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Abstract 
 
 
English: 
 
Augmented reality (AR) systems combine three-dimensional computer-
generated images with the view of the real environment in order to make unseen 
objects visible or to present additional information. Since the user of an AR 
system sees both the real and the virtual environment, such a system needs 
more adjustments to work properly than immersive virtual environments, 
where the user is only presented with the virtual environment. Hence the virtual 
environment has to be properly aligned to the real, physical world, to be 
perceived as an augmentation of the real environment. The process to achieve 
this alignment is called calibration. 
 
This work presents a comprehensive set of calibration procedures that consists 
of all tasks necessary for the calibration of devices commonly used in an AR 
system, so that correct augmentation of the real environment, i.e. correct 
alignment of virtual and real world can be achieved. This includes procedures 
for calibrating projective and head-mounted displays, tracking systems, tracked 
input devices and props. Since the calibration process has to be done at least 
once for every hardware set-up, but may have to be repeated in part or 
completely for each user, prop or device to be included both in the real and the 
virtual world, we strived for a method that not only delivers good registration 
results but also can be applied fast and easily. 
 
The proposed method unifies the necessary tasks of world-to-augmentation 
alignment  display calibration and registration of tracked and static props  
in one, interactive set-up process, which can be conducted in short time and by 
an untrained user. 
 
 
Deutsch: 
 
Augmented reality (AR) Systeme verschmelzen dreidimensionale, computer-
generierte Bilder mit dem Blick des Benutzers auf die reale Umgebung, um 
nicht sichtbare Objekte zu visualisieren oder um zusätzliche Informationen 
darstellen zu können. Da der Benutzer eines AR-Systems sowohl die reale als 
auch die virtuelle Umgebung gleichzeitig wahrnimmt, benötigt solch ein System, 
um überzeugend zu wirken, eine genauere Abstimmung als klassische virtuelle 
Systeme, bei denen der Benutzer ausschließlich mit der virtuellen Umgebung 
konfrontiert wird. Daher muss die virtuelle Umgebung genau auf die reale, 
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physische Welt ausgerichtet werden, um als ‚Erweiterung’ der realen Umgebung 
wahrgenommen zu werden. Der Prozess, diese Übereinstimmung herzustellen, 
wird Kalibrierung genannt. 
 
Diese Diplomarbeit beschreibt eine umfassende Sammlung von 
Kalibrierungsprozeduren, welche alle Aufgaben abdeckt, die nötig sind,  um die 
Geräte, die gebräuchlicherweise in AR-Systemen Verwendung finden, zu 
kalibrieren, sodass der Eindruck der ‚Erweiterung’ der realen Umgebung, d.h. 
die Übereinstimmung von virtueller und realer Welt, erzielt werden kann. Dies 
beinhaltet Prozeduren zur Kalibrierung von Projektionsschirmen, head-
mounted displays, Tracking-Systemen, getrackten Eingabegeräten und 
Objekten. Da der Kalibrierungsprozess zumindest einmal für jedes Hardware-
Setup durchgeführt werden muss, aber für jeden Benutzer, jedes Objekt, jedes 
Gerät, das sowohl der realen als auch der virtuellen Umgebung hinzugefügt 
werden soll,  zum Teil oder zur Gänze wiederholt werden muss, waren wir 
bestrebt, eine Methode zu entwickeln, die nicht nur gute 
Registrierungsergebnisse erzielt, sondern auch schnell und einfach angewendet 
werden kann. 
 
Die vorgeschlagene Methode vereinigt die durchzuführenden Aufgaben zur 
Abstimmung von realer und virtueller Welt    Kalibrierung von Displays und 
Registrierung von getrackten oder statischen Objekten  in einem einzigen, 
interakiven Setup-Prozess, der in kurzer Zeit und auch von nicht mit dem 
System vertrauten Benutzern durchgeführt werden kann. 
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Chapter  1  

Introduction 

What is Augmented Reality? 
  
Augmented Reality (AR) is a variation of Virtual Environments (VE), or Virtual 
Reality as it is more commonly called. VE technologies completely immerse a 
user inside a synthetic environment. While immersed, the user cannot see the 
real world around him. In contrast, AR allows the user to see the real world, 
with virtual objects superimposed upon or composited with the real world. 
Therefore, AR supplements reality, rather than completely replacing it. Ideally, 
it would appear to the user that the virtual and real objects coexisted in the 
same space, similar to the effects achieved in the film "The Phantom Menace". 
 
AR can be thought of as the "middle ground" between VE (completely 
synthetic) and telepresence (completely real) [Milgram94a][Milgram94b]. 
 
Some researchers define AR in a way that requires the use of Head-Mounted 
Displays (HMDs). To avoid limiting AR to specific technologies, [Azuma97a] 
defines AR as systems that have the following three characteristics: 
 

1) Combines real and virtual 
2) Interactive in real time 
3) Registered in 3-D 

 
This definition allows other technologies besides HMDs while retaining the 
essential components of AR. For example, it does not include film or 2-D 
overlays. Films like "Jurassic Park" feature photo realistic virtual objects 
seamlessly blended with a real environment in 3-D, but they are not interactive 
media. 2-D virtual overlays on top of live video can be done at interactive rates, 
but the overlays are not combined with the real world in 3-D. However, this 
definition does allow monitor-based interfaces, projection display devices, 
monocular systems, see-through HMDs, and various other combining 
technologies. 
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AR has the potential to enhance a user's perception of and interaction with the 
real world. The virtual objects may display information that the user cannot 
directly detect with her senses. Two examples where this technology could help 
are medical applications and the assembly and repair of complicated 
mechanical devices. 
 

Why do we need Calibration/Registration? What’s the 
difference?  
 
First lets look a little closer at the terms calibration and registration: 
The term registration is frequently used as synonym for calibration and vice 
versa. Where registration rather describes a state — the precise alignment and 
synchronization of two or more sensory elements [Azuma97b] — and 
calibration mostly refers to a process or action. So we could say a registration is 
the result of a calibration. In the following text this definition is used, but both 
terms mainly stay synonymous for each other. 
 
In order for augmented reality to be effective and accepted by the user the real 
and computer-generated objects must be accurately positioned relative to each 
other and properties of certain devices must be accurately specified. When a 
user perceives two different loci of interaction, one given by the real image of 
his hand and one by the 
 

 
 

Figure 1 Personal Interaction Panel (inset miscalibrated) 
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virtual image on a different position, the perceived clues conflict and hand-to-
eye coordination is severely impaired. Figure 1 shows the Personal Interaction 
Panel [Szalavári97], a simple tracked board, which is augmented with 
interaction elements to act as a kind of instrument panel for controlling the 
parameters of a scientific visualization. The big image shows correct overlaid 
computer graphics, the inset a misalignment between the virtual sliders and the 
physical board. Clearly controlling a virtual slider while seeing the real and 
virtual pen in different places is irritating and leads to problems when 
interacting with the virtual input elements. 
 
Many Augmented Reality applications will not be accepted unless virtual 
objects are accurately registered with their real counterparts, but good 
registration is difficult, because of the high resolution of the human visual 
system and its sensitivity to small misalignments at edges. 
 

Static vs. Dynamic Registration 
 
Registration errors fall into two categories: static errors, which occur even 
when the user remains still, and dynamic errors caused by system delays when 
the user moves. Dynamic errors are usually the largest errors. Nevertheless 
correct static registration is highly important. It is the fundamental step in 
achieving correct overall registration of an AR system and serves as basis for 
dynamic registration, which only makes sense when good static registration is 
provided. 
 

Goal: Easy, user-guiding “calibration wizard” 
 
The aim of the described method is to provide a fast, comprehensive calibration 
procedure. The method should present itself to the user as an interactive 
sequence of simple, independent tasks, which can easily be performed even 
without knowledge of the actual parameters they modify. Setting up an 
augmented reality installation becomes therefore a reliable and reproducible 
routine. Furthermore no additional hardware, but that already required for a 
typical AR-System setup, should be needed for any of the calibration tasks. 
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Chapter  2  

Problem Statement 

2.1. The Registration Problem 
 
One of the most basic problems currently limiting Augmented Reality 
applications is the registration problem. The objects in the real and virtual 
worlds must be properly aligned with respect to each other, or the illusion that 
the two worlds coexist will be compromised. More seriously, many applications 
demand accurate registration (e.g. medical applications). Without accurate 
registration, Augmented Reality will not be accepted in many applications. 
 
Registration problems also exist in Virtual Environments, but they are not 
nearly as serious because they are harder to detect than in Augmented Reality. 
Since the user only sees virtual objects in VE applications, registration errors 
result in visual-kinesthetic and visual-proprioceptive conflicts. Such conflicts 
between different human senses may be a source of motion sickness 
[Pausch92]. Because the kinesthetic and proprioceptive systems are much less 
sensitive than the visual system, visual-kinesthetic and visual-proprioceptive 
conflicts are less noticeable than visual-visual conflicts. For example, a user 
wearing a closed-view HMD might hold up her real hand and see a virtual 
hand. This virtual hand should be displayed exactly where she would see her 
real hand, if she were not wearing an HMD. But if the virtual hand is wrong by 
five millimeters, she may not detect that unless actively looking for such errors. 
The same error is much more obvious in a see-through HMD, where the conflict 
is visual-visual [Azuma97a].  
 
Furthermore, a phenomenon known as visual capture [Welch78] makes it even 
more difficult to detect such registration errors. Visual capture is the tendency 
of the brain to believe what it sees rather than what it feels, hears, etc. That is, 
visual information tends to override all other senses. When watching a 
television program, a viewer believes the sounds come from the mouths of the 
actors on the screen, even though they actually come from a speaker in the TV. 
Ventriloquism works because of visual capture. Similarly, a user might believe 
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that her hand is where the virtual hand is drawn, rather than where her real 
hand actually is, because of visual capture. This effect increases the amount of 
registration error users can tolerate in Virtual Environment systems. If the 
errors are systematic, users might even be able to adapt to the new 
environment, given a long exposure time of several hours or days [Welch78]. 
 
Augmented Reality demands much more accurate registration than Virtual 
Environments [Azuma93]. Imagine the same scenario of a user holding up her 
hand, but this time wearing a see-through HMD. Registration errors now result 
in visual-visual conflicts between the images of the virtual and real hands. Such 
conflicts are easy to detect because of the resolution of the human eye and the 
sensitivity of the human visual system to differences. Even tiny offsets in the 
images of the real and virtual hands are easy to detect. 
 
What angular accuracy is needed for good registration in Augmented Reality?  
 
[Azuma97a] gives the following example: 
 
“Take out a dime [or a 10 euro cent coin] and hold it at arm's length, so that it 
looks like a circle. The diameter of the dime covers about 1.2 to 2.0 degrees of 
arc, depending on your arm length. In comparison, the width of a full moon is 
about 0.5 degrees of arc! Now imagine a virtual object superimposed on a real 
object, but offset by the diameter of the full moon. Such a difference would be 
easy to detect.” 
 
 Thus, the angular accuracy required is a small fraction of a degree. The lower 
limit is bounded by the resolving power of the human eye itself. The central 
part of the retina is called the fovea, which has the highest density of color-
detecting cones, about 120 per degree of arc, corresponding to a spacing of half 
a minute of arc [Jain89]. Observers can differentiate between a dark and light 
bar grating when each bar subtends about one minute of arc, and under special 
circumstances they can detect even smaller differences [Doenges85]. However, 
existing HMD trackers and displays are not capable of providing one minute of 
arc in accuracy, so the present achievable accuracy is much worse than that 
ultimate lower bound. In practice, errors of a few pixels are detectable in 
modern HMDs [Azuma97a]. 
 
Registration of real and virtual objects is not limited to AR. Special-effects 
artists seamlessly integrate computer-generated 3-D objects with live actors in 
film and video. The difference lies in the amount of control available. With film, 
a director can carefully plan each shot, and artists can spend hours per frame, 
adjusting each by hand if necessary, to achieve perfect registration 
[Gibson02][BouJou02]. As an interactive medium, AR is far more difficult to 
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work with. The AR system cannot control the motions of the HMD wearer. The 
user looks where she wants, and the system must respond within tens of 
milliseconds. 
 

2.2. Sources of error and 
focus of the calibration process 

 
Registration errors are difficult to adequately control because of the high 
accuracy requirements and the numerous sources of error. These sources of 
error can be divided into two types: static and dynamic. Static errors are the 
ones that cause registration errors even when the user's viewpoint and the 
objects in the environment remain completely still. Dynamic errors are the 
ones that have no effect until either the viewpoint or the objects begin moving. 
 
For current HMD-based systems, dynamic errors are by far the largest 
contributors to registration errors, but static errors cannot be ignored either. 
See [Holloway95] for a thorough analysis of the sources and magnitudes of 
registration errors.  
 
When using projection systems, dynamic errors regarding the viewpoint are not 
as much a contributing factor to registration errors, because the rotation of the 
users head, normally the fastest movement, does not directly translate into a 
corresponding change of the viewing direction as in the case of HMD-based 
systems. 
 
We decided to focus on static registration errors, because correct static 
registration is the basis and starting point for solving the whole registration 
problem, i.e. without static registration dynamic registration is not possible, 
whereas working with a system that is only registered statically is absolutely 
feasible. Furthermore no calibration procedure at all had been implemented for 
our augmented reality system before (see section 2.4), so we had to deal with 
static registration errors first. Dynamic errors, which are caused by system lags, 
will be addressed in future work.  
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2.3. Static registration (static error) 
in Augmented Reality 

 
 
The four main sources of static errors as stated by [Azuma94] are: 
 

• Optical distortion 
• Errors in the tracking system 
• Mechanical misalignments 
• Incorrect viewing parameters (e.g., field of view, tracker-to-eye position 

and orientation, interpupillary distance) 
 

1) Distortion in the optics: 

 
Optical distortions exist in most camera and lens systems, both in the cameras 
that record the real environment and in the optics used for the display. Because 
distortions are usually a function of the radial distance away from the optical 
axis, wide field-of-view displays can be especially vulnerable to this error. Near 
the center of the field-of-view, images are relatively undistorted, but far away 
from the center, image distortion can be large. For example, straight lines may 
appear curved. In a see-through HMD with narrow field-of-view displays, the 
optical combiners add virtually no distortion, so the user's view of the real 
world is not warped. However, the optics used to focus and magnify the 
graphic images from the display monitors can introduce distortion. This 
mapping of distorted virtual images on top of an undistorted view of the real 
world causes static registration errors. The cameras and displays may also have 
nonlinear distortions that cause errors [Deering92]. 
 
Though compensation of optical distortions is often possible, [Holloway95] 
determined that for typical head motion the additional system delay required 
by the distortion compensation ads more registration error than the distortion 
compensation removes. Furthermore we use a see-through HMD, which 
doesn’t exhibit much distortion. Hence our calibration approach doesn’t 
compensate for nonlinear optical distortions. 
 

2) Errors in the tracking system: 

 
Errors in the reported outputs from the tracking and sensing systems are often 
the most serious type of static registration errors. These distortions are not easy 
to measure and eliminate, because that requires another "3-D ruler" that is 
more accurate than the tracker being tested. These errors are often non-
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systematic and difficult to fully characterize. Almost all commercially available 
tracking systems are not accurate enough to satisfy the requirements of AR 
systems. With the advent of accurate optical tracking systems at least nearly 
linear behavior within the working volume of the tracker is achieved. The 
downside of optical trackers at the moment is the fact, that the user is not really 
allowed to freely position herself within the tracked area, because the markers 
attached to the HMD and/or other tracked props, cannot always be detected by 
the optical sensors (normally cameras) due to occlusions between the body of 
the user or markers attached to another prop. This problem gets even worse, 
when using a multi-user-environment like the Studierstube system, where the 
chance of occlusions rise due to more obstructing bodies moving within the 
working area. 
 
