type I
(see section 3.1.5). The transformation of the coordinates into Type II and
further into ecliptical coordinates was performed with the Equation Solver
application of an HP-49G pocket calculator using formulæ from Landolf-
Börnstein [Hel65] and commands from Urania [Zot00].

The Old Sky Map

The project title, �Access to Scienti�c Space Heritage�, together with his
special interest in that �eld, prompted the author to implement a bit of
classical astronomy: it should be possible to show the stars in front of a

CHAPTER 5. IMPLEMENTATION 79

Figure 5.9: Saturn in front of the constellations, depicted with �stick �gures�
and labeled for identi�cation.

�gural constellation painting found mostly on celestial globes and maps of
the 17th and 18th centuries.

To produce the globe, a hemispheric sky map from the 17th century,
reproduced in Sesti's book, The Glorious Constellations [Ses91], was
scanned. The Panorama Tools, free software tools by Helmut Dersch
[Der01], was used to create a rectangular image that is used as texture map
for a large SoSphere (Figure 5.10).

A small problem is the fact that the labels on the old map are printed
as seen �from the outside� of the sky, and thus are shown reversed in the
VRMoSS, which always shows the �inside� of the sky globe.

The BSC stars do not perfectly match the stars as painted on the sky
map. First, precession (see section 3.1.5), which shifted the stars since the
time the original map was created, had to be compensated by adding a
rotation along the ecliptic. Still, some distortion introduced in the process
makes it practically impossible to �nd a perfect match between the old map
and the modern star positions. On some areas, the BSC stars lie almost
exactly on the map's stars, on other areas there is a noticeable o�set. Using
a map without stars, but with only constellation outline drawings, e.g. as
found in Thomas's atlas [TT45], could help here.

CHAPTER 5. IMPLEMENTATION 80

Figure 5.10: The classical constellation paintings of an old sky map used on
a globe.

5.3.7 Scaling

In the VRMoSS, only the Solar System is scaled, not the stellar sphere
surrounding the visitor.

The problem with scaling is the enormous range of sizes that has to be
covered: small objects like comet cores, measuring only a few km, shall be
visible in closeup view, or a planet like Earth, about 1000 times larger, or
Jupiter, 140:000km in diameter, or the Sun, still ten times larger, or even the
whole Solar System, with almost 12 � 109km diameter. The implemented
scaling function now allows �ner control in the large magni�cations (closeup
views) and also in the overall views, with a fast transfer in between by
combining power and logarithmic functions.

The scale �eld in the MainController is connected to a custom Scale-

Engine, which translates the linear input into a scaling factor which is used
in the SolsysKit's WORLD_SCALE node.

5.3.8 Bringing an object into Focus

It is not possible to only shift the Solar System to one side to bring a planet
into closeup view and keep it centered: its motion will soon bring it out of

CHAPTER 5. IMPLEMENTATION 81

view again. Therefore it was necessary to implement a mechanism that locks
the object of interest in focus.

This is implemented by connecting the interesting object's position �eld
to a custom NegateSFVec3f engine which transmits the negated value of its
input to its output �eld, and which is itself connected to the translation
�eld of the WORLD_TRANSLATION node inside the SolsysKit.

Switching between objects is not done immediately, which would ap-
pear too abrupt, but by using a combination of SoInterpolateVec3f and
SoOneShot engines and �eld sensors, to smoothly shift the scene to the next
selected object within a short amount of time. If switching to another object
is initiated while a transfer is already under way, the scene is immediately
shifted from the current intermediate location to the new target.

5.3.9 Direct Scene Interaction

The Studierstube API provides a class, SoDragKit, which allows to move
a virtual object by touching it with the pen, pressing the pen button and
dragging it to a new location. The SoDragKit performs a bounding box test
on its content part to �nd out it it is interested in the 3D event sent by the
pen.

It would probably make no sense for VRMoSS to allow dragging the
planets from their natural places. However, it should be possible to grab the
complete model and turn it around, including the star sphere enclosing our
model.

If implemented by using a standard SoDragKit, the pen would be inside
the Solar System's bounding box all the time, preventing 3D events from
reaching the user interface elements on the PIP. Therefore, a SoWorldDragKit
was derived which excludes the bounding box area of the PIP, thus allowing
the PIP elements to receive pen/button events in its area. Most of the scene
graph, namely the visible scene objects with SolsysKit and StarsKit, are
the content part of the SoWorldDragKit.

5.3.10 Communication with the Outside World

The XMLProcessor class enables VRMoSS to communicate with another
application, which may be the ASH Mission Server or, in a setup outside of
an ASH VCR, any other application that provides XML messaging, e.g., a
GUI or data viewer application made in Flash or Java.

The XMLProcessor owned by the application's MainController is called
by the sensor callback function of its private SoOneShotSensor. Objects of
this sensor class call their registered callback whenever the application is
idle, or after a certain time has passed. Thus, the callback is executed as
low-priority task.

