

Diplomarbeit

Comprehensive
Calibration Procedures
for Augmented Reality

unter der Leitung von
Univ. Prof. Dipl.-Ing. Dr.techn. Werner Purgathofer,
Institut 186 für Computergraphik und Algorithmen,

unter Mitbetreuung von

Dipl.-Ing. Dr.techn. Anton L. Fuhrmann,
Forschungszentrum VRVis in Wien,

eingereicht
an der Technischen Universität Wien,

Fakultät für Technische Naturwissenschaften und Informatik

von
Rainer Splechtna,

Matrikelnummer 9026565,
Hauptplatz 15,
3910 Zwettl.

Rainer Splechtna

Comprehensive
Calibration Procedures
for Augmented Reality

Master Thesis

Supervised by

Dipl.-Ing. Dr.techn. Anton L. Fuhrmann,
VRVis Research Center in Vienna, Austria

and

Univ. Prof. Dipl.-Ing. Dr.techn. Werner Purgathofer,

Institute of Computer Graphics and Algorithms
Computer Graphics Group

Vienna University of Technology, Vienna, Austria

Abstract

English:

Augmented reality (AR) systems combine three-dimensional computer-
generated images with the view of the real environment in order to make unseen
objects visible or to present additional information. Since the user of an AR
system sees both the real and the virtual environment, such a system needs
more adjustments to work properly than immersive virtual environments,
where the user is only presented with the virtual environment. Hence the virtual
environment has to be properly aligned to the real, physical world, to be
perceived as an augmentation of the real environment. The process to achieve
this alignment is called calibration.

This work presents a comprehensive set of calibration procedures that consists
of all tasks necessary for the calibration of devices commonly used in an AR
system, so that correct augmentation of the real environment, i.e. correct
alignment of virtual and real world can be achieved. This includes procedures
for calibrating projective and head-mounted displays, tracking systems, tracked
input devices and props. Since the calibration process has to be done at least
once for every hardware set-up, but may have to be repeated in part or
completely for each user, prop or device to be included both in the real and the
virtual world, we strived for a method that not only delivers good registration
results but also can be applied fast and easily.

The proposed method unifies the necessary tasks of world-to-augmentation
alignment  display calibration and registration of tracked and static props 
in one, interactive set-up process, which can be conducted in short time and by
an untrained user.

Deutsch:

Augmented reality (AR) Systeme verschmelzen dreidimensionale, computer-
generierte Bilder mit dem Blick des Benutzers auf die reale Umgebung, um
nicht sichtbare Objekte zu visualisieren oder um zusätzliche Informationen
darstellen zu können. Da der Benutzer eines AR-Systems sowohl die reale als
auch die virtuelle Umgebung gleichzeitig wahrnimmt, benötigt solch ein System,
um überzeugend zu wirken, eine genauere Abstimmung als klassische virtuelle
Systeme, bei denen der Benutzer ausschließlich mit der virtuellen Umgebung
konfrontiert wird. Daher muss die virtuelle Umgebung genau auf die reale,

i

physische Welt ausgerichtet werden, um als ‚Erweiterung’ der realen Umgebung
wahrgenommen zu werden. Der Prozess, diese Übereinstimmung herzustellen,
wird Kalibrierung genannt.

Diese Diplomarbeit beschreibt eine umfassende Sammlung von
Kalibrierungsprozeduren, welche alle Aufgaben abdeckt, die nötig sind, um die
Geräte, die gebräuchlicherweise in AR-Systemen Verwendung finden, zu
kalibrieren, sodass der Eindruck der ‚Erweiterung’ der realen Umgebung, d.h.
die Übereinstimmung von virtueller und realer Welt, erzielt werden kann. Dies
beinhaltet Prozeduren zur Kalibrierung von Projektionsschirmen, head-
mounted displays, Tracking-Systemen, getrackten Eingabegeräten und
Objekten. Da der Kalibrierungsprozess zumindest einmal für jedes Hardware-
Setup durchgeführt werden muss, aber für jeden Benutzer, jedes Objekt, jedes
Gerät, das sowohl der realen als auch der virtuellen Umgebung hinzugefügt
werden soll, zum Teil oder zur Gänze wiederholt werden muss, waren wir
bestrebt, eine Methode zu entwickeln, die nicht nur gute
Registrierungsergebnisse erzielt, sondern auch schnell und einfach angewendet
werden kann.

Die vorgeschlagene Methode vereinigt die durchzuführenden Aufgaben zur
Abstimmung von realer und virtueller Welt  Kalibrierung von Displays und
Registrierung von getrackten oder statischen Objekten  in einem einzigen,
interakiven Setup-Prozess, der in kurzer Zeit und auch von nicht mit dem
System vertrauten Benutzern durchgeführt werden kann.

ii

Contents

1 Introduction ...1

2 Problem Statement ... 4

2.1. The Registration Problem ... 4
2.2. Sources of error and focus of the calibration process 6
2.3. Static registration (static error) in Augmented Reality.............................. 7
2.4. Prerequisites.. 9
2.5. Calibration Tasks (to achieve good static registration) 10
2.6. Human-Computer Interaction (HCI) aspects ... 11

3 Related Work ...12

3.1. Overview ...12
3.2. Display Device Registration...13

3.2.1. The “Boresight Method” ..14
3.2.2. The “Shooting Gallery”..17
3.2.3. The Dynamic Calibration Process ..20
3.2.4. Single Point Active Alignment Method (SPAAM) 23
3.2.5. Projection Device Calibration... 26

3.3. Object Calibration ...30
3.3.1. Calibration with Reference Frame..30
3.3.2. Calibration with Pointing Device ..31

3.4. Summary and Conclusion... 34

4 Calibration procedures ... 36

4.1. Stylus Calibration .. 36
4.2. Display Device Calibration..40

4.2.1. The Studierstube offaxis camera model ...40
4.2.2. Calibrating See-Through Head-Mounted Displays 42
4.2.3. Calibrating projection systems... 52

4.3. Registration of Tracker to World Coordinate System 57
4.4. Calibration of Props ...61

iii

5 Implementation .. 66
5.1. The Studierstube System - Implementation of the user interface............ 66

5.1.1. Software architecture .. 66
5.1.2. Hardware support..67
5.1.3. Application programmer’s interface .. 69

5.2. Human-Computer Interaction (HCI) aspects .. 70
5.2.1. Paths through the Calibration Process.. 71
5.2.2. User guidance..73

5.3. OpenTracker - An XML based Open Architecture for Reconfigurable
Tracking ..76
5.4. Minimizing Functions - Direction Set (Powell’s) Methods in
Multidimensions .. 82

6 Results and Conclusion .. 86

6.0. Tracking System ... 86
6.1. Test setup and evaluation of stylus calibration.. 87
6.2. Test setup and evaluation of HMD calibration .. 90
6.3. Test setup and evaluation of Projection calibration................................ 94
6.4. Conclusion... 96

7 Future Work...97

7.1. Additional constraints and thresholds...97
7.2. Faster HMD calibration .. 98
7.3. Dynamic registration .. 98

Bibliography and References... 100

iv

Chapter 1

Introduction

What is Augmented Reality?

Augmented Reality (AR) is a variation of Virtual Environments (VE), or Virtual
Reality as it is more commonly called. VE technologies completely immerse a
user inside a synthetic environment. While immersed, the user cannot see the
real world around him. In contrast, AR allows the user to see the real world,
with virtual objects superimposed upon or composited with the real world.
Therefore, AR supplements reality, rather than completely replacing it. Ideally,
it would appear to the user that the virtual and real objects coexisted in the
same space, similar to the effects achieved in the film "The Phantom Menace".

AR can be thought of as the "middle ground" between VE (completely
synthetic) and telepresence (completely real) [Milgram94a][Milgram94b].

Some researchers define AR in a way that requires the use of Head-Mounted
Displays (HMDs). To avoid limiting AR to specific technologies, [Azuma97a]
defines AR as systems that have the following three characteristics:

1) Combines real and virtual
2) Interactive in real time
3) Registered in 3-D

This definition allows other technologies besides HMDs while retaining the
essential components of AR. For example, it does not include film or 2-D
overlays. Films like "Jurassic Park" feature photo realistic virtual objects
seamlessly blended with a real environment in 3-D, but they are not interactive
media. 2-D virtual overlays on top of live video can be done at interactive rates,
but the overlays are not combined with the real world in 3-D. However, this
definition does allow monitor-based interfaces, projection display devices,
monocular systems, see-through HMDs, and various other combining
technologies.

1

AR has the potential to enhance a user's perception of and interaction with the
real world. The virtual objects may display information that the user cannot
directly detect with her senses. Two examples where this technology could help
are medical applications and the assembly and repair of complicated
mechanical devices.

Why do we need Calibration/Registration? What’s the
difference?

First lets look a little closer at the terms calibration and registration:
The term registration is frequently used as synonym for calibration and vice
versa. Where registration rather describes a state — the precise alignment and
synchronization of two or more sensory elements [Azuma97b] — and
calibration mostly refers to a process or action. So we could say a registration is
the result of a calibration. In the following text this definition is used, but both
terms mainly stay synonymous for each other.

In order for augmented reality to be effective and accepted by the user the real
and computer-generated objects must be accurately positioned relative to each
other and properties of certain devices must be accurately specified. When a
user perceives two different loci of interaction, one given by the real image of
his hand and one by the

Figure 1 Personal Interaction Panel (inset miscalibrated)

2

virtual image on a different position, the perceived clues conflict and hand-to-
eye coordination is severely impaired. Figure 1 shows the Personal Interaction
Panel [Szalavári97], a simple tracked board, which is augmented with
interaction elements to act as a kind of instrument panel for controlling the
parameters of a scientific visualization. The big image shows correct overlaid
computer graphics, the inset a misalignment between the virtual sliders and the
physical board. Clearly controlling a virtual slider while seeing the real and
virtual pen in different places is irritating and leads to problems when
interacting with the virtual input elements.

Many Augmented Reality applications will not be accepted unless virtual
objects are accurately registered with their real counterparts, but good
registration is difficult, because of the high resolution of the human visual
system and its sensitivity to small misalignments at edges.

Static vs. Dynamic Registration

Registration errors fall into two categories: static errors, which occur even
when the user remains still, and dynamic errors caused by system delays when
the user moves. Dynamic errors are usually the largest errors. Nevertheless
correct static registration is highly important. It is the fundamental step in
achieving correct overall registration of an AR system and serves as basis for
dynamic registration, which only makes sense when good static registration is
provided.

Goal: Easy, user-guiding “calibration wizard”

The aim of the described method is to provide a fast, comprehensive calibration
procedure. The method should present itself to the user as an interactive
sequence of simple, independent tasks, which can easily be performed even
without knowledge of the actual parameters they modify. Setting up an
augmented reality installation becomes therefore a reliable and reproducible
routine. Furthermore no additional hardware, but that already required for a
typical AR-System setup, should be needed for any of the calibration tasks.

3

Chapter 2

Problem Statement

2.1. The Registration Problem

One of the most basic problems currently limiting Augmented Reality
applications is the registration problem. The objects in the real and virtual
worlds must be properly aligned with respect to each other, or the illusion that
the two worlds coexist will be compromised. More seriously, many applications
demand accurate registration (e.g. medical applications). Without accurate
registration, Augmented Reality will not be accepted in many applications.

Registration problems also exist in Virtual Environments, but they are not
nearly as serious because they are harder to detect than in Augmented Reality.
Since the user only sees virtual objects in VE applications, registration errors
result in visual-kinesthetic and visual-proprioceptive conflicts. Such conflicts
between different human senses may be a source of motion sickness
[Pausch92]. Because the kinesthetic and proprioceptive systems are much less
sensitive than the visual system, visual-kinesthetic and visual-proprioceptive
conflicts are less noticeable than visual-visual conflicts. For example, a user
wearing a closed-view HMD might hold up her real hand and see a virtual
hand. This virtual hand should be displayed exactly where she would see her
real hand, if she were not wearing an HMD. But if the virtual hand is wrong by
five millimeters, she may not detect that unless actively looking for such errors.
The same error is much more obvious in a see-through HMD, where the conflict
is visual-visual [Azuma97a].

Furthermore, a phenomenon known as visual capture [Welch78] makes it even
more difficult to detect such registration errors. Visual capture is the tendency
of the brain to believe what it sees rather than what it feels, hears, etc. That is,
visual information tends to override all other senses. When watching a
television program, a viewer believes the sounds come from the mouths of the
actors on the screen, even though they actually come from a speaker in the TV.
Ventriloquism works because of visual capture. Similarly, a user might believe

4

that her hand is where the virtual hand is drawn, rather than where her real
hand actually is, because of visual capture. This effect increases the amount of
registration error users can tolerate in Virtual Environment systems. If the
errors are systematic, users might even be able to adapt to the new
environment, given a long exposure time of several hours or days [Welch78].

Augmented Reality demands much more accurate registration than Virtual
Environments [Azuma93]. Imagine the same scenario of a user holding up her
hand, but this time wearing a see-through HMD. Registration errors now result
in visual-visual conflicts between the images of the virtual and real hands. Such
conflicts are easy to detect because of the resolution of the human eye and the
sensitivity of the human visual system to differences. Even tiny offsets in the
images of the real and virtual hands are easy to detect.

What angular accuracy is needed for good registration in Augmented Reality?

[Azuma97a] gives the following example:

“Take out a dime [or a 10 euro cent coin] and hold it at arm's length, so that it
looks like a circle. The diameter of the dime covers about 1.2 to 2.0 degrees of
arc, depending on your arm length. In comparison, the width of a full moon is
about 0.5 degrees of arc! Now imagine a virtual object superimposed on a real
object, but offset by the diameter of the full moon. Such a difference would be
easy to detect.”

 Thus, the angular accuracy required is a small fraction of a degree. The lower
limit is bounded by the resolving power of the human eye itself. The central
part of the retina is called the fovea, which has the highest density of color-
detecting cones, about 120 per degree of arc, corresponding to a spacing of half
a minute of arc [Jain89]. Observers can differentiate between a dark and light
bar grating when each bar subtends about one minute of arc, and under special
circumstances they can detect even smaller differences [Doenges85]. However,
existing HMD trackers and displays are not capable of providing one minute of
arc in accuracy, so the present achievable accuracy is much worse than that
ultimate lower bound. In practice, errors of a few pixels are detectable in
modern HMDs [Azuma97a].

Registration of real and virtual objects is not limited to AR. Special-effects
artists seamlessly integrate computer-generated 3-D objects with live actors in
film and video. The difference lies in the amount of control available. With film,
a director can carefully plan each shot, and artists can spend hours per frame,
adjusting each by hand if necessary, to achieve perfect registration
[Gibson02][BouJou02]. As an interactive medium, AR is far more difficult to

5

work with. The AR system cannot control the motions of the HMD wearer. The
user looks where she wants, and the system must respond within tens of
milliseconds.

2.2. Sources of error and
focus of the calibration process

Registration errors are difficult to adequately control because of the high
accuracy requirements and the numerous sources of error. These sources of
error can be divided into two types: static and dynamic. Static errors are the
ones that cause registration errors even when the user's viewpoint and the
objects in the environment remain completely still. Dynamic errors are the
ones that have no effect until either the viewpoint or the objects begin moving.

For current HMD-based systems, dynamic errors are by far the largest
contributors to registration errors, but static errors cannot be ignored either.
See [Holloway95] for a thorough analysis of the sources and magnitudes of
registration errors.

When using projection systems, dynamic errors regarding the viewpoint are not
as much a contributing factor to registration errors, because the rotation of the
users head, normally the fastest movement, does not directly translate into a
corresponding change of the viewing direction as in the case of HMD-based
systems.

We decided to focus on static registration errors, because correct static
registration is the basis and starting point for solving the whole registration
problem, i.e. without static registration dynamic registration is not possible,
whereas working with a system that is only registered statically is absolutely
feasible. Furthermore no calibration procedure at all had been implemented for
our augmented reality system before (see section 2.4), so we had to deal with
static registration errors first. Dynamic errors, which are caused by system lags,
will be addressed in future work.

6

2.3. Static registration (static error)
in Augmented Reality

The four main sources of static errors as stated by [Azuma94] are:

• Optical distortion
• Errors in the tracking system
• Mechanical misalignments
• Incorrect viewing parameters (e.g., field of view, tracker-to-eye position

and orientation, interpupillary distance)

1) Distortion in the optics:

Optical distortions exist in most camera and lens systems, both in the cameras
that record the real environment and in the optics used for the display. Because
distortions are usually a function of the radial distance away from the optical
axis, wide field-of-view displays can be especially vulnerable to this error. Near
the center of the field-of-view, images are relatively undistorted, but far away
from the center, image distortion can be large. For example, straight lines may
appear curved. In a see-through HMD with narrow field-of-view displays, the
optical combiners add virtually no distortion, so the user's view of the real
world is not warped. However, the optics used to focus and magnify the
graphic images from the display monitors can introduce distortion. This
mapping of distorted virtual images on top of an undistorted view of the real
world causes static registration errors. The cameras and displays may also have
nonlinear distortions that cause errors [Deering92].

Though compensation of optical distortions is often possible, [Holloway95]
determined that for typical head motion the additional system delay required
by the distortion compensation ads more registration error than the distortion
compensation removes. Furthermore we use a see-through HMD, which
doesn’t exhibit much distortion. Hence our calibration approach doesn’t
compensate for nonlinear optical distortions.

2) Errors in the tracking system:

Errors in the reported outputs from the tracking and sensing systems are often
the most serious type of static registration errors. These distortions are not easy
to measure and eliminate, because that requires another "3-D ruler" that is
more accurate than the tracker being tested. These errors are often non-

7

systematic and difficult to fully characterize. Almost all commercially available
tracking systems are not accurate enough to satisfy the requirements of AR
systems. With the advent of accurate optical tracking systems at least nearly
linear behavior within the working volume of the tracker is achieved. The
downside of optical trackers at the moment is the fact, that the user is not really
allowed to freely position herself within the tracked area, because the markers
attached to the HMD and/or other tracked props, cannot always be detected by
the optical sensors (normally cameras) due to occlusions between the body of
the user or markers attached to another prop. This problem gets even worse,
when using a multi-user-environment like the Studierstube system, where the
chance of occlusions rise due to more obstructing bodies moving within the
working area.

Nevertheless we rely on the very good linearity of the optical tracking system,
which was used to evaluate our calibration procedures. The linearization
problem of magnetical tracking systems is out of scope of this work and dealt
with in publications like [Kindratenko99] or [Livingston97].

3) Mechanical misalignments:

Mechanical misalignments are discrepancies between the model or
specification of the hardware and the actual physical properties of the real
system. For example, the combiners, optics, and monitors in an optical see-
through HMD may not be at the expected distances or orientations with respect
to each other. If the frame is not sufficiently rigid, the various component parts
may change their relative positions as the user moves around, causing errors.
Mechanical misalignments can cause subtle changes in the position and
orientation of the projected virtual images that are difficult to compensate.
While some alignment errors can be calibrated, for many others it may be more
effective to "build it right" initially [Azuma97a].