Nevertheless we rely on the very good linearity of the optical tracking system, 
which was used to evaluate our calibration procedures. The linearization 
problem of magnetical tracking systems is out of scope of this work and dealt 
with in publications like [Kindratenko99] or [Livingston97]. 
 

3) Mechanical misalignments: 

 
Mechanical misalignments are discrepancies between the model or 
specification of the hardware and the actual physical properties of the real 
system. For example, the combiners, optics, and monitors in an optical see-
through HMD may not be at the expected distances or orientations with respect 
to each other. If the frame is not sufficiently rigid, the various component parts 
may change their relative positions as the user moves around, causing errors. 
Mechanical misalignments can cause subtle changes in the position and 
orientation of the projected virtual images that are difficult to compensate. 
While some alignment errors can be calibrated, for many others it may be more 
effective to "build it right" initially [Azuma97a]. 
 

4) Incorrect viewing parameters: 

 
Incorrect viewing parameters, the last major source of static registration errors, 
can be thought of as a special case of alignment errors where calibration 
techniques can be applied. Viewing parameters specify how to convert the 
reported head or camera locations into viewing matrices used by the scene 
generator to draw the graphic images. For an HMD-based system, these 
parameters include:  
 

• Center of projection and viewport dimensions 
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• Offset, both in translation and orientation, between the location of the 
head tracker and the user's eyes 

• Field of view 
 
Incorrect viewing parameters cause systematic static errors. Take the example 
of a head tracker located above a user's eyes. If the vertical translation offsets 
between the tracker and the eyes are miscalibrated, all the virtual objects will 
appear lower or higher than they should.  
 
The retrieval of correct viewing parameters is the main topic of this thesis. 
 
 

2.4. Prerequisites 
 

Development environment: The Studierstube System  
 
The Studierstube augmented reality system [Schmalstieg00] project tries to 
address the question of how to use three-dimensional interactive media in a 
general work environment, where a variety of tasks are carried out 
simultaneously. In essence, the main focus of the project is the search for a 3D 
user interface metaphor as powerful as the desktop metaphor for 2D. 
 
The Studierstube augmented reality system uses different techniques to overlay 
computer graphics onto a user's view of the real world. Primarily we have been 
using see-through head-mounted displays to accommodate individual 
viewpoints for a multi-user scenario, but Studierstube also supports projection 
display devices such as the Virtual Table or a stereo projection wall. Our 
concept includes at least two tracked interaction devices per user: a pen and 
pad combination called the Personal Interaction Panel (PIP) and supports 
tracking technologies ranging from magnetical to optical and inertial methods. 
 
Since each hardware set-up can consist of almost any combination of the 
display and tracking technologies mentioned above, most of the parameters of 
display and tracking system will depend on the set-up. Altering the hardware or 
setting an environment up in a new location will require a complete calibration 
process. Studierstube is already in use as development environment in different 
research institutes in Europe and the United States, but not two of them are 
employing exactly the same display/tracker/input device combination. In most 
cases the calibration process proved to be the biggest obstacle when setting up a 
new site. Even when using the same hardware in a different location – e.g. as 
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demonstration at a scientific conference or a trade show – altered positions of 
tracker origin and projector lead to unnecessary delays in the set-up. 
 

Our method implies two prerequisites:  
 

• Firstly, a tracking system capable of delivering accurate results over the 
working volume, and therefore minimizing the errors in the tracking 
system, stated above as source of static errors. In the case of a 
magnetical tracking system, for example, one has to assure linear 
behavior by appropriate methods like [Kindratenko99] or 
[Livingston97]. When using an optical tracking system like the DTrack 
optical tracker [Art01] accurate (nearly linear) results over the working 
volume are inherently guaranteed by the tracking system (see section 6.0 
for details). 

 
• Secondly, we need a tracked pointing device with one button and 

precisely defined hotspot (i.e. a point that defines where an action is 
executed when pressing the button). The Studierstube system provides 
the so-called pen (stylus) as pointing device, which perfectly fits our 
requirements. 

 
 

2.5. Calibration Tasks 
(to achieve good static registration) 

 
To achieve good and comprehensive static registration for the Studierstube 
augmented reality system, all devices, which are used within the Augmented 
Environment, have to be calibrated. The whole calibration process consists of 
the following calibration (sub)-tasks: 
 

• Stylus (Pointing Device) Calibration 
• Display Device Calibration: 

a) Optical See-Through Head-Mounted-Displays (HMDs) 
b) Projection Systems 

• Calibration of Tracker to Virtual (World) Coordinate System 
• Calibration of tracked or stationary props (real objects)  
 

Firstly, we have to determine the hotspot of the pointing device. This step, 
called stylus calibration, is performed first, because all following tasks depend 
on inputs, sampled at the pen’s hotspot. 
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The second task performs the calibration of the used display device. Depending 
on the used Studierstube setup either the HMD- or projection system 
calibration is executed. This part of the calibration process determines the 
viewing parameters of the display device of choice. 
 
With the calibration of tracker to virtual (world) coordinate system the user 
may define the origin and orientation of the world coordinate system. Per 
default the world coordinate system of Studierstube is congruent with the 
coordinate system of the tracker (e.g. if using a magnetical tracker, the world 
origin is typically somewhere within the tracker’s emitter), but for convenience 
reasons it is preferable to place the world origin in the middle of the user’s 
working volume and to align some or all axes with the corresponding axes of 
the projection screen. 
 
For every physical prop, that should be augmented by the Studierstube system, 
regardless if tracked or stationary, the prop calibration task has to be 
performed, to achieve correct registration between the physical prop and its 
corresponding virtual representation in the Studierstube system. 
 

 

2.6. Human-Computer Interaction (HCI) 
aspects 

 
As stated above, our goal is to provide a comprehensive ’calibration suite’, 
which represents an interactive sequence of simple, independent tasks, which 
can easily be performed. An important point at this is the human-computer-
interface. To ensure, that an untrained user can also perform each task, we have 
to develop an intuitive, more or less self-descriptive user interface. Additionally 
the user should be interactively guided through each of the tasks. Mechanisms 
that can be utilized here are input constraints combined with visual feedback, 
which should lead the user to obtaining only valid data or at least give her 
conclusive hints how to perform the given task. 
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Chapter  3  

Related Work 

3.1. Overview 
 
 
Some of the here-discussed problems have already been addressed separately: 
 
[Holloway95] analyzed different aspects of registration error and [Hoff00] and 
Vincent presented analysis of head pose accuracy for AR applications.  
 
[Bajura97] proposed calibration for video see-through systems based on 
tracking known features in the working environment. Since only optical see-
through Head-Mounted Displays (STHMDs) are used up until now with 
Studierstube, we take a closer look at interactive calibration methods for 
STHMDs, which have been described by [Azuma94] and Bishop, [Oishi96] and 
Tachi, [McGarrity99] and Tuceryan and [Tuceryan00] and Navab among 
others. 
 
[Summers99] et al. address registration and calibration of an experimental see-
through projection-based system that employs shutter glasses. 
[Czernuszenko98] et al. describe a tracker calibration approach for back-
projection systems, trying to compensate for the non-linear behaviour of 
magnetical trackers.  
 
[Whitaker95] et al. describe a pointer calibration method together with two 
different object calibration methods for augmented reality. Automatic, image-
based object identification and registration methods have been proposed by 
[Billinghurst99] and [Rekimoto98]. Image-based methods have the potential to 
work completely without user intervention, but imply a video-based AR set-up, 
which until now has not been integrated in Studierstube. 
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3.2. Display Device Registration 
 
 
Correct registration of the display device is a prerequisite for an Augmented 
Reality environment setup to be accepted by the user of such a system. A 
preferred display device for Augmented Reality environments is a STHMD. 
Hence many different approaches to achieving good registration for STHMDs 
have been discussed in the past.  
 
In some systems, the viewing parameters are estimated by manual adjustments, 
in a non-systematic fashion. Such approaches proceed as follows: place a real 
object in the environment and attempt to register a virtual object with that real 
object. While wearing the HMD or positioning the cameras, move to one 
viewpoint or a few selected viewpoints and manually adjust the location of the 
virtual object and the other viewing parameters until the registration "looks 
right." This may achieve satisfactory results if the environment and the 
viewpoint remain static. However, such approaches require a skilled user and 
generally do not achieve robust results for many viewpoints. Achieving good 
registration from a single viewpoint is much easier than registration from a 
wide variety of viewpoints using a single set of parameters. Usually what 
happens is satisfactory registration at one viewpoint, but when the user walks 
to a significantly different viewpoint, the registration is inaccurate because of 
incorrect viewing parameters or tracker distortions. This means many different 
sets of parameters must be used, which is a less than satisfactory solution. 
 
Another approach is to directly measure the parameters, using various 
measuring tools and sensors. For example, a commonly used optometrist's tool 
can measure the interpupillary distance. Rulers might measure the offsets 
between the tracker and eye positions. Cameras could be placed where the 
user's eyes would normally be in an optical see-through HMD. By recording 
what the camera sees, through the see-through HMD, of the real environment, 
one might be able to determine several viewing parameters. So far, direct 
measurement techniques have enjoyed limited success [Janin93].  
 
For video-based systems, an extensive body of literature exists in the robotics 
and photogrammetry communities on camera calibration techniques. Such 
techniques compute a camera's viewing parameters by taking several pictures 
of an object of fixed and sometimes unknown geometry. These pictures must be 
taken from different locations. Matching points in the 2-D images with 
corresponding 3-D points on the object sets up mathematical constraints. With 
enough pictures, these constraints determine the viewing parameters and the 3-
D location of the calibration object. Alternately, they can serve to drive an 
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optimization routine that will search for the best set of viewing parameters that 
fits the collected data. 
 
View-based tasks are another approach to calibration. These ask the user to 
perform various tasks that set up geometric constraints. By performing several 
tasks, enough information is gathered to determine the viewing parameters. All 
view-based tasks rely upon the user accurately performing the specified task 
and assume the tracker error is negligible. If the tracking and sensing 
equipment is not accurate, then multiple measurements must be taken and 
optimizers used to find the "best-fit" solution. The following section will give a 
summary of some of these view-based methods, illustrating their strengths and 
shortcomings. 
 
 

3.2.1. The “Boresight Method” 
 

Overview and setup 

 
[Azuma94] describes a procedure for the static calibration of an optical 
STHMD, which focuses on determining the correct viewing parameters.   
 
They used an optoelectronic tracking system and an optical STHMD with a field 
of view (FOV) of about 30 degrees. The displays are LCD monitors containing 
340x240 pixels each. The goal was to achieve a registration, which links one 
real object, a wooden crate (depicted in Figure 2 on the rightmost side), and 
one set of virtual objects, three orthogonal extruded squares that form a 
coordinate system (colored red, green and blue); i.e. the intersection of the 
three virtual bars and the front left corner of the crate should be registered, 
where the three bars run along the edges that touch the corner. 
 
The calibration procedure consists of simple tasks that rely on geometric 
constraints and directly measure the desired viewing parameters. The steps, 
which systematically determine the viewing parameters, in order are: 
 

• Measure the frame’s location 
• Determine the apparent center of the virtual image 
• Measure the transformation between tracker space and eye space 
• Measure the field-of-view (FOV)  

 
Note that due to mechanical misalignments only the right eye of the HMD was 
used for the evaluation of the registration procedure. 
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The calibration procedure 

 
Frame measurement: A digitization probe attached to a “hat” with four optical 
sensors returns the 3D position of the probe tip. Eight points on the frame 
edges where the red and green bars will lie are measured. A pair of orthogonal 
lines is fit through those points, also determining the axis going down the third 
edge. 
 
Apparent center of virtual image: Since the center of the frame buffer need not 
be the center of the virtual image seen with the right eye, off-center projection 
is required to properly render the images. Assuming that the frame buffer 
covers the entire area visible through the optics, this center can be measured by 
drawing a 2D, non-head-tracked crosshair in the frame buffer (Figure 2). Four 
numbers specify this crosshair: the (X,Y) center coordinate, and the X and Y 
radii. The user determines the center by adjusting the X center and radius until 
the left and rightmost lines are equally spaced from the extreme visible edges of 
the display. This is tested by increasing the radius; both lines should disappear 
simultaneously or the center is incorrect. A similar procedure determines the Y 
center. 
 

 

Figure 2 Sketch of the setup used for static registration, showing the virtual 
crosshair, the reference frame and coordinate systems [Azuma94] 

 
Eye→Tracker transformation: This is measured by the boresight operation, 
where a user wearing the HMD looks straight down the left top edge of the 

15 



frame with his right eye. A thin pipe sticking out along the edge helps the user 
line up accurately. Simultaneously, he centers the virtual crosshair with the 
edges of the frame and aligns the horizontal and vertical crosshair lines with the 
edges of the frame. Then the Eye coordinate system has the same orientation as 
the Frame coordinate system, and the Z-axes coincide. Since the orientation of 
the frame relative to world coordinates is known, the desired Eye→Tracker 
orientation can be calculated.  
 
The Eye→Tracker position offset is measured by the boresight and one 
additional task. The position of the corner of the frame in World space is 
known, due to step one. The head tracker returns the position of the tracker 
origin in world space. Therefore, a vector from the corner of the frame to the 
tracker origin can be drawn in World space, which can be transformed to Eye 
space by the now known rotations. Since Eye space and Frame space share the 
same orientation and their Z-axes coincide, the X and Y values of the vector in 
Eye space are the X and Y Eye→Tracker offsets, in Eye space. To determine the 
Z offset, one more operation is needed. Two nails are on top of the frame, one in 
front and one in the rear. While performing the boresight, the user must also 
position him so that the front nail covers the rear nail. The known locations of 
these two nails identify a specific distance along the frame’s Z-axis where the 
user’s eye must be. Subtracting that from the corner→tracker vector in Eye 
space yields the Z component of the Eye→Tracker offset. 
 
The user performs two boresights: one from a few feet away for greater 
orientation sensitivity, and one less than a foot away (matching the two nails) 
for greater position sensitivity. 
 
FOV measurement: It suffices to measure FOV along the vertical Y direction in 
screen space, since scaling that by the frame buffer’s aspect ratio yields the 
horizontal FOV. The crosshair’s Y radius is set to a quarter of the frame buffer’s 
height to be easily visible. The user stands in front of the frame and lines up the 
top and the bottom virtual crosshair lines with corresponding real lines drawn 
on the frame’s front surface. This forces the Eye space X-axis to be parallel to 
the frame’s X-axis. From the information in steps one to three, the locations of 
the real lines in Eye space can be computed. With the now gathered data the 
FOV can now also be computed using simple trigonometry.  
 

Results 

 
Azuma reports that the accuracy achieved with this procedure using the 
optoelectronic tracker is about ± 5 mm from different viewing angles and 
positions. But he also states, that the registration accuracy depends on how 
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successfully the user can complete the registration procedures. Users reported 
difficulty in keeping their heads still during the boresight and FOV operations, 
because of the weight of the HMD. Testing the procedure with different users, 
which performed the whole procedure five times, the average standard 
deviation in computed orientation, position and FOV were 0.32 degrees, 4.8 
mm, and 0.1 degrees respectively. 
 
 
 

3.2.2. The “Shooting Gallery”  
 
 
Overview and setup 
 
[Oishi96] describes methods to compensate for mechanical misalignments in 
STHMDs and differences between actual and designed location of a user’s eye. 
The assumption is made that no distortions in the optical system exit making 
the calibration problem a linear one. Hence only the projection transformation 
has to be modified. The prototype STHMD they used has a horizontal FOV of 
40 degrees and a designed location of the virtual image plane of 1m. The whole 
optical system of the HMD is mounted on a helmet and a plate is fixed on the 
front of the helmet as reference for physical measurements of the HMD 
parameters. 
 