CHAPTER 5. IMPLEMENTATION 82

The XMLProcessor object provides the application with a server socket
which listens for a client on a port de�ned on the command line (default:
Port 2001) in non-blocking mode. Thus, even if no client is connected, the
application will run without problems. Only one connection is allowed at a
time.

Unfortunately, the Xerces-C++ DOM parser cannot read directly from
a port. Thus, incoming messages are �rst copied to a memory bu�er, then
the DOM parser reads from that bu�er:

When connection is established, the XMLProcessor attempts to read
characters from the port. On success, all characters until a starting <, in-
dicating the begin of an XML element, are discarded. Then, all characters
until a closing > are copied into a memory bu�er. If no > can be read, the
message is discarded. Care must be taken that no > character is included in
any character string, or this mechanism will produce a bad XML string.

As soon as a complete XML element is available, a DOM parser owned by
the XMLProcessor parses the contents of the bu�er. The resulting document
object is then analyzed, and appropriate methods in the MainController

are called.
To write out XML messages, the message contents are just passed into

the putSharedData() method, which writes out the XML message to the
port, if a client is connected.

Should a client connection break during reading from or writing to the
port, the message is lost. The connection will be retried during the next
execution of the sensor callback.

SolSys.dtd

The �le SolSys.dtd shows the commands available in VRMoSS. Currently,
this is only a formal speci�cation for the ASH developers, the �le is not used
directly.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Document Type Declaration (DTD) for the XML commands sent between
Solar System Application "SolarStube" and its client, be it the Mission Server
or, in a different setup, a single Flash client or any other application.

Author: GZ Georg Zotti, TU Vienna, Institute for Computer Graphics

Version 0.0 August 2, 2001 GZ Initial version.
Version 0.1 August 3, 2001 GZ adapted to ASH XML data delivery protocol
Version 0.2 August 7, 2001 GZ changed Gregorian date string format to ASH style. Changed speed to direct values
Version 0.3 August 20, 2001 GZ added sol_window

This is a rather informal specification to be read by humans. (Well, programmers ;-)
Commands have to be understood by both partner applications.

Any incomprehensible message should be silently ignored.

Use:
<!DOCTYPE SolSys SYSTEM "url-path-to/SolSys.dtd" >
... but will be of no practical use. Just read lower part of this file for valid, meaningful XML messages.
-->

<!ELEMENT stop_task EMPTY>
<!ELEMENT register_subscription EMPTY>

<!ELEMENT unregister_subscription EMPTY>
<!ELEMENT put_shared_data EMPTY>

CHAPTER 5. IMPLEMENTATION 83

<!ELEMENT data_delivery EMPTY>

<!ATTLIST register_subscription data_id CDATA #FIXED "sol_date" >
<!ATTLIST unregister_subscription data_id CDATA #FIXED "sol_date" >
<!ATTLIST put_shared_data data_id (sol_center | sol_set_gdate | sol_set_jd |

sol_set_speed | sol_set_ecliptic |
sol_set_scale | sol_set_orbits | sol_set_old_map |
sol_set_const_lines | sol_set_const_labels | sol_set_asteroids)

data_type (integer | float | double | enum | string) #REQUIRED
value CDATA #REQUIRED

>
<!ATTLIST data_delivery data_id (sol_center | sol_scale | sol_set_gdate | sol_set_jd |

sol_set_speed | sol_set_ecliptic |
sol_set_scale | sol_set_orbits | sol_set_old_map |
sol_set_const_lines | sol_set_const_labels | sol_set_asteroids |
sol_window)

data_type (integer | float | double | enum | string) #REQUIRED

value CDATA #REQUIRED
>

<!-- Based on the formal looking specification, SolarStube may receive the following messages from the mission server - ->

<stop_task /> <!-- stop the Solar System Program. Whole application will terminate! - ->

<register_subscription data_id="sol_date" /> <!-- will push date on every image! - ->

<unregister_subscription data_id="sol_date" /> <!-- will stop pushing date on every image! - ->

<data_delivery data_id="sol_window" data_type="enum" value="front" /> <!-- Make SolarStube the foreground application - ->
<data_delivery data_id="sol_window" data_type="enum" value="back" /> <!-- hide SolarStube to allow bigscreen Flash etc. - ->

<data_delivery data_id="sol_center" data_type="enum" value="Sun" />
<data_delivery data_id="sol_center" data_type="enum" value="Mercury" />
<data_delivery data_id="sol_center" data_type="enum" value="Venus" />