4) Incorrect viewing parameters:

Incorrect viewing parameters, the last major source of static registration errors,
can be thought of as a special case of alignment errors where calibration
techniques can be applied. Viewing parameters specify how to convert the
reported head or camera locations into viewing matrices used by the scene
generator to draw the graphic images. For an HMD-based system, these
parameters include:

• Center of projection and viewport dimensions

8

• Offset, both in translation and orientation, between the location of the
head tracker and the user's eyes

• Field of view

Incorrect viewing parameters cause systematic static errors. Take the example
of a head tracker located above a user's eyes. If the vertical translation offsets
between the tracker and the eyes are miscalibrated, all the virtual objects will
appear lower or higher than they should.

The retrieval of correct viewing parameters is the main topic of this thesis.

2.4. Prerequisites

Development environment: The Studierstube System

The Studierstube augmented reality system [Schmalstieg00] project tries to
address the question of how to use three-dimensional interactive media in a
general work environment, where a variety of tasks are carried out
simultaneously. In essence, the main focus of the project is the search for a 3D
user interface metaphor as powerful as the desktop metaphor for 2D.

The Studierstube augmented reality system uses different techniques to overlay
computer graphics onto a user's view of the real world. Primarily we have been
using see-through head-mounted displays to accommodate individual
viewpoints for a multi-user scenario, but Studierstube also supports projection
display devices such as the Virtual Table or a stereo projection wall. Our
concept includes at least two tracked interaction devices per user: a pen and
pad combination called the Personal Interaction Panel (PIP) and supports
tracking technologies ranging from magnetical to optical and inertial methods.

Since each hardware set-up can consist of almost any combination of the
display and tracking technologies mentioned above, most of the parameters of
display and tracking system will depend on the set-up. Altering the hardware or
setting an environment up in a new location will require a complete calibration
process. Studierstube is already in use as development environment in different
research institutes in Europe and the United States, but not two of them are
employing exactly the same display/tracker/input device combination. In most
cases the calibration process proved to be the biggest obstacle when setting up a
new site. Even when using the same hardware in a different location – e.g. as

9

demonstration at a scientific conference or a trade show – altered positions of
tracker origin and projector lead to unnecessary delays in the set-up.

Our method implies two prerequisites:

• Firstly, a tracking system capable of delivering accurate results over the
working volume, and therefore minimizing the errors in the tracking
system, stated above as source of static errors. In the case of a
magnetical tracking system, for example, one has to assure linear
behavior by appropriate methods like [Kindratenko99] or
[Livingston97]. When using an optical tracking system like the DTrack
optical tracker [Art01] accurate (nearly linear) results over the working
volume are inherently guaranteed by the tracking system (see section 6.0
for details).

• Secondly, we need a tracked pointing device with one button and

precisely defined hotspot (i.e. a point that defines where an action is
executed when pressing the button). The Studierstube system provides
the so-called pen (stylus) as pointing device, which perfectly fits our
requirements.

2.5. Calibration Tasks
(to achieve good static registration)

To achieve good and comprehensive static registration for the Studierstube
augmented reality system, all devices, which are used within the Augmented
Environment, have to be calibrated. The whole calibration process consists of
the following calibration (sub)-tasks:

• Stylus (Pointing Device) Calibration
• Display Device Calibration:

a) Optical See-Through Head-Mounted-Displays (HMDs)
b) Projection Systems

• Calibration of Tracker to Virtual (World) Coordinate System
• Calibration of tracked or stationary props (real objects)

Firstly, we have to determine the hotspot of the pointing device. This step,
called stylus calibration, is performed first, because all following tasks depend
on inputs, sampled at the pen’s hotspot.

10

The second task performs the calibration of the used display device. Depending
on the used Studierstube setup either the HMD- or projection system
calibration is executed. This part of the calibration process determines the
viewing parameters of the display device of choice.

With the calibration of tracker to virtual (world) coordinate system the user
may define the origin and orientation of the world coordinate system. Per
default the world coordinate system of Studierstube is congruent with the
coordinate system of the tracker (e.g. if using a magnetical tracker, the world
origin is typically somewhere within the tracker’s emitter), but for convenience
reasons it is preferable to place the world origin in the middle of the user’s
working volume and to align some or all axes with the corresponding axes of
the projection screen.

For every physical prop, that should be augmented by the Studierstube system,
regardless if tracked or stationary, the prop calibration task has to be
performed, to achieve correct registration between the physical prop and its
corresponding virtual representation in the Studierstube system.

2.6. Human-Computer Interaction (HCI)
aspects

As stated above, our goal is to provide a comprehensive ’calibration suite’,
which represents an interactive sequence of simple, independent tasks, which
can easily be performed. An important point at this is the human-computer-
interface. To ensure, that an untrained user can also perform each task, we have
to develop an intuitive, more or less self-descriptive user interface. Additionally
the user should be interactively guided through each of the tasks. Mechanisms
that can be utilized here are input constraints combined with visual feedback,
which should lead the user to obtaining only valid data or at least give her
conclusive hints how to perform the given task.

11

Chapter 3

Related Work

3.1. Overview

Some of the here-discussed problems have already been addressed separately:

[Holloway95] analyzed different aspects of registration error and [Hoff00] and
Vincent presented analysis of head pose accuracy for AR applications.

[Bajura97] proposed calibration for video see-through systems based on
tracking known features in the working environment. Since only optical see-
through Head-Mounted Displays (STHMDs) are used up until now with
Studierstube, we take a closer look at interactive calibration methods for
STHMDs, which have been described by [Azuma94] and Bishop, [Oishi96] and
Tachi, [McGarrity99] and Tuceryan and [Tuceryan00] and Navab among
others.

[Summers99] et al. address registration and calibration of an experimental see-
through projection-based system that employs shutter glasses.
[Czernuszenko98] et al. describe a tracker calibration approach for back-
projection systems, trying to compensate for the non-linear behaviour of
magnetical trackers.

[Whitaker95] et al. describe a pointer calibration method together with two
different object calibration methods for augmented reality. Automatic, image-
based object identification and registration methods have been proposed by
[Billinghurst99] and [Rekimoto98]. Image-based methods have the potential to
work completely without user intervention, but imply a video-based AR set-up,
which until now has not been integrated in Studierstube.

12

3.2. Display Device Registration

Correct registration of the display device is a prerequisite for an Augmented
Reality environment setup to be accepted by the user of such a system. A
preferred display device for Augmented Reality environments is a STHMD.
Hence many different approaches to achieving good registration for STHMDs
have been discussed in the past.

In some systems, the viewing parameters are estimated by manual adjustments,
in a non-systematic fashion. Such approaches proceed as follows: place a real
object in the environment and attempt to register a virtual object with that real
object. While wearing the HMD or positioning the cameras, move to one
viewpoint or a few selected viewpoints and manually adjust the location of the
virtual object and the other viewing parameters until the registration "looks
right." This may achieve satisfactory results if the environment and the
viewpoint remain static. However, such approaches require a skilled user and
generally do not achieve robust results for many viewpoints. Achieving good
registration from a single viewpoint is much easier than registration from a
wide variety of viewpoints using a single set of parameters. Usually what
happens is satisfactory registration at one viewpoint, but when the user walks
to a significantly different viewpoint, the registration is inaccurate because of
incorrect viewing parameters or tracker distortions. This means many different
sets of parameters must be used, which is a less than satisfactory solution.

Another approach is to directly measure the parameters, using various
measuring tools and sensors. For example, a commonly used optometrist's tool
can measure the interpupillary distance. Rulers might measure the offsets
between the tracker and eye positions. Cameras could be placed where the
user's eyes would normally be in an optical see-through HMD. By recording
what the camera sees, through the see-through HMD, of the real environment,
one might be able to determine several viewing parameters. So far, direct
measurement techniques have enjoyed limited success [Janin93].

For video-based systems, an extensive body of literature exists in the robotics
and photogrammetry communities on camera calibration techniques. Such
techniques compute a camera's viewing parameters by taking several pictures
of an object of fixed and sometimes unknown geometry. These pictures must be
taken from different locations. Matching points in the 2-D images with
corresponding 3-D points on the object sets up mathematical constraints. With
enough pictures, these constraints determine the viewing parameters and the 3-
D location of the calibration object. Alternately, they can serve to drive an

13

optimization routine that will search for the best set of viewing parameters that
fits the collected data.

View-based tasks are another approach to calibration. These ask the user to
perform various tasks that set up geometric constraints. By performing several
tasks, enough information is gathered to determine the viewing parameters. All
view-based tasks rely upon the user accurately performing the specified task
and assume the tracker error is negligible. If the tracking and sensing
equipment is not accurate, then multiple measurements must be taken and
optimizers used to find the "best-fit" solution. The following section will give a
summary of some of these view-based methods, illustrating their strengths and
shortcomings.

3.2.1. The “Boresight Method”

Overview and setup

[Azuma94] describes a procedure for the static calibration of an optical
STHMD, which focuses on determining the correct viewing parameters.

They used an optoelectronic tracking system and an optical STHMD with a field
of view (FOV) of about 30 degrees. The displays are LCD monitors containing
340x240 pixels each. The goal was to achieve a registration, which links one
real object, a wooden crate (depicted in Figure 2 on the rightmost side), and
one set of virtual objects, three orthogonal extruded squares that form a
coordinate system (colored red, green and blue); i.e. the intersection of the
three virtual bars and the front left corner of the crate should be registered,
where the three bars run along the edges that touch the corner.

The calibration procedure consists of simple tasks that rely on geometric
constraints and directly measure the desired viewing parameters. The steps,
which systematically determine the viewing parameters, in order are:

• Measure the frame’s location
• Determine the apparent center of the virtual image
• Measure the transformation between tracker space and eye space
• Measure the field-of-view (FOV)

Note that due to mechanical misalignments only the right eye of the HMD was
used for the evaluation of the registration procedure.

14

The calibration procedure

Frame measurement: A digitization probe attached to a “hat” with four optical
sensors returns the 3D position of the probe tip. Eight points on the frame
edges where the red and green bars will lie are measured. A pair of orthogonal
lines is fit through those points, also determining the axis going down the third
edge.

Apparent center of virtual image: Since the center of the frame buffer need not
be the center of the virtual image seen with the right eye, off-center projection
is required to properly render the images. Assuming that the frame buffer
covers the entire area visible through the optics, this center can be measured by
drawing a 2D, non-head-tracked crosshair in the frame buffer (Figure 2). Four
numbers specify this crosshair: the (X,Y) center coordinate, and the X and Y
radii. The user determines the center by adjusting the X center and radius until
the left and rightmost lines are equally spaced from the extreme visible edges of
the display. This is tested by increasing the radius; both lines should disappear
simultaneously or the center is incorrect. A similar procedure determines the Y
center.

Figure 2 Sketch of the setup used for static registration, showing the virtual
crosshair, the reference frame and coordinate systems [Azuma94]

Eye→Tracker transformation: This is measured by the boresight operation,
where a user wearing the HMD looks straight down the left top edge of the

15

frame with his right eye. A thin pipe sticking out along the edge helps the user
line up accurately. Simultaneously, he centers the virtual crosshair with the
edges of the frame and aligns the horizontal and vertical crosshair lines with the
edges of the frame. Then the Eye coordinate system has the same orientation as
the Frame coordinate system, and the Z-axes coincide. Since the orientation of
the frame relative to world coordinates is known, the desired Eye→Tracker
orientation can be calculated.

The Eye→Tracker position offset is measured by the boresight and one
additional task. The position of the corner of the frame in World space is
known, due to step one. The head tracker returns the position of the tracker
origin in world space. Therefore, a vector from the corner of the frame to the
tracker origin can be drawn in World space, which can be transformed to Eye
space by the now known rotations. Since Eye space and Frame space share the
same orientation and their Z-axes coincide, the X and Y values of the vector in
Eye space are the X and Y Eye→Tracker offsets, in Eye space. To determine the
Z offset, one more operation is needed. Two nails are on top of the frame, one in
front and one in the rear. While performing the boresight, the user must also
position him so that the front nail covers the rear nail. The known locations of
these two nails identify a specific distance along the frame’s Z-axis where the
user’s eye must be. Subtracting that from the corner→tracker vector in Eye
space yields the Z component of the Eye→Tracker offset.

The user performs two boresights: one from a few feet away for greater
orientation sensitivity, and one less than a foot away (matching the two nails)
for greater position sensitivity.

FOV measurement: It suffices to measure FOV along the vertical Y direction in
screen space, since scaling that by the frame buffer’s aspect ratio yields the
horizontal FOV. The crosshair’s Y radius is set to a quarter of the frame buffer’s
height to be easily visible. The user stands in front of the frame and lines up the
top and the bottom virtual crosshair lines with corresponding real lines drawn
on the frame’s front surface. This forces the Eye space X-axis to be parallel to
the frame’s X-axis. From the information in steps one to three, the locations of
the real lines in Eye space can be computed. With the now gathered data the
FOV can now also be computed using simple trigonometry.

Results

Azuma reports that the accuracy achieved with this procedure using the
optoelectronic tracker is about ± 5 mm from different viewing angles and
positions. But he also states, that the registration accuracy depends on how

16

successfully the user can complete the registration procedures. Users reported
difficulty in keeping their heads still during the boresight and FOV operations,
because of the weight of the HMD. Testing the procedure with different users,
which performed the whole procedure five times, the average standard
deviation in computed orientation, position and FOV were 0.32 degrees, 4.8
mm, and 0.1 degrees respectively.

3.2.2. The “Shooting Gallery”

Overview and setup

[Oishi96] describes methods to compensate for mechanical misalignments in
STHMDs and differences between actual and designed location of a user’s eye.
The assumption is made that no distortions in the optical system exit making
the calibration problem a linear one. Hence only the projection transformation
has to be modified. The prototype STHMD they used has a horizontal FOV of
40 degrees and a designed location of the virtual image plane of 1m. The whole
optical system of the HMD is mounted on a helmet and a plate is fixed on the
front of the helmet as reference for physical measurements of the HMD
parameters.

The Calibration Procedure

Mechanical misalignments

Mechanical misalignments result in a displacement of the virtual image plane
from the designed location. Hence the position of the realized virtual plane has
to be measured and the projection transformation modified accordingly. This
procedure has to be executed only once for each HMD.

17

Figure 3 Measurement system for calibration [Oishi96]

 The process of calibrating mechanical misalignments looks as follows:

1. Set HMD at the origin of the world coordinate system of the real
environment;

2. Read the visual parameters and draw a cursor in the virtual
environment;

3. Measure the distance to the realized virtual plane and put real
environment marks at this distance;

4. Place a virtual cursor on the marks and record its location expressed in
the virtual environment (13 marks per eye);

5. Compare recorded locations with original locations calculated according
to the current projection transformation parameters;
If the record is accurate enough, the process is finished, else continue
with step 6.

6. Derive a measurement equation from the record and get modified visual
parameters by solving it;

7. Redraw a cursor in the virtual environment by using modified visual
parameters and continue with step 4.

The world coordinate system and marks for fitting are required in the real
environment to measure the shift of the virtual plane and to perform the
calibration. Figure 3 shows the measurement system used for the calibration.
LEDs marking positions in the real environment are installed on the panel. The
z-axis of the coordinate system runs through the panel’s center and
perpendicular to it. The panel held by two rails can move in the range between
0.5 and 4 m.

18

After the HMD was placed at the origin of the real environment, taking the
plate mounted on the HMD as reference, it is firmly fixed at the calibration jig
(step 1). In step 2 a cross-shaped cursor is drawn in the virtual environment,
which is movable by a joystick.

The operator now swings her face up and down or left and right and observes
the virtual cursor drawn on the center of the virtual plane, while moving the
panel back and forth until the movement parallax between the virtual cursor
and the LED on the center of the panel disappears. The panel distance at which
this occurs is a close approximation of the realized virtual plane. Hence only
parallax between the points on the virtual plane and the panel is now visible,
i.e. the effects of the operators eye not being at the designed eye position is
eliminated (step 3).

Now a human operator moves the virtual cursor so that it overlaps each LED
and records its location (in virtual environment coordinates). This is done
separately for both eyes, since the optical system of each eye is independent of
the other (step 4).

If the data gathered in the previous step is not accurate enough (step 5), a
measurement equation, which describes the relation between the result of the
measurement and errors of the projection transformation parameters, is
derived and used to estimate the actual visual parameters (step 6). These
parameters are used to redraw the cursor (step 7) and the calibration process
continues with step 4.

Differences between actual and designed location of user’s eye

Since this calibration procedure should be done every time a user starts using
the HMD, it is inconvenient to fix the HMD at a particular position. Hence the
marks for the calibration are fixed on the plate mounted on the HMD. The
calibration process looks as follows:

1. Place virtual cursor on marks on the plate P and record its location
expressed in the virtual environment (5 marks per eye);

2. Derive straight lines from the recorded values and the marks on P.
3. Calculate the user’s actual viewpoint as the point that minimizes the

sum of distances to these straight lines.

19

Results

The RMS error of measured location of the virtual marker to actual position of
the physical LED position was 1.5 mm for the left and 0.7 for the right eye.
There was an error of 1 to 2 mm in the location of the drawn virtual cursor due
to the low resolution of the HMD’s LCDs. In addition the experiment system
also contained 3 mm maximum error due to its hand-made fabrication.

For the eyepoint calibration an RMS error of 2.1 mm, 0.9 mm, 1.3 mm and 1.7
mm at a distance of the LED panel of 0.5 m, 1 m, 2 m and 4 m was measured,
which is a reduction of the RMS error of about 40%-50% compared to the
measurements taken without viewpoint calibration.

3.2.3. The Dynamic Calibration Process

Overview and setup

[McGarrity99] et al. also describe a method for calibrating STHMDs. They refer
to a camera calibration method described in their previous work [Tuceryan95],
which was based on using the relationship between the projected image
positions of known 3D points and their 3D positions. This method is only
applicable for a video-see-through display system where one can always access
the image digitized by the video camera and use it to analyze the input images.

With a see-through system, the images of the scene are formed on the retina of
the human user’s eye and we do not have direct access to the image pixels.
Therefore, a different approach is needed for the calibration of STHMDs. The
approach described by [McGarrity99] uses a dynamic process in the forward
direction (i.e., from 3D objects to 2D projected images) and let the user
interactively adjust (estimate) the parameters of the imaging system until the
projected image of the calibration model as seen by the human eye matches the
image of the real calibration object in the scene. This is a truly dynamic system
in the sense that while the user is interactively adjusting the camera parameters
to align the displayed image, he is free to move his head. That is, there is no
requirement on the user to stay still or to keep his head in a static position.
The system updates the graphics reflecting the changes in the transformation,
read by the camera marker. The parameters estimated by this calibration
procedure are the intrinsic camera parameters and the camera-to-mark
transformation1, whereas the used camera model is the standard pinhole camera
model.