 
The Calibration Procedure  
 
Mechanical misalignments 
 
Mechanical misalignments result in a displacement of the virtual image plane 
from the designed location. Hence the position of the realized virtual plane has 
to be measured and the projection transformation modified accordingly. This 
procedure has to be executed only once for each HMD. 
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Figure 3 Measurement system for calibration [Oishi96] 

 
 The process of calibrating mechanical misalignments looks as follows: 
 

1. Set HMD at the origin of the world coordinate system of the real 
environment; 

2. Read the visual parameters and draw a cursor in the virtual 
environment; 

3. Measure the distance to the realized virtual plane and put real 
environment marks at this distance; 

4. Place a virtual cursor on the marks and record its location expressed in 
the virtual environment (13 marks per eye); 

5. Compare recorded locations with original locations calculated according 
to the current projection transformation parameters; 
If the record is accurate enough, the process is finished, else continue 
with step 6. 

6. Derive a measurement equation from the record and get modified visual 
parameters by solving it; 

7. Redraw a cursor in the virtual environment by using modified visual 
parameters and continue with step 4. 

 
The world coordinate system and marks for fitting are required in the real 
environment to measure the shift of the virtual plane and to perform the 
calibration. Figure 3 shows the measurement system used for the calibration. 
LEDs marking positions in the real environment are installed on the panel. The 
z-axis of the coordinate system runs through the panel’s center and 
perpendicular to it. The panel held by two rails can move in the range between 
0.5 and 4 m.  
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After the HMD was placed at the origin of the real environment, taking the 
plate mounted on the HMD as reference, it is firmly fixed at the calibration jig 
(step 1). In step 2 a cross-shaped cursor is drawn in the virtual environment, 
which is movable by a joystick. 
 
The operator now swings her face up and down or left and right and observes 
the virtual cursor drawn on the center of the virtual plane, while moving the 
panel back and forth until the movement parallax between the virtual cursor 
and the LED on the center of the panel disappears. The panel distance at which 
this occurs is a close approximation of the realized virtual plane. Hence only 
parallax between the points on the virtual plane and the panel is now visible, 
i.e. the effects of the operators eye not being at the designed eye position is 
eliminated (step 3). 
 
Now a human operator moves the virtual cursor so that it overlaps each LED 
and records its location (in virtual environment coordinates). This is done 
separately for both eyes, since the optical system of each eye is independent of 
the other (step 4). 
 
If the data gathered in the previous step is not accurate enough (step 5), a 
measurement equation, which describes the relation between the result of the 
measurement and errors of the projection transformation parameters, is 
derived and used to estimate the actual visual parameters (step 6). These 
parameters are used to redraw the cursor (step 7) and the calibration process 
continues with step 4. 
 
 
Differences between actual and designed location of user’s eye 
 
Since this calibration procedure should be done every time a user starts using 
the HMD, it is inconvenient to fix the HMD at a particular position. Hence the 
marks for the calibration are fixed on the plate mounted on the HMD. The 
calibration process looks as follows: 
 

1. Place virtual cursor on marks on the plate P and record its location 
expressed in the virtual environment (5 marks per eye); 

2. Derive straight lines from the recorded values and the marks on P. 
3. Calculate the user’s actual viewpoint as the point that minimizes the 

sum of distances to these straight lines. 
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Results 

 
The RMS error of measured location of the virtual marker to actual position of 
the physical LED position was 1.5 mm for the left and 0.7 for the right eye. 
There was an error of 1 to 2 mm in the location of the drawn virtual cursor due 
to the low resolution of the HMD’s LCDs. In addition the experiment system 
also contained 3 mm maximum error due to its hand-made fabrication.  
 
For the eyepoint calibration an RMS error of 2.1 mm, 0.9 mm, 1.3 mm and 1.7 
mm at a distance of the LED panel of 0.5 m, 1 m, 2 m and 4 m was measured, 
which is a reduction of the RMS error of about 40%-50% compared to the 
measurements taken without viewpoint calibration.  
 
 

3.2.3. The Dynamic Calibration Process 
 

Overview and setup 

 
[McGarrity99] et al. also describe a method for calibrating STHMDs. They refer 
to a camera calibration method described in their previous work [Tuceryan95], 
which was based on using the relationship between the projected image 
positions of known 3D points and their 3D positions. This method is only 
applicable for a video-see-through display system where one can always access 
the image digitized by the video camera and use it to analyze the input images. 
 
With a see-through system, the images of the scene are formed on the retina of 
the human user’s eye and we do not have direct access to the image pixels. 
Therefore, a different approach is needed for the calibration of STHMDs. The 
approach described by [McGarrity99] uses a dynamic process in the forward 
direction (i.e., from 3D objects to 2D projected images) and let the user 
interactively adjust (estimate) the parameters of the imaging system until the 
projected image of the calibration model as seen by the human eye matches the 
image of the real calibration object in the scene. This is a truly dynamic system 
in the sense that while the user is interactively adjusting the camera parameters 
to align the displayed image, he is free to move his head. That is, there is no 
requirement on the user to stay still or to keep his head in a static position. 
The system updates the graphics reflecting the changes in the transformation, 
read by the camera marker. The parameters estimated by this calibration 
procedure are the intrinsic camera parameters and the camera-to-mark 
transformation1, whereas the used camera model is the standard pinhole camera 
model. 
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The system setup consists of a pair of i-glasses head-mounted display. A 6-
degrees-of-freedom (6-DOF) magnetic tracker provides continually updated 
values for the position and orientation of the tracked objects, which includes 
the i-glasses and a 3D mouse pointing device. The software is based on the 
Grasp system that was developed at ECRC for the purposes of writing AR 
applications. 
 

The Calibration Procedure 

 
The process of calibrating the camera using this approach consists of moving 
landmark points in the 2D image by grabbing and dragging them until they are 
aligned with their corresponding physical points in the image. During the 
dragging process, at every time interval, a set of dynamic equations (see 
[McGarrity99] for details) is solved for the camera parameters and the resulting 
projected image of the dragged model is displayed. This process continues until 
a sufficient number of points have been aligned with their physical counterparts 
so that the entire calibration object model is aligned with the physical 
calibration object. [McGarrity99] reports that the user interaction is very 
difficult when trying to solve for all the parameters at once. Therefore, they 
have broken the calibration procedure into a series of moded interactions in 
which the user can separately translate, rotate, and scale (by varying the focal 
length parameters) the virtual camera. These modes may be selected as the user 
desires, with the goal being to align the virtual object to the physical object. 
 

The calibration of the stereo display system is a straightforward extension of 
this approach. The stereo system consists of a pair of cameras, which have a 
parallax due to their different poses (i.e., positions and orientations). To 
calibrate the stereo display system, [McGarrity99] uses the above calibration 
procedure to estimate the parameters for the left and right displays 
independently. This will account for the different rigid transformations for the 
poses of the two cameras that represent the two eyes as well as for the 
differences in the focal lengths for the left and right eyes. The final scene is 
displayed using the resulting camera parameters estimated using this process. 
 

Results  

 
For the evaluation of the calibration procedure, a video camera was placed 
inside the head of a mannequin where the eye would be located. The head was 
then attached to a camera tripod and the i-glasses/marker assembly was placed 
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onto it as if it were a real person. The graphics were sent to the HMD so that the 
camera received both the virtual and real objects simultaneously. 
 
 
The resulting calibrations using this method are acceptable within the 
calibration volume, but the errors increase as the camera moves outside the 
calibration volume. [McGarrity99]  also states that the quality of the 
calibrations seem to be better when done on a human head as they are 
intended, instead of the artificial setting they had for the purposes of collecting 
quantitative data, because the calibration done from a single viewpoint does not 
yield sufficient information to get all the scaling ambiguities correctly. When 
the calibration is performed dynamically on a human head, however, where the 
head is free to move and look at the calibration object from multiple views as 
the interactive calibration process proceeds, the calibration results improve 
considerably. 
 
 

  
 

Figure 4 Alignment error image from the viewpoint in which calibration was 
done (all control points are visible). The alignment errors in this case are 

minimal. [McGarrity99] 
 
[Tuceryan00] calls the user interface cumbersome, and further states that in 
addition, the number of parameters being estimated is too large, and therefore, 
the interaction does not provide a very intuitive feedback to the user. He 
proposes another method for the calibration of STHMDs, which is described in 
the following section (3.2.4.). 
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3.2.4. Single Point Active Alignment Method 
(SPAAM) 

 

Overview and setup 

 
[Tuceryan00] describes another method for the calibration of STHMDs, which 
was developed for the Grasp system, also used by [McGarrity99] for the 
calibration method described in the previous section (3.2.3). Hence the 
hardware setup is basically the same. The used display device is an i-glasses 
head-mounted display. A 6-degrees-of-freedom (6-DOF) magnetic tracker 
provides continually updated values for the position and orientation of tracked 
objects and the software as mentioned above is based on the Grasp system that 
was developed at ECRC for the purposes of writing AR applications. 
 

The Calibration Procedure  

 
The goal for the method presented by [Tuceryan00] was to make the user 
interaction needed to collect the data for the calibration a streamlined process 
that does not impose a great burden on the user.  
 
The calibration procedure has been implemented as follows: 
 
The world coordinate system is fixed with respect to the tracker coordinate 
system by defining the world coordinate system on the tracker transmitter box ( 
Figure 5 left). The tracker transmitter calibration is performed as described in 
[Tuceryan95]. This calibration is then stored and unless the decal put on the 
transmitter box is replaced or is somehow moved, there is no need to redo this 
calibration again. Fixing the world coordinate system with respect to the 
transmitter box has the added advantage that the tracker can be moved at will 
to any position and the calibration still stays valid. The world coordinate system 
could also have been assumed to correspond to the tracker coordinate system 
by definition, however, this would have been harder to use because we do not 
know exactly where the tracker coordinate system is on the transmitter box. 
Therefore, it seems to be better to define the world coordinate system whose 
location is known and estimate its relation to the unknown tracker coordinate 
system by a calibration procedure. 
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Figure 5  
The world coordinate system is fixed on the tracker transmitter box (left) 

The user aligns a cursor with a fixed point in the world (right) [Tuceryan00] 
 

 
A single point in the world coordinate system is used to collect the calibration 
data. This single point in the world coordinate system is mapped to many 
distinct points in the marker coordinate system as the user’s head is moved 
about, i.e. the points are transformed to the head marker coordinate system. 
 
The user is presented with cross-hairs on the display and is asked to move 
about his head until the crosshair is aligned with the image of the single 
calibration point as seen by the user ( 
Figure 5 right). The user then clicks a button on the 3D mouse and the data is 
collected for calibration that consists of the image coordinates of the cross-hair 
and the 3D coordinates of the calibration point in marker coordinates. These 
collected points are then fed into the camera equation (see [Tuceryan00] for 
details), which is then used to estimate the camera parameters. There are 12 
parameters of the 3x4 projection matrix, which have to be estimated by the 
calibration algorithm. But the projection matrix is defined up to a scale factor, 
therefore actually only 11 parameters have to be estimated. Since each 
calibration point gives us two equations, at least 6 points are needed for the 
calibration. However, in order to account for the errors and obtain a more 
robust result, [Tuceryan00] proposes to collect 12 points and use a least 
squares estimation. He states that the more of the tracker volume the user’s 
head covers, the more of possible systematic errors in the tracker 
measurements will be taken into account in the optimization process. Hence 
the user is encouraged to move his head around the tracker transmitter as 
much as possible while collecting the calibration data.  
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Results 

 
The user’s collection of the necessary data to calibrate the display is a very quick 
and easy process. During this process, the user is not required to have his head 
fixed and is allowed to move. [Tuceryan00] reports that this calibration method 
was evaluated in numerous trials and in all instances the calibration results are 
very good. The quality of the calibration results does not change greatly as the 
head moves around in the world. The only problem is due to the lag in the 
readings from the magnetic tracker, which tends to settle down to the correct 
position after a certain delay after the head stops moving. Some of the factors 
that affect the calibration include the distance of the user’s head from the 
tracker transmitter and how quickly the user clicks the mouse to collect the 
calibration data. The magnetic tracker they use has a range of about 3 feet and 
the quality of the sensor readings is not very reliable when the receivers operate 
near the boundaries of this range. The second factor that affects the calibration 
is the lag in the tracker data at the point of collection (i.e., when the mouse is 
clicked). If the button is clicked too quickly, the tracker data read might not 
correspond to where the user’s head is. [Tuceryan00] states that if the user is 
careful during the calibration, both of these factors can be put under control 
and the calibration results are good. 
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3.2.5. Projection Device Calibration 
 

Overview and setup 

 
[Summers99] et. al describe calibration procedures for the Virtual Hand Lab 
(VHL). The VHL is a desktop augmented reality environment for conducting 
experiments in human perception and motor performance that involve 
grasping manipulation, and other 3D tasks that people perform with their 
hands.  

Figure 6 Hardware setup [Summers99] 

 
The hardware setup (Figure 6) consists of a workstation, a slaved secondary 
monitor that is reflected through a mirror, a Northern Digital Optotrak 3D 
motion analysis system (tracker), StereoGraphics CrystalEyes stereographic 
glasses (stereo glasses). The workstation displays stereo images on its regular 
screen (which is seen by the experimenter) and also on the slaved monitor. The 
mirror places these images appropriately within the subject’s view. The 
Optotrak senses the 3-D positions of infrared emitting diodes (markers) that 
are strobed under computer control. The markers are placed on all objects 
(including the subject) whose position or orientation is required during an 
experiment. The stereo glasses, used in conjunction with position and 
orientation information for a subject’s head obtained (from the Optotrak), 
enable the monitor to display head-coupled stereo images for the subject. 
Subjects look through the half-silvered mirror and can reach underneath it, 
resulting in the virtual image reflected through the mirror appearing to be on 
top of the actual scene beneath the mirror. The workspace is defined as the 
volume between the mirror and the desktop into which a subject can physically 
reach. 
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The Calibration Procedure  

 
The calibration process falls into two parts. The workspace calibration (volume 
of physical space which can be augmented), which only needs be performed 
once for a new location of the workspace, i.e. if the tracker or the 
monitor/mirror setup moved. The point of view calibration (for a head-tracked 
stereo display) is done on a per user basis. 
 
Step 1: The workspace calibration  
 
The calibration procedure consists of aligning a set of virtual crosses with a set 
of markers according to a pre-defined one-to-one correspondence. The markers 
have identity because they are strobed, and the crosses are described relative to 
the workspace orientation chosen by the experimenter. For example, the first 
marker is placed in the “left front corner”, where “left” and “front” are 
arbitrarily chosen by the experimenter. For a given virtual cross, there is exactly 
one location in 3-space in which a marker can be placed so that the alignment 
of the virtual cross and the marker are not a function of head position. In all 
other positions, moving one’s head will cause the virtual cross to “swim” with 
respect to the physical marker. For this task of proper alignment, the procedure 
relies on human perception, but only to detect 2D misalignment, not 
differences in depth. Alignment in the third dimension is determined by the 
absence of swim, which is something that humans are very good at detecting. 
Because 2D alignment of the markers with the virtual crosses and the check for 
lack of swim do not vary with the head position, this calibration can be 
performed without stereo, i.e. independent of the point of view calibration.  
 
Using standard techniques, a coordinate system is obtained from a set of four 
points, which according to [Summers99] is a good tradeoff between gathering 
additional redundant data for further reduction of the variance and a short 
execution time of the calibration procedure. 
 
 
Step 2: Point of View calibration 
 
Instead of tracking the eyes directly, the eye position relative to the glasses is 
estimated, and then the glasses are tracked while the subject interacts with the 
environment. 
 