<data_delivery data_id="sol_center" data_type="enum" value="Earth" />
<data_delivery data_id="sol_center" data_type="enum" value="Mars" />
<data_delivery data_id="sol_center" data_type="enum" value="Jupiter" />
<data_delivery data_id="sol_center" data_type="enum" value="Saturn" />
<data_delivery data_id="sol_center" data_type="enum" value="Uranus" />
<data_delivery data_id="sol_center" data_type="enum" value="Neptune" />
<data_delivery data_id="sol_center" data_type="enum" value="Pluto" />
<data_delivery data_id="sol_center" data_type="enum" value="Comet" />
<data_delivery data_id="sol_center" data_type="enum" value="Probe" />

<data_delivery data_id="sol_scale" data_type="enum" value="up" />
<data_delivery data_id="sol_scale" data_type="enum" value="down" />

<data_delivery data_id="sol_set_gdate" data_type="string" value="YYYY_MM_DD HH:MM:SS" />
<data_delivery data_id="sol_set_jd" data_type="double" value="0" /> <!-- any: e.g. 2451545.5=2000.0 - ->
<data_delivery data_id="sol_set_speed" data_type="float" value="0" /> <!-- days/second, e.g. -1000..1000 - ->
<data_delivery data_id="sol_set_ecliptic" data_type="float" value="0" /> <!-- 0..1 - ->
<data_delivery data_id="sol_set_scale" data_type="float" value="0" /> <!-- -10..10 - ->

<data_delivery data_id="sol_set_orbits" data_type="float" value="0" /> <!-- 0..1 - ->
<data_delivery data_id="sol_set_old_map" data_type="float" value="0" /> <!-- 0..1 - ->
<data_delivery data_id="sol_set_const_lines" data_type="float" value="0" /> <!-- 0..1 - ->
<data_delivery data_id="sol_set_const_labels" data_type="enum" value="off" /> <!-- off/short/latin/english - ->
<data_delivery data_id="sol_set_asteroids" data_type="integer" value="0" /> <!-- 0..10000 - ->

<!-- SolarStube may send the following messages to the mission server (or any other current client!) - ->

<task_stopped task_id="sol" /> <!-- on program termination. - ->

<put_shared_data data_id="sol_date" data_type="string" value="YYYY.MM.DD HH:MM:SS.d" />
<!-- only if <register_subscription data_id="sol_date"/> received before! - ->

<put_shared_data data_id="sol_center" data_type="enum" value="Sun" />
<put_shared_data data_id="sol_center" data_type="enum" value="Mercury" />
<put_shared_data data_id="sol_center" data_type="enum" value="Venus" />
<put_shared_data data_id="sol_center" data_type="enum" value="Earth" />

<put_shared_data data_id="sol_center" data_type="enum" value="Mars" />
<put_shared_data data_id="sol_center" data_type="enum" value="Jupiter" />
<put_shared_data data_id="sol_center" data_type="enum" value="Saturn" />
<put_shared_data data_id="sol_center" data_type="enum" value="Uranus" />
<put_shared_data data_id="sol_center" data_type="enum" value="Neptune" />
<put_shared_data data_id="sol_center" data_type="enum" value="Pluto" />
<put_shared_data data_id="sol_center" data_type="enum" value="Comet" />
<put_shared_data data_id="sol_center" data_type="enum" value="Probe" />

<put_shared_data data_id="sol_set_jd" data_type="double" value="0" /> <!-- any: e.g. 2451545.5=2000.0 - ->
<put_shared_data data_id="sol_set_speed" data_type="float" value="0" /> <!-- -6..6 maps from -1000d/s..1000d/s - ->
<put_shared_data data_id="sol_set_ecliptic" data_type="float" value="0" /> <!-- 0..1 - ->
<put_shared_data data_id="sol_set_scale" data_type="float" value="0" /> <!-- -10..10 - ->
<put_shared_data data_id="sol_set_orbits" data_type="float" value="0" /> <!-- 0..1 - ->
<put_shared_data data_id="sol_set_old_map" data_type="float" value="0" /> <!-- 0..1 - ->

CHAPTER 5. IMPLEMENTATION 84

<put_shared_data data_id="sol_set_const_lines" data_type="float" value="0" /> <!-- 0..1 - ->
<put_shared_data data_id="sol_set_const_labels" data_type="enum" value="off" /> <!-- off/short/latin/english - ->
<put_shared_data data_id="sol_set_asteroids" data_type="integer" value="0" /> <!-- 0..10000 - ->

-->

5.3.11 Keyboard Control

The advanced VRMoSS setup with PIP is not easily transportable. Some
development work has been done at home, therefore it was necessary to have
some control over the scene via standard methods.

Table 5.2 shows all keyboard commands available in VRMoSS. All keys
adjusting some brightness switch in small increments between 0 and 1, then
down to 0 again.