20

The system setup consists of a pair of i-glasses head-mounted display. A 6-
degrees-of-freedom (6-DOF) magnetic tracker provides continually updated
values for the position and orientation of the tracked objects, which includes
the i-glasses and a 3D mouse pointing device. The software is based on the
Grasp system that was developed at ECRC for the purposes of writing AR
applications.

The Calibration Procedure

The process of calibrating the camera using this approach consists of moving
landmark points in the 2D image by grabbing and dragging them until they are
aligned with their corresponding physical points in the image. During the
dragging process, at every time interval, a set of dynamic equations (see
[McGarrity99] for details) is solved for the camera parameters and the resulting
projected image of the dragged model is displayed. This process continues until
a sufficient number of points have been aligned with their physical counterparts
so that the entire calibration object model is aligned with the physical
calibration object. [McGarrity99] reports that the user interaction is very
difficult when trying to solve for all the parameters at once. Therefore, they
have broken the calibration procedure into a series of moded interactions in
which the user can separately translate, rotate, and scale (by varying the focal
length parameters) the virtual camera. These modes may be selected as the user
desires, with the goal being to align the virtual object to the physical object.

The calibration of the stereo display system is a straightforward extension of
this approach. The stereo system consists of a pair of cameras, which have a
parallax due to their different poses (i.e., positions and orientations). To
calibrate the stereo display system, [McGarrity99] uses the above calibration
procedure to estimate the parameters for the left and right displays
independently. This will account for the different rigid transformations for the
poses of the two cameras that represent the two eyes as well as for the
differences in the focal lengths for the left and right eyes. The final scene is
displayed using the resulting camera parameters estimated using this process.

Results

For the evaluation of the calibration procedure, a video camera was placed
inside the head of a mannequin where the eye would be located. The head was
then attached to a camera tripod and the i-glasses/marker assembly was placed

21

onto it as if it were a real person. The graphics were sent to the HMD so that the
camera received both the virtual and real objects simultaneously.

The resulting calibrations using this method are acceptable within the
calibration volume, but the errors increase as the camera moves outside the
calibration volume. [McGarrity99] also states that the quality of the
calibrations seem to be better when done on a human head as they are
intended, instead of the artificial setting they had for the purposes of collecting
quantitative data, because the calibration done from a single viewpoint does not
yield sufficient information to get all the scaling ambiguities correctly. When
the calibration is performed dynamically on a human head, however, where the
head is free to move and look at the calibration object from multiple views as
the interactive calibration process proceeds, the calibration results improve
considerably.

Figure 4 Alignment error image from the viewpoint in which calibration was
done (all control points are visible). The alignment errors in this case are

minimal. [McGarrity99]

[Tuceryan00] calls the user interface cumbersome, and further states that in
addition, the number of parameters being estimated is too large, and therefore,
the interaction does not provide a very intuitive feedback to the user. He
proposes another method for the calibration of STHMDs, which is described in
the following section (3.2.4.).

22

3.2.4. Single Point Active Alignment Method
(SPAAM)

Overview and setup

[Tuceryan00] describes another method for the calibration of STHMDs, which
was developed for the Grasp system, also used by [McGarrity99] for the
calibration method described in the previous section (3.2.3). Hence the
hardware setup is basically the same. The used display device is an i-glasses
head-mounted display. A 6-degrees-of-freedom (6-DOF) magnetic tracker
provides continually updated values for the position and orientation of tracked
objects and the software as mentioned above is based on the Grasp system that
was developed at ECRC for the purposes of writing AR applications.

The Calibration Procedure

The goal for the method presented by [Tuceryan00] was to make the user
interaction needed to collect the data for the calibration a streamlined process
that does not impose a great burden on the user.

The calibration procedure has been implemented as follows:

The world coordinate system is fixed with respect to the tracker coordinate
system by defining the world coordinate system on the tracker transmitter box (
Figure 5 left). The tracker transmitter calibration is performed as described in
[Tuceryan95]. This calibration is then stored and unless the decal put on the
transmitter box is replaced or is somehow moved, there is no need to redo this
calibration again. Fixing the world coordinate system with respect to the
transmitter box has the added advantage that the tracker can be moved at will
to any position and the calibration still stays valid. The world coordinate system
could also have been assumed to correspond to the tracker coordinate system
by definition, however, this would have been harder to use because we do not
know exactly where the tracker coordinate system is on the transmitter box.
Therefore, it seems to be better to define the world coordinate system whose
location is known and estimate its relation to the unknown tracker coordinate
system by a calibration procedure.

23

Figure 5
The world coordinate system is fixed on the tracker transmitter box (left)

The user aligns a cursor with a fixed point in the world (right) [Tuceryan00]

A single point in the world coordinate system is used to collect the calibration
data. This single point in the world coordinate system is mapped to many
distinct points in the marker coordinate system as the user’s head is moved
about, i.e. the points are transformed to the head marker coordinate system.

The user is presented with cross-hairs on the display and is asked to move
about his head until the crosshair is aligned with the image of the single
calibration point as seen by the user (
Figure 5 right). The user then clicks a button on the 3D mouse and the data is
collected for calibration that consists of the image coordinates of the cross-hair
and the 3D coordinates of the calibration point in marker coordinates. These
collected points are then fed into the camera equation (see [Tuceryan00] for
details), which is then used to estimate the camera parameters. There are 12
parameters of the 3x4 projection matrix, which have to be estimated by the
calibration algorithm. But the projection matrix is defined up to a scale factor,
therefore actually only 11 parameters have to be estimated. Since each
calibration point gives us two equations, at least 6 points are needed for the
calibration. However, in order to account for the errors and obtain a more
robust result, [Tuceryan00] proposes to collect 12 points and use a least
squares estimation. He states that the more of the tracker volume the user’s
head covers, the more of possible systematic errors in the tracker
measurements will be taken into account in the optimization process. Hence
the user is encouraged to move his head around the tracker transmitter as
much as possible while collecting the calibration data.

24

Results

The user’s collection of the necessary data to calibrate the display is a very quick
and easy process. During this process, the user is not required to have his head
fixed and is allowed to move. [Tuceryan00] reports that this calibration method
was evaluated in numerous trials and in all instances the calibration results are
very good. The quality of the calibration results does not change greatly as the
head moves around in the world. The only problem is due to the lag in the
readings from the magnetic tracker, which tends to settle down to the correct
position after a certain delay after the head stops moving. Some of the factors
that affect the calibration include the distance of the user’s head from the
tracker transmitter and how quickly the user clicks the mouse to collect the
calibration data. The magnetic tracker they use has a range of about 3 feet and
the quality of the sensor readings is not very reliable when the receivers operate
near the boundaries of this range. The second factor that affects the calibration
is the lag in the tracker data at the point of collection (i.e., when the mouse is
clicked). If the button is clicked too quickly, the tracker data read might not
correspond to where the user’s head is. [Tuceryan00] states that if the user is
careful during the calibration, both of these factors can be put under control
and the calibration results are good.

25

3.2.5. Projection Device Calibration

Overview and setup

[Summers99] et. al describe calibration procedures for the Virtual Hand Lab
(VHL). The VHL is a desktop augmented reality environment for conducting
experiments in human perception and motor performance that involve
grasping manipulation, and other 3D tasks that people perform with their
hands.

Figure 6 Hardware setup [Summers99]

The hardware setup (Figure 6) consists of a workstation, a slaved secondary
monitor that is reflected through a mirror, a Northern Digital Optotrak 3D
motion analysis system (tracker), StereoGraphics CrystalEyes stereographic
glasses (stereo glasses). The workstation displays stereo images on its regular
screen (which is seen by the experimenter) and also on the slaved monitor. The
mirror places these images appropriately within the subject’s view. The
Optotrak senses the 3-D positions of infrared emitting diodes (markers) that
are strobed under computer control. The markers are placed on all objects
(including the subject) whose position or orientation is required during an
experiment. The stereo glasses, used in conjunction with position and
orientation information for a subject’s head obtained (from the Optotrak),
enable the monitor to display head-coupled stereo images for the subject.
Subjects look through the half-silvered mirror and can reach underneath it,
resulting in the virtual image reflected through the mirror appearing to be on
top of the actual scene beneath the mirror. The workspace is defined as the
volume between the mirror and the desktop into which a subject can physically
reach.

26

The Calibration Procedure

The calibration process falls into two parts. The workspace calibration (volume
of physical space which can be augmented), which only needs be performed
once for a new location of the workspace, i.e. if the tracker or the
monitor/mirror setup moved. The point of view calibration (for a head-tracked
stereo display) is done on a per user basis.

Step 1: The workspace calibration

The calibration procedure consists of aligning a set of virtual crosses with a set
of markers according to a pre-defined one-to-one correspondence. The markers
have identity because they are strobed, and the crosses are described relative to
the workspace orientation chosen by the experimenter. For example, the first
marker is placed in the “left front corner”, where “left” and “front” are
arbitrarily chosen by the experimenter. For a given virtual cross, there is exactly
one location in 3-space in which a marker can be placed so that the alignment
of the virtual cross and the marker are not a function of head position. In all
other positions, moving one’s head will cause the virtual cross to “swim” with
respect to the physical marker. For this task of proper alignment, the procedure
relies on human perception, but only to detect 2D misalignment, not
differences in depth. Alignment in the third dimension is determined by the
absence of swim, which is something that humans are very good at detecting.
Because 2D alignment of the markers with the virtual crosses and the check for
lack of swim do not vary with the head position, this calibration can be
performed without stereo, i.e. independent of the point of view calibration.

Using standard techniques, a coordinate system is obtained from a set of four
points, which according to [Summers99] is a good tradeoff between gathering
additional redundant data for further reduction of the variance and a short
execution time of the calibration procedure.

Step 2: Point of View calibration

Instead of tracking the eyes directly, the eye position relative to the glasses is
estimated, and then the glasses are tracked while the subject interacts with the
environment.

27

Outline of the calibration process:

1. The experimenter attaches rigid plastic plates to the sides of the stereo
glasses and then places three markers on the plate facing the tracker in
any non-collinear positions. These markers are used to track the head
position and form a head coordinate system.

2. The subject dons the stereo glasses, which are secured against
subsequent slippage.

3. The subject closes her left eye. A bar with a small hole is provided. The
bar is aligned over the subject’s right eye so that a point in the center of
the workspace is clearly visible. The bar is then attached to the glasses
(see Figure 7).

4. The subject repeats this for the other eye.
5. The subject then looks through both holes simultaneously. The holes

should align so that she sees the same fused image through both holes. It
should appear as though there is only a single hole, not two separate or
overlapping holes. If necessary, the subject rearranges the bars until this
is the case.

6. The experimenter places markers directly over the holes.
7. Two seconds of data (120 frames) are captured, processed and analyzed.

A summary of the analysis is produced. The experimenter will rerun the
data collection if too many of the data frames are erroneous. This is
typically solved by changing the subject’s head position.

8. The bars and markers are removed from the subject’s eyes. The markers,
which track head position, remain.

Figure 7 Shutter glasses for point of view calibration [Summers99]

Using the collected data, rigid body transformations between the position of the
eye markers and the head coordinate system are calculated and used to

28

estimate the eye positions after the calibration markers are removed from the
eyes. These estimates are actually 1- 2 cm in front of the real eye points, which
results in a slight magnification of the scene.

Results

To evaluate the consistency of the workspace calibration, the workspace was
calibrated three times. For each calibration, data was collected four times
without moving any markers, for a total of 12 readings. Each marker produces
an (x,y,z) triplet, in tracker coordinates. Comparing readings within the same
calibration allows evaluating the tracker error. The maximum range (maximum
value minus minimum value for a given marker/axis combination) was 0.24
mm. The maximum range over all readings and calibrations was 1.49 mm.

The viewpoint calibration procedure does not give the exact point of view. The
markers used for estimating the eyes are placed on the glasses, not in the
eyeballs. To evaluate the error, an optician’s pupillometer was used to measure
interpupillary distance (IPD) for three subjects for each of seven focal
distances: 35, 40, 50, 65, 100, 200 and ∞ (cm). The calibration IPDs all fell
within range of the pupillometer readings.

To quantify the effect of the point of view (POV) calibration, wireframe blocks
of various sizes were displayed at various locations using a randomized trial
script. The width (Y-axis) of the virtual block was measured with a physical
ruler. The head moved freely to obtain the best perspective. Over 15 trials, the
mean error was 0.47 mm with a maximum error of 1 mm. This experiment was
repeated for the other dimensions. For height (Z) the mean error was 1.73 and
the maximum error was 4 mm, and for depth (X) the mean error was 1.33 mm
with a maximum error of 3 mm.

29

3.3. Object Calibration

3.3.1. Calibration with Reference Frame

Calibration Procedure

[Summers99] also described a method for the calibration of tracked props for
the VHL (see section 3.2.1 for details of the hardware setup). Calibrating an
object involves matching a computer model to the physical object. Both the
model and the object are assumed to have distinguishable dimensions. The
calibration technique proposed by [Summers99] is only dependent on the
experimenter’s ability to manipulate physical objects, not on an ability to
manipulate physical and virtual objects together. This technique works for any
non-deformable object.

The procedure for this calibration is as follows:

1. Attach three markers to the object in any non-collinear positions.
2. Place three markers in predefined locations of the calibration frame. The

frame may be placed anywhere within view of the tracker. Its placement
is completely unrelated to the location of the workspace except that it
must be within range of the tracker.

3. Place the object in the corner of the calibration frame so that the XYZ
orientations of the object and frame match.

4. Collect marker locations for both frame and object in tracker
coordinates.

The position of the object markers relative to the frame markers plus
knowledge of the size and shape of the physical object allow the computation of
the internal coordinate system of the physical object relative to the object
markers.

Results

Sources of error for this procedure are tracker error, incorrect measurement of
the physical object and incorrect position of the object in the calibration frame.
Tracker error is within 0.3 mm, physical measurements with a ruler are
accurate within 1 mm, and position errors are negligible because both the

30

objects and the frame are rigid and they fit tightly together. Recalibrating for
new marker locations takes 30-60 seconds.

3.3.2. Calibration with Pointing Device

Overview and setup

[Whitaker95] describes methods for the calibration of a pointing device, which
is then used for the calibration of objects. The Grasp system, which was
developed at ECRC as a platform for research in augmented reality, is used to
test the proposed procedures with a monitor-based setup (Figure 8). The
graphical image is generated by the workstation hardware and displayed on the
workstation’s high-resolution monitor. A scan converter takes the relevant
portion of the graphical image and converts it to a standard video resolution
and format. The scan converter also mixes this generated video signal with the
video input from the camera. A tracker, which is capable of sensing the three
translational and the three rotational degrees of freedom, provides the
workstation with continually updated values for the position and orientation of
the tracked objects including the video camera, a pointing device, and other
objects of interest. A frame grabber is used to grab digital video images for
processing within the system.

Figure 8 Hardware configuration of the Grasp monitor-based setup
[Whitaker95]

31

The Calibration Procedure

1) Pointer Calibration

The pointer calibration calculates the geometry of the pointing device used
within an application. In the system described by [Whitaker95], this pointer
object is a wooden wand with a tracking mark (receiver) attached at its base,
which is used to locate 3D points on real objects during user interaction. In
particular, this calibration step calculates the position of the tip of the pointer
relative to the tracker mark. This calibration is a prerequisite step for the object
calibration.

The geometry of the pointer object is not pre-defined but calculated during the
calibration procedure. The mechanism to calibrate the pointer requires the user
to pick the same point in 3D space several times, using a different orientation
for the pointer each time. For each pick, the position and the orientation of the
tracker mark within the tracker coordinate system are recorded. The result of
this procedure is a set of points and directions with the common property that
the points are all at the same distance from the single, picked point in 3D space
and all of the directions associated with the points are oriented toward the
picked point. This geometrical constraint is used to formulate an equation,
which gives an estimate of the desired offset from the wand’s marker position to
the wand’s tip when solved, in this case using a least squares method.

2) Object Calibration

Object calibration is the process whereby the location and orientation of a real-
world object is calculated such that a virtual counterpart can be placed at the
corresponding location, with the appropriate orientation, within the virtual
world. Some real-world objects will subsequently have their movements
tracked by their virtual “shadows”, in which case the corresponding tracker
marks must also be calibrated. We first need a computer model of the object
and then a calibration procedure to locate the real object so that the virtual
model can be registered to it.

The calibration procedures described here require a number of landmark points
whose positions are known in the coordinate system of the object model.
Geometric models of objects might be created piece-by-piece from a set of
geometric primitives or they might come from a CAD system. Regardless of
their origin, models are generally stored as files on disk for subsequent use.
Therefore files describing real objects must contain, in addition to the

32

geometric and attribute data, the 3D positions and labels of the landmark
points. These points should correspond to features on the object, such as
corners or creases that can be easily identified by a user. The registration
procedure consists of locating the corresponding points on the real object and
the model, and then calculating the object-to-world transformation from these
point pairs.

For this method a pointing device is needed, which is capable of generating the
world coordinates of positions in the real world. In this case, the pointing
device (which itself must already be calibrated) is a magnetic tracker attached
to a wooden cone which, when calibrated, has an accuracy of about ±1cm. Over
half of this error is bias and transfers directly into object calibration error.

The problem here is to compute the rigid transformation between a set of 3D
point pairs. Using the 3D pointer and several keystrokes the user indicates the
world coordinates (or some other 3D coordinate system) of landmark points on
the object, which are also given in the object’s local coordinate system. The
relationship between these sets of points gives rise to a linear system of 12
unknowns (see [Whitaker95] for mathematical detail). For a unique solution 4
points are needed, but in most cases more than 4 points are used and the
equation is solved for the least-squares error.

Results

The pointer-based procedure provides the object-to-world transformation that
is needed for object registration within a small number of seconds. Figure 9
shows a model engine, which has been calibrated in such a manner. Rotations
of the engine (Figure 9 right) show that this calibration does not suffer from the
depth problem of the image-based approach.

This image-based approach described by [Whitaker95], is based on a calibrated
camera, which is used to compute the object-to-camera transformation of a
single object for which there is a known geometric model. The position of an
object is determined “through the lens” of the camera. The calibration begins by
capturing an image of the real-world object and locating a set of landmark
points in the image. The locations of landmark points in the image are found
manually by a user with a mouse. With the assumption that the points are
mapped from known locations in 3-space to the image via a rigid 3D
transformation and a projection, and that the camera is calibrated, the pose of
the object in camera coordinates can be calculated.

33

Despite good point wise alignment in the image plane, the image-based
calibration can produce significant error in z -direction (distance from the
camera), which is not seen in the re-projected solutions. For instance, in the
case of the engine model, the image-based approach can produce a rigid
transformation, which matches landmark points in the image to within about 2
pixels. Yet the error in the z –direction can be as much as 2-3 centimeters. This
error becomes evident as the object is turned.