27 



Outline of the calibration process: 
 

1. The experimenter attaches rigid plastic plates to the sides of the stereo 
glasses and then places three markers on the plate facing the tracker in 
any non-collinear positions. These markers are used to track the head 
position and form a head coordinate system. 

2. The subject dons the stereo glasses, which are secured against 
subsequent slippage. 

3. The subject closes her left eye. A bar with a small hole is provided. The 
bar is aligned over the subject’s right eye so that a point in the center of 
the workspace is clearly visible. The bar is then attached to the glasses 
(see Figure 7). 

4. The subject repeats this for the other eye. 
5. The subject then looks through both holes simultaneously. The holes 

should align so that she sees the same fused image through both holes. It 
should appear as though there is only a single hole, not two separate or 
overlapping holes. If necessary, the subject rearranges the bars until this 
is the case.  

6. The experimenter places markers directly over the holes.  
7. Two seconds of data (120 frames) are captured, processed and analyzed. 

A summary of the analysis is produced. The experimenter will rerun the 
data collection if too many of the data frames are erroneous. This is 
typically solved by changing the subject’s head position.  

8. The bars and markers are removed from the subject’s eyes. The markers, 
which track head position, remain.  

 
 

 

Figure 7  Shutter glasses for point of view calibration [Summers99] 

 
Using the collected data, rigid body transformations between the position of the 
eye markers and the head coordinate system are calculated and used to 
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estimate the eye positions after the calibration markers are removed from the 
eyes. These estimates are actually 1- 2 cm in front of the real eye points, which 
results in a slight magnification of the scene. 
 

Results 

 
To evaluate the consistency of the workspace calibration, the workspace was 
calibrated three times. For each calibration, data was collected four times 
without moving any markers, for a total of 12 readings. Each marker produces 
an (x,y,z) triplet, in tracker coordinates. Comparing readings within the same 
calibration allows evaluating the tracker error. The maximum range (maximum 
value minus minimum value for a given marker/axis combination) was 0.24 
mm. The maximum range over all readings and calibrations was 1.49 mm.  
 
The viewpoint calibration procedure does not give the exact point of view. The 
markers used for estimating the eyes are placed on the glasses, not in the 
eyeballs.  To evaluate the error, an optician’s pupillometer was used to measure 
interpupillary distance (IPD) for three subjects for each of seven focal 
distances: 35, 40, 50, 65, 100, 200 and ∞ (cm). The calibration IPDs all fell 
within range of the pupillometer readings. 

 

To quantify the effect of the point of view (POV) calibration, wireframe blocks 
of various sizes were displayed at various locations using a randomized trial 
script. The width (Y-axis) of the virtual block was measured with a physical 
ruler. The head moved freely to obtain the best perspective. Over 15 trials, the 
mean error was 0.47 mm with a maximum error of 1 mm. This experiment was 
repeated for the other dimensions. For height (Z) the mean error was 1.73 and 
the maximum error was 4 mm, and for depth (X) the mean error was 1.33 mm 
with a maximum error of 3 mm. 
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3.3. Object Calibration 
 
 

3.3.1. Calibration with Reference Frame 
 

Calibration Procedure 

 
[Summers99] also described a method for the calibration of tracked props for 
the VHL (see section 3.2.1 for details of the hardware setup). Calibrating an 
object involves matching a computer model to the physical object. Both the 
model and the object are assumed to have distinguishable dimensions. The 
calibration technique proposed by [Summers99] is only dependent on the 
experimenter’s ability to manipulate physical objects, not on an ability to 
manipulate physical and virtual objects together. This technique works for any 
non-deformable object. 
 
The procedure for this calibration is as follows: 
 

1. Attach three markers to the object in any non-collinear positions.  
2. Place three markers in predefined locations of the calibration frame. The 

frame may be placed anywhere within view of the tracker. Its placement 
is completely unrelated to the location of the workspace except that it 
must be within range of the tracker.  

3. Place the object in the corner of the calibration frame so that the XYZ 
orientations of the object and frame match.  

4. Collect marker locations for both frame and object in tracker 
coordinates.  

 
The position of the object markers relative to the frame markers plus 
knowledge of the size and shape of the physical object allow the computation of 
the internal coordinate system of the physical object relative to the object 
markers. 
 

Results 

 
Sources of error for this procedure are tracker error, incorrect measurement of 
the physical object and incorrect position of the object in the calibration frame. 
Tracker error is within 0.3 mm, physical measurements with a ruler are 
accurate within 1 mm, and position errors are negligible because both the 
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objects and the frame are rigid and they fit tightly together. Recalibrating for 
new marker locations takes 30-60 seconds. 
 
 

3.3.2. Calibration with Pointing Device 
 

Overview and setup 

 
[Whitaker95] describes methods for the calibration of a pointing device, which 
is then used for the calibration of objects. The Grasp system, which was 
developed at ECRC as a platform for research in augmented reality, is used to 
test the proposed procedures with a monitor-based setup (Figure 8). The 
graphical image is generated by the workstation hardware and displayed on the 
workstation’s high-resolution monitor. A scan converter takes the relevant 
portion of the graphical image and converts it to a standard video resolution 
and format. The scan converter also mixes this generated video signal with the 
video input from the camera. A tracker, which is capable of sensing the three 
translational and the three rotational degrees of freedom, provides the 
workstation with continually updated values for the position and orientation of 
the tracked objects including the video camera, a pointing device, and other 
objects of interest. A frame grabber is used to grab digital video images for 
processing within the system.  
 
 

 

Figure 8 Hardware configuration of the Grasp monitor-based setup 
[Whitaker95] 
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The Calibration Procedure  

 
1) Pointer Calibration 
 
The pointer calibration calculates the geometry of the pointing device used 
within an application. In the system described by [Whitaker95], this pointer 
object is a wooden wand with a tracking mark (receiver) attached at its base, 
which is used to locate 3D points on real objects during user interaction. In 
particular, this calibration step calculates the position of the tip of the pointer 
relative to the tracker mark. This calibration is a prerequisite step for the object 
calibration. 
 

The geometry of the pointer object is not pre-defined but calculated during the 
calibration procedure. The mechanism to calibrate the pointer requires the user 
to pick the same point in 3D space several times, using a different orientation 
for the pointer each time. For each pick, the position and the orientation of the 
tracker mark within the tracker coordinate system are recorded. The result of 
this procedure is a set of points and directions with the common property that 
the points are all at the same distance from the single, picked point in 3D space 
and all of the directions associated with the points are oriented toward the 
picked point. This geometrical constraint is used to formulate an equation, 
which gives an estimate of the desired offset from the wand’s marker position to 
the wand’s tip when solved, in this case using a least squares method. 
 

2) Object Calibration 
 

Object calibration is the process whereby the location and orientation of a real-
world object is calculated such that a virtual counterpart can be placed at the 
corresponding location, with the appropriate orientation, within the virtual 
world. Some real-world objects will subsequently have their movements 
tracked by their virtual “shadows”, in which case the corresponding tracker 
marks must also be calibrated. We first need a computer model of the object 
and then a calibration procedure to locate the real object so that the virtual 
model can be registered to it. 
 
The calibration procedures described here require a number of landmark points 
whose positions are known in the coordinate system of the object model. 
Geometric models of objects might be created piece-by-piece from a set of 
geometric primitives or they might come from a CAD system. Regardless of 
their origin, models are generally stored as files on disk for subsequent use. 
Therefore files describing real objects must contain, in addition to the 
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geometric and attribute data, the 3D positions and labels of the landmark 
points. These points should correspond to features on the object, such as 
corners or creases that can be easily identified by a user. The registration 
procedure consists of locating the corresponding points on the real object and 
the model, and then calculating the object-to-world transformation from these 
point pairs. 
 
For this method a pointing device is needed, which is capable of generating the 
world coordinates of positions in the real world. In this case, the pointing 
device (which itself must already be calibrated) is a magnetic tracker attached 
to a wooden cone which, when calibrated, has an accuracy of about ±1cm. Over 
half of this error is bias and transfers directly into object calibration error. 
 
The problem here is to compute the rigid transformation between a set of 3D 
point pairs. Using the 3D pointer and several keystrokes the user indicates the 
world coordinates (or some other 3D coordinate system) of landmark points on 
the object, which are also given in the object’s local coordinate system. The 
relationship between these sets of points gives rise to a linear system of 12 
unknowns (see [Whitaker95] for mathematical detail). For a unique solution 4 
points are needed, but in most cases more than 4 points are used and the 
equation is solved for the least-squares error.  
 

Results 

 
The pointer-based procedure provides the object-to-world transformation that 
is needed for object registration within a small number of seconds. Figure 9 
shows a model engine, which has been calibrated in such a manner. Rotations 
of the engine (Figure 9 right) show that this calibration does not suffer from the 
depth problem of the image-based approach. 
 
This image-based approach described by [Whitaker95], is based on a calibrated 
camera, which is used to compute the object-to-camera transformation of a 
single object for which there is a known geometric model. The position of an 
object is determined “through the lens” of the camera. The calibration begins by 
capturing an image of the real-world object and locating a set of landmark 
points in the image. The locations of landmark points in the image are found 
manually by a user with a mouse. With the assumption that  the points are 
mapped from known locations in 3-space to the image via a rigid 3D 
transformation and a projection, and that the camera is calibrated, the pose of 
the object in camera coordinates can be calculated. 
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Despite good point wise alignment in the image plane, the image-based 
calibration can produce significant error in z -direction (distance from the 
camera), which is not seen in the re-projected solutions. For instance, in the 
case of the engine model, the image-based approach can produce a rigid 
transformation, which matches landmark points in the image to within about 2 
pixels. Yet the error in the z –direction can be as much as 2-3 centimeters. This 
error becomes evident as the object is turned. 
 
 

 

Figure 9 A wireframe engine model registered to a real model engine using 
pointer-based calibration. [Whitaker95] 

 
 

3.4. Summary and Conclusion 
 
 
In many cases the methods discussed above require additional custom made 
hardware, which is an impractical approach for many AR setups, e.g. when it 
has to be moved to an exhibition, or difficult to reproduce. This additional 
hardware also introduces new calibration problems and new sources of error. 
Nearly all calibration procedures are somewhat tailored to the actual hardware 
setup that was used for the evaluation of the particular procedure and 
sometimes are only applicable to that particular setup. 
 
With the exception of the procedures developed for the Grasp system, only 
single calibration tasks are described without showing the intention or 
presenting a concept for the integration of this task in a set or context of 
calibration tasks, which are needed for supporting a variety of different, often 
changing hardware setups, typical for AR installations and especially for the 
Studierstube AR system. 
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The calibration tasks, which had to be performed by the user, i.e. the user 
interactions needed for the particular procedure, are sometimes cumbersome 
and time consuming and often lack any conclusive feedback or support for the 
non-expert user. 
 
So we try to avoid these pitfalls and take useful and practical solutions for the 
calibration problems described in this section  e.g. the use of a pointing 
device, which delivers accurate registration and is especially practicable in our 
case, since the pointing device is an integral part of a typical Studierstube 
system setup  as inspiration for developing and implementing our calibration 
procedures, which should be comprehensive, accurate and user friendly. 
 
The innovative aspect of our method lies in its unification of separate but 
connected problems: calibrating the HMD or shutter glasses or projection 
screen for example, works only when the stylus’ hotspot has been registered, 
but is independent of the world-to-tracker transformation. The sequential 
execution of the different steps of our method takes these interdependencies 
into account.  
 
A further advantage of our method lies in its simplicity as perceived by the user: 
every sub-task consists of an easily performed gesture, or the touching of a 
displayed marker. Additionally all of the used algorithms have fail-safe 
mechanisms: if the user wrongly positions his head during display calibration, 
it is detected via the head-tracker and the step is repeated; if the fitting 
algorithm when registering a prop or the stylus shows discrepancies, a 
notification message is displayed. 
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Chapter  4  

Calibration procedures 

This section gives a detailed description of the principles used for each step of 
the calibration process. Implementation details regarding the utilities used to 
realize this work, like the Studierstube system and the OpenTracker framework 
will be presented in chapter 5. The results of the calibration tasks will be 
discussed in chapter 6.  
 

4.1. Stylus Calibration 
 
The first step in the whole calibration procedure is the stylus calibration. It 
determines the offset of the tracker sensor as measured to its tip or hotspot 
(hTs). This has to be done at the start of the whole process, if the tracking system 

does not provide an implicitly registered stylus (e.g. the origin of a tracking 
target of the DTrack system lies in the center of one of the markers, hence this 
marker may be used as hotspot), because most of the following tasks in the 
process need to sample the position of the stylus’ hotspot in world coordinates, 
hence the offset has to be obtained beforehand.  
 
 
 

stylus

pit w/tip
of stylus

motion
path

 

Figure 10 Calibrating the stylus 

 
We can accomplish this quite easily by fixing the stylus’ tip in a small pit drilled 
into a table (Figure 10), and moving the tracker sensor on a hemisphere 
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measuring its position and orientation. Having fitted a sphere to the measured 
sensor positions, the center of the sphere gives us the position of the hotspot 
with respect to the sensor.  
 
For fitting an optimal sphere to the measured data points, we optimize the 
offset vector from tracker sensor to the stylus’ hotspot (hTs). The principle of the 

optimization algorithm used for this purpose is called ‘Direction Set (Powell’s) 
Methods in Multidimensions [Press88] and will be discussed in section 5.4. The 
function we want to minimize utilizing Powell’s algorithm, uses the variance V 
of the hotspot positions for the measured data points as a metric. The hotspot 
position in world coordinates is calculated for each sample as follows: 
 

hW=hTs TTsW 

 

hW is the position of the stylus’ hotspot in world-coordinates 
hTs  is the position of the stylus’ hotspot in tracker-sensor-coordinates 

(the offset from tracker sensor to hotspot) 
TTsW  is the transformation matrix, which transforms a point given in tracker-

sensor-coordinates to world-coordinates (given by sampled position and 
orientation of the tracker sensor attached to the stylus) 

 
 
The variance V of the calculated hotspot positions is then given by: 

 

∑
=

−
−

=
n

1i

2

1n
1

V meani hh  

 

n  is the number of samples 
hi  is the hotspot in world coordinates 
hmean  is the mean of all calculated hotspots in world coordinates 

 
The optimization of the variance gives us a least squares fit solution for the 
hotspot offset hTs.  

 
To enforce stability of the solution, the user should cover a large part of the 
hemisphere, ideally by sweeping the sensor along two orthogonal great-arcs. To 
enforce this, each valid sample, i.e. a sample that will finally be used in the 
optimization step, has to meet a minimal distance criterion. So each sample fed 
into the program during the sampling stage is tested against all other valid 
samples obtained so far. If the distance between the sampled position and one 
of the valid samples is smaller than a specified minimal distance, it is discarded 
otherwise it is stored as another valid sample. Hence holding the stylus 
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stationary will only store one sample, forcing the user to move the stylus 
around. The progress of the stylus calibration process is displayed on the 
screen, where a counter tells the user how many samples have to be gathered 
and how many already have been retrieved. 
 
The actual user interaction needed for this calibration task is quite simple:  
The user has to put the stylus’ hotspot into the prepared drilled in pit or fix the 
hotspot in another appropriate way and press the button on the stylus to start 
the sampling. Then she has to move the stylus around its tip until the specified 
number of samples or more are acquired. Finally she has to press the pen-
button again to stop the sampling and start the calculation of the desired 
hotspot offset hTs. Each action the user has to perform is described in text form 

on the display device of choice (e.g. HMD, monitor etc.) to guide the user 
through the process. 
 