Key Action
F orderFront (window)
B orderBack (window)
X eXit
Q Quit (same as X)

Keypad +=� Time forward/reverse
Keypad �=� Time faster/slower

P Pause
C switch constellation labels
L adjust constellation lines brightness
M adjust star map brightness
O adjust orbit brightness

F< n > Bring planet n into focus, scale to default scale factor.
F10: Sun; F11: Comet Wirtanen; F12: Rosetta

< n > R W Bring planet n into focus (without rescaling).
0: Sun; W: Comet Wirtanen; R: Rosetta

Page up/down scale up/down
Cursor ! rotate ecliptic longitude
Cursor "# rotate ecliptic latitude

Table 5.2: Keyboard Controls in VRMoSS

Chapter 6

Discussion and

Possible Extensions

6.1 Other Usage Scenarios

Besides being the central part of an ASH VCR installation, VRMoSS can
be presented in various other setups.

6.1.1 Standalone Installation

VRMoSS can run on its own, without any connection to a mission server.
Thus, depending on an institution's needs (and also on budget), it can be
set up as standalone installation in a museum of science or nature, science
theater or planetarium. Further details have to be considered:

Stereo or Mono

A great di�erence in presentation style comes from this decision: While a
monoscopic (single) projector setup can be viewed just like an ordinary mon-
itor (without any special devices), viewing a stereo projection requires some
sort of special eyeglasses, which the hosting institution will have to provide.
These will usually just be cheap cardboard eyeglasses with polarizing �lters
for one-time use, but may also be more durable models which will have to be
recollected from the visitors, cleaned, stored, etc. Usually, this stereo setup
thus will raise much more overhead, but tests showed that the presentation,
especially with many orbit curves shown, will be much clearer in stereo.

With PIP

The most advanced and attractive form of interaction certainly is control
with the PIP. However, the magnet tracker hardware is expensive and rather

85

CHAPTER 6. DISCUSSION AND POSSIBLE EXTENSIONS 86

delicate, and it probably will be necessary to have a person in charge to
supervise visitors and their actions.

With TouchScreen, Flash GUI

A di�erent scenario could be a setup where the user can take over control via
a Touch Screen running an application that can send XML messages, e.g., a
Flash GUI. This is still rather uncommon and would also allow experiments
in user interface design. A monoscopic projector setup could work with a
single PC (with graphics hardware capable of driving two monitors), stereo
projection will require two PCs on a network.

With Keyboard Navigation

For the simplest setup in single PC installations, limited keyboard interac-
tion is available. This has been implemented mainly for testing purposes
during development and sometimes uses non-obvious keypresses, but during
a presentation, trained personal could also use such a setup on a single PC.

Scripted with XML Message Server

A fully-automatic presentation could be created with the addition of a server
application that can send XML commands on certain times. XML o�ers itself
naturally as scripting language in this context.

6.1.2 Desktop Application

Of course, VRMoSS can also run on a normal desktop PC with standard
screen. Stereo setup will require shutter glasses, or use of the crossed-eye
technique described on page 53.

6.1.3 Multi-User Scenario in Studierstube

VRMoSS should be a very interesting application for the �real� Studier-
stube environment, with multiple users wearing HMDs and being able to
�walk around� in the Solar System and discuss details. It might be interesting
to have a planet moving through the room, for example the Earth-Moon sys-
tem could be inspected in detail. With a see-through AR setting, it might
be necessary to omit the starry background, or else it would probably be
overlaid on the discussion partner(s). However, integration should be rather
straightforward.

6.1.4 HalfDome Setup

Instead of using a �at projection screen, there are projection setups which
have a spherical half dome and projector with a �sheye lens. The image

CHAPTER 6. DISCUSSION AND POSSIBLE EXTENSIONS 87

�lls most of the user's �eld of view, creating the impression of �really being
inside�, but only in monoscopic mode. Also, only few users near the center
of the dome will see an undistorted image.

6.2 Possible Extensions

Many details found in our highly complex Solar System have not been imple-
mented in VRMoSS. Some ideas are listed in this section. However, many
of the proposed additions will take lots of programming e�ort for develop-
ment, and later computing power for execution, and might therefore just be
understood as seen on the wish list.

6.2.1 Free-�y mode

A really interesting extension could be the implementation of a free-�ight
mode that may be controlled with the PIP interface. In this scenario, grav-
itational attraction by the planets should a�ect the user's position in space.
The PIP could be used as control instrument, e.g., its orientation could in�u-
ence the user's spacecraft's attitude, and the pen could function as joystick,
controlling thrusters.

6.2.2 More Spacecraft Paths

More spacecrafts could be included in VRMoSS. Path data for many of
NASA's spacecrafts, most notably the Pioneer and Voyager missions,
can be found and downloaded from http://nssdc.gsfc.nasa.gov/space/

helios/heli.html.

