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Abstract

Our starting point for developing the Studierstube system was the belief that aug-
mented reality, the less obtrusive cousin of virtual reality, has a better chance of
becoming a viable user interface for applications requiring manipulation of complex

three-dimensional information as a daily routine. In essence, we are searching for a
3-D user interface metaphor as powerful as the desktop metaphor for 2-D. At the
heart of the Studierstube system, collaborative augmented reality is used to embed

computer-generated images into the real work environment. In the �rst part of this
paper, we review the user interface of the initial Studierstube system, in particular
the implementation of collaborative augmented reality, and the Personal Interaction

Panel, a two-handed interface for interaction with the system. In the second part,
an extended Studierstube system based on a heterogeneous distributed architecture
is presented. This system allows the user to combine multiple approaches— aug-

mented reality, projection displays, and ubiquitous computing—to the interface as
needed. The environment is controlled by the Personal Interaction Panel, a two-
handed, pen-and-pad interface that has versatile uses for interacting with the virtual

environment. Studierstube also borrows elements from the desktop, such as multi-
tasking and multi-windowing. The resulting software architecture is a user interface
management system for complex augmented reality applications. The presentation

is complemented by selected application examples.

1 Introduction

Studierstube is the German word for the study room in which Goethe’s
famous character, Faust, tries to acquire knowledge and enlightenment
(Goethe, 1808). We chose this term as the working title for our efforts to de-
velop 3-D user interfaces for future work environments. Most current virtual
reality systems are tailored to the needs of a single, very speci�c application
that is highly specialized for that purpose. In contrast, the Studierstube project
tries to address 3-D user interface management: how to use three-dimensional
interactive media in a general work environment in which a variety of tasks are
performed simultaneously. In essence, we are searching for a 3-D user interface
metaphor as powerful as the desktop metaphor for 2-D.

Our starting point for developing Studierstube was the belief that aug-
mented reality (AR), the less obtrusive cousin of virtual reality (VR), has a bet-
ter chance than VR of becoming a viable user interface for applications requir-
ing 3-D information manipulation as a daily routine. Today’s information
workers are required to perform a large variety of tasks, but communication
between human coworkers has an equally signi�cant role. Consequently,
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Studierstube tries to support productivity, typically asso-
ciated with the desktop metaphor, as well as collabora-
tion, typically associated with computer-supported co-
operative work applications.

At the heart of the Studierstube system, collaborative
AR is used to embed computer-generated images into
the real work environment. AR uses display technolo-
gies such as see-through head-mounted displays
(HMDs) or projection screens to combine computer
graphics with a user’s view of the real world. By allow-
ing multiple users to share the same virtual environ-
ment, computer-supported cooperative work in three
dimensions is enabled.

This paper gives an overview of the various avenues of
research that were investigated in the course of the last
four years, and how they relate to each other. The in-
tent of this paper is to provide a summary of this rather
extensive project as well as an introduction to the ap-
proach of blending augmented reality with elements
from other user interface paradigms to create a new de-
sign for a convincing 3-D work environment.

In the �rst part of this paper, we review the core user
interface technologies of the Studierstube work, in par-
ticular the implementation of collaborative augmented
reality, and the Personal Interaction Panel, a two-
handed interface for interaction with the system.

In the second part, we present an extended collabora-
tive 3-D interface that unites aspects of multiple user
interface paradigms, in particular augmented reality,
ubiquitous computing, and the desktop metaphor. It is
illustrated by reviewing some selected demonstrations
that were built using Studierstube , and some conclusions
are drawn.

2 Related Work

The current architecture of Studierstube has ab-
sorbed many different in�uences and is utilizing— and
partially enhancing—many different ideas. The most
in�uential areas are augmented reality, computer-sup-
ported cooperative work, ubiquitous computing, and
heterogeneous user interfaces. Here the discussion is
limited to some of the most in�uential work.

Weiser (1991) introduced the concept of ubiquitous
computing as a future paradigm on interaction with
computers. Computers are constantly available in our
surroundings by embedding them into everyday items,
making access to information almost transparent. In
contrast, augmented reality systems focus on the use of
personal displays (such as see-through HMDs) to en-
hance a user’s perception by overlaying computer-gen-
erated images onto a user’s view of the real world.

The Shared Space project (Billinghurst, Weghorst, &
Furness, 1996, 1998), at University of Washington’s
HITLab has—together with Studierstube—pioneered
the use of collaborative augmented reality. The founda-
tion of the group’s recent work is ARToolKit, a library
for the ef�cient and reliable optical tracking of card-
shaped markers (Kato & Billinghurst, 1999), which is
now freely available. Using ARToolKit, the group has
worked on many innovative applications blending AR
with other components. For example, Billinghurst,
Bowskill, Jessop, and Morphett (1998) present a wear-
able augmented video conferencing space that can be
used for remote collaboration. Through the arrange-
ment of video windows in the user’s surrounding to-
gether with spatialized audio, the sense of presence of
the remote participants is heightened. In the Magic
Book scenario (Billinghurst, Kato, & Poupyrev, 2001),
users can browse 3-D virtual worlds using a real book
with marked pages. They may also “teleport” into the
worlds presented in the book and explore transitions to
and from immersive virtual reality. VOMAR (Kato, Bill-
inghurst, Poupyrev, Imamoto, & Tachibana, 2000) ex-
plores the tangible manipulation of virtual worlds using
natural gestures in an interior design example.

The Computer Graphics and User Interfaces lab at
Columbia University has a long-term reputation for
augmented reality research. In one of the seminal works
on augmented reality, Feiner, MacIntyre, and Seligman
(1993) describe a system capable of guiding a user
through complex tasks by providing knowledge-driven
annotations of objects in the environment. The group at
Columbia recently presented the EMMIE system (Butz,
Höllerer, Feiner, MacIntyre, & Beshers, 1999), which is
probably the closest relative to Studierstube. It combines
augmented reality with ubiquitous computing by envel-
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oping users and computers in a collaborative “ether”
populated with graphical data items. The data is visual-
ized using AR and ubiquitous computing devices such
as HMDs, notebooks, personal digital assistants
(PDAs), and projection walls. Every device is used ac-
cording to its capabilities; for example, a handheld dis-
play presents hypertext information rather than 3-D
graphics. Objects may be moved between devices by
natural drag and drop operations, and different opera-
tions will be available depending on the used device.
EMMIE can also be interfaced with remote mobile AR
users (Höllerer, Feiner, Terauchi, Rashid, & Hallaway,
1999). The remote user’s position can be visualized in
EMMIE, and guiding information can be provided.
EMMIE shares many basic intentions with our research,
in particular the concurrent use of heterogeneous media
in a collaborative work environment.