Figure 9 A wireframe engine model registered to a real model engine using
pointer-based calibration. [Whitaker95]

3.4. Summary and Conclusion

In many cases the methods discussed above require additional custom made
hardware, which is an impractical approach for many AR setups, e.g. when it
has to be moved to an exhibition, or difficult to reproduce. This additional
hardware also introduces new calibration problems and new sources of error.
Nearly all calibration procedures are somewhat tailored to the actual hardware
setup that was used for the evaluation of the particular procedure and
sometimes are only applicable to that particular setup.

With the exception of the procedures developed for the Grasp system, only
single calibration tasks are described without showing the intention or
presenting a concept for the integration of this task in a set or context of
calibration tasks, which are needed for supporting a variety of different, often
changing hardware setups, typical for AR installations and especially for the
Studierstube AR system.

34

The calibration tasks, which had to be performed by the user, i.e. the user
interactions needed for the particular procedure, are sometimes cumbersome
and time consuming and often lack any conclusive feedback or support for the
non-expert user.

So we try to avoid these pitfalls and take useful and practical solutions for the
calibration problems described in this section  e.g. the use of a pointing
device, which delivers accurate registration and is especially practicable in our
case, since the pointing device is an integral part of a typical Studierstube
system setup  as inspiration for developing and implementing our calibration
procedures, which should be comprehensive, accurate and user friendly.

The innovative aspect of our method lies in its unification of separate but
connected problems: calibrating the HMD or shutter glasses or projection
screen for example, works only when the stylus’ hotspot has been registered,
but is independent of the world-to-tracker transformation. The sequential
execution of the different steps of our method takes these interdependencies
into account.

A further advantage of our method lies in its simplicity as perceived by the user:
every sub-task consists of an easily performed gesture, or the touching of a
displayed marker. Additionally all of the used algorithms have fail-safe
mechanisms: if the user wrongly positions his head during display calibration,
it is detected via the head-tracker and the step is repeated; if the fitting
algorithm when registering a prop or the stylus shows discrepancies, a
notification message is displayed.

35

Chapter 4

Calibration procedures

This section gives a detailed description of the principles used for each step of
the calibration process. Implementation details regarding the utilities used to
realize this work, like the Studierstube system and the OpenTracker framework
will be presented in chapter 5. The results of the calibration tasks will be
discussed in chapter 6.

4.1. Stylus Calibration

The first step in the whole calibration procedure is the stylus calibration. It
determines the offset of the tracker sensor as measured to its tip or hotspot
(hTs). This has to be done at the start of the whole process, if the tracking system

does not provide an implicitly registered stylus (e.g. the origin of a tracking
target of the DTrack system lies in the center of one of the markers, hence this
marker may be used as hotspot), because most of the following tasks in the
process need to sample the position of the stylus’ hotspot in world coordinates,
hence the offset has to be obtained beforehand.

stylus

pit w/tip
of stylus

motion
path

Figure 10 Calibrating the stylus

We can accomplish this quite easily by fixing the stylus’ tip in a small pit drilled
into a table (Figure 10), and moving the tracker sensor on a hemisphere

36

measuring its position and orientation. Having fitted a sphere to the measured
sensor positions, the center of the sphere gives us the position of the hotspot
with respect to the sensor.

For fitting an optimal sphere to the measured data points, we optimize the
offset vector from tracker sensor to the stylus’ hotspot (hTs). The principle of the

optimization algorithm used for this purpose is called ‘Direction Set (Powell’s)
Methods in Multidimensions [Press88] and will be discussed in section 5.4. The
function we want to minimize utilizing Powell’s algorithm, uses the variance V
of the hotspot positions for the measured data points as a metric. The hotspot
position in world coordinates is calculated for each sample as follows:

hW=hTs TTsW

hW is the position of the stylus’ hotspot in world-coordinates
hTs is the position of the stylus’ hotspot in tracker-sensor-coordinates

(the offset from tracker sensor to hotspot)
TTsW is the transformation matrix, which transforms a point given in tracker-

sensor-coordinates to world-coordinates (given by sampled position and
orientation of the tracker sensor attached to the stylus)

The variance V of the calculated hotspot positions is then given by:

∑
=

−
−

=
n

1i

2

1n
1

V meani hh

n is the number of samples
hi is the hotspot in world coordinates
hmean is the mean of all calculated hotspots in world coordinates

The optimization of the variance gives us a least squares fit solution for the
hotspot offset hTs.

To enforce stability of the solution, the user should cover a large part of the
hemisphere, ideally by sweeping the sensor along two orthogonal great-arcs. To
enforce this, each valid sample, i.e. a sample that will finally be used in the
optimization step, has to meet a minimal distance criterion. So each sample fed
into the program during the sampling stage is tested against all other valid
samples obtained so far. If the distance between the sampled position and one
of the valid samples is smaller than a specified minimal distance, it is discarded
otherwise it is stored as another valid sample. Hence holding the stylus

37

stationary will only store one sample, forcing the user to move the stylus
around. The progress of the stylus calibration process is displayed on the
screen, where a counter tells the user how many samples have to be gathered
and how many already have been retrieved.

The actual user interaction needed for this calibration task is quite simple:
The user has to put the stylus’ hotspot into the prepared drilled in pit or fix the
hotspot in another appropriate way and press the button on the stylus to start
the sampling. Then she has to move the stylus around its tip until the specified
number of samples or more are acquired. Finally she has to press the pen-
button again to stop the sampling and start the calculation of the desired
hotspot offset hTs. Each action the user has to perform is described in text form

on the display device of choice (e.g. HMD, monitor etc.) to guide the user
through the process.

To incorporate the resulting offset in the Studierstube system, the program has
to change the used tracker parameters. Since Studierstube uses the
OpenTracker framework [Reitmayr00] as interface to all tracker data, the offset
has to be included in the OpenTracker tree, which describes the actual tracker
configuration at runtime (see section 5.3 for details). This is done, by creating a
new virtual offset node, which represents the calculated hotspot offset, and
inserting it as first child of the sub-tree associated with the tracker-station of
the stylus, i.e. the StbSink node representing the input data from the stylus’
sensor (Figure 11). Furthermore the new configuration of the whole tracker
framework is stored in a configuration file, so that it can be easily loaded the
next time Studierstube is started. Hence once the stylus was registered the
stylus calibration only has to be performed, when a new stylus shall be used or
the tracker setup of the old one changes.

<StbSink event="off" station="1">

<EventVirtualPositionTransform translation="-0.063 -0.017 -0.009">

<NetworkSource number="1"

 multicast-address="224.100.200.101"

 port="12346"/>

 </EventVirtualPositionTransform>

</StbSink>

Figure 11: The snippet from the XML configuration file, produced during this
calibration step, shows the inserted virtual offset (bold).

38

So after the stylus calibration has been completed all further position data
sampled from the stylus’ tracker station will implicitly specify the position of
the stylus hotspot in the tracker coordinate system.

39

4.2. Display Device Calibration

To achieve image registration, meaning alignment of real and virtual world
when projected on the retina of the user, we need a precise description of the
projection from the real world onto the retina. This step, the display device
calibration, has to determine (the intrinsic) and extrinsic parameters of the
virtual camera which has to mimic the projection of the real environment. The
first chapter of this section will deal with the camera model used by the
Studierstube system, to provide an insight into the parameters that need to be
obtained by this calibration step. As already mentioned, the Studierstube
system permits the use of see-through head-mounted displays (HMDs) and
different kinds of front or back projection displays. Although both setups are to
some extent similar, we shall address the calibration processes for projection
and HMD setup separately in the second and third chapter of this section.

4.2.1. The Studierstube offaxis camera model

Since the Studierstube system is based on the Open Inventor toolkit
[Strauss92], the viewing parameters for a scene are specified within a camera
node. Open Inventor supports only orthographic and (on-axis) perspective
pinhole cameras, so in order to be more flexible in regard to defining viewing
parameters, especially when concerning projection setups, a new camera model
was introduced to the Studierstube System implemented as extension
(SoOffAxisCamera node) to the Open Inventor toolkit.

Figure 12 View Volume and Viewing Projection
for a SoPerspectiveCamera node [Wernecke94]

40

Whereas the common perspective camera model describes the viewing volume
relative to the camera’s eyepoint (Figure 12), the basic principle of the
SoOffaxisCamera (Figure 13) is the decomposition of the camera model into
two mutually independent logical parts:

• the eyepoint (or viewpoint) and
• the projection plane (or projection area).

The eyepoint describes the position of the viewing pyramid’s apex and can be
placed arbitrarily in 3D-space. The parameters for the projection plane specify
a rectangular area, whose corners represent the intersection points of the
projection plane with the viewing pyramid’s edges. Like the viewpoint, the
projection area can be placed arbitrarily in space, hence it is placed
independently from the viewpoint. The projection area is specified by three
parameters:

• position
• orientation and
• size

Figure 13 View Volume and Viewing Projection for a SoOffAxisCamera node

The 3D-vector position specifies the location of the center of the area. The
rotation given by orientation (usually defined as quaternion due to Open
Inventor conventions) specifies the orientation of the projection plane, defined
as rotation from its default orientation. At the default orientation, the positive

41

z-vector is equivalent to the plane’s normal and the positive y-vector is
equivalent to the plane’s up-vector. The size given by a 2D-vector specifies the
size (width, height) of the area. Hence it also specifies the aspect ratio of the
camera. The (horizontal) field of view (FOV), which is often used in a camera
model, is implicitly specified by eyepoint and projection plane properties of the
Studierstube offaxis camera model.

As mentioned above the eyepoint and the projection plane can be positioned
independently from each other and define (in conjunction with the near and far
plane) a viewing frustum. If the eyepoint lies within the positive half-space of
the projection plane, the camera will render the scene, otherwise the camera is
not valid, because the viewpoint lies “behind” the projection plane, hence the
scene will not be rendered. For the special case, where the eyepoint lies on the
normal through the center of the area, the camera will render like a usual
perspective pinhole camera.

To achieve stereo perception with the Studierstube system two virtual cameras
must be specified separately. Hence the distance between the eyepoint-position
of the left and right eye camera implicitly gives the inter-pupillary distance.

4.2.2. Calibrating See-Through Head-Mounted
Displays

As stated before [Azuma94][Bajura95] HMD-calibration requires in most cases
direct interaction of the user. In the stated cases this interaction required a
principal understanding of what different calibration steps were supposed to be
achieved (e.g. calibration of field-of-view) and complex interactions with the
system (see section 3). We want to reduce user interaction to a guided
approach, which in a few simple steps allows the user to calibrate the HMD
without needing special training or understanding. This allows for a setting
where a high throughput of different users is to be expected, e.g. a scientific
exhibition or a museum. To achieve correct registration for a specific user we
have to calibrate the HMD while it is being worn by this user, because even
slight differences in eye-distance and distance between eye and optical system
of the HMD lead to invalid registration. Even when a user has calibrated the
HMD before and puts on the HMD again, the previously achieved ‘personal’
registration is very likely to be compromised, due to the fact that every time the
user puts on the HMD, the relative position between the user’s eyes and the
optical system of the HMD will be different. As an example for a similar
calibration procedure the joystick calibration procedure used in many
computer games may serve: "Move the joystick to upper left corner, then press

42

button. …". To put it another way: we want to maintain interactivity while
reducing user effort.

Previous approaches [Azuma94][Oishi96] make use of additional hardware for
their calibration procedures. They deliver high-quality registration results at
the expense of a complicated setup and considerable user effort. We want to
avoid the use of additional hardware as far as possible, since it adds further
registration problems (e.g. calibration of the registration hardware itself) and
can considerably reduce the mobility of the whole system.

Since the precision of the calibration depends on the users interaction, we have
to find a method, which presents us with a stable solution. This means that
errors in some of the input data points should still produce a viable solution
and not render the resulting registration completely unusable. This instability
may happen when a projection matrix is optimized without regard to its
inherent redundancies. The requirement of reduced user effort implies an
upper limit of the amount of input data, which could further increase
instability.

Overview of the calibration process

The focus of this calibration step [Fuhrmann00] is the retrieval of the correct
viewing parameters, i.e. the correct virtual camera, which ideally models the
user’s view through the HMD. Since the user’s eye generally does not lie
centered over the projection plane not only the determination of the viewing
direction but also of the orientation of the image plane is necessary, hence we
use the Studierstube off-axis camera model (see section 4.3.1), which takes into
account the physically decoupled nature of eye-point and image plane inherent
in a see-through HMD setup.

The following parameters have to be calibrated:

• Position of eyepoint
• Position of (middle of) image plane
• Orientation of image plane
• Aspect ratio (size of image plane)

We have implemented a two-step optimization procedure, which optimizes
these camera parameters for a given set of data quintuple. Each quintuple
contains the 3D coordinates of one sample point and its 2D projection. The full
calibration process consists of the following steps:

43

1) Acquisition of calibration data

The user samples the positions of virtual markers with a 6DOF input
device in an interactive process.

2) Geometric determination of camera parameters

Using inherent geometric properties of the acquired data, a first
approximation is determined.

3) Numerical optimization

A further optimization step calculates a solution for off-axis
projection.

User interaction is normally only necessary in step 1, but exceeded error
tolerances in one of the further steps may prompt the user for reentry of some
data samples.

Acquisition of Calibration Data

The properties of see-through HMDs make their calibration significantly
different from the calibration of video-based HMDs. Video-based HMDs are
essentially immersive HMDs with attached cameras. The cameras supply the
video streams which – after being overlaid with the computer generated images
– are fed into the HMDs. Calibration of video-based augmentation [Bajura95]
only determines the parameters of the video camera. Differences between the
cameras’ parameters (FOV, inter-pupillary distance, etc.) and the user’s eyes
are not taken into account, since the alignment of real and virtual images is
inherently guaranteed by taking the ‘real’ images from the camera’s video
stream. The discrepancies in the complete system only result in the same effects
as in an immersive VE, as discussed in section 2 (‘The calibration problem’).

The advantage of a video-based Augmented Environment is that the video
images of the real environment can be used to directly gather calibration data.
We can present calibration patterns to the HMD, i.e. the video cameras, and
extract the coordinates of the projected data points from the captured image,
using image-processing techniques. The only place where the complete
augmented image is visible when using a see-through HMD is at the retina of
the user. While one may use a video camera in the position of the user’s eye, the
resulting registration will only be valid for the position of this camera. The data
gathering stage of our calibration scheme, in which we have to acquire a
quintuple of 3D coordinates of a point and its 2D projection therefore has to
rely on the user to identify, whether a real point in space and its virtual
projection match. To achieve this, we reverse the image processing approach –

44

presenting a real calibration pattern and identifying points of its projection –
and present the user with a virtual calibration pattern, with which real points
have to be aligned.

Figure 14 Calibration setup for see-through HMD calibration

The user sees a real marker on the (already calibrated) tip of the tracked stylus
(Figure 14), which she has to align with a virtual marker displayed via the HMD
on the virtual image plane (virtual markers A-D). When the alignment is
reached (Figure 16) the user presses a button on the pen and the next virtual
marker is displayed. At the press of the button, tracking data of the sensors
attached to the pen and the HMD is sampled. The position of the pen’s tip is
transformed into the coordinate system of the HMD tracker sensor, which
eliminates influences of different head positions during the calibration process.
Hence the fact that the position of the stylus’ tip is sampled relative to the head-
tracker allows the user to freely move her head while performing the calibration
task. The resulting 3D point gives us - together with the known 2D location of
the virtual marker - one quintuple of calibration data. Figure 15 shows the
calibration process for one eye.

45

Figure 15 Calibration process for one eye

46

Figure 16 Alignment of virtual and real marker for far sample point (left) and
near sample point (right)

Geometric Determination of Camera Parameters

Since we want to keep the number of sampled data points low, we need to
maximize their information content with respect to our problem. We do this by
imposing geometric constraints on the sampled points to allow direct
determination of a viable start solution for our numerical optimization step. In
Figure 14 the distribution of sample points for correct calibration is depicted as
black circles (sample points 1-8). Every pair of samples lies on a line connecting
one corner of the image plane with the eye point, essentially defining the
viewing pyramid in this way.

In a first optimization step this gives us the location of the eye-point as a least-
squares solution for the point lying nearest to all of these lines. The
optimization is again (like in section 4.1) utilizing ‘powell’s algorithm’
[Press88].

The function to be minimized is given by:

∑
=

−=
4

1i

2
i ele)f(

e is the eyepoint
li is the point on the i-th line with minimal distance to e

The starting value for powell’s algorithm is calculated by searching the shortest
distance for all six possible pairs of lines and averaging the position of the six
center points of the lines running along these shortest distances.

47

We now use the calculated eye-point to estimate the parameters of the
projection plane. By averaging the directions of all rays from eye-point to the
four far sample points we get a good approximation of the viewing direction.
For this first estimation step we assume, that the viewing direction is normal to
the projection plane, hence the location of the center of the projection plane lies
on a ray starting at the eye-point and pointing in the estimated viewing
direction. The distance between eye-point and center of the image plane as well
as the size of the projection area is an assumption based on the knowledge, that
the horizontal field of view of the used HMDs is approximately 30 degrees wide
and the aspect ratio of the displays is about 4:3. Since position as well as size of
the projection plane is optimized in the next step, an estimation of these
parameters from the sampled points does not gain us an advantage over the
assumption. Both approaches are nevertheless feasible, but the assumption
gives us better control of the starting values used for the following optimization
of the camera parameters. To estimate the remaining degree of freedom of the
projection plane orientation, we intersect the approximated image plane with
the lines (1/2) and (5/6), which gives us an approximation for the vertical
direction, i.e. the up-vector of the projection plane. This intermediate solution
already gives a good approximation of the calibration problem. Since this
preliminary result only holds for eye positions on the axis of the optical system,
we have to append an optimization procedure to account for off-axis positions
of the eye. Any errors made in the assumption of FOV and aspect ratio due to
variances in the production of the HMDs will also be corrected by the following
optimization.

Numerical Optimization of Parameters

Since - as already mentioned above - the solution at this stage is already
reasonably good, we do not have to apply sophisticated optimization techniques
to it. A rather simple multi-dimensional least-squares optimization (powell’s
method) is being applied to the geometric solution reached in the previous step.
The parameters optimized in this step are:

• Position of eyepoint,
• position,
• orientation,
• and height of the projection plane.