6.2.3 Shadows

Neither Open Inventor nor the OpenGL API provide direct support for
shadows cast by solid objects into space. Still, it would add more realism to
implement some of these e�ects. Interesting phenomena involving shadows
between objects of the Solar System would be:

� Saturn's main body and rings casting shadows on each other

� Jupiter's moons casting tiny shadows on Jupiter or hiding in the giant
planet's shadow

� Earth and Moon, causing Solar and Lunar eclipses.

CHAPTER 6. DISCUSSION AND POSSIBLE EXTENSIONS 88

6.2.4 Planet Moons

Currently, only Earth's Moon and Jupiter's Galilean moons are included in
the VRMoSS. More moons should be added. Procedures for computing the
positions of some of Saturn's moons can be found in [Mee98], for the other
planets' moons they may be found in [Sei92].

6.2.5 Sun

Currently, the Sun is just a sphere with emissive color and a mostly trans-
parent texture adding sun spots. However, looking at the real Sun in detail
reveals very complex structures and high activity. Much could be done to
improve realism: an animated texture could simulate the convection cells
of the solar granulation, particle systems could be added to show promi-
nences and �ares. Probably the PIP could be used as ��lter� that can show
interesting aspects of the Sun, like an X-ray view or its magnetic �eld.

6.2.6 Planet Textures

The current solution uses a single, static texture per planet. Observing a
planet in closeup creates a �painted marble� impression. Dynamic processes
in the planets' atmospheres are not represented, especially noticeable in the
highly variable gas atmospheres of Jupiter, Saturn and Neptune.

Also, Earth's clouds are not shown at all, and there is no �night side�
texture with brightly glowing city lights.

6.2.7 Dynamical Loading of New Asteroid Data

Currently, only one set of orbital elements for the asteroids is loaded on
startup. These data are, strictly seen, only usable for a few weeks around
the epoch. It might be useful to collect asteroid data �les and change the
data used depending on the current time within VRMoSS. Still better, of
course, would be a connection to a real numerical simulator.

6.3 Concluding Remarks

During the development of the ASH VCR, the VRMoSS has been demon-
strated and tested in several meetings. The ASH science partners, all from
the planetarium world, highly appreciated the system and what could be
demonstrated with it.

VRMoSS can be used to explain lots of things about the Solar System.
During a presentation, a trained operator (the author) demonstrated within
about half an hour most capabilities of the system and the �ight of the
Rosetta spacecraft.

CHAPTER 6. DISCUSSION AND POSSIBLE EXTENSIONS 89

Things that seemed to impress most were the up to 10.000 moving aster-
oids, showing di�erent orbital speeds and also the Troian groups trapped by
Jupiter, quite realistic impressions of comets C/1996B1 Hyakutake and
C/1995O1 Hale-Bopp, showing the tails growing near the Sun and always
pointing away from the Sun, and the visualization of Rosetta's instantaneous
Kepler orbit, impressively demonstrating the swing-by e�ects.

Longer �guided tours� through space are easily possible. VRMoSSmight
however face a problem, if only trained demonstrators are able to see and
show details. There are many impressive setting options in VRMoSS, and
each task might require considering those settings. Typical visitors in the
ASH VCR will see and use the PIP for the �rst time, which might overcharge
and distract them from grasping the content which the ASH VCR learning
environment should provide. Also, getting to know and live with the still
existing de�ciencies of the magnetic tracking system (short range, �eld distor-
tions) takes its time and might even lead to frustration with people ignorant
of the background.

To enhance the learning aspect for ASH, the passive mode with the pre-
sentation controlled by prerecorded messages instead of by the user, has
been added. However, if used too extensively, it would possibly question the
inclusion of a PIP altogether.

Further tests and integration with a presentable mission in the prototype
VCR during the completion phase of the ASH project should allow to �ne-
tune the mixture of operation in active and passive modes.

Abbreviations

AML ASH Mission Language

API Application Programming Interface

ART Advanced Rendering Toolkit (Inst. of Computer Graphics, TU Wien)

ASH Access to Scienti�c Space Heritage (IST/EU)

BSC Yale Bright Star Catalog

CMG Client Manager (ASH)

CRT Cathode Ray Tube (display device)

CSCW Computer Supported Collaborative Working

C-VCR Commercial VCR (ASH)

DOM Document Object Model (XML)

DTD Document Type Declaration (XML)

EMG Episode Manager (ASH)

ESA European Space Agency

EU European Union

GSFC Goddard Space Flight Center (NASA)

GUI Graphical User Interface

HMD Head Mounted Display

HTML Hypertext Markup Language

IAU International Astronomical Union

IST Information Society Technologies (EU)

JPL Jet Propulsion Laboratory (NASA)

90

ABBREVIATIONS 91

MDS Mission Data Space (ASH)

MMG Mission Manager (ASH)

MSI Mission State Information (ASH)

MSV Mission Server (ASH)

NASA National Aeronautics and Space Administration (USA)

OIV Open Inventor (SGI)