Rekimoto has developed a number of setups for multi-
computer direct manipulation to bridge heterogeneous
media. Similar to Fitzmaurice’s earlier Chameleon work
(1993), he used a handheld display—con�gured as a video
see-through device—to provide an augmented window
into the world (Rekimoto & Nagao, 1995). If position
information is available for mobile users, personal annota-
tions can be attached to places to be shared with other
users (Rekimoto, Ayatsuka, & Hayashi, 1998). Other
work deals with bridging the space between possibly heter-
ogeneous devices, a precursor to EMMIE’s “ether”. Reki-
moto (1997) uses a stylus to drag and drop data across
display boundaries. Privacy can be kept by using per-
sonal—for example, handheld—devices, while information
on a projection screen is available to other users. Later, this
idea was picked up in Augmented Surfaces (Rekimoto &
Saitoh, 1999), wherein a projection table provides the
shared space to connect heterogeneous devices. Some ob-
jects are passive and simply recall associated data when
placed on the Active Surface, whereas other objects such as
laptop computers act independently and can, for example,
be receptors of information dragged across the Active Sur-
face.

The Tangible Media Group at MIT has developed a
number of heterogeneous user interfaces based on the
theme of tangible (physical) objects (Ishii & Ullmer,

1997). The group’s work is based on the thesis that in-
teraction should be based on physical objects aug-
mented with computer-generated information and func-
tion. For example, the metaDESK (Ullmer & Ishii,
1997) is a back-projection table that presents informa-
tion that can be manipulated with tracked props on its
surface. It also offers a combination of viewing modali-
ties, such as a separate handheld display used to observe
the scene in a different dimension (3-D graphics), and
with an independent viewpoint. The luminous room
(Underkof�er, Ullmer, & Ishii, 1999) is a similar frame-
work in which tangible objects are manipulated on a
table surface to create complex application setups such
as a simulated optical workbench. Although such a sys-
tem is naturally collaborative by allowing multiple users
to independently manipulate tangible objects, the sys-
tem also allows remote collaboration using multiple sep-
arate display surfaces. Another tangible platform, media-
Blocks (Ullmer, Ishii, & Glas, 1998) are physical
surrogates for data items. Manipulation of the physical
objects on or in a number of receptor platforms such as
a whiteboard, printer, or �at screen allow the associated
information to be manipulated accordingly.

The Of�ce of the Future project at UNC (Raskar et
al., 1998) is concerned with the seamless embedding of
computer-controlled displays into a conventional of�ce
environment. Their approach uses advanced display
techniques such as front projection with multiple pro-
jectors on irregular and potentially overlapping surfaces
to present computer-generated images almost every-
where. Scene analysis using structured light patterns is
used to obtain the necessary geometric information of
the real environment. The resulting system provides
what Raskar, Welch, and Fuchs (1998) call spatially
augmented reality. It is complementary to other forms
of augmentation in that it neither requires see-though
nor back-projection displays.

Heterogeneous user interfaces are typically explored
in conjunction with collaborative tasks and/or confer-
encing situations, because it is natural that multiple
computers are operated by multiple users, for example,
in an operations center or a meeting room into which a
user may bring a laptop or PDA. An issue that inevitably
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arises in such situations is that of privacy: users do not
necessarily desire all their data to be public (Butz, Besh-
ers, & Feiner, 1998). A solution for the privacy issue is
possible for every architecture that supports indepen-
dent display to multiple users. So-called subjective views
can be employed for displaying selected data to only
one user if they are useless or distracting to other users
(such as local highlighting or annotations) or if privacy
is desired. This concept can be implemented on separate
desktop displays (Smith & Mariani, 1997), handheld
displays (Rekimoto et al., 1998), HMDs (Butz et al.,
1999) or time-interlacing displays such as the two-user
workbench (Agrawala et al., 1997).

Finally, some sources of inspiration for ideas pre-
sented in this paper—CRYSTAL and SPLINE—are not
directly related to AR research. CRYSTAL (Tsao &
Lumsden, 1997) is a single-user, multi-application plat-
form. It is agnostic in terms of display media, but it pio-
neers the use of 3-D windows and multitasking of appli-
cations in virtual environments. Multiple applications
can execute simultaneously in their own independent
3-D containers and communicate by message passing.
As the authors point out, the coexistence of multiple
applications is typically not supported in virtual reality
systems due to performance reasons and development
complexity, and CRYSTAL aims to overcome that.

SPLINE (Barrus, Waters, & Anderson, 1996) is a
distributed multiuser environment. From it the term
locale is borrowed, which in SPLINE is used to describe
nonoverlapping places. Locales in SPLINE are typically
physical places such as a room, hallway, or town square.
Although SPLINE is neither an AR system nor a 3-D
work environment (according to our use of the term), it
allows multiple users to participate in multiple activities
simultaneously, which resembles multitasking of appli-
cations.

3 Interaction in Augmented Reality

The Studierstube system as described by Schmal-
stieg, Fuhrmann, Szalavári, and Gervautz (1996) and
Szalavári, Fuhrmann, Schmalstieg, and Gervautz (1998)
was one of the �rst collaborative augmented reality sys-

tems. Multiple users gather in a room and can experi-
ence a shared virtual space populated with three-dimen-
sional data. Head-tracked HMDs allow each user to
choose an individual viewpoint while retaining full ste-
reoscopic graphics. This is achieved by rendering the
same virtual scene for every user’s viewpoint (or, more
precisely, for every user’s eyes) while taking the users’
tracked head positions into account. Copresence of us-
ers in the same room allows natural interaction (such as
talking and gesturing) during a discussion. The combi-
nation of real-world experience with the inspection of
virtual scenes yields a powerful tool for collaboration.
Figure 1 shows two users exploring a scienti�c data set
(Fuhrmann, Löffelmann, Schmalstieg, & Gervautz,
1998).

3.1 The Personal Interaction Panel

The Personal Interaction Panel (PIP) is a two-
handed interface used to control Studierstube applica-
tions (Szalavári & Gervautz, 1997). It is composed of
two lightweight handheld props, a pen and a panel,
both equipped with trackers. Via the see-through
HMD, the props are augmented with computer-gener-

Figure 1. Two collaborators wearing see-through displays are

examining a �ow visualization data set.
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ated images, thus instantly turning them into applica-
tion-de�ned interaction tools similar in spirit to the vir-
tual tricorder of Wloka & Green�eld (1995), only using
two hands rather than one. The pen and panel are the
primary interaction devices.