To incorporate the resulting offset in the Studierstube system, the program has 
to change the used tracker parameters. Since Studierstube uses the 
OpenTracker framework [Reitmayr00] as interface to all tracker data, the offset 
has to be included in the OpenTracker tree, which describes the actual tracker 
configuration at runtime (see section 5.3 for details). This is done, by creating a 
new virtual offset node, which represents the calculated hotspot offset, and 
inserting it as first child of the sub-tree associated with the tracker-station of 
the stylus, i.e. the StbSink node representing the input data from the stylus’ 
sensor (Figure 11). Furthermore the new configuration of the whole tracker 
framework is stored in a configuration file, so that it can be easily loaded the 
next time Studierstube is started. Hence once the stylus was registered the 
stylus calibration only has to be performed, when a new stylus shall be used or 
the tracker setup of the old one changes. 
 
 
<StbSink event="off" station="1"> 

<EventVirtualPositionTransform translation="-0.063 -0.017 -0.009"> 

<NetworkSource  number="1" 

   multicast-address="224.100.200.101" 

    port="12346"/> 

   </EventVirtualPositionTransform> 

</StbSink> 

 

Figure 11: The snippet from the XML configuration file, produced during this 
calibration step, shows the inserted virtual offset (bold). 
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So after the stylus calibration has been completed all further position data 
sampled from the stylus’ tracker station will implicitly specify the position of 
the stylus hotspot in the tracker coordinate system. 
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4.2. Display Device Calibration 
 
 
To achieve image registration, meaning alignment of real and virtual world 
when projected on the retina of the user, we need a precise description of the 
projection from the real world onto the retina. This step, the display device 
calibration, has to determine (the intrinsic) and extrinsic parameters of the 
virtual camera which has to mimic the projection of the real environment. The 
first chapter of this section will deal with the camera model used by the 
Studierstube system, to provide an insight into the parameters that need to be 
obtained by this calibration step. As already mentioned, the Studierstube 
system permits the use of see-through head-mounted displays (HMDs) and 
different kinds of front or back projection displays. Although both setups are to 
some extent similar, we shall address the calibration processes for projection 
and HMD setup separately in the second and third chapter of this section. 
 

4.2.1. The Studierstube offaxis camera model  
 
Since the Studierstube system is based on the Open Inventor toolkit 
[Strauss92], the viewing parameters for a scene are specified within a camera 
node. Open Inventor supports only orthographic and (on-axis) perspective 
pinhole cameras, so in order to be more flexible in regard to defining viewing 
parameters, especially when concerning projection setups, a new camera model 
was introduced to the Studierstube System implemented as extension 
(SoOffAxisCamera node) to the Open Inventor toolkit. 
 

 

Figure 12 View Volume and Viewing Projection  
for a SoPerspectiveCamera node [Wernecke94] 
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Whereas the common perspective camera model describes the viewing volume 
relative to the camera’s eyepoint (Figure 12), the basic principle of the 
SoOffaxisCamera (Figure 13) is the decomposition of the camera model into 
two mutually independent logical parts:  
 

• the eyepoint (or viewpoint) and 
• the projection plane (or projection area). 

 
The eyepoint describes the position of the viewing pyramid’s apex and can be 
placed arbitrarily in 3D-space. The parameters for the projection plane specify 
a rectangular area, whose corners represent the intersection points of the 
projection plane with the viewing pyramid’s edges. Like the viewpoint, the 
projection area can be placed arbitrarily in space, hence it is placed 
independently from the viewpoint. The projection area is specified by three 
parameters: 
 

• position 
• orientation and 
• size 
 

 

Figure 13 View Volume and Viewing Projection for a SoOffAxisCamera node 

 
The 3D-vector position specifies the location of the center of the area. The 
rotation given by orientation (usually defined as quaternion due to Open 
Inventor conventions) specifies the orientation of the projection plane, defined 
as rotation from its default orientation. At the default orientation, the positive 
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z-vector is equivalent to the plane’s normal and the positive y-vector is 
equivalent to the plane’s up-vector. The size given by a 2D-vector specifies the 
size (width, height) of the area. Hence it also specifies the aspect ratio of the 
camera. The (horizontal) field of view (FOV), which is often used in a camera 
model, is implicitly specified by eyepoint and projection plane properties of the 
Studierstube offaxis camera model. 
 
As mentioned above the eyepoint and the projection plane can be positioned 
independently from each other and define (in conjunction with the near and far 
plane) a viewing frustum. If the eyepoint lies within the positive half-space of 
the projection plane, the camera will render the scene, otherwise the camera is 
not valid, because the viewpoint lies “behind” the projection plane, hence the 
scene will not be rendered. For the special case, where the eyepoint lies on the 
normal through the center of the area, the camera will render like a usual 
perspective pinhole camera.  
 
To achieve stereo perception with the Studierstube system two virtual cameras 
must be specified separately. Hence the distance between the eyepoint-position 
of the left and right eye camera implicitly gives the inter-pupillary distance. 
 
 

4.2.2. Calibrating See-Through Head-Mounted 
Displays 

 
As stated before [Azuma94][Bajura95] HMD-calibration requires in most cases 
direct interaction of the user. In the stated cases this interaction required a 
principal understanding of what different calibration steps were supposed to be 
achieved (e.g. calibration of field-of-view) and complex interactions with the 
system (see section 3). We want to reduce user interaction to a guided 
approach, which in a few simple steps allows the user to calibrate the HMD 
without needing special training or understanding. This allows for a setting 
where a high throughput of different users is to be expected, e.g. a scientific 
exhibition or a museum. To achieve correct registration for a specific user we 
have to calibrate the HMD while it is being worn by this user, because even 
slight differences in eye-distance and distance between eye and optical system 
of the HMD lead to invalid registration. Even when a user has calibrated the 
HMD before and puts on the HMD again, the previously achieved ‘personal’ 
registration is very likely to be compromised, due to the fact that every time the 
user puts on the HMD, the relative position between the user’s eyes and the 
optical system of the HMD will be different. As an example for a similar 
calibration procedure the joystick calibration procedure used in many 
computer games may serve: "Move the joystick to upper left corner, then press 
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button. …". To put it another way: we want to maintain interactivity while 
reducing user effort. 
 
Previous approaches [Azuma94][Oishi96] make use of additional hardware for 
their calibration procedures. They deliver high-quality registration results at 
the expense of a complicated setup and considerable user effort. We want to 
avoid the use of additional hardware as far as possible, since it adds further 
registration problems (e.g. calibration of the registration hardware itself) and 
can considerably reduce the mobility of the whole system. 
 
Since the precision of the calibration depends on the users interaction, we have 
to find a method, which presents us with a stable solution. This means that 
errors in some of the input data points should still produce a viable solution 
and not render the resulting registration completely unusable. This instability 
may happen when a projection matrix is optimized without regard to its 
inherent redundancies. The requirement of reduced user effort implies an 
upper limit of the amount of input data, which could further increase 
instability. 
 

Overview of the calibration process 
 
The focus of this calibration step [Fuhrmann00] is the retrieval of the correct 
viewing parameters, i.e. the correct virtual camera, which ideally models the 
user’s view through the HMD. Since the user’s eye generally does not lie 
centered over the projection plane not only the determination of the viewing 
direction but also of the orientation of the image plane is necessary, hence we 
use the Studierstube off-axis camera model (see section 4.3.1), which takes into 
account the physically decoupled nature of eye-point and image plane inherent 
in a see-through HMD setup.  
 
The following parameters have to be calibrated: 
 

• Position of eyepoint 
• Position of (middle of) image plane 
• Orientation of image plane  
• Aspect ratio (size of image plane) 
 

We have implemented a two-step optimization procedure, which optimizes 
these camera parameters for a given set of data quintuple. Each quintuple 
contains the 3D coordinates of one sample point and its 2D projection. The full 
calibration process consists of the following steps:  
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1) Acquisition of calibration data  

The user samples the positions of virtual markers with a 6DOF input 
device in an interactive process. 

2) Geometric determination of camera parameters 

Using inherent geometric properties of the acquired data, a first 
approximation is determined. 

3) Numerical optimization 

A further optimization step calculates a solution for off-axis 
projection. 

 
User interaction is normally only necessary in step 1, but exceeded error 
tolerances in one of the further steps may prompt the user for reentry of some 
data samples. 
 

Acquisition of Calibration Data 
 
The properties of see-through HMDs make their calibration significantly 
different from the calibration of video-based HMDs. Video-based HMDs are 
essentially immersive HMDs with attached cameras. The cameras supply the 
video streams which – after being overlaid with the computer generated images 
– are fed into the HMDs. Calibration of video-based augmentation [Bajura95] 
only determines the parameters of the video camera. Differences between the 
cameras’ parameters (FOV, inter-pupillary distance, etc.) and the user’s eyes 
are not taken into account, since the alignment of real and virtual images is 
inherently guaranteed by taking the ‘real’ images from the camera’s video 
stream. The discrepancies in the complete system only result in the same effects 
as in an immersive VE, as discussed in section 2 (‘The calibration problem’).  
 
The advantage of a video-based Augmented Environment is that the video 
images of the real environment can be used to directly gather calibration data. 
We can present calibration patterns to the HMD, i.e. the video cameras, and 
extract the coordinates of the projected data points from the captured image, 
using image-processing techniques. The only place where the complete 
augmented image is visible when using a see-through HMD is at the retina of 
the user. While one may use a video camera in the position of the user’s eye, the 
resulting registration will only be valid for the position of this camera. The data 
gathering stage of our calibration scheme, in which we have to acquire a 
quintuple of 3D coordinates of a point and its 2D projection therefore has to 
rely on the user to identify, whether a real point in space and its virtual 
projection match. To achieve this, we reverse the image processing approach – 
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presenting a real calibration pattern and identifying points of its projection  – 
and present the user with a virtual calibration pattern, with which real points 
have to be aligned.  
 
 

 
 

Figure 14 Calibration setup for see-through HMD calibration 

 
The user sees a real marker on the (already calibrated) tip of the tracked stylus 
(Figure 14), which she has to align with a virtual marker displayed via the HMD 
on the virtual image plane (virtual markers A-D). When the alignment is 
reached (Figure 16) the user presses a button on the pen and the next virtual 
marker is displayed. At the press of the button, tracking data of the sensors 
attached to the pen and the HMD is sampled. The position of the pen’s tip is 
transformed into the coordinate system of the HMD tracker sensor, which 
eliminates influences of different head positions during the calibration process. 
Hence the fact that the position of the stylus’ tip is sampled relative to the head-
tracker allows the user to freely move her head while performing the calibration 
task. The resulting 3D point gives us - together with the known 2D location of 
the virtual marker - one quintuple of calibration data. Figure 15 shows the 
calibration process for one eye. 
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Figure 15  Calibration process for one eye 
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Figure 16  Alignment of virtual and real marker for far sample point (left) and 
near sample point (right) 

 

Geometric Determination of Camera Parameters 
 
Since we want to keep the number of sampled data points low, we need to 
maximize their information content with respect to our problem. We do this by 
imposing geometric constraints on the sampled points to allow direct 
determination of a viable start solution for our numerical optimization step. In 
Figure 14 the distribution of sample points for correct calibration is depicted as 
black circles (sample points 1-8). Every pair of samples lies on a line connecting 
one corner of the image plane with the eye point, essentially defining the 
viewing pyramid in this way.  
 
In a first optimization step this gives us the location of the eye-point as a least-
squares solution for the point lying nearest to all of these lines. The 
optimization is again (like in section 4.1) utilizing ‘powell’s algorithm’ 
[Press88].  
 
The function to be minimized is given by: 
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e  is the eyepoint 
li is the point on the i-th line with minimal distance to e 

 
The starting value for powell’s algorithm is calculated by searching the shortest 
distance for all six possible pairs of lines and averaging the position of the six 
center points of the lines running along these shortest distances. 
 

47 



We now use the calculated eye-point to estimate the parameters of the 
projection plane. By averaging the directions of all rays from eye-point to the 
four far sample points we get a good approximation of the viewing direction. 
For this first estimation step we assume, that the viewing direction is normal to 
the projection plane, hence the location of the center of the projection plane lies 
on a ray starting at the eye-point and pointing in the estimated viewing 
direction. The distance between eye-point and center of the image plane as well 
as the size of the projection area is an assumption based on the knowledge, that 
the horizontal field of view of the used HMDs is approximately 30 degrees wide 
and the aspect ratio of the displays is about 4:3. Since position as well as size of 
the projection plane is optimized in the next step, an estimation of these 
parameters from the sampled points does not gain us an advantage over the 
assumption. Both approaches are nevertheless feasible, but the assumption 
gives us better control of the starting values used for the following optimization 
of the camera parameters. To estimate the remaining degree of freedom of the 
projection plane orientation, we intersect the approximated image plane with 
the lines (1/2) and (5/6), which gives us an approximation for the vertical 
direction, i.e. the up-vector of the projection plane. This intermediate solution 
already gives a good approximation of the calibration problem. Since this 
preliminary result only holds for eye positions on the axis of the optical system, 
we have to append an optimization procedure to account for off-axis positions 
of the eye.  Any errors made in the assumption of FOV and aspect ratio due to 
variances in the production of the HMDs will also be corrected by the following 
optimization. 
 

Numerical Optimization of Parameters 
 
Since - as already mentioned above - the solution at this stage is already 
reasonably good, we do not have to apply sophisticated optimization techniques 
to it. A rather simple multi-dimensional least-squares optimization (powell’s 
method) is being applied to the geometric solution reached in the previous step. 
The parameters optimized in this step are: 
 

• Position of eyepoint, 
• position, 
• orientation, 
• and height of the projection plane.  

 
The result of the evaluation function used for powell’s algorithm is calculated as 
follows: 
The parameters given to the function (position of eyepoint, position, 
orientation, height of the projection plane) describe together with the fixed 

48 



parameter (width of projection plane), a virtual camera (cam) based on the 
Studierstube offaxis camera model. Now the 3D-sample (s) of a quintuple of 
calibration data is projected to screen space according to the current 
parameters of the virtual camera. The resulting 2D-position should ideally be 
congruent with the 2D-position (r) of the quintuple (the location of the center 
of the virtual marker, when the 3D-position was sampled). The distance 
between the two 2D-positions gives the error within a quintuple: 
 
 

rsrs −= ),creen(projectToS),,error( camcam  

 
cam is the virtual camera to test; the camera parameters that 

are being optimized are: position, orientation, height of the 
projection plane and eyepoint position 

s    is the sampled 3D-position 
r  is the reference point, i.e. position of the virtual marker in 

screen space 
projectToScreen  is the function projecting a given 3D-position to screen 

space using the given camera (parameters) 
 
 
The return value of the evaluation function is then given by the sum of the 
quadratic errors of all eight quintuples: 
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So figuratively speaking, during the optimization process the projection plane is 
moved around, rotated and squeezed until the best solution is found. Due to the 
fact that the preliminary geometric solution is close to the final result and the 
width of the projection area is fixed - i.e. the variability of the parameters to be 
optimized is rather restricted and degeneration of the virtual camera is 
prevented - the optimization runs stable and converges quickly. 
 
In a second optimization step the two quintuples of calibration data, which 
produce the largest error with the current solution, are removed from the whole 
set of quintuples and the optimization method described above is repeated with 
the reduced data set. This step is added to compensate for some erroneous data 
that may have been sampled.  
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HCI aspects: “Guiding and constraining user input” 
 
But as mentioned above the whole procedure is rather sensible to erroneous 
input data, which is sampled interactively by the user. Therefore we added 
some input and evaluation constraints to enhance and control the quality of the 
input data itself. 
 