PIP Personal Interaction Panel

P-VCR Prototype VCR (ASH)

RAID Redundant Array of Inexpensive Disks

RGB triplets of red, green and blue color values, either in device values
(usually 0 : : : 255) or in normalized values (0 : : : 1)

ROOTS ROsetta Observing The Solar system (ASH mission)

SAX Simple API for XML

SDS Shared Data Space (ASH)

SSD System Speci�cation Document (ASH)

SSV Simulation Server (ASH)

SGI Silicon Graphics Industries

SGML Standard Generalized Markup Language

STB Studierstube (Inst. of Computer Graphics, TU Wien)

UCL User Client (ASH)

VCR Virtual Control Room (ASH)

VRML Virtual Reality Modeling Language

VRMoSS Virtual Reality Model Of the Solar System

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

Index

Actions, 45
altitude, 26
AML, 57
angular momentum, 37
application (XML), 54
argument of perihelion, 31
armillary sphere, 15
ascending node, 30
AsteroidEngine, 70
Astronomical Unit, 28
attribute (XML), 54
Augmented Reality, 49
azimuth, 26

Barker's Equation, 35
Barycentric Dynamical Time, 24
Bigscreen, 4, 62, 63
Bigscreen Client, 4
bound rotation, 69

C-VCR, 2
celestial equator, 25, 27
celestial globes, 18
Client Manager, 10
CometEngine, 74
constellation, 41
Coordinate System

Ecliptical, 28
Equatorial, 27
Galactical, 29
Horizontal, 26

declination, 27
DecomposeJDEngine, 67
deferent, 15
Directed Acyclic Graph, 44
document (XML), 54

Document Object Model (DOM),
56

Document Type Declaration
(XML), 55

DTD
Document Type De�nition

(XML), 54
internal subset, 54

Dynamical Time, 24

eccentric anomaly, 34
ecliptic, 25, 28
Ecliptical latitudes, 28
Ecliptical Longitude, 28
element (XML), 54, 55
empirical corrections, 24
Engine, 47

Animation, 47
Arithmetic, 47
BaseSmallObjectEngine, 71
Network, 48
Reference Count, 48
RosettaEngine, 74
SmallObjectEngine, 72
SpacecraftEngine, 74
Triggered, 48

ephemerides, 23
Ephemeris Time, 24
epicycle, 15
Episode Manager, 9
episodes, 7
epoch, 30, 31
Equinox

Autumnal, 26
Vernal, 26

European Space Agency, 12

92

INDEX 93

Field Converter, 48
First Point of Aries, 27

galactic equator, 29
grammar (XML), 54
Greenwich Civil Time, 24
Greenwich Mean Time, 24
Gregorian Calendar, 25

Harvard scheme, 40
header (XML), 54
heliocentric system, 15
Hour Angle, 27
hyperbolic orbits, 36

inclination, 31
instantaneous Kepler orbit, 36, 74,

75, 89
invalid document (XML), 54

Jovilabe, 17
Julian Calendar, 25
Julian Day Number, 25, 67
Julian Ephemeris Day, 25

Kepler
Equation of, 34
Laws, 15, 16

large semimajor axis, 32
longitude of perihelion, 31
luminosity class, 40
Lunarium, 17

magnitude
astronomical, 39, 76

mean anomaly, 32, 34
mean motion, 32
Mean Noon, 25
Mean Sun, 25
meridian, 25
meta-markup language, 53
mission, 7
Mission Data Space, 5, 9
Mission Manager, 9
Mission Server, 5, 9

Mission State Information, 9

nadir, 26
names (XML), 55
Node Kit, 47

BaseSmallObjectKit, 71
CometKit, 72
RosettaKit, 74
SpacecraftKit, 74

North Celestial Pole, 27
North Ecliptical Pole, 28

Open Inventor
components, 42
database primitives, 42
�eld, 43, 66
�eld converter, 66
manipulator, 42
root node, 44
Scene Basic Types, 43
scene database, 42
scene graph, 44

orbital elements, 30
Orrery, 18
osculating elements, 31, 71

P-VCR, 2
pericenter, 30
perihelion, 30
Personal Interaction Panel, 4, 50,

62�64, 66, 85, 87, 89
phase, 8
point of interest, 63
precession, 30
presentations, 7

Reference Count
Engine, 48
Node, 47

Rendering, 43
Right Ascension, 27
ROOTS, 13

Sb... types, 43
Sensor, 47

INDEX 94

SFDouble, 66
SFDoubleConverter, 66
SGML, 53
Shared Data Space, 9
Shared Instancing, 46
sheets (PIP), 51
sidereal day, 27
sidereal time, 27
Simple API for XML (SAX), 56
Simulation Server, 5, 9
Solstice