The props’ familiar shapes, the fact that a user can still
see his or her own hands, and the passive tactile feed-
back experienced when the pen touches the panel make
the device convenient and easy to use. Proprioception
(Mine, Brooks, & Sequin, 1997) is readily exploited by
the fact that users quickly learn how to handle the props
and can remember their positions and shapes. A further
advantage is that users rarely complain about fatigue as
they can easily lower their arms and look down on the
props.

The asymmetric, two-handed interaction exploits
Guiard’s observations (1987) that humans often use the
nondominant hand (holding the panel) to provide a
frame of reference for the �ne-grained manipulations
performed with the dominant hand (holding the pen).
Many of the interaction styles we have designed take
advantage of this fact.

However, the panel not only provides a frame of ref-
erence but also a natural embedding of two dimensions
in 3-D (�gure 2). Many of the artifacts we encounter in
real life—such as TV remote controls or button panels

on household items—are essentially two-dimensional.
The PIP approach, with its tactile feedback on the pan-
el’s surface, resembles those real-world artifacts better
than naive VR approaches such as �ying menus. Conse-
quently, the PIP provides a way to transpose many use-
ful widgets and interaction styles from the desktop met-
aphor into augmented reality. Such “2.5-D” widgets
like buttons, sliders, or dials provide the tools of interac-
tion.

Beyond system control functions, both props allow
direct manipulation in three dimensions and lend them-
selves to a multitude of gesture-based interactions. For
example, �gure 3 shows how the pad is used in a medi-
cal application (Wohlfahrter, Encarnação, & Schmal-
stieg, 2000) to clip away portions of a medical data set
to look inside in a manner similar to Goble, Hinckley,
Pausch, Snell, and Kassel (1995). For more uses of the
PIP, see, for example, Schmalstieg et al. (1999), Encar-
nação, Bimber, Schmalstieg, and Berton (2000), Encar-

Figure 2. The Personal Interaction Panel allows two-handed

interaction with 2-D and 3-D widgets in augmented reality.

Figure 3. The panel is used to position a clipping plane that cuts

away a portion from the volumetric scan of a human skull.
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nação, Bimber, Schmalstieg, and Chandler (1999), and
Stoev, Schmalstieg, and Strasser (2001).

3.2 Privacy in Augmented Reality

The personal in Personal Interaction Panel was
chosen to emphasize how its use allows users to leverage
the advantages of collaborative augmented reality: hold-
ing and manipulating the PIP puts a user in control of
the application. If only one PIP is used, contention for
control is resolved using social protocols such as passing
the PIP. In contrast, giving each user a separate PIP
allows concurrent work. Although using multiple PIPs
requires the system software to resolve the resulting
consistency issues, users can freely interact with one or
multiple data sets because every user gets a separate set
of controls on his or her PIP. Fuhrmann and Schmal-
stieg (1999) describe how interface elements can (but
need not be) shared by users or application instances.

The concept of personal interaction in collaborative
environments is tied to the issue of privacy. Fortunately,
a display architecture that supports independent per-
user displays such as ours can be con�gured to use sub-
jective views (Smith & Mariani, 1997) with per-user
variations to a common scene graph. One user may dis-
play additional information that is not visible for the
user’s collaborators, for example, if the additional infor-
mation is confusing or distracting for other users, or if
privacy is desired (consider highlighting or private anno-
tations). We found the PIP to be a natural tool for
guarding such private information: for privacy, a user
can make information on the panel invisible to others.
For example, this idea was exploited by Szalavári, Eck-
stein, and Gervautz (1998) to prevent users of collabo-
rative games from cheating. (See �gure 4.)

4 Convergence of User Interface
Metaphors

During the work on the original Studierstube ar-
chitecture, we rapidly discovered new promising ave-
nues of research that could not be investigated using the
initial limited design. From approximately 1998 on, we

therefore concentrated our efforts at reengineering and
extending the initial solutions to construct a second-
generation platform that built on what we had learned.

As a �rst attempt towards an extended platform, sup-
port for the Virtual Table (VT), a workbench-like de-
vice, was added to Studierstube (Schmalstieg, Encarna-
ção, & Szalavári, 1999). The VT uses a large stereo
back-projection screen and can provide stereoscopic
graphics viewed with shutter glasses for a single head-
tracked user. Through the use of transparent props
made from Plexiglas that allow see-through graphics,
Studierstube’s original PIP-based interaction style was
transposed to the new display hardware. (See �gure 5.)

It gradually became clear that augmented reality—
even in a collaborative �avor—was not suf�cient to ad-
dress all the user interface requirements for the next-
generation 3-D work environment we had in mind. We
needed to mix and match elements from different user
interface metaphors. A vision of converging different
user interface paradigms evolved. (See �gure 6.) In par-
ticular, we wanted to converge AR with elements from
ubiquitious computing and the desktop metaphor.

In contrast to AR, which is characterized by users
carrying computing and display tools to augment their
environment, ubiquitous computing (Weiser, 1991)
denotes the idea of embedding many commodity com-
puting devices into the environment, thus making con-
tinuous access to networked resources a reality. The VT
platform, although hardly a commodity, is an instance
of such a situated device. Yet there are other devices
such as PDAs that blur the boundaries between AR and
ubiquitous computing. We are interested in exploring
possible combinations of a multitude of simultaneously
or alternatively employed displays, input, and comput-
ing infrastructures.

Although new paradigms such as AR and ubiquitous
computing enable radical redesign of human-computer
interaction, it is also very useful to transpose knowledge
from established paradigms, in particular from the desk-
top, into new interaction environments. Two-dimen-
sional widgets are not the only element of the desktop
metaphor that we consider useful in a 3-D work envi-
ronment. Desktop users have long grown accustomed
to multitasking of applications that complement each
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other in function. In contrast, many VR software tool-
kits allow the development of multiple applications for
the same execution environment using an abstract appli-
cation programmer’s interface (API); however, the exe-
cution environment usually cannot run multiple applica-
tions concurrently. Another convenient feature of
desktop applications is that many of them support a
multiple document interface (MDI)—that is, working

with multiple documents or data sets simultaneously—
allowing comparison and exchange of data among doc-
uments. The use of 2-D windows associated with docu-
ments allows the convenient arrangement of multiple
documents according to a user’s preferences. Although
these properties are established in the desktop world,
they are not exclusive to it and are indeed useful to en-
hance productivity in a 3-D work environment as well.

Figure 4. Personal displays secure privacy when playing Mah-jongg. The left player (upper view) cannot

see his opponent’s tile labels and vice versa (lower view).
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The latest version of the Studierstube software frame-
work explores how to transpose these properties into a
virtual environment (Schmalstieg, Fuhrmann, &
Hesina, 2000). The design is built on three key ele-
ments: users, application objects, and locales.