After starting the HMD-calibration application from the ‘calibration-suite’ 
menu the user can see a crosshair representing the first virtual marker. She 
now has to align this virtual marker with the marker mounted on the pen’s tip. 
To guide the user to move the pen’s tip to the correct position, she is obviously 
led by the displayed crosshair itself, which indicates the intended direction 
from the user’s eyepoint, i.e. a ray from the user’s eyepoint on which the sample 
position should lie. To indicate the favored distance (far or near distance) from 
the user’s eye, where the sampling should be triggered the size of the virtual 
marker is adjusted to the size of the real marker as seen from the preferred 
distance. By changing the color of the virtual marker from ‘inactive’ to ‘active’ 
color (which can be scripted by the ‘calibration suite administrator’), the user 
gets feedback, whether she has moved the pen’s tip into the range of the desired 
distance and may trigger the sampling, i.e. press the pen button, or not. Since 
the correct sampling distance is enforced by the constraint described above, the 
correct directional alignment of the markers remains as single source of 
incorrect user input.  
 
 

 
 
Figure 17 Visual control of the achieved HMD-registration (alignment of real 

and virtual stylus) 
 

 
After the user has sampled all eight positions for one eye, the calculation of the 
camera parameters is started. The first step as stated above is the calculation of 
the eyepoint. At this stage the quality of the input data is probed, by imposing 

50 



an upper limit on the shortest distance between each possible pair of lines. If 
the criterion is not met the user is prompted to repeat the acquisition step, 
otherwise the calculation continues. At the end of the optimization step the 
RMS-error over all calibration data quintuples is calculated, which has to be 
smaller then a specified upper limit. As before not meeting the criterion results 
in a rollback to the calibration data acquisition step.  
 
When the calculated virtual camera is valid, the whole procedure is repeated for 
the second eye. After successfully calibrating the second virtual camera the user 
may choose to test the achieved quality of the calibration. She can switch 
between the currently and the previously used camera registration and compare 
how good the displayed virtual stylus overlays the real stylus from different 
view angles and distances (Figure 17).  
 
If a good registration is achieved the user just exits the HMD-calibration 
application with the current registration staying active and may begin working 
with the Studierstube system. She may also choose to repeat the whole 
procedure, if the result was not satisfactory, which can occur, when the quality 
criteria described above are to forgiving. The HMD registration is saved to a file 
and may be used as default registration of the HMD the next time the 
Studierstube system is started, though it will not be optimal for other users or 
even the same user, who calibrated the HMD, as stated at the begin of section 
4.2.2. Nevertheless even a sub optimal registration may sometimes be 
adequate, e.g. for testing mechanisms of an application during development, 
where the tester can compensate for a small error in the calibration of the 
display system. 
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4.2.3. Calibrating projection systems 
 
 
Here we use a variation of the calibration method we applied to HMDs in the 
previous chapter (section 4.2.2), which differs from [Summers99] method in 
the use of the stylus instead of additional markers and a bar attached to the 
shutter glasses (see section 3.2.5).  
 

Overview of the calibration process 
 
Like for the HMD-setup we want to retrieve the correct viewing parameters for 
the Studierstube off-axis camera model, i.e. the correct virtual camera, which 
ideally recreates the user’s view to the projection display device. Contrary to the 
HMD-setup, where the relative position of the eyepoint to the projection plane 
is static for one user, but the whole virtual camera follows the movement of the 
user’s head, the position and orientation of the projection plane typically 
remains static for a given projection setup. Therefore the calibration of the 
viewing parameters for a projection setup is divided into two steps: 
 
1.  Calibration of projection plane parameters 

2.  Calibration of eyepoint-position relative to head-tracker 
 

Calibration of projection plane 
 
The position and orientation of the display screen and the area actually utilized 
by the device are determined by this task. This is done by projecting reference 
markers near the four corners of the screen and measuring their position 
(Figure 20 left) by touching the displayed markers with the tip of the stylus and 
pressing the pen’s button. Hence an obvious prerequisite for this step is, that 
the whole surface of the projection display has to lie within the working volume 
of the utilized tracker.  
 
After the position of all four markers (upper left (Sul), lower left (Sll), upper right 
(Sur), lower right (Slr)) has been retrieved, the absolute position and orientation 

of the projection plane in tracker coordinates can be calculated (Figure 18). 
Firstly the plane, which is described by any three sampled points, is optimized, 
so that the sum of the shortest distances between a point and the plane is 
minimized. Then all four sample points are projected to this plane, hence all 
points are now certainly laying on one plane. The normal of the plane gives us 
the projection plane’s z-vector. The vectors Sul-Sll and Sur-Slr are averaged to 
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calculate the up-vector of the projection plane. Hence the orientation of the 
projection plane is specified. The origin (position) of the projection plane is 
calculated by intersecting the lines d1 and  d2 given by: 

  
d1=Sll+t (Sur-Slr ) and 
d2=Sul+t (Slr-Sul ). 

 
The size of the projection plane is calculated by averaging the length of the 
vectors given by: 
 

Sul-Sll, Sur-Slr (height) and  
Sur-Sul, Slr-Sll (width).   

 
Since the projection plane typically remains static for a given setup, the 
calibration of the projection plane usually has to be performed only once per 
setup. 
 
 
 

 

Figure 18 Parameters calculated during projection plane calibration. 

 

Calibration of eyepoint-position 
 
To determine the eye to tracker offset for both eyes, which implicitly also 
specifies the inter-pupillary distance of the user, we project the four markers  
of which we sampled the absolute location in tracker coordinates in the 
previous step  on the screen again. The user brings the tip of the stylus in 
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alignment with a displayed virtual marker and presses the button accordingly 
(Figure 19 and Figure 20 right). At the press of the button the position of the 
stylus is sampled as well as the position and orientation of the head-tracker. 
The procedure is repeated for each eye and eventually gives us the desired 
offset from the head-tracker for the left and right eye. 
  
For each measurement we now have: 
 

• head position 
• head rotation 
• stylus’ hotspot position 
• marker position 

 

The sampled hotspot position and the previously retrieved marker position 
define a line in space, which we transform into head-relative coordinates 
utilizing the simultaneously sampled head position and rotation. Due to this 
transformation we remove the influence of the user’s head motion between the 
four sampling steps, i.e. the user does not have to hold her head fixed at one 
position for this procedure. The four gathered lines are now used to determine 
the user’s eye positions relative to the head-tracker. Since in most cases the 
lines will not precisely intersect, we use an optimization procedure as we used 
in section 4.3.2. for the calculation of the eyepoint-position, resulting in an eye 
position with minimal distance to all measured lines. 
 

 

Figure 19  Eyepoint calibration for a projection set-up 

 
After starting the projection calibration application from the ‘calibration-suite’ 
menu the user can choose between ‘full calibration’ (step 1 and 2 will be 
performed) and ‘eye calibration’ (only step 2 will be executed). When choosing 
‘full calibration’ the first virtual marker will be displayed. Now the user has to 
touch the virtual marker with the pen’s hotspot and press the button of the pen, 
then the next marker will be displayed. After all four marker positions where 
measured the projection plane parameters are calculated. If the plane cannot be 
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optimized good enough, i.e. the residual is greater than a threshold value, the 
plane calibration has to be repeated. 
 
Having successfully completed step 1, step 2 is started automatically and the 
first marker is displayed again. The user has to align the tip of the pen with the 
center of the virtual marker. Two criteria for positioning the stylus during data 
acquisition have to be observed by the user to guarantee a valid sample of 
measurements: 
 

• the stylus should be much nearer to the user’s eye than to the marker on 
the screen 

• the user’s head should always point in the general direction of the screen 
center (not in the direction of the active marker), so that the angle 
between any two lines is maximized and hence a higher precision of the 
intersection is achieved. 

 
To guide the user to position the pen’s tip at the correct distance from the 
virtual marker and his eyes, the marker is colored differently indicating a ‘valid’ 
or ‘invalid’ distance, i.e. if the user may trigger the sampling now or not. 
Additionally text is shown on the display to tell the user what to do (e.g.: “The 
stylus’ tip is to near to the projection plane, move it closer to your eye”). The 
same is done to enforce great enough angles between the lines, i.e. the user is 
told to rotate his head either left or right and the marker’s color indicates 
whether the user struck the right pose. 
 
 

   

Figure 20 Calibrating the Virtual Table: projection plane calibration (left), eye 
position calibration (sighting along the stylus’ tip) (right). (For illustration 

purposes, the displayed marker has been enhanced.) 

 
After the user has acquired the data for all four marker positions the eyepoint is 
calculated as described above. If the upper limit for the shortest distance 
between each possible pair of lines is exceeded the user is prompted to repeat 
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the acquisition step, otherwise the whole procedure is repeated for the second 
eye.  
 
If a good registration is achieved the user just exits the projection device 
calibration application with the current registration staying active and may 
begin working with the Studierstube system. The registration (i.e. the camera 
parameters for left and right eye) is saved to a file and may be used as default 
registration of the display device setup the next time the Studierstube system is 
started. Since the parameters of the projection plane do not change, when the 
same setup is used again, usually only the eyepoint-calibration step (called step 
2 above) has to repeated on a per user basis to achieve good registration. 
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4.3. Registration of Tracker to 
World Coordinate System 

 
 
The next step in the proposed calibration method is the registration of the 
tracker system so that it corresponds to the selected world coordinate system, 
i.e. the determination of the transformation from tracker coordinate system to 
world coordinate system (Ttw). Per default the tracker and world coordinate 

system are identical. Thus, when e.g. using a typical magnetical tracker setup, 
the origin of the world coordinate system lies somewhere near the middle of the 
tracker emitter. The Studierstube system places its 3D-windows and other 
virtual interaction elements around the world origin. Hence for the sake of 
consistency between and usability of the various different possible setups of the 
Studierstube system the world origin should lie at or near the center of the 
users’ working volume (center of the tracker’s working volume), and not at 
some point forced by the utilized tracking system. 
 
 

 

Figure 21 A typical AR system setup, where the tracker emitter is placed on 
the side of the user’s working volume. In this case the desired origin of the 

world coordinate system is the center of the projection wall. 

 

The calibration process 
 
Previously the transformation Ttw was estimated and the appropriate tracker 

configuration files were altered manually, then the Studierstube system was 
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started and the result of the transformation could be tested. For every change of 
the transformation Ttw, one had to exit the Studierstube system, alter the 

configuration files again and then the Studierstube system was started again. In 
contrary to this rather tedious approach the proposed calibration procedure 
represents an interactive process, where the user can change the 
transformation Ttw at runtime and get immediate visual feedback how her 

changes affect the system. 
 
The principle of the procedure is quite simple: The user just uses the stylus to 
‘move around’ the world coordinate system, represented by a virtual object 
(coordinate axes), until it is placed at the desired position and orientation. The 
tracker to world transformation matrix Ttw is then given by: 

 
1−= wttw TT

= tw_oldtw TT

, if the world and tracker coordinate systems were identical before or 

, if a transformation (T1−
wtT tW_old) was applied previously. 

 
Since we know TWt, which is given by the transformation that was applied to the 
virtual coordinate axes by the user’s interaction, Ttw can be directly calculated 
from TWt by calculating its inverse. 

 

Integration into Studierstube using OpenTracker 
 
To incorporate the resulting transformation in the Studierstube system, the 
program has to change the currently used tracker parameters. Since 
Studierstube uses the OpenTracker framework as interface to all tracker data 
(see section 5.3), the transformation has to be included in the OpenTracker 
tree, which describes the actual tracker configuration at runtime. The 
transformation has to be applied to all tracker stations of the utilized tracking 
system. Hence for every StbSink node present in the tracker tree a transform 
node, which represents the calculated tracker to world transformation, has to 
be inserted as first child. The new configuration of the whole tracker framework 
is then stored in a file, so that it can be easily loaded the next time Studierstube 
is started. So after the registration of tracker to world coordinate system has 
been achieved, i.e. the desired transformation Ttw had been inserted in the 

tracker tree, all further tracker data fed into the Studierstube system by the 
OpenTracker framework will be relative to the interactively defined world 
coordinate system. 
 
Since all offsets retrieved in previous steps (section 4.1 and 4.2) are relative to a 
tracker sensor, they are not affected by the transformation Ttw The only 

parameters calculated previously, which are specified in absolute tracker 
coordinates, are those describing the projection plane for a projection system 
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(section 4.2.3). Hence the projection plane parameters are transformed into the 
world coordinate system, if the current setup utilizes a projection system. The 
recomputed values are also written back to the configuration file, which 
describes the virtual camera parameters, to save them for subsequent runs of 
Studierstube utilizing the current setup. 
 

HCI aspects:  “Modes of interaction” 
 
To fully utilize the interaction widgets provided by the Studierstube system, the 
display device (section 4.2) and the PIP (section 4.4) have to be calibrated. The 
user interface for this procedure provides support for application control 
utilizing the PIP. Alternatively the application can also be controlled via input 
from the keyboard. 
 
After starting the application from the ‘calibration-suite’ menu the user can see 
the virtual coordinate axes, which visualize the current origin and orientation of 
the world coordinate system. The user has the following options to position the 
virtual coordinate axes and thus specifying the world coordinate system (WCS): 
 

1. Snapping of WCS-origin to hotspot of stylus 
2. Automatic alignment of  WCS to projection plane  

(only for projection display setups) 
3. Direct (6DOF) manipulation of WCS’s position and orientation  
4. Direct (3DOF) manipulation of WCS’s position with fixed orientation 
5. Direct (3DOF) manipulation of WCS’s orientation with fixed position 
  

The user can choose a specific manipulation mode by either pressing a key on 
the keyboard or by pressing a virtual button displayed on the PIP.  
 
At the start of the process the virtual WCS may be out of reach of the user, e.g. 
when the WCS is identical to the tracker coordinate system, resulting in the 
WCS-origin being close to the tracker emitter, which may be mounted on the 
ceiling. Therefore mode 1 should be chosen, which lets the origin of the WCS 
snap immediately to the position of the stylus’ hotspot, when the button on the 
stylus is pressed. For projection-based displays, where an alignment of the WCS 
to the projection screen coordinate system is preferred mostly, the application 
provides the option to achieve this alignment automatically (mode 2).  
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Figure 22 The virtual coordinate system; the wire frame sphere indicates, that 
it currently follows the movement of the stylus. 

 
The user can also move the virtual WCS around arbitrarily using the stylus. The 
virtual WCS can easily be grabbed by moving the stylus within the bounding 
box of the virtual WCS, which is indicated by the appearance of a spherical wire 
frame around the object, then pressing and holding the stylus’ button (Figure 
22). The object follows every movement of the stylus until the pen’s button is 
released again. If either the position or orientation is already satisfactory (e.g. 
alignment of WCS with projection screen), it can be locked again by pressing 
the associated virtual button on the PIP or with a key press. Consequently the 
drag and drop mechanism described above changes only orientation or position 
of the virtual WCS. If the user is pleased with the alignment of the WCS, she 
may choose to apply it to the system. The user may change the transformation 
Ttw multiple times, until she is satisfied with the achieved result. Every change 

made to the WCS may also be undone step by step. After the user exits the 
application she can continue working with the Studierstube system. 
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4.4. Calibration of Props 
 
 
The last step of the proposed calibration method deals with the calibration of 
props. Props for the Studierstube system are defined as physical objects of 
which virtual representations need to exist in the system, either to be able to 
augment them or to use their virtual representation internally to e.g. calculate 
occlusions between real and virtual objects. A good static registration of all 
props is of paramount importance, since any misalignment between the 
physical object and its virtual representation results in a compromised 
augmentation as stated in section 2.  
 
There are two sorts of props: 
 

• Stationary props and 
• Tracked props  

 
Stationary props — e.g. desks, walls — are calibrated within the world 
coordinate system and cannot be moved without invalidating their registration.  
Tracked props — e.g. a pad, or a mock-up to be augmented and moved — are 
calibrated within the object’s tracker coordinate system instead of the absolute 
world coordinate system. Hence a tracked prop can be moved around and still 
stays registered. 
 