The result of the evaluation function used for powell’s algorithm is calculated as
follows:
The parameters given to the function (position of eyepoint, position,
orientation, height of the projection plane) describe together with the fixed

48

parameter (width of projection plane), a virtual camera (cam) based on the
Studierstube offaxis camera model. Now the 3D-sample (s) of a quintuple of
calibration data is projected to screen space according to the current
parameters of the virtual camera. The resulting 2D-position should ideally be
congruent with the 2D-position (r) of the quintuple (the location of the center
of the virtual marker, when the 3D-position was sampled). The distance
between the two 2D-positions gives the error within a quintuple:

rsrs −=),creen(projectToS),,error(camcam

cam is the virtual camera to test; the camera parameters that

are being optimized are: position, orientation, height of the
projection plane and eyepoint position

s is the sampled 3D-position
r is the reference point, i.e. position of the virtual marker in

screen space
projectToScreen is the function projecting a given 3D-position to screen

space using the given camera (parameters)

The return value of the evaluation function is then given by the sum of the
quadratic errors of all eight quintuples:

∑
=

=
8

1i

2
iicamcam),,error()eval(rs

So figuratively speaking, during the optimization process the projection plane is
moved around, rotated and squeezed until the best solution is found. Due to the
fact that the preliminary geometric solution is close to the final result and the
width of the projection area is fixed - i.e. the variability of the parameters to be
optimized is rather restricted and degeneration of the virtual camera is
prevented - the optimization runs stable and converges quickly.

In a second optimization step the two quintuples of calibration data, which
produce the largest error with the current solution, are removed from the whole
set of quintuples and the optimization method described above is repeated with
the reduced data set. This step is added to compensate for some erroneous data
that may have been sampled.

49

HCI aspects: “Guiding and constraining user input”

But as mentioned above the whole procedure is rather sensible to erroneous
input data, which is sampled interactively by the user. Therefore we added
some input and evaluation constraints to enhance and control the quality of the
input data itself.

After starting the HMD-calibration application from the ‘calibration-suite’
menu the user can see a crosshair representing the first virtual marker. She
now has to align this virtual marker with the marker mounted on the pen’s tip.
To guide the user to move the pen’s tip to the correct position, she is obviously
led by the displayed crosshair itself, which indicates the intended direction
from the user’s eyepoint, i.e. a ray from the user’s eyepoint on which the sample
position should lie. To indicate the favored distance (far or near distance) from
the user’s eye, where the sampling should be triggered the size of the virtual
marker is adjusted to the size of the real marker as seen from the preferred
distance. By changing the color of the virtual marker from ‘inactive’ to ‘active’
color (which can be scripted by the ‘calibration suite administrator’), the user
gets feedback, whether she has moved the pen’s tip into the range of the desired
distance and may trigger the sampling, i.e. press the pen button, or not. Since
the correct sampling distance is enforced by the constraint described above, the
correct directional alignment of the markers remains as single source of
incorrect user input.

Figure 17 Visual control of the achieved HMD-registration (alignment of real

and virtual stylus)

After the user has sampled all eight positions for one eye, the calculation of the
camera parameters is started. The first step as stated above is the calculation of
the eyepoint. At this stage the quality of the input data is probed, by imposing

50

an upper limit on the shortest distance between each possible pair of lines. If
the criterion is not met the user is prompted to repeat the acquisition step,
otherwise the calculation continues. At the end of the optimization step the
RMS-error over all calibration data quintuples is calculated, which has to be
smaller then a specified upper limit. As before not meeting the criterion results
in a rollback to the calibration data acquisition step.

When the calculated virtual camera is valid, the whole procedure is repeated for
the second eye. After successfully calibrating the second virtual camera the user
may choose to test the achieved quality of the calibration. She can switch
between the currently and the previously used camera registration and compare
how good the displayed virtual stylus overlays the real stylus from different
view angles and distances (Figure 17).

If a good registration is achieved the user just exits the HMD-calibration
application with the current registration staying active and may begin working
with the Studierstube system. She may also choose to repeat the whole
procedure, if the result was not satisfactory, which can occur, when the quality
criteria described above are to forgiving. The HMD registration is saved to a file
and may be used as default registration of the HMD the next time the
Studierstube system is started, though it will not be optimal for other users or
even the same user, who calibrated the HMD, as stated at the begin of section
4.2.2. Nevertheless even a sub optimal registration may sometimes be
adequate, e.g. for testing mechanisms of an application during development,
where the tester can compensate for a small error in the calibration of the
display system.

51

4.2.3. Calibrating projection systems

Here we use a variation of the calibration method we applied to HMDs in the
previous chapter (section 4.2.2), which differs from [Summers99] method in
the use of the stylus instead of additional markers and a bar attached to the
shutter glasses (see section 3.2.5).

Overview of the calibration process

Like for the HMD-setup we want to retrieve the correct viewing parameters for
the Studierstube off-axis camera model, i.e. the correct virtual camera, which
ideally recreates the user’s view to the projection display device. Contrary to the
HMD-setup, where the relative position of the eyepoint to the projection plane
is static for one user, but the whole virtual camera follows the movement of the
user’s head, the position and orientation of the projection plane typically
remains static for a given projection setup. Therefore the calibration of the
viewing parameters for a projection setup is divided into two steps:

1. Calibration of projection plane parameters

2. Calibration of eyepoint-position relative to head-tracker

Calibration of projection plane

The position and orientation of the display screen and the area actually utilized
by the device are determined by this task. This is done by projecting reference
markers near the four corners of the screen and measuring their position
(Figure 20 left) by touching the displayed markers with the tip of the stylus and
pressing the pen’s button. Hence an obvious prerequisite for this step is, that
the whole surface of the projection display has to lie within the working volume
of the utilized tracker.

After the position of all four markers (upper left (Sul), lower left (Sll), upper right
(Sur), lower right (Slr)) has been retrieved, the absolute position and orientation

of the projection plane in tracker coordinates can be calculated (Figure 18).
Firstly the plane, which is described by any three sampled points, is optimized,
so that the sum of the shortest distances between a point and the plane is
minimized. Then all four sample points are projected to this plane, hence all
points are now certainly laying on one plane. The normal of the plane gives us
the projection plane’s z-vector. The vectors Sul-Sll and Sur-Slr are averaged to

52

calculate the up-vector of the projection plane. Hence the orientation of the
projection plane is specified. The origin (position) of the projection plane is
calculated by intersecting the lines d1 and d2 given by:

d1=Sll+t (Sur-Slr) and
d2=Sul+t (Slr-Sul).

The size of the projection plane is calculated by averaging the length of the
vectors given by:

Sul-Sll, Sur-Slr (height) and
Sur-Sul, Slr-Sll (width).

Since the projection plane typically remains static for a given setup, the
calibration of the projection plane usually has to be performed only once per
setup.

Figure 18 Parameters calculated during projection plane calibration.

Calibration of eyepoint-position

To determine the eye to tracker offset for both eyes, which implicitly also
specifies the inter-pupillary distance of the user, we project the four markers 
of which we sampled the absolute location in tracker coordinates in the
previous step  on the screen again. The user brings the tip of the stylus in

53

alignment with a displayed virtual marker and presses the button accordingly
(Figure 19 and Figure 20 right). At the press of the button the position of the
stylus is sampled as well as the position and orientation of the head-tracker.
The procedure is repeated for each eye and eventually gives us the desired
offset from the head-tracker for the left and right eye.

For each measurement we now have:

• head position
• head rotation
• stylus’ hotspot position
• marker position

The sampled hotspot position and the previously retrieved marker position
define a line in space, which we transform into head-relative coordinates
utilizing the simultaneously sampled head position and rotation. Due to this
transformation we remove the influence of the user’s head motion between the
four sampling steps, i.e. the user does not have to hold her head fixed at one
position for this procedure. The four gathered lines are now used to determine
the user’s eye positions relative to the head-tracker. Since in most cases the
lines will not precisely intersect, we use an optimization procedure as we used
in section 4.3.2. for the calculation of the eyepoint-position, resulting in an eye
position with minimal distance to all measured lines.

Figure 19 Eyepoint calibration for a projection set-up

After starting the projection calibration application from the ‘calibration-suite’
menu the user can choose between ‘full calibration’ (step 1 and 2 will be
performed) and ‘eye calibration’ (only step 2 will be executed). When choosing
‘full calibration’ the first virtual marker will be displayed. Now the user has to
touch the virtual marker with the pen’s hotspot and press the button of the pen,
then the next marker will be displayed. After all four marker positions where
measured the projection plane parameters are calculated. If the plane cannot be

54

optimized good enough, i.e. the residual is greater than a threshold value, the
plane calibration has to be repeated.

Having successfully completed step 1, step 2 is started automatically and the
first marker is displayed again. The user has to align the tip of the pen with the
center of the virtual marker. Two criteria for positioning the stylus during data
acquisition have to be observed by the user to guarantee a valid sample of
measurements:

• the stylus should be much nearer to the user’s eye than to the marker on
the screen

• the user’s head should always point in the general direction of the screen
center (not in the direction of the active marker), so that the angle
between any two lines is maximized and hence a higher precision of the
intersection is achieved.

To guide the user to position the pen’s tip at the correct distance from the
virtual marker and his eyes, the marker is colored differently indicating a ‘valid’
or ‘invalid’ distance, i.e. if the user may trigger the sampling now or not.
Additionally text is shown on the display to tell the user what to do (e.g.: “The
stylus’ tip is to near to the projection plane, move it closer to your eye”). The
same is done to enforce great enough angles between the lines, i.e. the user is
told to rotate his head either left or right and the marker’s color indicates
whether the user struck the right pose.

Figure 20 Calibrating the Virtual Table: projection plane calibration (left), eye
position calibration (sighting along the stylus’ tip) (right). (For illustration

purposes, the displayed marker has been enhanced.)

After the user has acquired the data for all four marker positions the eyepoint is
calculated as described above. If the upper limit for the shortest distance
between each possible pair of lines is exceeded the user is prompted to repeat

55

the acquisition step, otherwise the whole procedure is repeated for the second
eye.

If a good registration is achieved the user just exits the projection device
calibration application with the current registration staying active and may
begin working with the Studierstube system. The registration (i.e. the camera
parameters for left and right eye) is saved to a file and may be used as default
registration of the display device setup the next time the Studierstube system is
started. Since the parameters of the projection plane do not change, when the
same setup is used again, usually only the eyepoint-calibration step (called step
2 above) has to repeated on a per user basis to achieve good registration.

56

4.3. Registration of Tracker to
World Coordinate System

The next step in the proposed calibration method is the registration of the
tracker system so that it corresponds to the selected world coordinate system,
i.e. the determination of the transformation from tracker coordinate system to
world coordinate system (Ttw). Per default the tracker and world coordinate

system are identical. Thus, when e.g. using a typical magnetical tracker setup,
the origin of the world coordinate system lies somewhere near the middle of the
tracker emitter. The Studierstube system places its 3D-windows and other
virtual interaction elements around the world origin. Hence for the sake of
consistency between and usability of the various different possible setups of the
Studierstube system the world origin should lie at or near the center of the
users’ working volume (center of the tracker’s working volume), and not at
some point forced by the utilized tracking system.

Figure 21 A typical AR system setup, where the tracker emitter is placed on
the side of the user’s working volume. In this case the desired origin of the

world coordinate system is the center of the projection wall.

The calibration process

Previously the transformation Ttw was estimated and the appropriate tracker

configuration files were altered manually, then the Studierstube system was

57

started and the result of the transformation could be tested. For every change of
the transformation Ttw, one had to exit the Studierstube system, alter the

configuration files again and then the Studierstube system was started again. In
contrary to this rather tedious approach the proposed calibration procedure
represents an interactive process, where the user can change the
transformation Ttw at runtime and get immediate visual feedback how her

changes affect the system.

The principle of the procedure is quite simple: The user just uses the stylus to
‘move around’ the world coordinate system, represented by a virtual object
(coordinate axes), until it is placed at the desired position and orientation. The
tracker to world transformation matrix Ttw is then given by:

1−= wttw TT

= tw_oldtw TT

, if the world and tracker coordinate systems were identical before or

, if a transformation (T1−
wtT tW_old) was applied previously.

Since we know TWt, which is given by the transformation that was applied to the
virtual coordinate axes by the user’s interaction, Ttw can be directly calculated
from TWt by calculating its inverse.

Integration into Studierstube using OpenTracker

To incorporate the resulting transformation in the Studierstube system, the
program has to change the currently used tracker parameters. Since
Studierstube uses the OpenTracker framework as interface to all tracker data
(see section 5.3), the transformation has to be included in the OpenTracker
tree, which describes the actual tracker configuration at runtime. The
transformation has to be applied to all tracker stations of the utilized tracking
system. Hence for every StbSink node present in the tracker tree a transform
node, which represents the calculated tracker to world transformation, has to
be inserted as first child. The new configuration of the whole tracker framework
is then stored in a file, so that it can be easily loaded the next time Studierstube
is started. So after the registration of tracker to world coordinate system has
been achieved, i.e. the desired transformation Ttw had been inserted in the

tracker tree, all further tracker data fed into the Studierstube system by the
OpenTracker framework will be relative to the interactively defined world
coordinate system.

Since all offsets retrieved in previous steps (section 4.1 and 4.2) are relative to a
tracker sensor, they are not affected by the transformation Ttw The only

parameters calculated previously, which are specified in absolute tracker
coordinates, are those describing the projection plane for a projection system

58

(section 4.2.3). Hence the projection plane parameters are transformed into the
world coordinate system, if the current setup utilizes a projection system. The
recomputed values are also written back to the configuration file, which
describes the virtual camera parameters, to save them for subsequent runs of
Studierstube utilizing the current setup.

HCI aspects: “Modes of interaction”

To fully utilize the interaction widgets provided by the Studierstube system, the
display device (section 4.2) and the PIP (section 4.4) have to be calibrated. The
user interface for this procedure provides support for application control
utilizing the PIP. Alternatively the application can also be controlled via input
from the keyboard.

After starting the application from the ‘calibration-suite’ menu the user can see
the virtual coordinate axes, which visualize the current origin and orientation of
the world coordinate system. The user has the following options to position the
virtual coordinate axes and thus specifying the world coordinate system (WCS):

1. Snapping of WCS-origin to hotspot of stylus
2. Automatic alignment of WCS to projection plane

(only for projection display setups)
3. Direct (6DOF) manipulation of WCS’s position and orientation
4. Direct (3DOF) manipulation of WCS’s position with fixed orientation
5. Direct (3DOF) manipulation of WCS’s orientation with fixed position

The user can choose a specific manipulation mode by either pressing a key on
the keyboard or by pressing a virtual button displayed on the PIP.

At the start of the process the virtual WCS may be out of reach of the user, e.g.
when the WCS is identical to the tracker coordinate system, resulting in the
WCS-origin being close to the tracker emitter, which may be mounted on the
ceiling. Therefore mode 1 should be chosen, which lets the origin of the WCS
snap immediately to the position of the stylus’ hotspot, when the button on the
stylus is pressed. For projection-based displays, where an alignment of the WCS
to the projection screen coordinate system is preferred mostly, the application
provides the option to achieve this alignment automatically (mode 2).

59

Figure 22 The virtual coordinate system; the wire frame sphere indicates, that
it currently follows the movement of the stylus.

The user can also move the virtual WCS around arbitrarily using the stylus. The
virtual WCS can easily be grabbed by moving the stylus within the bounding
box of the virtual WCS, which is indicated by the appearance of a spherical wire
frame around the object, then pressing and holding the stylus’ button (Figure
22). The object follows every movement of the stylus until the pen’s button is
released again. If either the position or orientation is already satisfactory (e.g.
alignment of WCS with projection screen), it can be locked again by pressing
the associated virtual button on the PIP or with a key press. Consequently the
drag and drop mechanism described above changes only orientation or position
of the virtual WCS. If the user is pleased with the alignment of the WCS, she
may choose to apply it to the system. The user may change the transformation
Ttw multiple times, until she is satisfied with the achieved result. Every change

made to the WCS may also be undone step by step. After the user exits the
application she can continue working with the Studierstube system.

60

4.4. Calibration of Props

The last step of the proposed calibration method deals with the calibration of
props. Props for the Studierstube system are defined as physical objects of
which virtual representations need to exist in the system, either to be able to
augment them or to use their virtual representation internally to e.g. calculate
occlusions between real and virtual objects. A good static registration of all
props is of paramount importance, since any misalignment between the
physical object and its virtual representation results in a compromised
augmentation as stated in section 2.

There are two sorts of props:

• Stationary props and
• Tracked props

Stationary props — e.g. desks, walls — are calibrated within the world
coordinate system and cannot be moved without invalidating their registration.
Tracked props — e.g. a pad, or a mock-up to be augmented and moved — are
calibrated within the object’s tracker coordinate system instead of the absolute
world coordinate system. Hence a tracked prop can be moved around and still
stays registered.

The calibration process

For any prop to be calibrated, features on the object to be used as calibration
points must be specified. These features may be corners or attached markers,
which can easily and unambiguously be touched with the stylus’ tip. Hence a
prerequisite for this calibration process, especially for the calibration of
stationary props, is that all specified feature points must lie within the working
volume of the utilized tracker system. The positions of these features have to be
described in the virtual representation of the prop, allowing for inferring the
position of the

• stationary prop in the real world, i.e. the specified world coordinate
system, (transformation TOW)

• tracked prop relative to the prop’s tracker sensor coordinate system,
(transformation TOTs)

by an appropriate fitting algorithm.

61

Again the first step in the process is the acquisition of calibration data. The user
just touches a feature point with the stylus’ tip and presses a button on the pen.
When pressing the button the position of the stylus’ hotspot is sampled. When
calibrating a tracked prop the position and orientation of the tracked prop’s
sensor is measured additionally. This procedure is repeated for every defined
feature point.

The next step of this process is the determination of a viable geometric solution
of the fitting problem, which is then used as starting value for an optimizing
procedure. In the case of a tracked prop the sampled positions of the stylus’
hotspot hw are transformed from world coordinate system (WCS) to tracker
sensor coordinate system (TSCS). Since we also sampled the translation tW and
orientation RWTs of the tracker sensor attached to the prop the pen’s tip in TSCS

is given by:

1−−= WTsWWTs)Rt(hh

For every specified feature point we now have a corresponding 3D-point:

• hTs for tracked props (in TSCS) or
• hw for stationary props (in WCS)

which will be simply referred to as h, because the following calculations are

similar for both cases.

We need at least three feature points to be able to unambiguously calculate all
degrees of freedom of the searched transformation TFH (from ‘feature-point’

(object) coordinate system to ‘hotspot’ (destination) coordinate system). To
determine a preliminary transformation we take the first three feature points
and calculate the normal nF of the plane these three points span. The rotation
RFH1 is specified as the rotation needed to transform the normal of the feature
point plane nF into the normal of the plane spanned by the corresponding
sampling points nH (nH= nF RFH1). By transforming the vector from the first to
the second feature point f2-f1 with the previously calculated rotation RFH1 we get
(f2-f1)RFH1. The third degree of freedom of the rotational component of the
transformation TFH is then determined by the rotation RFH2 needed to rotate (f2-
f1)RFH1 to h2-h1, the vector from the first to the second sampled position (h2-h1=
(f2-f1)RFH1 RFH2). Hence the rotational part of the transformation TFH is given by:

21RRR FHFHFH = .