4.1 Users

Support for multiple collaborating users is a fun-
damental property of the Studierstube architecture. Al-
though we are most interested in computer-supported,

face-to-face collaboration, this de�nition also encom-
passes remote collaboration. Collaboration of multiple
users implies that the system incorporates multiple host
computers, typically one per user. However, Studier-
stube also allows multiple users to interact with a single
host (for example, via a large screen or multiheaded dis-
play) and a single user to interact with multiple comput-
ers at once (by simultaneous use of multiple displays).
This design is realized as a distributed system composed
of different computing, input (PIP), and output (dis-
play) devices that can be operated simultaneously.

4.2 Application Objects

The building blocks for organizing information in
Studierstube are called application objects. An application
object encloses application data itself, the data’s graphi-
cal representation, and an application that operates on
the data. It therefore roughly corresponds to an object-
oriented implementation of a document in a conven-
tional desktop system. Users interact with only the
graphical representation, so the notion of an application
is completely hidden from the user. In particular, users
never have to “start” an application; they simply create
or access an object of a speci�c application type. Con-
ceptually, applications are always “on” (Kato et al.,
2000).

In a desktop system, the data representation of a doc-
ument is typically a single 2-D window. Analogously, in
our three-dimensional user interface, an application ob-
ject’s graphical representation is a three-dimensional
structure contained in a box-shaped volume: a 3D-win-
dow. (See �gure 7.) Note that, unlike its 2-D counter-
part, an application object can be shared by any number
of users.

Every application object is an instance of a particular
application type. Different types can exist concurrently,
resulting in applications multitasking. Moreover,
Studierstube also allows multiple instances of the same
application type, thereby implementing an MDI. Multi-
ple application instances are aware of each other and can
share features and data. For example, consider the min-
iature stages of the storyboarding application (see sec-
tion 8), which share the “slide sorter” view.

Figure 6. The latest Studierstube platform combines the best

elements from augmented reality, ubiquitous computing, and the

desktop metaphor.

Figure 5. Transparent pen and pad for the Virtual Table are almost

invisible and replaced by computer graphics in the user’s perception

(image courtesy André Stork)
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4.3 Locales

Locales correspond to coordinate systems in the
virtual environment (Barrus et al., 1996). They usually
coincide with physical places, such as a lab or conference
room or part of a room, but they can also be portable
and linked to a user’s position or used arbitrarily; even
overlapping locales in the same physical space are al-
lowed and used. By convention, every display used in a
Studierstube environment shows the content of exactly
one locale, but one locale can be shared by multiple dis-
plays. Every application object can— but need not— be
replicated in every locale; that is, it can appear, at most,
once in every locale. All replicas of a particular applica-
tion object are kept synchronized by Studierstube’s dis-
tribution mechanism. (See section 7.)

4.4 Application versus Locale

At �rst glance, it may not be obvious why a sepa-
ration of application objects and locales is necessary. For
example, the EMMIE system (Butz et al., 1999) envel-
ops users and computers in a single environment called

ether, which is populated by graphical data items. An
item’s locale also de�nes its application and vice versa.
All displays share the same physical locale. This ap-
proach is simple to understand and easy to implement,
but the interaction design does not scale well with the
number of data items and users: as the number of data
items increases, it becomes increasingly dif�cult to ar-
range them so that all users have convenient access to all
of the data items that they are interested in. Data items
may be occluded or out of reach for convenient interac-
tion. Even a fully untethered setup of displays and de-
vices may be inconvenient if a large environment is
structured in a way that forces users to walk around in
order to access frequently required data. The larger the
user group, the more likely it becomes that two users
who are not in close proximity will compete for a partic-
ular data item, making optimal placement dif�cult or
impossible. Moreover, remote collaboration is ruled out
by the single-locale approach because the position of a
particular data item will often be inaccessible to a re-
mote user.

In contrast, Studierstube separates application objects

Figure 7. Multiple document interface in 3-D. The right window has the user’s focus, indicated by the

dark window frame, and can be manipulated with the control elements on the PIP.
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and locales for increased �exibility. Every display uses a
separate locale, that is, a scene with an independent co-
ordinate system. An application object is placed in a lo-
cale by assigning to its 3-D windows a particular posi-
tion within the locale. This approach allows for several
strategies regarding the arrangement of application ob-
jects in the relevant locales.

A strategy of making an application object available
exclusively in one locale is equivalent to the single locale
approach, with the exception that the locale is broken
up into disjointed parts. Again, users may not be able to
access desired application objects. (See �gure 8, top.) In
contrast, a strategy of replicating every application ob-
ject in every locale guarantees convenient access, but
quickly leads to display clutter. (See �gure 8, middle.)

Therefore, replication of an application object in a

given locale is optimal: there may be at most one replica
of a given application object in any locale. This strategy
allows a user to arrange a convenient working set of ap-
plication objects in his or her preferred display. (See
�gure 8, bottom.) If the displays are connected to sepa-
rate hosts in a distributed system, only those hosts that
replicate an application object need to synchronize the
corresponding data. If it can be assumed that working
sets typically do not exceed a particular size, the system
will scale well.

Yet, in many situations, it is desirable to share posi-
tion and con�guration over display boundaries. Studier-
stube thus allows locales to be shared over displays.
More precisely, multiple displays can have independent
points of view, but show images of an identical scene
graph. This is used for the initial collaborative aug-
mented reality scenario as depicted in �gure 1, and also
corresponds to the virtual ether of EMMIE (Butz et al.,
1999). Figure 9 illustrates the use of this feature for the
3-D drag and drop of an application object across dis-
play boundaries in a Studierstube environment com-
posed of two adjacent desktop computers.

Although the space composed from stationary dis-
plays can usually be embedded in a single locale, mobile
displays (such as notebooks or handheld displays) are
better managed using a separate locale per display. In a
scenario with two notebooks, applications could be
moved from one locale to the next for collaborative
work. In general, mobile users will require user-stabi-
lized “mobile locales” that overlap in collaborative work
situations. More examples on the use of application ob-
jects and locales are given in section 9.

5 Implementation of the User Interface

5.1 Software Architecture

Studierstube’s software development environment
is realized as a collection of C+ + classes built on top of
the Open Inventor (OIV) toolkit (Strauss & Carey,
1992). The rich graphical environment of OIV allows
rapid prototyping of new interaction styles. The �le for-
mat of OIV enables convenient scripting, overcoming
many of the shortcomings of compiled languages with-

Figure 8. Top: A global arrangement of items cannot ful�ll all

needs. Middle: Full replication of all items leads to display clutter.