The calibration process 
 
For any prop to be calibrated, features on the object to be used as calibration 
points must be specified. These features may be corners or attached markers, 
which can easily and unambiguously be touched with the stylus’ tip. Hence a 
prerequisite for this calibration process, especially for the calibration of 
stationary props, is that all specified feature points must lie within the working 
volume of the utilized tracker system. The positions of these features have to be 
described in the virtual representation of the prop, allowing for inferring the 
position of the 
 

• stationary prop in the real world, i.e. the specified world coordinate 
system, (transformation TOW) 

• tracked prop relative to the prop’s tracker sensor coordinate system, 
(transformation TOTs) 

 
by an appropriate fitting algorithm. 
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Again the first step in the process is the acquisition of calibration data. The user 
just touches a feature point with the stylus’ tip and presses a button on the pen. 
When pressing the button the position of the stylus’ hotspot is sampled. When 
calibrating a tracked prop the position and orientation of the tracked prop’s 
sensor is measured additionally. This procedure is repeated for every defined 
feature point.  
 
The next step of this process is the determination of a viable geometric solution 
of the fitting problem, which is then used as starting value for an optimizing 
procedure. In the case of a tracked prop the sampled positions of the stylus’ 
hotspot hw are transformed from world coordinate system (WCS) to tracker 
sensor coordinate system (TSCS). Since we also sampled the translation tW  and 
orientation RWTs of the tracker sensor attached to the prop the pen’s tip in TSCS 

is given by: 
 

1−−= WTsWWTs )Rt(hh  

 
For every specified feature point we now have a corresponding 3D-point: 
 

• hTs  for tracked props (in TSCS) or 
• hw for stationary props (in WCS) 
 

which will be simply referred to as h, because the following calculations are 

similar for both cases.  
 
We need at least three feature points to be able to unambiguously calculate all 
degrees of freedom of the searched transformation TFH (from ‘feature-point’ 

(object) coordinate system to ‘hotspot’ (destination) coordinate system). To 
determine a preliminary transformation we take the first three feature points 
and calculate the normal nF of the plane these three points span. The rotation 
RFH1 is specified as the rotation needed to transform the normal of the feature 
point plane nF into the normal of the plane spanned by the corresponding 
sampling points nH (nH= nF RFH1). By transforming the vector from the first to 
the second feature point f2-f1 with the previously calculated rotation RFH1 we get 
(f2-f1)RFH1. The third degree of freedom of the rotational component of the 
transformation TFH is then determined by the rotation RFH2 needed to rotate (f2-
f1)RFH1 to h2-h1, the vector from the first to the second sampled position (h2-h1= 
(f2-f1)RFH1 RFH2). Hence the rotational part of the transformation TFH is given by: 

 
21RRR FHFHFH =  . 
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The translational part of TFH is then given by:  

 
)R(fh 11 FHFHt −=  

 
This preliminary solution is now fed to powell’s optimization algorithm, which 
optimizes the transformation in such a way that the RMS-error given by: 
 

∑
=

−=
n

1i

2

iin
1

RMSerror )( FHTfh  

is minimized.  
 
n is the number of samples 
fi  is the i-th feature point 
hi is the i-th position of the stylus’ hotspot   
TFH  is the transformation that is being optimized (from the prop’s own 

coordinate system, wherein the feature points are specified, to the 
destination coordinate system (TSCS or WCS), wherein the hotspot 
positions are specified)  

 
The resulting optimized transformation is then inserted as SoTransform node 
into the scene graph representing the prop’s virtual shape and saved to a file. 
 
 

HCI aspects 
 
Similar to many applications developed for the Studierstube system, the user 
can control the application by either pressing a specific key on the keyboard or 
by pressing a virtual button displayed on the PIP, which is of course the 
preferred interaction method. When speaking of  ‘pressing a button’ in the 
following text, it is used as abstraction from the specific interaction method, i.e. 
both methods can be utilized.  
 
After starting the application from the ‘calibration-suite’ menu the user can see 
the virtual representation of the prop specified first in the application’s 
configuration file. It is displayed centered on the origin of the world coordinate 
system. By specifying all props that should be calibrated in the configuration 
file, the whole process can be streamlined, because the user is able to choose a 
prop quickly from the set of specified props by pressing the ’next’ or ‘previous’ 
button. Alternatively the user might choose from a virtual file browser, which 
prop she wants to calibrate. But the props to be calibrated are known before the 
system is started and it is more convenient for the user to choose from a rather 
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small selection of props than browsing through many directories just to select a 
single object of interest.  
 
 

 
 

Figure 23 Calibration process for a prop 
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So after the user has chosen the prop she wants to calibrate, she presses the 
‘register’ button to start the actual calibration process (see Figure 23). The first 
feature point is marked on the virtual representation with a pulsing crosshair, 
to give the user a visual clue where it is located on the physical object (see 
Figure 27). The user can arbitrarily move around the virtual prop using the 
stylus, to get a better impression of the model or to uncover the currently 
marked feature point, which might be occluded by the virtual object itself. The 
virtual prop can easily be grabbed by moving the stylus within its bounding box, 
which is indicated by highlighting the prop, then pressing and holding the 
stylus’ button. The object then follows every movement of the stylus until the 
pen’s button is released again. When the user has identified the feature point on 
the physical object, he has to touch it with the stylus’ tip and press the pen’s 
button. Then the next feature point is marked on the virtual prop. If the user 
knows she missed the feature point or pressed the pen button accidentally she 
can repeat the sampling. 
 
After the user has acquired sampling data for all feature points the 
transformation is calculated and applied to the virtual representation of the 
prop. The user can now judge the quality of the achieved registration and 
choose to return to the prop selection stage with or without saving the result of 
the calibration process.  
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Chapter  5  

Implementation 

5.1. The Studierstube System - 
Implementation of the user interface 

 

5.1.1. Software architecture 
 
Studierstube’s [Schmalstieg00] software development environment is realized 
as a collection of C++ classes built on top of the Open Inventor (OIV) toolkit 
[Strauss92]. The rich graphical environment of OIV allows rapid prototyping of 
new interaction styles. The file format of OIV enables convenient scripting, 
overcoming many of the shortcomings of compiled languages without 
compromising performance. At the core OIV is an object-oriented scene graph 
storing both geometric information and active interaction objects. The 
implementation approach has been to extend OIV as needed, while staying 
within OIV’s strong design philosophy [Wernecke94]. This has led to the 
development of two intertwined components: A toolkit of extensions of the OIV 
class hierarchy—mostly interaction widgets capable of responding to 3D 
events—and a runtime framework which provides the necessary environment 
for Studierstube applications to execute. 
 
Together these components form a well-defined application programmer’s 
interface (API), which extends the OIV API, and also offers a convenient 
programming model to the application programmer (see section 5.1.3). 
 
Applications are written and compiled as separate shared objects, and 
dynamically loaded into the runtime framework. A safeguard mechanism 
makes sure that only one instance of each application’s code is loaded into the 
system at any time. By using this dynamic loading mechanism, Studierstube 
supports multi-tasking of different applications (e.g. a medical visualization 
and a 3D modeler) and also a multiple document interface (MDI). Depending 
on the semantics of the associated application, ownership of a context may or 
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may not privilege a user to perform certain operations on the information (such 
as object deletion).  
 

PIP sheets 
 
Studierstube applications are controlled either via direct manipulation of the 
data presented in 3D-windows, or via a mixture of 2D and 3D widgets on the 
PIP (Figure 24). A set of controls on the PIP— a PIP sheet—is implemented as 
an OIV scene graph composed primarily of Studierstube interaction widgets 
(such as buttons, etc.). However, the scene graph may also contain geometries 
(e.g., 2D and 3D icons) that convey the user interface state or can be used 
merely as decoration. Every type of context defines a PIP sheet template, a kind 
of application resource. For every context and user, a separate PIP sheet is 
instantiated. Each interaction widget on the PIP sheet can therefore have a 
separate state. For example, every user for every context can set the current 
paint color in an artistic spraying application individually. However, all users 
and/or all contexts can also share widgets. Consequently, Studierstube’s 3D 
event routing involves a kind of multiplexer between windows and users’ PIP 
sheets. 
 
 

5.1.2. Hardware support 
 

Displays 
 
Studierstube is intended as an application framework that allows the use of a 
variety of displays, including projection based devices and HMDs. There are 
several ways of determining camera position, creating stereo images, setting a 
video mode etc. An OIV compatible viewer with a plug-in architecture for 
camera control and display mode was implemented to meet these 
requirements. The following display modes are supported:  
 

• Field sequential stereo: Images for left/right eye output in consecutive 
frames 

• Line interleaved stereo: Images for left/right eye occupy odd/even lines 
in a single frame 

• Dual screen: Images for left/right eye are output on two different 
channels 

• Mono: The same image is presented to both eyes 
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The following camera control modes are supported: 
 

• Tracked display: Viewpoint and display surface are moving together and 
are tracked (usually HMD) 

• Tracked head: A user’s viewpoint (head) is tracked, but the display 
surface is fixed (such as a workbench or projection wall) 

• Desktop: The viewpoint is either assumed stationary, or can be 
manipulated with a mouse 

 
This approach, together with a general off-axis camera implementation (see 
section 4.2.1), allows runtime configuration of almost any available display 
hardware. 
 
Tracking A software system like Studierstube that works in a heterogeneous 
distributed infrastructure and is used in several research labs with a variety of 
tracking devices requires an abstract tracking interface. The approach taken by 
most commercial software toolkits is to implement a device driver model, 
thereby providing an abstract interface to the tracking devices, while hiding 
hardware dependent code inside the supplied device drivers. While such a 
model is certainly superior to hard-coded device support, it falls short for 
various requirements:  
 
Configurability: Typical setups for tracking in virtual environments are very 
similar in the basic components, but differ in essential details such as the 
placement of tracker sources or the number and arrangement of sensors. The 
architecture allows the configuration of all of those parameters through simple 
scripting mechanisms. 
 
Filtering: There are many necessary configuration options that can be 
characterized as filters, i.e., modifications of the original data. Examples 
include geometric transformations of filter data, prediction, distortion 
compensation, and sensor fusion from different sources. 
 
Distributed execution and decoupled simulation: Processing of tracker data can 
become computationally intensive, and it should therefore be possible to 
distribute this work over multiple CPUs. Moreover, tracker data should be 
simultaneously available to multiple users in a network. This can be achieved 
by implementing the tracking system as a loose ensemble of communicating 
processes, some running as service processes on dedicated hosts that share the 
computational load and distribute the available data via unicast and multicast 
mechanisms, thereby implementing a decoupled simulation scheme. 
 

68 



Extensibility: As a research system, Studierstube is frequently extended with 
new experimental features. A modular, object-oriented architecture allows the 
rapid development of new features and uses them together with existing ones. 
The latest version of tracking support in Studierstube is implemented as an 
object-oriented framework called OpenTracker [Reitmayr00] (see section 5.3), 
which is available as open source. It is based on a graph structure composed of 
linked nodes: source nodes deliver tracker data, sink nodes consume data for 
further processing (e. g. to set a viewpoint), while intermediate nodes act as 
filters. By adding new types of nodes, the system can easily be extended. Nodes 
can reside on different hosts and propagate data over a network for decoupled 
simulation. By using an XML [Bray00] description of the graph, standard XML 
tools can be applied to author, compile, document, and script the OpenTracker 
architecture. 
 

5.1.3. Application programmer’s interface 
 
The Studierstube API imposes a certain programming model on applications, 
which is embedded in a foundation class, from which all Studierstube 
applications are derived. By overloading certain polymorphic methods of the 
foundation class, a programmer can customize the behavior of the application. 
The structure imposed by the foundation class supports multiple contexts. 
Context nodes are implemented as OIV kit classes. Kits are special nodes that 
can store both fields, i.e., simple attributes, and child nodes, both of which will 
be considered part of the scene graph. Default parts of every context are at least 
one 3D-window node, which itself is an OIV kit and contains the context’s 
“client area” scene graph, and a set of PIP sheets (one for each participating 
user). In other words, data, representation, and application are all embedded in 
a single scene graph, which can be conveniently managed by the Studierstube 
framework. 
 
To create a useful application with all the properties mentioned above, a 
programmer needs only create a subclass of the foundation class and overload 
the 3D-window and PIP sheet creation methods to return custom scene graphs. 
Typically, most of the remaining application code will consist of callback 
methods responding to certain 3D events such as a button press or a 3D direct 
manipulation event, although the programmer has the freedom to use anything 
that the OIV and Studierstube toolkits offer.  
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5.2. Human-Computer Interaction 
(HCI) aspects 

 
 
When having the goal of providing easy to handle tasks for calibrating the AR 
system, which [Azuma97b] calls a “desirable result”, the aspect of providing 
adequate human-computer interaction is of paramount importance to reaching 
it. [Szalavári99] proposes basic design guidelines for AR interfaces, which led to 
the design of the PIP interface (see section 5.1.1), which now is the standard 
user interface provided by Studierstube. 
 
Where applicable the PIP interface is used for controlling the different 
calibration applications. Since the PIP interface is only useful, when all 
components (pen, panel) and the display device are calibrated, i.e. the 
Studierstube 3D workspace is already setup and calibrated, it obviously cannot 
be used for the display device and stylus calibration procedures. For these 
calibration steps a simple 2D menu interface was created (Figure 25). The 
navigation through the menu items can be controlled via keyboard or the 
stylus’s buttons. By pressing the secondary button of the stylus, the user can 
cycle through the menu items. The primary button triggers the action 
associated with the currently selected item. The control via keyboard works 
similarly, with the exception that the menus can be browsed up and down. For 
expert users additional keyboard commands – so-called hotkeys – are 
implemented, which trigger their associated action by a single key press.  
 
Since we implemented a whole suite of calibration procedures, there are two 
levels of interaction that have to be considered.  
 
The first is the navigation in between calibration processes. The interface that is 
provided for the user to choose the appropriate calibration task should be 
adaptable to the system’s registration status and the amount of control the user 
wants over the system level task, which is calibration. The following 
requirements have to be considered for the design of the user interface.  
  

• To calibrate a new hardware setup the different calibration steps have to 
be performed in a predefined order. 

• When the initial calibration was performed, only the display calibration 
has to be performed for each user. 

• It must also be possible to randomly select the task, which the user 
wants to perform, e.g. if additional props have to be integrated in the 
system. 
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The second is the navigation through a particular calibration procedure. When 
looking at this type of interaction, it is important not only to tell the user what 
tasks she has to perform, but also guide the user, so that the result of the 
interaction, mostly sampling of tracker data, meets certain criteria. Therefore 
we implemented methods to instruct and guide the user while performing a 
calibration task.  
 
 

5.2.1. Paths through the Calibration Process 
 
The starting point for each calibration process is an application called 
calibration suite. This application manages all calibration tasks. It can be 
configured to run in different modes: 
 

• New setup guide 
 
The user is automatically guided through the whole setup process, and 
performs the necessary tasks in order. The calibration suite starts the 
particular calibration applications automatically and in order. Hence the 
user is only navigating through each necessary calibration task and is not 
concerned with choosing the application himself. For a typical HMD 
setup, the order of applications is as follows: 

 
o Stylus calibration:  

(only once for a particular system setup) 
o HMD calibration:  

(ideally for every user “entering” the AR environment) 
o Tracker to World coordinate registration 

(typically only once for a particular system setup) 
o Registration of the PIP 

(only once for a particular system setup) 
 

• Automatic display calibration 
 
After the initial calibration of a specific hardware setup is completed, the 
calibration suite switches to this mode. Every time the calibration suite is 
started, preferably when the system is started, the current user is asked 
to perform the display calibration task, to ensure proper display 
registration for every user. 
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• Expert mode 
 
When this mode is activated, the user can select any task in any order. 
Hence she has full control over the calibration suite. To produce useful 
results the user has to know the current system setups’ calibration 
status, to determine if the particular task chosen is dependent on 
another calibration task. 