62

The translational part of TFH is then given by:

)R(fh 11 FHFHt −=

This preliminary solution is now fed to powell’s optimization algorithm, which
optimizes the transformation in such a way that the RMS-error given by:

∑
=

−=
n

1i

2

iin
1

RMSerror)(FHTfh

is minimized.

n is the number of samples
fi is the i-th feature point
hi is the i-th position of the stylus’ hotspot
TFH is the transformation that is being optimized (from the prop’s own

coordinate system, wherein the feature points are specified, to the
destination coordinate system (TSCS or WCS), wherein the hotspot
positions are specified)

The resulting optimized transformation is then inserted as SoTransform node
into the scene graph representing the prop’s virtual shape and saved to a file.

HCI aspects

Similar to many applications developed for the Studierstube system, the user
can control the application by either pressing a specific key on the keyboard or
by pressing a virtual button displayed on the PIP, which is of course the
preferred interaction method. When speaking of ‘pressing a button’ in the
following text, it is used as abstraction from the specific interaction method, i.e.
both methods can be utilized.

After starting the application from the ‘calibration-suite’ menu the user can see
the virtual representation of the prop specified first in the application’s
configuration file. It is displayed centered on the origin of the world coordinate
system. By specifying all props that should be calibrated in the configuration
file, the whole process can be streamlined, because the user is able to choose a
prop quickly from the set of specified props by pressing the ’next’ or ‘previous’
button. Alternatively the user might choose from a virtual file browser, which
prop she wants to calibrate. But the props to be calibrated are known before the
system is started and it is more convenient for the user to choose from a rather

63

small selection of props than browsing through many directories just to select a
single object of interest.

Figure 23 Calibration process for a prop

64

So after the user has chosen the prop she wants to calibrate, she presses the
‘register’ button to start the actual calibration process (see Figure 23). The first
feature point is marked on the virtual representation with a pulsing crosshair,
to give the user a visual clue where it is located on the physical object (see
Figure 27). The user can arbitrarily move around the virtual prop using the
stylus, to get a better impression of the model or to uncover the currently
marked feature point, which might be occluded by the virtual object itself. The
virtual prop can easily be grabbed by moving the stylus within its bounding box,
which is indicated by highlighting the prop, then pressing and holding the
stylus’ button. The object then follows every movement of the stylus until the
pen’s button is released again. When the user has identified the feature point on
the physical object, he has to touch it with the stylus’ tip and press the pen’s
button. Then the next feature point is marked on the virtual prop. If the user
knows she missed the feature point or pressed the pen button accidentally she
can repeat the sampling.

After the user has acquired sampling data for all feature points the
transformation is calculated and applied to the virtual representation of the
prop. The user can now judge the quality of the achieved registration and
choose to return to the prop selection stage with or without saving the result of
the calibration process.

65

Chapter 5

Implementation

5.1. The Studierstube System -
Implementation of the user interface

5.1.1. Software architecture

Studierstube’s [Schmalstieg00] software development environment is realized
as a collection of C++ classes built on top of the Open Inventor (OIV) toolkit
[Strauss92]. The rich graphical environment of OIV allows rapid prototyping of
new interaction styles. The file format of OIV enables convenient scripting,
overcoming many of the shortcomings of compiled languages without
compromising performance. At the core OIV is an object-oriented scene graph
storing both geometric information and active interaction objects. The
implementation approach has been to extend OIV as needed, while staying
within OIV’s strong design philosophy [Wernecke94]. This has led to the
development of two intertwined components: A toolkit of extensions of the OIV
class hierarchy—mostly interaction widgets capable of responding to 3D
events—and a runtime framework which provides the necessary environment
for Studierstube applications to execute.

Together these components form a well-defined application programmer’s
interface (API), which extends the OIV API, and also offers a convenient
programming model to the application programmer (see section 5.1.3).

Applications are written and compiled as separate shared objects, and
dynamically loaded into the runtime framework. A safeguard mechanism
makes sure that only one instance of each application’s code is loaded into the
system at any time. By using this dynamic loading mechanism, Studierstube
supports multi-tasking of different applications (e.g. a medical visualization
and a 3D modeler) and also a multiple document interface (MDI). Depending
on the semantics of the associated application, ownership of a context may or

66

may not privilege a user to perform certain operations on the information (such
as object deletion).

PIP sheets

Studierstube applications are controlled either via direct manipulation of the
data presented in 3D-windows, or via a mixture of 2D and 3D widgets on the
PIP (Figure 24). A set of controls on the PIP— a PIP sheet—is implemented as
an OIV scene graph composed primarily of Studierstube interaction widgets
(such as buttons, etc.). However, the scene graph may also contain geometries
(e.g., 2D and 3D icons) that convey the user interface state or can be used
merely as decoration. Every type of context defines a PIP sheet template, a kind
of application resource. For every context and user, a separate PIP sheet is
instantiated. Each interaction widget on the PIP sheet can therefore have a
separate state. For example, every user for every context can set the current
paint color in an artistic spraying application individually. However, all users
and/or all contexts can also share widgets. Consequently, Studierstube’s 3D
event routing involves a kind of multiplexer between windows and users’ PIP
sheets.

5.1.2. Hardware support

Displays

Studierstube is intended as an application framework that allows the use of a
variety of displays, including projection based devices and HMDs. There are
several ways of determining camera position, creating stereo images, setting a
video mode etc. An OIV compatible viewer with a plug-in architecture for
camera control and display mode was implemented to meet these
requirements. The following display modes are supported:

• Field sequential stereo: Images for left/right eye output in consecutive
frames

• Line interleaved stereo: Images for left/right eye occupy odd/even lines
in a single frame

• Dual screen: Images for left/right eye are output on two different
channels

• Mono: The same image is presented to both eyes

67

The following camera control modes are supported:

• Tracked display: Viewpoint and display surface are moving together and
are tracked (usually HMD)

• Tracked head: A user’s viewpoint (head) is tracked, but the display
surface is fixed (such as a workbench or projection wall)

• Desktop: The viewpoint is either assumed stationary, or can be
manipulated with a mouse

This approach, together with a general off-axis camera implementation (see
section 4.2.1), allows runtime configuration of almost any available display
hardware.

Tracking A software system like Studierstube that works in a heterogeneous
distributed infrastructure and is used in several research labs with a variety of
tracking devices requires an abstract tracking interface. The approach taken by
most commercial software toolkits is to implement a device driver model,
thereby providing an abstract interface to the tracking devices, while hiding
hardware dependent code inside the supplied device drivers. While such a
model is certainly superior to hard-coded device support, it falls short for
various requirements:

Configurability: Typical setups for tracking in virtual environments are very
similar in the basic components, but differ in essential details such as the
placement of tracker sources or the number and arrangement of sensors. The
architecture allows the configuration of all of those parameters through simple
scripting mechanisms.

Filtering: There are many necessary configuration options that can be
characterized as filters, i.e., modifications of the original data. Examples
include geometric transformations of filter data, prediction, distortion
compensation, and sensor fusion from different sources.

Distributed execution and decoupled simulation: Processing of tracker data can
become computationally intensive, and it should therefore be possible to
distribute this work over multiple CPUs. Moreover, tracker data should be
simultaneously available to multiple users in a network. This can be achieved
by implementing the tracking system as a loose ensemble of communicating
processes, some running as service processes on dedicated hosts that share the
computational load and distribute the available data via unicast and multicast
mechanisms, thereby implementing a decoupled simulation scheme.

68

Extensibility: As a research system, Studierstube is frequently extended with
new experimental features. A modular, object-oriented architecture allows the
rapid development of new features and uses them together with existing ones.
The latest version of tracking support in Studierstube is implemented as an
object-oriented framework called OpenTracker [Reitmayr00] (see section 5.3),
which is available as open source. It is based on a graph structure composed of
linked nodes: source nodes deliver tracker data, sink nodes consume data for
further processing (e. g. to set a viewpoint), while intermediate nodes act as
filters. By adding new types of nodes, the system can easily be extended. Nodes
can reside on different hosts and propagate data over a network for decoupled
simulation. By using an XML [Bray00] description of the graph, standard XML
tools can be applied to author, compile, document, and script the OpenTracker
architecture.

5.1.3. Application programmer’s interface

The Studierstube API imposes a certain programming model on applications,
which is embedded in a foundation class, from which all Studierstube
applications are derived. By overloading certain polymorphic methods of the
foundation class, a programmer can customize the behavior of the application.
The structure imposed by the foundation class supports multiple contexts.
Context nodes are implemented as OIV kit classes. Kits are special nodes that
can store both fields, i.e., simple attributes, and child nodes, both of which will
be considered part of the scene graph. Default parts of every context are at least
one 3D-window node, which itself is an OIV kit and contains the context’s
“client area” scene graph, and a set of PIP sheets (one for each participating
user). In other words, data, representation, and application are all embedded in
a single scene graph, which can be conveniently managed by the Studierstube
framework.

To create a useful application with all the properties mentioned above, a
programmer needs only create a subclass of the foundation class and overload
the 3D-window and PIP sheet creation methods to return custom scene graphs.
Typically, most of the remaining application code will consist of callback
methods responding to certain 3D events such as a button press or a 3D direct
manipulation event, although the programmer has the freedom to use anything
that the OIV and Studierstube toolkits offer.

69

5.2. Human-Computer Interaction
(HCI) aspects

When having the goal of providing easy to handle tasks for calibrating the AR
system, which [Azuma97b] calls a “desirable result”, the aspect of providing
adequate human-computer interaction is of paramount importance to reaching
it. [Szalavári99] proposes basic design guidelines for AR interfaces, which led to
the design of the PIP interface (see section 5.1.1), which now is the standard
user interface provided by Studierstube.

Where applicable the PIP interface is used for controlling the different
calibration applications. Since the PIP interface is only useful, when all
components (pen, panel) and the display device are calibrated, i.e. the
Studierstube 3D workspace is already setup and calibrated, it obviously cannot
be used for the display device and stylus calibration procedures. For these
calibration steps a simple 2D menu interface was created (Figure 25). The
navigation through the menu items can be controlled via keyboard or the
stylus’s buttons. By pressing the secondary button of the stylus, the user can
cycle through the menu items. The primary button triggers the action
associated with the currently selected item. The control via keyboard works
similarly, with the exception that the menus can be browsed up and down. For
expert users additional keyboard commands – so-called hotkeys – are
implemented, which trigger their associated action by a single key press.

Since we implemented a whole suite of calibration procedures, there are two
levels of interaction that have to be considered.

The first is the navigation in between calibration processes. The interface that is
provided for the user to choose the appropriate calibration task should be
adaptable to the system’s registration status and the amount of control the user
wants over the system level task, which is calibration. The following
requirements have to be considered for the design of the user interface.

• To calibrate a new hardware setup the different calibration steps have to
be performed in a predefined order.

• When the initial calibration was performed, only the display calibration
has to be performed for each user.

• It must also be possible to randomly select the task, which the user
wants to perform, e.g. if additional props have to be integrated in the
system.

70

The second is the navigation through a particular calibration procedure. When
looking at this type of interaction, it is important not only to tell the user what
tasks she has to perform, but also guide the user, so that the result of the
interaction, mostly sampling of tracker data, meets certain criteria. Therefore
we implemented methods to instruct and guide the user while performing a
calibration task.

5.2.1. Paths through the Calibration Process

The starting point for each calibration process is an application called
calibration suite. This application manages all calibration tasks. It can be
configured to run in different modes:

• New setup guide

The user is automatically guided through the whole setup process, and
performs the necessary tasks in order. The calibration suite starts the
particular calibration applications automatically and in order. Hence the
user is only navigating through each necessary calibration task and is not
concerned with choosing the application himself. For a typical HMD
setup, the order of applications is as follows:

o Stylus calibration:

(only once for a particular system setup)
o HMD calibration:

(ideally for every user “entering” the AR environment)
o Tracker to World coordinate registration

(typically only once for a particular system setup)
o Registration of the PIP

(only once for a particular system setup)

• Automatic display calibration

After the initial calibration of a specific hardware setup is completed, the
calibration suite switches to this mode. Every time the calibration suite is
started, preferably when the system is started, the current user is asked
to perform the display calibration task, to ensure proper display
registration for every user.

71

• Expert mode

When this mode is activated, the user can select any task in any order.
Hence she has full control over the calibration suite. To produce useful
results the user has to know the current system setups’ calibration
status, to determine if the particular task chosen is dependent on
another calibration task.

Figure 24 Screenshot of the calibration suite’s PIP sheet in “expert mode”.

Figure 25 Screenshot of the 2D menu of the calibration suite when in “expert
mode”.

72

5.2.2. User guidance

To lead the user through the calibration process she is provided with the
following types of information:

• Instructions, what step has to be performed next
• Status information for the currently running calibration task
• Visual feedback of meeting/not meeting certain input constraints and
• Instructions, what has to be done, to meet a certain input constraint

Instructions and status information are mostly displayed as simple 2D text on
the utilized display (Figure 26). A scene object node for 2D text is part of the
implementation of OIV. But for the sake of a more convenient way to setup and
parameterize the scene sub-graph needed to display a message, we
implemented a new node kit, called SoMessageKit. It can be easily
parameterized within an IV-file or the application itself, e.g. to specify color,
position, font style of the message, without having to construct the message
scene graph explicitly.

Figure 26 This screenshot shows an example of the provided status
information during the stylus calibration procedure.

For the prop calibration the visualization of the feature point, which should be
sampled next is an example of a non-text based instruction. The next feature
point that the user has to sample – by placing the tip of the stylus on a
specified point on the real object – is indicated by a pulsing 3D crosshair on the

73

visualization of the corresponding virtual object displayed on the utilized
display (Figure 27). Hence the user gets direct visual context specific
information.

Figure 27 Screenshot of the visualization of the feature point (in the middle of
the table), which should be sampled next during the prop calibration process.

Figure 28 This screenshot shows the use of 2D text and visual feedback.

Especially during the display device registration procedures, the visual
feedback, which indicates the validity of the current stylus position, i.e. if the

74

current position meets the predefined constraint (e.g. angular or positional), is
very helpful. Figure 28 shows a screenshot taken during an HMD calibration.
The white cross hair indicates, that the current relative position of the stylus in
respect to the HMD does not allow the acquisition of a valid sample. Hence the
2D text is used to instruct the user, what to do to meet the criteria. When the
cross hair turns red, the user gets the visual feedback that he now may trigger
the sampling.

75

5.3. OpenTracker - An XML based Open
Architecture for Reconfigurable
Tracking

Tracking is an indispensable requirement for all kinds of virtual reality (VR)
and augmented reality (AR) systems. OpenTracker is a tracking software
system that allows mixing and matching of different features, as well as simple
creation and maintenance of complex tracker configurations.

OpenTracker has the following characteristics:

• An object-oriented approach to an extensive set of sensor access,
filtering, fusion, and state transformation operations

• Behavior specification by constructing graphs of tracking objects (similar
in spirit to scene graphs or event cascades) from user defined tracker
configuration files

• Distributed simulation by network transfer of tracker state at any point
in the graph structure

• Decoupled simulation by transparent multi-threading and networking
• A software engineering approach based on XML [Bray00], which allows

to use many generic tools for development, documentation, and
configuration.

The current scope of OpenTracker is traditional VR applications. It thus deals
primarily with position and orientation information (six degrees of freedom,
6DOF), although some other event types such as button events and 2D position
information (such as from a desktop mouse) are supported.

The software is designed as a class hierarchy of tracker objects, implemented in
C++. Every tracker object defines an interface that can answer a query for the
current position and orientation as well as the state of the associated buttons.
At runtime, these tracker objects are assembled into a directed acyclic graph
(DAG)- or frequently, a set of DAGs - according to the instructions in a user-
supplied configuration file written in XML. We distinguish source objects,
which are leaves in the graph and receive their data values from external
sources, filter objects, which are intermediate nodes and modify the values
received from their child nodes, and sink objects, which propagate their data
values received from their child nodes to external outputs.

76

Source objects

Most source objects encapsulate a device driver that directly accesses a
particular tracking device, such as a Polhemus or Ascension tracker connected
to a serial interface. Other source objects form bridges to complex self-
contained systems, such as the video tracking library from ARToolKit [Kato99].
Yet other source objects emulate tracker via the keyboard or simply respond
with constant values (useful for development and debugging) or access network
data. Some source objects have a multi-threaded execution model to implement
a decoupled simulation model (e. g., when blocking I/O must be used).

Filter objects

Filter objects have one or more children. When queried, filter objects pass on
the query to determine the state of their children, and then compute their own
state based on the returned data. A non-exhaustive list of filters includes:

_

• Transformation filters perform geometric transformations of their
children’s values. These include pre- and post-transformations and may
be static or depend on data values received from other children. The
latter allows modifying the filtered state relative to another tracker state.

• Prediction filters allow to partially compensate for lag in the measuring
and processing tracker data.

• Noise and smoothing filters are handy to deal with inherent inaccuracies
of trackers.

• …

Sink objects

Sink objects are similar to source objects but distribute data rather than receive
it. They include output to network multicast groups, debugging output to a user
interface or shared memory to integrate OpenTracker as a library into other
applications.

The presence of sink objects drives the evaluation model of OpenTracker. All
sink objects in a tracker object graph are registered upon creation, and their
respective state evaluation method is triggered periodically. [Reitmayr00]
found this to be more effective than a pure client-driven lazy evaluation
scheme, as it avoids potentially costly recomputation of intermediate values for
every invocation.

77

Software engineering with XML

XML, the extensible markup language, is the emerging standard for web-based
applications and software systems [Bray00]. XML is a markup definition
language that allows defining hierarchical markup languages with so-called
document type definitions (DTD). With the appropriate DTD, standard XML
tools can be used to conveniently edit, type check, parse, and transform any
XML file.

Thus, providing a simple DTD for describing hierarchies of tracker objects
opens access to software libraries and tools that simplify several steps of the
development cycle:

_

• A DTD editor can be used to design and maintain the DTD.
• An XML parser enforces content format on the tracker configuration file

while building the corresponding structure in memory, thus
automatically performing many of the consistency checks that have
otherwise to be hand-coded.

• A convenient XML editor with a graphical user interface allows the end
user to design the tracker configuration without having to master the
syntax.

• Using the extendible style language (XSL) [Adler01], automatic textual
and even graphical documentation can be created from a tracker
configuration file.

Markup languages are generally used to annotate textual documents with
structural information. Thus a general XML document consists of text grouped
and structured with tags. Markup languages defined in XML consist of
elements, essentially expressed as tags, and a structural model (the content
model) of the possible ways these elements may be nested. Moreover, elements
are annotated by name - value pairs called attributes.
OpenTracker maps elements to objects and attributes to members of these
objects and does not use any textual content but purely relies on the content
model provided by the DTD. An open source XML parser [Apache99] builds a
tree of elements representing the given configuration file. OpenTracker walks
the tree and creates a new object for each element based on the elements name.
The string values of the attributes are parsed according to the objects class and
the corresponding members are set. Attributes typically describe such data as
the parameters of a transformation.