Bottom: On-demand replication of items allows the convenient

customization of locales.
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out compromising performance. At the core of OIV is
an object-oriented scene graph storing both geometric
information and active interaction objects. Our imple-
mentation approach has been to extend OIV as needed,
while staying within OIV’s strong design philosophy
(Wernecke, 1994).

This has led to the development of two intertwined
components: a toolkit of extensions of the OIV class
hierarchy—mostly interaction widgets capable of re-
sponding to 3-D events—and a runtime framework that
provides the necessary environment for Studierstube ap-
plications to execute. (See �gure 10.) Together, these
components form a well-de�ned API, which extends the
OIV API and also offers a convenient programming
model to the application programmer. (See section 8.)

Applications are written and compiled as separate
shared objects and dynamically loaded into the runtime
framework. A safeguard mechanism makes sure that
only one instance of each application’s code is loaded
into the system at any time. Besides decoupling applica-
tion development from system development, dynamic
loading of objects also simpli�es distribution, as applica-
tion components can be loaded by each host whenever
needed. All these features are not unique to Studier-
stube, but they are rarely found in virtual environment
software.

By using this dynamic loading mechanism, Studier-
stube supports multitasking of different applications (for
example, a medical visualization and a 3-D modeler)
and also an MDI.

Depending on the semantics of the associated applica-

tion, ownership of an application object may or may not
privilege a user to perform certain operations on the
information (such as object deletion). Per default, users
who are present in the same locale will share an applica-
tion object; an application object is visible to all users,
and it can be manipulated by any user in the locale.

5.2 Three-Dimensional Windows

The use of windows as an abstraction and interac-
tion metaphor is an established convention in 2-D

Figure 9. Application migration through dragging one of multiple 3-D application windows across display and host boundaries.

Figure 10. The Studierstube software is composed of an

interaction toolkit and runtime system. The latter is responsible for

managing application objects and distribution.
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GUIs. Its extension to three dimensions can be achieved
in a straightforward manner (Tsao & Lumsden, 1997):
using a box instead of a rectangle seems to be the easiest
way of preserving the well-known properties of desktop
windows when migrating into a virtual environment. It
supplies the user with the same means of positioning
and resizing the display volume, and it also de�nes its
exact boundaries.

An application object is normally represented in the
scene by a 3-D window, although it may span multiple
windows. The 3-D window class is a container associ-
ated with a user-speci�ed scene graph. This scene graph
is normally rendered with clipping planes set to the faces
of the containing box so that the content of the window
does not protrude from the window’s volume. Al-
though nested windows are possible, we have found
little use for them. The window is normally rendered
with an associated “decoration” that visually de�nes the
window’s boundaries and allows it to be manipulated
with the pen (move, resize, and so on). The color of the
decoration also indicates whether a window is active
(and hence receives 3-D events from that user). Like
their 2-D counterparts, 3-D windows can be minimized
(replaced by a three-dimensional icon on the PIP to
save space in a cluttered display) and maximized (scaled
to �ll the whole work area). Typically, multiple applica-
tion objects of the same type will maintain structurally
similar windows, but this decision is at the discretion of
the application programmer.

5.3 PIP Sheets

Studierstube applications are controlled either via
direct manipulation of the data presented in 3-D win-
dows, or via a mixture of 2-D and 3-D widgets on the
PIP. A set of controls on the PIP—a “PIP sheet”—is
implemented as an OIV scene graph composed primar-
ily of Studierstube interaction widgets (such as buttons).
However, the scene graph may also contain geometries
(such as 2-D and 3-D icons) that convey the user inter-
face state or can be used merely as decoration.

Every type of application object de�nes a PIP sheet
template, a kind of application resource. For every appli-
cation object and user, a separate PIP sheet is instanti-

ated. Each interaction widget on the PIP sheet can
therefore have a separate state. For example, the current
paint color in an artistic spraying application can be set
individually by every user for every application object.
However, widgets can also be shared by all users and/or
all application objects. Consequently, Studierstube’s 3-D
event routing involves multiplexing between windows
and users’ PIP sheets.

6 Hardware Support

6.1 Displays

Studierstube is intended as an application frame-
work that allows the use of a variety of displays, includ-
ing projection-based devices and HMDs. There are sev-
eral ways of determining camera position, creating
stereo images, setting a video mode, and so forth. After
some consideration, we implemented an OIV-compati-
ble viewer with a plugin architecture for camera control
and display mode. The following display modes are cur-
rently supported:

c Field sequential stereo: Images for left/right eye
output in consecutive frames.

c Line interleaved stereo: Images for left/right eye
occupy odd/even lines in a single frame.

c Dual-screen stereo: Images for left/right eye are
output on two different channels.

c Anaglyph stereo: Superimposed images for left/
right eye are coded in red/green or red/blue.

c Mono: The same image is presented to both eyes.

The following camera control modes are currently
supported:

c Tracked display: Viewpoint and display surface are
moving together and are tracked (usually HMD).

c Tracked head: A user’s viewpoint (head) is tracked,
but the display surface is �xed (workbench, wall).

c Desktop: The viewpoint is either stationary, or can
be manipulated with a mouse.

This approach, together with a general off-axis cam-
era implementation, allows runtime con�guration of

44 PRESENCE: VOLUME 11, NUMBER 1



almost any available display hardware. Table 1 shows an
overview of some devices that we have evaluated so far.

6.2 Tracking

A software system like Studierstube that works in a
heterogeneous distributed infrastructure and is used in
several research labs with a variety of tracking devices
requires an abstract tracking interface. The approach
taken by most commercial software toolkits is to imple-
ment a device driver model, thereby providing an ab-
stract interface to the tracking devices while hiding
hardware-dependent code inside the supplied device
drivers. Although such a model is certainly superior to
hard-coded device support, we found it insuf�cient for
our needs in various aspects:

c Con� gurability: Typical setups for tracking in vir-
tual environments have very similar basic compo-
nents, but they differ in essential details such as the
placement of tracker sources or the number and
arrangement of sensors. The architecture allows the
con�guration of all of those parameters through
simple scripting mechanisms.

c Filtering: Many necessary con�guration options
can be characterized as �lters, that is, modi�cations
of the original data. Examples include geometric
transformations of �lter data, prediction, distortion
compensation, and sensor fusion from different
sources.

c Distributed execution and decoupled simula-
tion: Processing of tracker data can become com-
putationally intensive, and it should therefore be
possible to distribute this work over multiple CPUs.
Moreover, tracker data should be simultaneously
available to multiple users in a network. This can be
achieved by implementing the tracking system as a
loose ensemble of communicating processes. Some
processes are running as services on dedicated hosts
to share the computational load and distribute the
available data via unicast and multicast mechanisms,
thereby implementing a decoupled simulation
scheme (Shaw, Green, Liang, & Sun, 1993).

c Extensibility : As a research system, Studierstube is
frequently extended with new experimental fea-
tures. A modular, object-oriented architecture al-
lows the rapid development of new features and
uses them together with existing ones.