Summer, 26
Winter, 26

SolsysEngine, 70
SoSFFloatSFDoubleConverter,

66
South Celestial Pole, 27
South Ecliptical Pole, 28
spectral class, 40, 77
standard equinox, 31
state vector, 36, 71, 75
Stumpff function, 37

task, 7
Terrestrial Dynamical Time, 24
Tracker Server, 5
Tracker System, 5
tracking system, 50

magnetic, 49, 89
optical, 50

transition, 7
true anomaly, 33, 34

Unicode, 54
Universal Kepler Equation, 39
Universal Time, 24
upper culmination, 27
User Client, 10

valid document (XML), 54
Vernal Equinox, 27
Virtual Reality, 48
VRML, 8

well-formed (XML), 54

Wien's Displacement Law, 40

XML, 53
application, 54
attribute, 54
document, 54
Document Object Model

(DOM), 56
Document Type Declaration,

55
Document Type De�nition

(DTD), 54
element, 54, 55
header, 54
invalid, 54
names, 55
parser, 56
root element, 55
Simple API for, (SAX), 56
tag set, 54
valid, 54
well-formed, 54
Xerces-C++, 63

XMLProcessor, 81

zenith, 26
zodiac, 25

Bibliography

[Bar91] Hans-Jochen Bartsch. Taschenbuch Mathematischer Formeln.
Fachbuchverlag Leipzig, fourteenth edition, 1991.

[BG91] Lee E. Brotzman and Susan E. Gessner, editors. Selected Astro-
nomical Catalogs, volume 1. Astronomical Data Center (ADC,
GSFC, NASA), Goddard Space Flight Center, Greenbelt, Mary-
land, 1991.

[Bry18] Otto J. Bryk, editor. Johann Kepler � Die Zusammenklänge

der Welten. Klassiker der Naturwissenschaft&Technik. Eugen
Diederichs, Jena, 1918.

[Bur78] Robert Burnham, Jr. Burnham's Celestial Handbook. Dover
Publications, Inc., New York, 1978.

[COR01] CORDIS. IST Overview. http://www.cordis.lu/ist/

overv-1.htm, September 2001.

[Der01] Helmut Dersch. Panorama Tools. Website: http://www.

fh-furtwangen.de/~dersch/, 1998�2001.

[Dre53] J. L. E. Dreyer. A History of Astronomy from Thales to Kepler.
Dover Publications, Inc., New York, second edition, 1953.

[EH88] H. Elsässer and U. Haug. Über eine lichtelektrische Flächen-
photometrie der südlichen und nördlichen Milchstraÿe in zwei
Farben und die Struktur des galaktischen Systems. In Her-
mann Mucke, editor, Seminarpapiere, volume 16 of Sternfreunde-
Seminar, pages 26�38, Vienna, 1988. Österreichischer As-
tronomischer Verein. (Reprint from: Mitteilungen des As-
tronomischen Instituts der Universität Tübingen, Nr. 48, in:
Zeitschrift für Astrophysik 50, pages 122�144, 1960).

[ESA] ESA Rosetta Website. http://sci.esa.int/rosetta/.

[Hea99] Paul J. Heafner. Fundamental Ephemeris Computations.
Willmann-Bell, Inc., Richmond, Virginia, �rst edition, 1999. For
use with JPL data.

95

BIBLIOGRAPHY 96

[Hel65] K. H. Hellwege, editor. Landolt-Börnstein � Numerical Data

and Functional Relationships in Science and Technology, volume
1: Astronomy and Astrophysics of Group IV: Astronomy, Astro-
physics and Space Research. Springer Verlag, Berlin, Heidelberg,
New York, 1965.

[HM01] Elliotte Rusty Harold and W. Scott Means. XML in a Nutshell.
O'Reilly &Associates, Inc., Sebastopol, California, 2001.

[Mar00] Stephen P. Maran. Selling Astrophysics in a Crystal Palace. Sky
& Telescope, 99(5):46�47, May 2000.

[Mee91] Jean Meeus. Astronomical Algorithms. Willmann-Bell, Rich-
mond, Virginia, 1991.

[Mee98] Jean Meeus. Astronomical Algorithms. Willmann-Bell, Rich-
mond, Virginia, second edition, 1998.

[Mei92] Ludwig Meier. Der Himmel auf Erden � Die Welt der Plane-

tarien. Johann Ambrosius Barth, Leipzig, Heidelberg, 1992.

[PC88] James B. Pollack and Je�rey N. Cuzzi. Planetenringe. In Plan-

eten und ihre Monde, Verständliche Forschung, pages 158�171.
Spektrum der Wissenschaft Verlagsgesellschaft mbH&Co. KG,
Heidelberg, 1988.

[Rey76] H.A. Rey. The Stars � A New Way To See Them. Houghton
Mi�in Company, Boston, 1976. (1997 reprint).