78

Restrictions on the number of children and the possible types are described in
the DTD. Source objects typically do not have any children objects as they rely
on data from external sources to compute their own data. A number of filter
objects get the value of a single child object, transform it and pass it on.
Confidence filters use any number of children to compute their data value. The
data of the different children enters in the same way into the computation.

In another case different children objects influence the computation in different
ways. Dynamical transformations, for example, are parameterized by the value
of another object and thus use the data value of the object to be transformed
differently from the data of the parameterizing object. This is handled by using
wrapper elements. An object requiring marked children is mapped to an
element that may only have certain marker elements as children. These marker
elements in turn may have any other element as child again. The marker
elements are mapped to marker objects that perform no special function and
return the value of their child object. They can be queried by the filter object to
derive how to use this value.

The following XML code describes a simple Studierstube tracker setup.
NetworkSource nodes receive data, in this case tracker data from an ART
optical tracking system, via multicast and StbSink nodes, representing the
interface between OpenTracker and Studierstube, update the internal
Studierstube tracking state. Station 1 represents the stylus tracking station.
Stations 2 and 3 are used to track the PIP respectively the HMD.

<!DOCTYPE OpenTracker SYSTEM "opentracker.dtd">

<OpenTracker>

 <configuration>

 <NetworkSourceConfig />

 </configuration>

 <StbSink event="off" station="1">

 <NetworkSource number="1"

 multicast-address="224.100.200.102"

 port="12345" />

 </StbSink>

 <StbSink event="off" station="2">

 <NetworkSource number="2"

 multicast-address="224.100.200.102"

 port="12345" />

 </StbSink>

79

 <StbSink event="off" station="3">

 <NetworkSource number="3"

 multicast-address="224.100.200.102"

 port="12345" />

 </StbSink>

</OpenTracker>

After the stylus calibration is finished, an EventVirtualPositionTransform node
is inserted into the XML document, to store the calculated stylus offset and
apply it to the tracker data coming from the station attached to the stylus. The
used EventVirtualPositionTransform implements an offset in the child's affine
space. That is the configured translation is post transformed with the child's
position and orientation values. This effectively offsets the tracked point with
respect to the tracked affine base, i.e. in this case, the origin of the tracker
sensor is moved into the tip of the stylus.

…

<StbSink event="off" station="1">

 <EventVirtualPositionTransform translation="-0.063 -0.017 -0.009">

<NetworkSource number="1"

 multicast-address="224.100.200.102"

 port="12345" />

 </EventVirtualPositionTransform>

</StbSink>

…

After the registration of tracker to world coordinate is completed, the resulting
transformation has to be applied to the whole tracker reference frame. Hence
all data fed into the Studierstube framework – in this case all data coming from
the tracker stations (NetworkSource) specified within the configuration file –
has to be transformed. The EventTransform node transforms the data by
applying a rotation, scale and translation to the child's data as post
transformations. The transformation itself is fixed and set with the elements
attributes. Only the rotational part acts on the child's orientation data.

80

<!DOCTYPE OpenTracker SYSTEM "opentracker.dtd">

<OpenTracker>

<configuration>

<NetworkSourceConfig />

</configuration>

<StbSink event="off" station="1">

<EventTransform scale="1 1 1"

 rotation="0.0348 0.0523 -0.0316 0.998"

 translation="-0.773995 0.538000 0.000000"

 rotationtype="quaternion">

<EventVirtualPositionTransform

 translation="-0.063 -0.017 -0.009">

<NetworkSource number="1"

 multicast-address="224.100.200.102"

 port="12345" />

</EventVirtualPositionTransform>

</EventTransform>

</StbSink>

<StbSink event="off" station="2">

<EventTransform scale="1 1 1"

 rotation="0.0348 0.0523 -0.0316 0.998"

 translation="-0.773995 0.538000 0.000000"

 rotationtype="quaternion">

 <NetworkSource number="2"

 multicast-address="224.100.200.102"

 port="12345" />

</EventTransform>

</StbSink>

<StbSink event="off" station="3">

<EventTransform scale="1 1 1"

 rotation="0.0348 0.0523 -0.0316 0.998"

 translation="-0.773995 0.538000 0.000000"

 rotationtype="quaternion">

<NetworkSource number="3"

 multicast-address="224.100.200.102"

 port="12345" />

</EventTransform>

</StbSink>

</OpenTracker>

81

5.4. Minimizing Functions -
Direction Set (Powell’s) Methods
in Multidimensions

For many calibration tasks, the strategy to obtain good results is to find a rather
good initial solution for the parameters by taking into account the known
geometrical constraints (e.g. see section 4.2.2. - Calibrating See-Through Head-
Mounted Displays), and then optimizing the desired parameters, so that the
function calculating the registration error with a given set of parameters is
minimized. Hence we have to use multidimensional minimization, which
means finding the minimum of a function of more than one independent
variable.

Minimization along a line in N-dimensional space

We know how to minimize a function of one variable (see [Press88] for further
reference). If we start at a point P in N-dimensional space, and proceed from
there in some vector direction n, then any function of N variables f (P) can be
minimized along the line n by a one-dimensional method. One can dream up

various multidimensional minimization methods that consist of sequences of
such line minimizations. Different methods will differ only by how, at each
stage, they choose the next direction n to try. All such methods presume the

existence of a “black-box” sub-algorithm, which we might call linmin, whose
definition can be taken as:

linmin: Given as input the vectors P and n, and the
function f, find the scalar λ that minimizes f (P+ λn).

Replace P by P + λn. Replace n by λn. Done.

For most of our calibration procedures, calculation of the gradient is out of the
question, hence Powell’s minimization method, which falls under the above
stated general schema of successive line minimizations, and whose choice of
successive directions does not involve explicit computation of the function’s
gradient is the method perfectly fitting our problem.

82

Multidimensional minimization

You might first think of this simple method: Take the unit vectors e1, e2,…eN as a

set of directions. Using linmin, move along the first direction to its minimum,
then from there along the second direction to its minimum, and so on, cycling
through the whole set of directions as many times as necessary, until the
function stops decreasing.

This simple method is actually not too bad for many functions. Even more
interesting is why it is bad, i.e. very inefficient, for some other functions.
Consider a function of two dimensions whose contour map (level lines)
happens to define a long, narrow valley at some angle to the coordinate basis
vectors. Then the only way “down the length of the valley” going along the basis
vectors at each stage is by a series of many tiny steps. More generally, in N
dimensions, if the function’s second derivatives are much larger in magnitude
in some directions than in others, then many cycles through all N basis vectors
will be required in order to get anywhere. This condition is not all that unusual;
according to Murphy’s Law, you should count on it.

Obviously what we need is a better set of directions than the ei’s. All direction

set methods consist of prescriptions for updating the set of directions as the
method proceeds, attempting to come up with a set which either (i) includes
some very good directions that will take us far along narrow valleys, or else
(more subtly) (ii) includes some number of “non-interfering” directions with
the special property that minimization along one is not “spoiled” by subsequent
minimization along another, so that interminable cycling through the set of
directions can be avoided.

Conjugate Directions

Suppose that we have moved along some direction u to a minimum and now
propose to move along some new direction v. The condition that motion along v
not spoils our minimization along u is just that the gradient stays perpendicular
to u, i.e., that the change in the gradient be perpendicular to u. If not then there
would still be a nonzero directional derivative along u.

When this condition holds for two vectors u and v, they are said to be

conjugate. When the relation holds pair wise for all members of a set of vectors,
they are said to be a conjugate set. If you do successive line minimization of a
function along a conjugate set of directions, then you don’t need to redo any of

83

those directions (unless, of course, you spoil things by minimizing along a
direction that they are not conjugate to).

A triumph for a direction set method is to come up with a set of N linearly
independent, mutually conjugate directions. Then, one pass of N line

minimizations will put it exactly at the minimum of a quadratic form. For
functions f that are not exactly quadratic forms, it won’t be exactly at the
minimum; but repeated cycles of N line minimizations will in due course

converge quadratically to the minimum.

Powell’s Quadratically Convergent Method

Powell first discovered a direction set method that does produce N mutually
conjugate directions. Here is how it goes: Initialize the set of directions ui to the
basis vectors,

ui = ei i = 1, …, N

Now repeat the following sequence of steps (“basic procedure”) until your
function stops decreasing:

• Save your starting position as P0.
• For i = 1, …, N, move Pi-1 to the minimum along direction ui and call this

point Pi.
• For i = 1, …, N - 1, set ui ← ui+1.
• Set un ←PN - P0.
• Move PN to the minimum along direction un and call this point P0.

Powell, in 1964, showed that, for a quadratic form, k iterations of the above
basic procedure produce a set of directions ui whose last k members are
mutually conjugate. Therefore, N iterations of the basic procedure, amounting
to N (N + 1) line minimizations in all, will exactly minimize a quadratic form

[Brent73]. Unfortunately, there is a problem with Powell’s quadratically
convergent algorithm. The procedure of throwing away, at each stage, u1 in
favor of PN - P0 tends to produce sets of directions that “fold up on each other”

and become linearly dependent. Once this happens, then the procedure finds
the minimum of the function f only over a subspace of the full N -dimensional

case; in other words, it gives the wrong answer.

To fix up the problem of linear dependence in Powell’s algorithm you can give
up the property of quadratic convergence in favor of a more heuristic scheme

84

(due to Powell), which tries to find a few good directions along narrow valleys
instead of N necessarily conjugate directions. This is the method that was

implemented by [Press88], which we use for our optimization problem.

85

Chapter 6

Results and Conclusion

6.0. Tracking System

Prerequisite: Precise tracking system, with linear behavior
over the whole working volume.

The calibration procedures described in the previous chapters were all tested
and evaluated with an optical tracker system called DTrack, which is produced
by the company Advanced Realtime Tracking [Art01]. This system was chosen
for the evaluation of the calibration procedures because it features linear
behavior over the whole working volume, high update rates of up to 60 Hz,
small system lag of about 20-40 ms, and high overall precision. The
manufacturer gives the following example for the accuracy of a 4 Camera
tracking system, which resembles our test setup:

In this setup a central measurement volume is defined as that part of the total
measurement volume that is seen by all four cameras simultaneously and that
covers most of the tracked persons movements. A typical result for the tracking
of a person’s head position and orientation (the person is wearing a head
mounted display) is given in the table below:

Possible accuracy (conditions like
described below, ideal measurement):

Target
position

Target
orientation

Accuracy absolute
(RMS over central measurement volume)

250 µm 0.12 deg

Repeatability
(standard deviation)

60 µm 0.03 deg

Maximum error
(calculated, in central measurement volume)

900 µm 0.4 deg

Noise 30 µm 0.015 deg

Table 1 Accuracy possible with the DTrack optical tracking system.

86

The following conditions apply:

• camera position: in the 4 upper corners of a cube, ca. 6m x 6m x 4m
• rigid body: 5 spherical markers of 30 mm diameter
• ca. 200 mm size of the rigid body
• central measurement volume: cube of ca. 3.5m x 3.5m x 1.5m, located in

the center of the 6x6x4m-cube and in 1m height above the floor
• ideal measurement: target in central measurement volume, seen by all

tracking cameras, no occlusions

6.1. Test setup and evaluation of
stylus calibration

The stylus calibration procedure was tested with the ART optical tracker. A
standard target was mounted on a stylus (Figure 29) with a rather sharp tip, so
that the tip would not easily move from its fixed position on a table.

Figure 29
The stylus with

mounted target for
optical tracking.

Figure 30
Point cloud sampled during the stylus calibration

procedure.

The procedure was repeated five times. For each run of the procedure 500 or
more samples were taken. The sample filter, which imposes a minimum
distance between any two samples, was set to 5 mm. This particular

87

combination of settings forces the user to cover a great portion of the part of the
sphere she can cover within the given physical limits (Figure 30). The average
acquisition time was less than 30 seconds.

The standard deviation within one calibration is about 6 mm on average. The
metric for the standard deviation is the distance between the calculated
position of the hotspot for one 6DOF sample we took, i.e. the optimized offset is
transformed from stylus space to world space by the sampled translation and
rotation, and the average of all calculated positions of the hotspot, i.e. the
“mean” hotspot. Figure 31 shows the error distribution from two different
views. The sphere in the center of the two pictures depicts the “mean” hotspot
of the stylus. The point cloud around the “mean” hotspot visualizes the “real”
hotspots for each taken sample. The central sphere has a diameter of 1 mm,
which is also the scale of the ruler.

Figure 31 Distribution of hotspot positions calculated from optimized offset
and sampled positions/orientations depicted from two different viewing angles.

The standard deviation of the offsets vectors we retrieved from the five test runs
was 1.354 mm and the standard deviation of the length of these offset vectors of
1.202 mm was in the same league. This means that we get a very good result for
repeatability of the stylus calibration. A test for the accuracy of the resulting
offset vector was performed, by activating the calculated offset vector, i.e. the
position that is associated with the stylus and delivered to the Studierstube
system by the OpenTracker framework now indicates the actual position of the
stylus’ tip. We now performed the same task as for the calibration itself, i.e.
moving the stylus around the steady stylus’ tip. The sampled data is shown in
Figure 32. Ideally all samples should converge in one point, since the stylus’ tip
is supposed to be steady. What we see is a small point cloud, which gets rather
dense around the calculated mean of all sampled points. The standard

88

deviation of 1.288 mm confirms this observation and shows the good accuracy
of the retrieved styluses offset.

Figure 32 Distribution of sampled hotspot positions after applied registration.

89

6.2. Test setup and evaluation of HMD
calibration

For the test setup of the HMD calibration procedure we used the
aforementioned ART optical tracking system with four cameras. One rigid body
was mounted on the HMD and a second was fixed to the stylus.

The user was guided by the distance constraint described in section 4.2.2,
which indicated the right distance between the stylus hotspot and the head
tracker (about 80 cm for ‘far’ markers and 35 cm for ’near’ markers). The error
threshold for the procedure was set to 0.75% of the display resolution for the
maximum RMS error in image space. For the HMD we used, which has a
resolution of 800 by 600 pixels and a horizontal FOV of about 32 degrees, this
means that we tolerate a RMS horizontal angular error of 0.24 degrees. This
translates to a positional error of 2.9 mm at about arms length away from the
user, which also marks the border of the ideal working volume for this
calibration method. Since only samples from within the volume, limited by the
user’s arm length, are taken into account when calculating the viewing
parameters, the registration is best within this volume.

Figure 33 For better stability, the HMD is mounted in a helmet; the rigid
body tracked by the optical tracker is mounted on the helmet (left). The user

aligns the hotspot of the stylus with the virtual marker displayed via the HMD
(right).

90

Since the acquisition of the samples and the calculation of the viewing
parameters for each eye are independent, the user had to repeat only the
procedure for the eye, for which no registration within the given threshold was
possible. The time it took on average to calibrate one eye (eight markers have to
be aligned with the stylus hotspot) was about one minute, translating to a time
of about two minutes for the whole calibration procedure, including the
calibration steps that had to be repeated. The computational time for the
calculation and optimization of the viewing parameters of fewer than one
second seems not relevant, when looking at the whole procedure.

For the evaluation of the quality of the registration we calculated the RMS error
in image space, which also served as threshold parameter, as mentioned above.
So we calculated the distances between the known positions of the virtual
markers in image space (reference points) and the sampled 3D positions
associated with these markers projected to image space using the calculated
viewing parameters (the resulting registration). An example is given in Figure
34. Figure 35 shows the relative distances (errors) between sampled points and
reference points in image space. As stated in chapter 4.2.2 we perform two
optimization steps. The first takes all sampled positions into account, whereas
the second discards the two samples which show the largest error. Since right
and left eye calibrations are independent, we took the data from all 10
calibrations (left and right combined) to compile the following table.

 Worst

maximum

single

error

Best

maximum

single

error

Average

maximum

single

error

Worst

RMS

error

Best

RMS

error

Average

RMS

error

After 1st

optimization
2.645 0.640 1.579 1.468 0.512 0.992

After 2nd

optimization
1.136 0.290 0.686 0.746 0.208 0.483

Table 2 Comparison of single and RMS error for 1st and 2nd optimization step.
The errors are given in percentage of image space resolution.

What we see in Table 2 is that after the second optimization step the errors are
reduced by about 50%. The results achieved by each single run of the
calibration procedure show quite large divergences. This is of course due to the

91

fact that we rely heavily on the user input data. But by imposing the
aforementioned threshold, we nevertheless achieve an average RMS error of
0.48%, which translates to an average angular error of 0.155 degrees or a
positional error of 1.9 mm at about arms length away from the user.

We also compared the position of the virtual and the physical tip of the stylus
while wearing the registered HMD, which is also described in section 4.2.2 as
“visual control of the achieved registration”. Thereby we found that this
practical experiment confirms the above-discussed numerical results, which
basically only measure the ability of the algorithm to find a good solution for
the provided set of data samples, though it is hardly possible to exactly quantify
the real registration error.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

reference points sample positions after first optimization
two worst samples after first optimization sample positions after second optimization

Figure 34 Typical distribution of the sampled 3D points after they have been
projected onto the image plane using the viewing parameters calculated during

the 1st and 2nd optimization step. (Note: The lines are used for better
visualization of the positions of the projected sample points.)

The first real test for the accuracy this calibration procedure can achieve will be
the Augmented Reality Aided Surgery (ARAS) project. This project’s goal is to

92

display 3D pre-operative data for the surgeon via HMD in the operating
theater. Therefore a quick and accurate calibration procedure is mandatory.

-6.0%
-5.5%
-5.0%
-4.5%
-4.0%
-3.5%
-3.0%
-2.5%
-2.0%
-1.5%
-1.0%
-0.5%
0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%
4.5%
5.0%
5.5%
6.0%

-2.5% -2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

geometric estimates after 1st optimization after 2nd optimization

Figure 35 Relative error of sampled points in image space.

To have a measure for the repeatability of the procedure we compared the eye
distances calculated during separate runs of the calibration procedure. The
results are given in the table below.

Eye distance 66.58 mm 68.31 mm 66.39 mm 71.57 mm 69.20 mm

Table 3 Comparison of eye distance of one user, calculated in multiple runs of
the calibration process for both eyes

This translates to a standard deviation of the calculated eye distances for one
user of 2.122 mm.

The precision of our method still depends heavily on the input data, but when
executed carefully it delivers good accuracy with small time exposure and
without the need for additional hardware for an existing Studierstube setup.

93

6.3. Test setup and evaluation of
Projection calibration

As test setup we used a virtual table (BARCO BARON), a back-projection desk
specifically designed for VR applications. It has a resolution of 1024 by 768
pixels and features active stereo. Therefore the user has to wear shutter glasses
to perceive the rendered scene in stereo. As tracking device we once again used
the ART optical tracker.One rigid body was mounted on the shutter glasses to
realize head tracking and a second was fixed to the stylus, which again served as
sampling device.