The latest version of tracking support in Studierstube
is implemented as an object-oriented framework called
OpenTracker (Reitmayr & Schmalstieg, 2001a), which
is available as open source. It is based on a graph struc-
ture composed of linked nodes: source nodes deliver
tracker data, and sink nodes consume data for further
processing (for example, to set a viewpoint), while inter-
mediate nodes act as �lters. By adding new types of
nodes, the system can easily be extended. Nodes can
reside on different hosts and propagate data over a net-
work for decoupled simulation. By using an XML (Du-

Table 1. All Combinations of Camera Control and Display Modes Have Distinct Uses

Tracked Display Tracked Head Desktop

Field sequential Glasstron (stereo) Virtual Table or projector Fishtank VR with shutter
glasses

Line interleaved i-glasses VREX projector i-glasses w/o head tracking
Dual screen i-glasses Protec;

Saab/Ericsson AddVisor
Single user dual-projector

passive stereo w/head
track

Multiuser dual-projector
passive stereo

Anaglyph — Virtual Table or projector Cheap Fishtank VR
Mono Glasstron (mono) Virtual Table (mono) Desktop viewer
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Charme, 1998) description of the graph, standard XML
tools can be applied to author, compile, document, and
script the OpenTracker architecture.

7 Distributed Execution

The distribution of Studierstube requires that, for
each replica of an application object, all graphical and
application-speci�c data is locally available. In general,
applications written with OIV encode all relevant infor-
mation in the scene graph, so replicating the scene
graph at each participating host already solves most of
the problem.

7.1 Distributed Shared Scene Graph

Toward that aim, Distributed Open Inventor
(DIV) was developed (Hesina, Schmalstieg, Fuhrmann,
& Purgathofer, 1999) as an extension—more a kind of
plugin—to OIV. The DIV toolkit extends OIV with the
concept of a distributed shared scene graph, similar to
distributed shared memory. From the application pro-
grammer’s perspective, multiple workstations share a
common scene graph. Any operation applied to a part
of the shared scene graph will be re�ected by the other
participating hosts. All this happens to the application
programmer in an almost completely transparent man-
ner by capturing and distributing OIV’s noti�cation
events.

Modi�cations to a scene graph can either be updates
of a node’s �elds, that is, attribute values, or changes to
the graph’s topology, such as adding or removing chil-
dren. All these changes to the scene graph are picked up
by an OIV sensor and reported to a DIV observer that
propagates the changes via the network to all hosts that
have a replica of the application object’s scene graph,
where the modi�cations are duplicated on the remote
scene graph by a DIV listener. (See �gure 11.)

On top of this master/slave mechanism for replica-
tion, several network topology schemes can be built. A
simple reliable multicasting scheme based on time
stamps is used to achieve consistency.

7.2 Distributed Application Object
Management

A scene graph shared with DIV need not be repli-
cated in full; only some portions can be shared, allowing
local variations. In particular, every host will build its
own scene graph from the set of replicated application
object scene graphs.

These locally varied scene graphs allow for the man-
agement of locales by resolving distributed consistency
on a per application object basis. There exists exactly
one workstation that owns a particular application ob-
ject and will be responsible for processing all relevant
interaction concerning the application. This host’s rep-
lica is called the master application object. All other
hosts may replicate the application object as a slave. The
slaves’ data and representation (window, PIP sheet, and
so on) stay synchronized over the whole life span of the
application object for every replica.

The replication on a per-application object basis pro-
vides coarse-grained parallelism. At the same time, the
programming model stays simple, and the programmer
is relieved of solving dif�cult concurrency issues because
all relevant computation can be performed in a single
address space.

The roles that application objects may assume (master

Figure 11. Example of a �eld update in a master-slave

con�guration. (1) User triggers an action by pressing a button. (2)

Corresponding callback is executed and modi�ed �eld1 of node2. (3)

Event noti�cation is propagated upwards in scene graph and observed

by sensor. (4) Sensor transmits message to slave host. (5) Receiver

picks up message and looks up corresponding node in internal hash

table. (6) Slave node is modi�ed.
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or slave) affect the behavior of the application object.
The application part of a master is active and modi�es
application object data directly according to the users’
input. In contrast, a slave is dormant and does not react
to user input. For example, no callbacks are executed if
widgets are triggered. Instead, a slave relies on updates
to be transmitted via DIV. When something changes
the scene graph of the master application object, DIV
will pick up the change and propagate it to all slaves to
keep them in sync with the master. This process hap-
pens transparently within the application, which uses
only the master’s scene graph.

Note that application object replicas can swap roles
(such as by exchanging master and slave to achieve load
balancing), but at any time there may be only one mas-
ter copy per replicated application object.

Because the low-level replication of application object
data is taken care of by DIV, the high-level application
object management protocol is fairly simple: a dedicated
session manager process serves as a mediator among
hosts as well as a known point of contact for newcom-
ers. The session manager does not have a heavy work-
load compared to the hosts running the Studierstube
user interface, but it maintains important directory ser-
vices. It maintains a list of all active hosts and which
application objects they own or subscribe to, and it de-
termines policy issues, such as load balancing.

Finally, input is managed separately by dedicated de-
vice servers (typically PCs running Linux), which also
perform the necessary �ltering and prediction. The
tracker data is then multicast in the LAN, so it is simul-
taneously available to all hosts for rendering.

8 Application Programmer’s Interface

The Studierstube API imposes a certain program-
ming model on applications, which is embedded in a
foundation class and from which all Studierstube appli-
cations are derived. By overloading certain polymorphic
methods of the foundation class, a programmer can cus-
tomize the behavior of the application. The structure
imposed by the foundation class supports multiple ap-
plication objects (MDI).

Each application object can be operated in both mas-
ter mode (normal application processing) and slave
mode (same data model, but all changes occur remotely
through DIV). The key to achieving all of this is to
make the application object itself a node in the scene
graph. Such application object nodes are implemented
as OIV kit classes. Kits are special nodes that can store
both �elds, that is, simple attributes, and child nodes,
both of which will be considered part of the scene graph
and thus implicitly be distributed by DIV. Default parts
of every application object are at least one 3-D window
node, which is itself an OIV kit and contains the appli-
cation object’s “client area” scene graph, and a set of
PIP sheets (one for each participating user). In other
words, data, representation, and application are all em-
bedded in a single scene graph (see �gure 12), which
can be conveniently managed by the Studierstube frame-
work.