[Sei92] P. Kenneth Seidelmann. Explanatory Supplement to the Astro-
nomical Almanac. University Science Books, Sausalito, Califor-
nia, 1992.

[Ses91] Giuseppe Maria Sesti. The Glorious Constellations � History

and Mythology. Harry N. Abrams, Inc., New York, 1991.

[SFH00a] Dieter Schmalstieg, Anton Fuhrmann, and Gerd Hesina. Bridg-
ing Multiple User Interface Dimensions with Augmented Real-
ity. In Proceedings of the 3rd International Symposium on Aug-

mented Reality (ISAR 2000), pages 20�30, Munich, Germany,
October 2000.

[SFH+00b] Dieter Schmalstieg, Anton Fuhrmann, Gerd Hesina, Zsolt
Szalavári, L. Miguel Encarnação, Michael Gervautz, and Werner
Purgathofer. The Studierstube Augmented Reality Project.
Technical Report TR-186-2-00-22, Institute of Computer Graph-
ics and Algorithms, Vienna University of Technology, December
2000.

BIBLIOGRAPHY 97

[SG97a] Zsolt Szalavári and Michael Gervautz. The Personal Interaction
Panel � A Two-Handed Interface for Augmented Reality. In
Proceedings of EUROGRAPHICS'97, volume 16, 3 of Computer
Graphics Forum, pages 335�346. Budapest, Hungary, September
1997. Available at http://www.studierstube.org.

[SG97b] Zsolt Szalavári and Michael Gervautz. Using the Personal In-
teraction Panel for 3D Interaction. In Proceedings of the Con-

ference on Latest Results in Information Technology, pages 3�
6, Budapest, Hungary, May 1997. Available at http://www.

studierstube.org.

[Tho29] Oswald Thomas. Himmel und Welt. Arbeitsgemeinschaft für
Kultur und Aufbau, München, second edition, 1929.

[Tho56] Oswald Thomas. Astronomie. Das Bergland-Buch,
Salzburg/Stuttgart, seventh edition, 1956.

[TT45] Oswald Thomas and Richard Teschner. Atlas der Sternbilder.
Das Bergland-Buch, Salzburg, 1945.

[TW+01] Robert F. Tobler, Alexander Wilkie, et al. ART � Advanced
Rendering Toolkit: A modular, portable rendering package im-
plemented as a set of libraries in Objective-C. ART website:
http://www.artoolkit.org, 1997�2001.

[TZW+01] Christoph Traxler, Georg Zotti, Morten Wagner, Bernard
Fontaine, and Georges Focant. System Speci�cation. Deliver-
able 4, work package 4, ASH consortium, 2001. version �nal
4.7.0.

[Wer94a] Josie Wernecke. The Inventor Mentor: Programming Object-

oriented 3D Graphics with Open Inventor, Release 2. Addison-
Wesley, 1994.

[Wer94b] Josie Wernecke. The Inventor Toolmaker: Extending Open In-

ventor, Release 2. Addison-Wesley, 1994.

[WZ71] Alfred Weigert and Helmut Zimmermann. ABC der Astronomie.
Werner Dausien, Hanau/Main, third edition, 1971.

[Zot00] Georg Zotti. Urania � The Astronomical Companion for the

HP-48 and HP-49 Pocket Calculator Series, Version 2.1. Vienna,
2000.

Acknowledgements

This work would not have been possible without other people's work.
First of all, I would like to express my thanks to Prof. Hermann

Mucke, director of the Zeiss Planetarium Vienna 1963�2000, the Ura-
nia public observatory 1971�2000, and secretary of the Astronomical Society
of Austria (Österreichischer Astronomischer Verein). With his personal am-
bition and countless inspiring lectures on astronomy, especially for children
and laypersons, he excited strong astronomical interest in many visitors, me
included. Now retired from the planetarium, he still teaches astronomy in
a new environment, the Sterngarten, an �open air planetarium� built by
the Society on the western outskirts of Vienna. I feel honored to have worked
as assistant, later as guide at the Urania observatory, and wish him and his
wife many more years to go!

I would like to thank members of the Institute of Computer Graphics and
Algorithms of the Vienna University of Technology, most notably Michael
Gervautz and Christoph Traxler for suggestions and helpful hints, and
the Studierstube teams at the Institute and at VRVis, the Vienna Com-
petence Center for Virtual Reality and Visualization, most notably Rainer
Splechtna, Anton Fuhrmann, and Zsolt Szalaváry for their support.

My colleagues Zsolt Marx and Gottfried Eibner built the basis of
a comet model with animated tail and gas particles evaporating from the
comet core. They deserve my thanks for letting me adapt and use it in
VRMoSS.

Last, but not least I would like to thank other members of the ASH
team for providing a great system to teach and learn astronomy. I hope that
the ASH project will continue with interesting missions that make use of
VRMoSS and show many young people the fascination of astronomy and
space exploration.

98