Figure 36 Virtual Table (left); User wearing tracked shutter glasses for head
tracking and controlling an application with the PIP (right)

The calibration of the projection plane was performed five times, to get a
measure for the repeatability of the procedure. The acquisition time to retrieve
the sample points was in the range of 15 seconds. The results are presented in
the table below.

For the calibration of the eye offsets, we set the angular constraint to be 25
degrees, the distance constraint to be 25 cm and the constraint for the
intersection of the rays to be 1 cm . This particular set of parameters was chosen
to impose a tight limit on the input data and therefore elevate the chances of a
good registration result. The eyepoint calibration was also repeated five times.
The time it took on average to calibrate one eye (four markers have to be
aligned with the stylus hotspot) was about one minute, translating to a time of

94

about two minutes for the whole calibration procedure. Note that since we
impose only constraints and no thresholds on this task, it is not necessary to
repeat a calibration step, but it took the users longer to align the hotspot of the
stylus and the displayed marker, since the input constraints where harder to
fulfill than in the case of the HMD calibration.

Plane position

(center)

Plane

orientation
Width Height

Standard

deviation
1.588 mm 0.0276 degrees 3.105 mm 3.35 mm

Table 4 Results of the plane registration portion of the projection device
calibration, giving a measure for the repeatability of the plane parameter

registration.

We took the standard deviation of the resulting eye distances as measure for the
repeatability of the procedure. The results are given in the table below.

Eye

distance 66.48 mm 69.11 mm 67.42 mm 70.34 mm 66.97 mm

Table 5 Comparison of eye distance of one user, calculated in multiple runs of
the calibration process for both eyes

This translates to a standard deviation of 1.612 mm for the calculated eye
distance of one user.

The precision of our method again depends on the input data, but by imposing
strict constraints to the input data we achieve quit good accuracy and
repeatability.

95

6.4. Conclusion

As we showed in this chapter, good results for the repeatability and accuracy of
the stylus calibration were achieved. For the HMD calibration we also got good
results for solving of the optimization problem and satisfying results for the
repeatability of the whole procedure. Since the accuracy of the achieved
registration for the optical see-through HMD was only verified subjectively, it
would be interesting to develop a method for measuring the ‘objective’
registration error. The calibration of the projection table was very accurate and
repeatable regarding the calibration of the projection plane. The calibration of
the eye offsets again showed a good repeatability. Its accuracy was also
satisfying but was again verified only subjectively. The accuracy of all
calibration procedures is dependent on the quality of the input data gathered by
the user. By imposing constraints on the input data and evaluating quality
criteria for the achieved registrations this major factor of error was minimized
effectively.

The users testing our calibration procedures were able to execute any
calibration task in short time (at most a few minutes), after they were given a
short explanation of the task they had to perform. The response of the users
was quite positive in respect to the ease of use and accuracy of the results of the
calibration procedures. The real field test will take place, when all users of
Studierstube utilize the whole calibration suite.

96

Chapter 7

Future Work

With the work presented in this thesis, static registration, the basis for correct
overall registration, has been implemented for the Studierstube Augmented
Reality environment. Possible further improvements of the existing
implementation and the Studierstube system in particular regarding
registration are discussed in this chapter.

7.1. Additional constraints and thresholds

A major contributing factor for the precision of the procedures is obviously the
precision of the user’s input samples, as stated in the previous chapters.
Therefore input constraints with visual feedback (see chapter 5.2.2) were
implemented to both guide the user through the process and enforce the
acquisition of valid samples. To further improve the guidance of the user and to
ensure the best achievable accuracy during the sampling stage of the calibration
procedures additional, mostly geometric constraints could be imposed on the
input data. When doing so it has to be observed not to ask too much of the user,
i.e. it should always be clear for the user, what constraint she has to comply
with.

Since precise or even valid input data cannot be guaranteed, despite the before
mentioned input constraints, different accuracy thresholds are currently
implemented. If such an accuracy threshold is exceeded the user is asked to
repeat the last step of the calibration process. Firstly the existing thresholds
could be further tuned to balance the numerical accuracy of the registration and
the possibility a user has to repeat a calibration step better. Secondly additional
thresholds could be implemented, to add further control to the accuracy that
should be achieved by the particular registration procedure.

Another possibility for improving the quality of the input data would be to fix
the stylus in a certain place, so that the user only has to move her head to align

97

virtual and real markers. This would eliminate any jitter introduced by
unintentional hand movement.

7.2. Faster HMD calibration

At the moment a user has to sample eight points per eye to achieve good results
with the HMD calibration procedure described in this thesis (see section 4.2.2).
To further reduce the time and effort needed to perform an HMD calibration,
we could use the information gathered during previous HMD calibrations a
user has performed, e.g. the eye distance of the user, to reduce the number of
viewing parameters we have to calculate. Hence it should be possible to develop
a method, which needs less user interaction – less input samples – and
therefore should be quicker to perform.

7.3. Dynamic registration

Static errors, which we dealt with in this thesis, are the ones that cause
registration errors even when the user's viewpoint and the objects in the
environment remain completely still, whereas dynamic errors have no effect
until either the viewpoint or the objects begin moving. Dynamic errors occur
because of system delays, or lags. The end-to-end system delay is defined as the
time difference between the moment that the tracking system measures the
position and orientation of the viewpoint to the moment when the generated
images corresponding to that position and orientation appear in the displays.
To the user, the virtual objects appear to "swim around" and "lag behind" the
real objects. For current HMD-based systems, dynamic errors are the largest
contributors to registration errors.

Hence the next step to making the Studierstube Augmented Reality
environment a believable experience is to implement dynamic registration.

Methods used to reduce dynamic registration errors fall under these main
categories [Azuma97a]:

• Reduce system lag
• Reduce apparent lag
• Predict future locations

The last method, which is the most promising one, is to predict the future
viewpoint and object locations. If the future locations are known, the scene can
be rendered with these future locations, rather than the measured locations.

98

Then when the scene finally appears, the viewpoints and objects have moved to
the predicted locations, and the graphic images are correct at the time they are
viewed. For short system delays (under ~80 ms), prediction has been shown to
reduce dynamic errors by up to an order of magnitude [Azuma94]. It will be our
future work, to test and implement methods for prediction.

99

Bibliography and References

Adler01 Adler, S. et al., Extensible stylesheet language (XSL) 1.0.

http://www.w3.org/TR/xsl/.

Apache99 Apache. Xerces XML parser.
http://xml.apache.org/xerces-c/index.html.

Art01 Advanced Realtime Tracking GmbH, A.R.T. Infrared

Tracking System. Information brochure, April 2001.

Azuma93 Azuma, Ronald. Tracking Requirements for Augmented

Reality. Communications of the ACM 36, 7 (July 1993), 50-
51.

Azuma94 Azuma, Ronald, and Gary Bishop. Improving Static and

Dynamic Registration in a See-Through HMD. Proceedings
of SIGGRAPH ‘94 (Orlando, FL, 24-29 July 1994). In
Computer Graphics, Annual Conference Series, 1994, 197-
204.

Azuma97a Azuma, Ronald T.. A Survey of Augmented Reality.
Presence: Teleoperators and Virtual Environments 6, 4
(August 1997), 355-385.

Azuma97b Azuma, Ronald T. Course notes on "Registration" and

"Correcting for Dynamic Error" from Course Notes #30:
Making Direct Manipulation Work in Virtual Reality. ACM
SIGGRAPH '97 (Los Angeles, CA, 3-8 August 1997).

Bajura95 Bajura, M., and Neumann, U. Dynamic Registration
Correction in Augmented-Reality Systems. VRAIS'95,
1995.

100

http://www.w3.org/TR/xsl/
http://xml.apache.org/xerces-c/index.html

Bajura97 Bajura, Michael A.: Merging Real and Virtual
Environments with Video See-Through Head-Mounted
Displays. Dissertation, UNC, 1997.

Billinghurst99 Billinghurst, Mark, Kato, Hirokazu: Collaborative Mixed

Reality. Proceedings of the First International Symposium
on Mixed Reality, Yokohama, Japan, March 1999, pp. 261–
284.

BouJou02 http://www.2d3.com/2d3/products/features.shtml

Bray00 Bray, T., Paoli, J., Sperberg-McQueenC. et al. Extensible

Markup Language (XML) 1.0.
http://www.w3.org/TR/REC-xml/, 2000.

Brent73 Brent, R.P. 1973, Algorithms for Minimization without

Derivatives (Englewood Cliffs, NJ: Prentice-Hall)

Czernuszenko98 Czernuszenko, Marek, Daniel Sandin, Thomas DeFanti:
Line of Sight Method for Tracker Calibration in Projection-
Based VR. Proceedings of the 2nd International Immersive
Projection Technology Workshop, Iowa State University,
May, 1998.

Deering92 Deering, Michael. High Resolution Virtual Reality.
Proceedings of SIGGRAPH '92 (Chicago, IL, 26-31 July
1992). In Computer Graphics 26, 2 (July 1992), 195-202.

Doenges85 Doenges, Peter K. Overview of Computer Image
Generation in Visual Simulation. SIGGRAPH '85 Course
Notes #14 on High Performance Image Generation
Systems (San Francisco, CA, 22 July 1985).

Fuhrmann00 Fuhrmann, A., Schmalstieg, D.and Purgathofer, W.
Practical Calibration Procedures for Augmented Reality.
Proceedings of the 6th Eurographics Workshop on Virtual
Environments, Amsterdam, Netherlands, June 2000.

Gibson02 Gibson, S., Cook, J., Howard, T.L.J., Hubbold, R.J., and

Oram, D., Accurate Camera Calibration for Off-line, Video-
Based Augmented Reality. IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR
2002), Darmstadt, Germany, September 2002.

101

http://www.2d3.com/2d3/products/features.shtml
http://www.w3.org/TR/REC-xml/

Hoff00 Hoff, William A., Vincent, Tyrone: Analysis of Head Pose

Accuracy in Augmented Reality. IEEE Transactions on
Computer Graphics and Visualization, vol. 6, no. 4, 2000.

Holloway95 Holloway, Richard. Registration Errors in Augmented
Reality. Ph.D. dissertation. UNC Chapel Hill Department
of Computer Science technical report TR95-016 (August
1995).

Jain89 Jain, Anil K. Fundamentals of Digital Image Processing.
Prentice Hall (1989). ISBN 0-13-336165-9.

Janin93 Janin, Adam L., David W. Mizell, and Thomas P. Caudell.
Calibration of Head-Mounted Displays for Augmented
Reality Applications. Proceedings of IEEE VRAIS '93
(Seattle, WA, 18-22 September 1993), 246-255.

Kato99 Kato, H. and Billinghurst, M.,. Marker tracking and hmd
calibration for a video-based augmented reality
conferenencing system. In Proceedings of the 2nd IEEE
and ACM Internationa Workshop on Augmented Reality
(IWAR’99), San Francisco. IEEE, October 1999.

Kindratenko99 Kindratenko, Volodymyr: Calibration of electromagnetic
tracking devices. Virtual Reality: Research, Development,
and Applications (The VRS Journal), vol. 4, 1999, pp. 139–
150.

Livingston97 Livingston, Mark, State, Andrei: Magnetic Tracker
Calibration for Improved Augmented Reality Registration.
Presence, vol. 6, 1997, pp. 532–546.

McGarrity99 McGarrity, Erin, Tuceryan, Mihran: A Method for
Calibrating See-through Head-mounted Displays for AR.
Proceedings of the 2nd IEEE International Workshop on
Augmented Reality (IWAR 99), San Francisco, CA, October
1999.

Milgram94a Milgram, Paul, and Fumio Kishino. A Taxonomy of Mixed
Reality Virtual Displays. IEICE Transactions on
Information and Systems E77-D, 9 (September 1994),
1321-1329.

102

Milgram94b Milgram, Paul, Haruo Takemura, Akira Utsumi, and Fumio

Kishino. Augmented Reality: A Class of Displays on the
Reality-Virtuality Continuum. SPIE Proceedings volume
2351: Telemanipulator and Telepresence Technologies
(Boston, MA, 31 October - 4 November 1994), 282-292.

Oishi96 Oishi, Takashi and Susumu Tachi. Methods to Calibrate
Projection Transformation Parameters for See-Through
Head-Mounted Displays. Presence: Teleoperators and
Virtual Environments 5, 1 (Winter 1996), 122-135.

Pausch92 Pausch, Randy, Thomas Crea, and Matthew Conway. A
Literature Survey for Virtual Environments: Military Flight
Simulator Visual Systems and Simulator Sickness.
Presence: Teleoperators and Virtual Environments 1, 3
(Summer 1992), 344-363.

Press88 Press, W., Flannery, B., Teukolsky, S., and Vetterling, W..

Numerical Recipes in C. Cambridge University Press, 1988.

Reitmayr00 Reitmayr, Gerhard, Dieter Schmalstieg: OpenTracker — An
Open Software Architecture for Reconfigurable Tracking
based on XML. Poster, IEEE Virtual Reality 2001,
Yokohama, Japan, March 2001. Extended version available
as technical report TR-186-2-00-18, Institute of Computer
Graphics and Algorithms, Vienna University of
Technology, Austria, June 2000.

Rekimoto98 Rekimoto, Jun: Matrix: A Realtime Object Identification

and Registration Method for Augmented Reality.
Proceedings of Asia Pacific Computer Human Interaction
1998, Japan, 1998.

Schmalstieg00 Schmalstieg, Dieter, A. Fuhrmann, G. Hesina, Zs.

Szalavari, L. M. Encarnação, M. Gervautz, W. Purgathofer:
The Studierstube Augmented Reality Project. TR-186-2-
00-22, Vienna University of Technology, December 2000.

Strauss92 Strauss, P., Carey, R.. An object oriented 3D graphics

toolkit, Proc. SIGGRAPH ‘92, pp. 341-347, 1992.

103

104

Summers99 Summers, Valerie A., Booth, Kellogg S., Calvert, Tom ,
Graham, Evan, MacKenzie, Christine L.: Calibration For
Augmented Reality Experimental Testbeds. Proceedings of
the 1999 symposium on Interactive 3D graphics, Atlanta,
GA, April 1999, pp. 155–162.

Szalavári97 Szalavári, Zs., M. Gervautz, M. The Personal

InteractionPanel - A Two-handed Interface for Augmented
Reality.Proc. EUROGRAPHICS 97, Budapest, Hungary,
335-346,1997.

Szalavári99 Szalavári, Zs., The Personal InteractionPanel - A Two-

handed Interface for Augmented Reality. Ph.D.
dissertation. Vienna University of Technology, Vienna,
Austria, Institute of Computer Graphics and Algorithms
(September 1999).

Tuceryan95 Tuceryan, M., Greer, D., Whitaker, R., Breen, D.,

Crampton, C.,Rose, E. and Ahlers, K.. Calibration
requirements and procedures for a monitor-based
augmented reality system. IEEE Transactions on
Visualization and Computer Graphics, 1(3):255–273,
September 1995.

Tuceryan00 Tuceryan, Mihran, Navab, Nassir: Single point active

alignment method (SPAAM) for optical see-through HMD
calibration for AR. Proceedings of the IEEE and ACM
International Symposium on Augmented Reality, Munich,
Germany, October, 2000, pp. 149–158.

Welch78 Welch, Robert B. Perceptual Modification: Adapting to

Altered Sensory Environments. Academic Press (1978).
ISBN 0-12-741850-4.

Wernecke94 Wernecke, J,. The Inventor Mentor: Programming Object
Oriented 3d Graphics With Open Inventor, Release 2.
Addison-Wesley, 1994.

Whitaker95 Whitaker, Ross T., Crampton, Chris, Breen, David E.,

Tuceryan, Mihran, Rose, Eric: Object Calibration for
Augmented Reality. Proceedings of Eurographics’95,
Maastricht, Netherlands, 1995, pp. 15–28.

	Introduction
	
	
	What is Augmented Reality?
	Why do we need Calibration/Registration? What’s t
	Static vs. Dynamic Registration
	Goal: Easy, user-guiding “calibration wizard”

	Problem Statement
	The Registration Problem
	Sources of error and�focus of the calibration process
	Static registration (static error)�in Augmented Reality
	
	
	Distortion in the optics:
	Errors in the tracking system:
	Mechanical misalignments:
	Incorrect viewing parameters:

	Prerequisites
	
	Development environment: The Studierstube System
	Our method implies two prerequisites:

	Calibration Tasks�(to achieve good static registration)
	Human-Computer Interaction (HCI) aspects

	Related Work
	Overview
	Display Device Registration
	The “Boresight Method”
	
	Overview and setup
	The calibration procedure
	Results

	The “Shooting Gallery”
	
	Results

	The Dynamic Calibration Process
	
	Overview and setup
	The Calibration Procedure
	Results

	Single Point Active Alignment Method (SPAAM)
	
	Overview and setup
	The Calibration Procedure
	Results

	Projection Device Calibration
	
	Overview and setup
	The Calibration Procedure
	Results

	Object Calibration
	Calibration with Reference Frame
	
	Calibration Procedure
	Results

	Calibration with Pointing Device
	
	Overview and setup
	The Calibration Procedure
	Results

	Summary and Conclusion

	Calibration procedures
	Stylus Calibration
	Display Device Calibration
	The Studierstube offaxis camera model
	Calibrating See-Through Head-Mounted Displays
	Overview of the calibration process
	Acquisition of calibration data
	Geometric determination of camera parameters
	Numerical optimization

	Acquisition of Calibration Data
	Geometric Determination of Camera Parameters
	Numerical Optimization of Parameters
	HCI aspects: “Guiding and constraining user input�

	Calibrating projection systems
	Overview of the calibration process
	Calibration of projection plane
	Calibration of eyepoint-position

	Registration of Tracker to�World Coordinate System
	
	The calibration process
	Integration into Studierstube using OpenTracker
	HCI aspects: “Modes of interaction”

	Calibration of Props
	
	The calibration process
	HCI aspects

	Implementation
	The Studierstube System -�Implementation of the user interface
	Software architecture
	PIP sheets

	Hardware support
	Displays

	Application programmer’s interface

	Human-Computer Interaction�(HCI) aspects
	Paths through the Calibration Process
	User guidance

	OpenTracker - An XML based Open Architecture for Reconfigurable Tracking
	
	Source objects
	Filter objects
	Sink objects
	Software engineering with XML

	Minimizing Functions -�Direction Set \(Powell’s�
	
	Minimization along a line in N-dimensional space
	Multidimensional minimization
	Conjugate Directions
	Powell’s Quadratically Convergent Method

	Results and Conclusion
	6.0. Tracking System
	
	Prerequisite: Precise tracking system, with linear behavior �over the whole working volume.

	Test setup and evaluation of �stylus calibration
	Test setup and evaluation of HMD calibration
	Test setup and evaluation of �Projection calibration
	Conclusion

	Future Work
	Additional constraints and thresholds
	Faster HMD calibration
	Dynamic registration

	Bibliography and References