To create a useful application with all of the afore-
mentioned properties, a programmer need only create a
subclass of the foundation class and overload the 3-D
window and PIP sheet creation methods to return cus-

Figure 12. An application object is implemented as a node in the

scene graph, as are windows and PIP sheets. This allows for the

organization of all relevant data in the system in a single hierarchical

data structure.
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tom scene graphs. Typically, most of the remaining ap-
plication code consists of callback methods responding
to certain 3-D events such as a button press or a 3-D
direct manipulation event. Although the programmer
has the freedom to use anything that the OIV and
Studierstube toolkits offer, any instance data is required
to be stored in the derived application object class as a
�eld or node, or otherwise it will not be distributed.
However, this is not a restriction in practice because all
basic data types are available in both scalar and vector
formats as �elds, and new types can be created should
the existing ones turn out to be insuf�cient (a situation
that has not occurred to us yet).

Note that allowing an application object to operate in
either master and slave mode has implications on how
application objects can be distributed: it is not necessary
to store all master application objects of a particular type
at one host. Some master application objects may reside
on one host, some on another host. In this case, there
usually will be corresponding slave application objects at
the respective other host, which are also instances of the
same kit class, but initialized to function as slaves. In
essence, Studierstube’s API provides a distributed multi-
ple document interface.

9 Examples

This section describes two experimental applica-
tions that were designed to explore the possibilities of
heterogeneous user interfaces involving the convergence
of augmented reality with other media. Section 9.1 pre-
sents Storyboard, a heterogeneous environment for col-
laborative design of �lm sequences. Section 9.2 intro-
duces a mobile collaborative AR platform that leverages
heterogeneous tracking to allow a roaming user to col-
laborate with an existing Studierstube installation. Both
scenarios make use of multiple locales.

9.1 Storyboard Design

To demonstrate the possibilities of a heteroge-
neous virtual environment, we chose the application
scenario of storyboard design. This application is a pro-

totype of a �lm design tool, and it allows multiple users
to concurrently work on a storyboard for a �lm or
drama. Individual scenes are represented by their stage
sets, which resemble worlds in miniature (Pausch, Bur-
nette, Brockway, & Weiblen, 1995).

Every scene is represented by its own application ob-
ject and embedded in a 3-D window. Users can manip-
ulate the position of props in the scene as well as the
number and placement of actors (represented by col-
ored boardgame �gures), and �nally the position of the
camera. (See �gure 13.)

All application objects share an additional large slide-
show window, which shows a 2-D image of the selected
scene from the current camera position. By �ipping
through the scenes in the given sequence, the resulting
slideshow conveys the visual composition of the �lm.

Alternatively, a user may change the slideshow to a
“slide sorter” view inspired by current presentation
graphics tools, wherein each scene is represented by a
smaller 2-D image and the sequence can be rearranged
by simple drag-and-drop operations. The slide sorter is
intended to resemble the traditional storyboard used in
cinematography. It appears on the PIP for easy manipu-
lation as well as on the larger projection screen for pub-
lic discussion.

The test con�guration consisted of three hosts (SGI
Indigo2 and O2 running IRIX, Intergraph TZ1 Wildcat
running Windows NT), two users, and two locales. (See
�gure 14.) It was designed to show the convergence of
multiple users (real ones as well as virtual ones), applica-
tion objects, locales, 3-D windows, hosts, displays, and
operating systems.

The two users were wearing HMDs, both connected
to the Indigo2’s multichannel output, and seeing head-
tracked stereoscopic graphics. They were also each �tted
with a pen and panel. The Intergraph workstation was
driving an LCD video projector to generate a mono-
scopic image of the slideshow on the projection screen
(without viewpoint tracking), which complemented the
presentation of the HMDs.

Users were able to perform some private editing on
their local application objects and then update the slide-
show/sorter to discuss the results. Typically, each user
would work on his or her own set of scenes. However,
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we chose to make all application objects visible to both
users, so collaborative work on a single scene was also
possible. The slide sorter view was shared between both
users, so global changes to the order of scenes in the
�lm were immediately recognizable.

The third host—the O2—was con�gured to combine
the graphical output (monoscopic) from Studierstube
with a live video texture obtained from a video camera
pointed at the users and projection screen. The O2 was
con�gured to render images for a virtual user whose
position was identical to the physical camera. This fea-
ture was used to document the system on video.

The con�guration demonstrates the use of overlap-
ping locales: the �rst locale is shared by the two users to
experience the miniature stages at the same position.
This locale is also shared by the O2, which behaves like
a passive observer of the same virtual space, while a sec-
ond separate locale was used for the Intergraph driving
the projection screen, which could be freely reposi-
tioned without affecting the remainder of the system.

Figure 14. Heterogeneous displays: two users simultaneously see

shared graphics (via their see-through HMDs) and a large-screen

projection.

Figure 13. Left: Storyboard application with two users and two stage sets as seen from a third “virtual” user perspective, used for video

documentation. The video projection is visible in the background. Right: Slide sorter view with �ve corresponding stage sets.
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9.2 Mobile Augmented Reality

A recent addition to the Studierstube environment
is the capability to execute on mobile hardware. The
previously implemented hardware abstraction capabili-
ties as detailed in section 6 allowed us to assemble a
mobile Studierstube kit from commercial components: a
notebook with GeForce2 Go graphics accelerator drives
a stereocopic i-glasses HMD. Tracker data is fused from
an optical tracker using ARToolKit (Kato et al., 2000)
with a helmet-mounted camera, an inertial tracker (In-
tertrax2), and a tablet (Wacom). This setup allows un-
tethered operation of the Studierstube software and con-
nects to a distributed environment via wireless ethernet.
For details, refer to Reitmayr and Schmalstieg (2001b).

Using head- and body-mounted orientation tracking,
the mobile system presents information (that is, applica-
tion objects) using a body-stabilized display. As the user
moves about, the relative position of application objects
to the user’s body remains constant unless directly ma-
nipulated. Expressed in terms established earlier, every
user gets a personal locale that is body stabilized. When
multiple mobile users meet, or if a mobile user enters a
stationary Studierstube environment, a situation with
multiple overlapping locales naturally occurs. For col-
laboration, it is desirable that a locale shared between
the participating users is established to allow direct in-
teraction on shared data.

This goal can be achieved in one of several ways. If a
situated display (such as a projection screen or VT) is
available, it provides a natural frame of reference for
sharing. If all displaying is done on HMDs, the users’
personal locales can be anchored to a world-stabilized
reference point. In the example described in the next
paragraph, this was done by attaching a tracked marker
to a table. It may be desirable to split a user’s applica-
tion objects among a body-stabilized personal locale
and a world-stabilized shared locale. To accommodate
this situation, the restriction of one locale per display
can be overcome by embedding all application objects
in the shared world-stabilized locale, but actively cou-
pling the position of selected application objects to a
user’s relative body position expressed in world-stabi-
lized coordinates.

In an experimental setup, we investigated collabora-
tion between a mobile and a stationary user. Two lo-
cales were used as motivated previously: a body-stabi-
lized locale for the mobile user, and a world-stabilized
locale for shared applications. The stationary user is
tracked using a tethered magnetic tracking system. The
user’s display, a stereoscopic Sony Glasstron HMD, is
driven by a desktop PC rendering host. The mobile user
is equipped with the tracking setup previously de-
scribed. A third rendering host featuring a video camera
was used to render a third person’s view over a video
image to document the setup on video. Figure 15 dis-
plays the con�guration.

The stationary user’s tracking is straightforward, but
the mobile user has to be correctly registered within the
stationary user’s coordinate system to use the same lo-
cale as the stationary user. This is achieved by an addi-
tional optical marker that is placed within the environ-
ment. Its position within the reference frame of the
magnetic tracker is registered. This establishes an anchor
for transforming the locations generated by the optical
tracking of the mobile user to the magnetic reference
frame.

Figure 15. Hardware setup for collaboration of mobile and

stationary user.
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An OpenTracker standalone server running on the
mobile unit tracks the anchor marker’s location relative
to the camera. Inverting this location information yields
the camera’s location relative to the marker. Using this
information and the registration data of the marker, it
computes the user’s location and subsequently that of
the interaction props within the magnetic tracker refer-
ence frame. It then sends the location to the other hosts
via a second multicast group. Note that all three hosts
receive tracker data from both multicast groups (opti-
cal/inertial and magnetic) and use OpenTracker com-
ponents to combine the data for correct display and in-
teraction of all tracked elements.

All three hosts are con�gured individually for the dif-
ferent needs of the output devices (for example, the
Sony Glasstron HMD uses a �eld-interleaved stereo
video signal, whereas the i-glasses device uses a line-
interleaved stereo signal). Each run an instance of the
shared chess application and use the tracking data com-
municated via the two multicast groups to render the
user’s actions properly. Figure 16 shows a collaborative
game of chess from the point of view of the third host’s
camera.

10 Conclusions and Future Work

As observed by Tsao & Lumsden (1997), to be
successful for everyday productivity work situations, vir-
tual environment systems must allow multi tasking and
multi-context operation. By multi tasking, they mean
that the virtual environment can be recon�gured to exe-
cute different applications; that is, there is a separation
of VR system software and application software.

Multi-context operation goes beyond that by allow-
ing multiple applications to execute concurrently rather
than sequentially. They also point out that this resem-
bles a development earlier experienced for 2-D user in-
terfaces, which evolved from single-application text con-
soles to multi-application windowing systems. It is no
surprise that by “judicious borrowing,” many useful
results from 2-D user interfaces become applicable to
3-D, as is evident with Studierstube’s PIP, 3-D windows,
or 3-D event system.

However, CRYSTAL does not incorporate true mul-
tiuser operation, and consequently has no need for mul-
tiple locales. Extending the taxonomy from CRYSTAL,
�gure 17 compares some relevant work. For example,
MIT’s mediaBlocks (Ullmer et al., 1998) allow a user to
work with different manipulators, which are dedicated
devices for speci�c applications, and the mediaBlocks
themselves are a very elegant embedding for context
data. However, although principally possible, no multi-
user scenarios were demonstrated.

Figure 16. Collaborative game of chess between a mobile and a

stationary user.

Figure 17. Extended taxonomy for multiple dimensions of user

interfaces with some related work (adapted from CRYSTAL).
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In contrast, SPLINE (Barrus et al., 1996) is designed
towards multiuser interaction. Although SPLINE com-
pletely immerses a user in a purely virtual world and
thus does not meet our de�nition of a work environ-
ment, it features multiple locales that correspond to ac-
tivities (for example, chat takes place in a street cafe,
while train rides take place on a train).

The closest relative to our work is Columbia’s
EMMIE (Butz et al., 1999). Except for explicit support
of locales, EMMIE shares many basic intentions with
our research, in particular the concurrent use of hetero-
geneous media in a collaborative work environment.
Like ourselves, the authors of EMMIE believe that fu-
ture user interfaces will require a broader design ap-
proach that integrates multiple user interface dimen-
sions before a successor to the desktop metaphor can
emerge.

Although Studierstube is de�nitely just a prototype on
the way to truly usable future 3-D work environments,
it is unique in its comprehensive support for all three
concepts previously discussed: users, tasks (applications),
and locales. This strategy allows the integration of di-
verse approaches to user interfaces as needed, for exam-
ple, augmented reality, situated and ubiquitous comput-
ing, and desktop computing. The resulting software
architecture is a powerful user interface management
system that is capable not only of collaborative aug-
mented reality, but of very diverse heterogeneous user
interface styles and applications.

Future work will emphasize mobile augmented real-
ity. Mobile users should be able to fully explore the ca-
pabilities of the system independent of location, but also
be able to use situated infrastructure. Our goal is to al-
low users to take 3-D application objects “on the road”
and even dock into a geographically separate environ-
ment without having to shut down live applications.
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Using transparent props for interaction with the virtual ta-
ble. Proceedings ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics (I3D’99), 147–154.

Schmalstieg, D., Fuhrmann, A., & Hesina, G. (2000). Bridg-
ing multiple user interface dimensions with augmented real-
ity. Proceedings International Symposium on Augmented Re-
ality (ISAR’00), 20–30.

Shaw, C., Green, M., Liang, J., & Sun, Y. (1993). Decoupled
simulation in virtual reality with the MR toolkit. ACM
Transactions on Information Systems, 11(3), 287–317.

Smith, G., & Mariani, J. (1997). Using subjective views to
enhance 3D applications. Proceedings ACM Virtual Reality
Software and Technology (VRST ’97), 139 –146.

Stoev, S., Schmalstieg, D., & Strasser, W. (2001). Through-
the-lens techniques for remote object manipulation, motion

Schmalstieg et al. 53

http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0272-1716^28^2918:4L.54[aid=2272287]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0018-9162^28^2928:7L.20[aid=2272288]
http://mustafa.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0097-8493^28^2923:6L.779[aid=1183947]


and navigation in virtual environments. Proceedings of the
Joint Immersive Projection Technology / EUROGRAPHICS
Workshop on Virtual Environments (IPT/EGVE 2001), 51–
60.

Strauss, P., & Carey, R. (1992). An object oriented 3D graph-
ics toolkit. Proceedings SIGGRAPH ’92, 341–347.
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