 
 

 
 

Figure 24 Screenshot of the calibration suite’s PIP sheet in “expert mode”. 
 

 

 

Figure 25 Screenshot of the 2D menu of the calibration suite when in “expert 
mode”. 
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5.2.2. User guidance 
 
 
To lead the user through the calibration process she is provided with the 
following types of information:  
  

• Instructions, what step has to be performed next 
• Status information for the currently running calibration task 
• Visual feedback of meeting/not meeting certain input constraints and 
• Instructions, what has to be done, to meet a certain input constraint  
 

Instructions and status information are mostly displayed as simple 2D text on 
the utilized display (Figure 26). A scene object node for 2D text is part of the 
implementation of OIV. But for the sake of a more convenient way to setup and 
parameterize the scene sub-graph needed to display a message, we 
implemented a new node kit, called SoMessageKit. It can be easily 
parameterized within an IV-file or the application itself, e.g. to specify color, 
position, font style of the message, without having to construct the message 
scene graph explicitly. 
 
 

 

Figure 26 This screenshot shows an example of the provided status 
information during the stylus calibration procedure. 

 
For the prop calibration the visualization of the feature point, which should be 
sampled next is an example of a non-text based instruction. The next feature 
point that the user has to sample  – by placing the tip of the stylus on a 
specified point on the real object – is indicated by a pulsing 3D crosshair on the 
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visualization of the corresponding virtual object displayed on the utilized 
display (Figure 27). Hence the user gets direct visual context specific 
information. 
 
 

 

Figure 27 Screenshot of the visualization of the feature point (in the middle of 
the table), which should be sampled next during the prop calibration process. 

 
 

 

Figure 28 This screenshot shows the use of 2D text and visual feedback. 

 
 
Especially during the display device registration procedures, the visual 
feedback, which indicates the validity of the current stylus position, i.e. if the 
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current position meets the predefined constraint (e.g. angular or positional), is 
very helpful. Figure 28 shows a screenshot taken during an HMD calibration. 
The white cross hair indicates, that the current relative position of the stylus in 
respect to the HMD does not allow the acquisition of a valid sample. Hence the 
2D text is used to instruct the user, what to do to meet the criteria. When the 
cross hair turns red, the user gets the visual feedback that he now may trigger 
the sampling. 
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5.3. OpenTracker - An XML based Open 
Architecture for Reconfigurable 
Tracking 

 
 
Tracking is an indispensable requirement for all kinds of virtual reality (VR) 
and augmented reality (AR) systems. OpenTracker is a tracking software 
system that allows mixing and matching of different features, as well as simple 
creation and maintenance of complex tracker configurations. 
 
OpenTracker has the following characteristics: 
 

• An object-oriented approach to an extensive set of sensor access, 
filtering, fusion, and state transformation operations 

• Behavior specification by constructing graphs of tracking objects (similar 
in spirit to scene graphs or event cascades) from user defined tracker 
configuration files 

• Distributed simulation by network transfer of tracker state at any point 
in the graph structure  

• Decoupled simulation by transparent multi-threading and networking 
• A software engineering approach based on XML [Bray00], which allows 

to use many generic tools for development, documentation, and 
configuration. 

 

The current scope of OpenTracker is traditional VR applications. It thus deals 
primarily with position and orientation information (six degrees of freedom, 
6DOF), although some other event types such as button events and 2D position 
information (such as from a desktop mouse) are supported.  
 
The software is designed as a class hierarchy of tracker objects, implemented in 
C++. Every tracker object defines an interface that can answer a query for the 
current position and orientation as well as the state of the associated buttons. 
At runtime, these tracker objects are assembled into a directed acyclic graph 
(DAG)- or frequently, a set of DAGs - according to the instructions in a user-
supplied configuration file written in XML. We distinguish source objects, 
which are leaves in the graph and receive their data values from external 
sources, filter objects, which are intermediate nodes and modify the values 
received from their child nodes, and sink objects, which propagate their data 
values received from their child nodes to external outputs. 
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Source objects 
 
Most source objects encapsulate a device driver that directly accesses a 
particular tracking device, such as a Polhemus or Ascension tracker connected 
to a serial interface. Other source objects form bridges to complex self-
contained systems, such as the video tracking library from ARToolKit [Kato99]. 
Yet other source objects emulate tracker via the keyboard or simply respond 
with constant values (useful for development and debugging) or access network 
data. Some source objects have a multi-threaded execution model to implement 
a decoupled simulation model (e. g., when blocking I/O must be used).  
 

Filter objects 
 
Filter objects have one or more children. When queried, filter objects pass on 
the query to determine the state of their children, and then compute their own 
state based on the returned data. A non-exhaustive list of filters includes: 

_ 

 

• Transformation filters perform geometric transformations of their 
children’s values. These include pre- and post-transformations and may 
be static or depend on data values received from other children. The 
latter allows modifying the filtered state relative to another tracker state. 

• Prediction filters allow to partially compensate for lag in the measuring 
and processing tracker data. 

• Noise and smoothing filters are handy to deal with inherent inaccuracies 
of trackers. 

• … 
 

Sink objects 
 

Sink objects are similar to source objects but distribute data rather than receive 
it. They include output to network multicast groups, debugging output to a user 
interface or shared memory to integrate OpenTracker as a library into other 
applications.  
 
The presence of sink objects drives the evaluation model of OpenTracker. All 
sink objects in a tracker object graph are registered upon creation, and their 
respective state evaluation method is triggered periodically. [Reitmayr00] 
found this to be more effective than a pure client-driven lazy evaluation 
scheme, as it avoids potentially costly recomputation of intermediate values for 
every invocation. 
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Software engineering with XML 
 
XML, the extensible markup language, is the emerging standard for web-based 
applications and software systems [Bray00]. XML is a markup definition 
language that allows defining hierarchical markup languages with so-called 
document type definitions (DTD). With the appropriate DTD, standard XML 
tools can be used to conveniently edit, type check, parse, and transform any 
XML file. 
 
Thus, providing a simple DTD for describing hierarchies of tracker objects 
opens access to software libraries and tools that simplify several steps of the 
development cycle: 

_ 

• A DTD editor can be used to design and maintain the DTD. 
• An XML parser enforces content format on the tracker configuration file 

while building the corresponding structure in memory, thus 
automatically performing many of the consistency checks that have 
otherwise to be hand-coded. 

• A convenient XML editor with a graphical user interface allows the end 
user to design the tracker configuration without having to master the 
syntax. 

• Using the extendible style language (XSL) [Adler01], automatic textual 
and even graphical documentation can be created from a tracker 
configuration file. 

 
Markup languages are generally used to annotate textual documents with 
structural information. Thus a general XML document consists of text grouped 
and structured with tags. Markup languages defined in XML consist of 
elements, essentially expressed as tags, and a structural model (the content 
model) of the possible ways these elements may be nested. Moreover, elements 
are annotated by name - value pairs called attributes. 
OpenTracker maps elements to objects and attributes to members of these 
objects and does not use any textual content but purely relies on the content 
model provided by the DTD. An open source XML parser [Apache99] builds a 
tree of elements representing the given configuration file. OpenTracker walks 
the tree and creates a new object for each element based on the elements name. 
The string values of the attributes are parsed according to the objects class and 
the corresponding members are set. Attributes typically describe such data as 
the parameters of a transformation. 
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Restrictions on the number of children and the possible types are described in 
the DTD. Source objects typically do not have any children objects as they rely 
on data from external sources to compute their own data. A number of filter 
objects get the value of a single child object, transform it and pass it on. 
Confidence filters use any number of children to compute their data value. The 
data of the different children enters in the same way into the computation. 
 
In another case different children objects influence the computation in different 
ways. Dynamical transformations, for example, are parameterized by the value 
of another object and thus use the data value of the object to be transformed 
differently from the data of the parameterizing object. This is handled by using 
wrapper elements. An object requiring marked children is mapped to an 
element that may only have certain marker elements as children. These marker 
elements in turn may have any other element as child again. The marker 
elements are mapped to marker objects that perform no special function and 
return the value of their child object. They can be queried by the filter object to 
derive how to use this value. 
 
The following XML code describes a simple Studierstube tracker setup. 
NetworkSource nodes receive data, in this case tracker data from an ART 
optical tracking system, via multicast and StbSink nodes, representing the 
interface between OpenTracker and Studierstube, update the internal 
Studierstube tracking state. Station 1 represents the stylus tracking station. 
Stations 2 and 3 are used to track the PIP respectively the HMD. 
 
 
<!DOCTYPE OpenTracker SYSTEM "opentracker.dtd"> 

<OpenTracker> 

    <configuration> 

        <NetworkSourceConfig /> 

    </configuration> 

    <StbSink event="off" station="1"> 

        <NetworkSource  number="1"  

     multicast-address="224.100.200.102" 

     port="12345" /> 

    </StbSink> 

    <StbSink event="off" station="2"> 

        <NetworkSource  number="2"  

    multicast-address="224.100.200.102" 

     port="12345" /> 

    </StbSink> 
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    <StbSink event="off" station="3"> 

        <NetworkSource  number="3"  

    multicast-address="224.100.200.102" 

     port="12345" /> 

    </StbSink> 

</OpenTracker> 

 
 
 
After the stylus calibration is finished, an EventVirtualPositionTransform node 
is inserted into the XML document, to store the calculated stylus offset and 
apply it to the tracker data coming from the station attached to the stylus. The 
used EventVirtualPositionTransform implements an offset in the child's affine 
space. That is the configured translation is post transformed with the child's 
position and orientation values. This effectively offsets the tracked point with 
respect to the tracked affine base, i.e. in this case, the origin of the tracker 
sensor is moved into the tip of the stylus. 
 
 
… 

<StbSink event="off" station="1"> 

   <EventVirtualPositionTransform translation="-0.063 -0.017 -0.009"> 

<NetworkSource  number="1"  

     multicast-address="224.100.200.102" 

    port="12345" /> 

   </EventVirtualPositionTransform> 

</StbSink> 

… 

 
 
 
After the registration of tracker to world coordinate is completed, the resulting 
transformation has to be applied to the whole tracker reference frame. Hence 
all data fed into the Studierstube framework – in this case all data coming from 
the tracker stations (NetworkSource) specified within the configuration file – 
has to be transformed. The EventTransform node transforms the data by 
applying a rotation, scale and translation to the child's data as post 
transformations. The transformation itself is fixed and set with the elements 
attributes. Only the rotational part acts on the child's orientation data. 
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<!DOCTYPE OpenTracker SYSTEM "opentracker.dtd"> 

<OpenTracker> 

<configuration> 

<NetworkSourceConfig /> 

</configuration> 

<StbSink event="off" station="1"> 

<EventTransform scale="1 1 1" 

  rotation="0.0348 0.0523 -0.0316 0.998" 

  translation="-0.773995 0.538000 0.000000" 

  rotationtype="quaternion"> 

<EventVirtualPositionTransform  

 translation="-0.063 -0.017 -0.009"> 

<NetworkSource number="1"  

  multicast-address="224.100.200.102"  

  port="12345" /> 

</EventVirtualPositionTransform> 

</EventTransform> 

</StbSink> 

<StbSink event="off" station="2"> 

<EventTransform scale="1 1 1" 

  rotation="0.0348 0.0523 -0.0316 0.998" 

  translation="-0.773995 0.538000 0.000000" 

  rotationtype="quaternion"> 

  <NetworkSource number="2"  

    multicast-address="224.100.200.102"  

    port="12345" /> 

</EventTransform> 

</StbSink> 

<StbSink event="off" station="3"> 

<EventTransform scale="1 1 1" 

  rotation="0.0348 0.0523 -0.0316 0.998" 

  translation="-0.773995 0.538000 0.000000" 

  rotationtype="quaternion"> 

<NetworkSource number="3"  

 multicast-address="224.100.200.102" 

 port="12345" /> 

</EventTransform> 

</StbSink> 

</OpenTracker> 
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5.4. Minimizing Functions - 
Direction Set (Powell’s) Methods 
in Multidimensions 

 
 
For many calibration tasks, the strategy to obtain good results is to find a rather 
good initial solution for the parameters by taking into account the known 
geometrical constraints (e.g. see section 4.2.2. - Calibrating See-Through Head-
Mounted Displays), and then optimizing the desired parameters, so that the 
function calculating the registration error with a given set of parameters is 
minimized. Hence we have to use multidimensional minimization, which 
means finding the minimum of a function of more than one independent 
variable.  
 

Minimization along a line in N-dimensional space 
 
We know how to minimize a function of one variable (see [Press88] for further 
reference). If we start at a point P in N-dimensional space, and proceed from 
there in some vector direction n, then any function of N variables f (P) can be 
minimized along the line n by a one-dimensional method. One can dream up 

various multidimensional minimization methods that consist of sequences of 
such line minimizations. Different methods will differ only by how, at each 
stage, they choose the next direction n to try. All such methods presume the 

existence of a “black-box” sub-algorithm, which we might call linmin, whose 
definition can be taken as: 
 

linmin: Given as input the vectors P and n, and the 
function f, find the scalar λ that minimizes f (P+ λn). 

Replace P by P + λn. Replace n by λn. Done. 
 
For most of our calibration procedures, calculation of the gradient is out of the 
question, hence Powell’s minimization method, which falls under the above 
stated general schema of successive line minimizations, and whose choice of 
successive directions does not involve explicit computation of the function’s 
gradient is the method perfectly fitting our problem. 
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Multidimensional minimization 
 
You might first think of this simple method: Take the unit vectors e1, e2,…eN  as a 

set of directions. Using linmin, move along the first direction to its minimum, 
then from there along the second direction to its minimum, and so on, cycling 
through the whole set of directions as many times as necessary, until the 
function stops decreasing.  
 
This simple method is actually not too bad for many functions. Even more 
interesting is why it is bad, i.e. very inefficient, for some other functions. 
Consider a function of two dimensions whose contour map (level lines) 
happens to define a long, narrow valley at some angle to the coordinate basis 
vectors. Then the only way “down the length of the valley” going along the basis 
vectors at each stage is by a series of many tiny steps. More generally, in N 
dimensions, if the function’s second derivatives are much larger in magnitude 
in some directions than in others, then many cycles through all N basis vectors 
will be required in order to get anywhere. This condition is not all that unusual; 
according to Murphy’s Law, you should count on it.  
 
Obviously what we need is a better set of directions than the ei’s. All direction 

set methods consist of prescriptions for updating the set of directions as the 
method proceeds, attempting to come up with a set which either (i) includes 
some very good directions that will take us far along narrow valleys, or else 
(more subtly) (ii) includes some number of “non-interfering” directions with 
the special property that minimization along one is not “spoiled” by subsequent 
minimization along another, so that interminable cycling through the set of 
directions can be avoided.  
 
 

Conjugate Directions 
 
Suppose that we have moved along some direction u to a minimum and now 
propose to move along some new direction v. The condition that motion along v 
not spoils our minimization along u is just that the gradient stays perpendicular 
to u, i.e., that the change in the gradient be perpendicular to u. If not then there 
would still be a nonzero directional derivative along u. 

 
When this condition holds for two vectors u and v, they are said to be 

conjugate. When the relation holds pair wise for all members of a set of vectors, 
they are said to be a conjugate set. If you do successive line minimization of a 
function along a conjugate set of directions, then you don’t need to redo any of 
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those directions (unless, of course, you spoil things by minimizing along a 
direction that they are not conjugate to). 
 
A triumph for a direction set method is to come up with a set of N linearly 
independent, mutually conjugate directions. Then, one pass of N line 

minimizations will put it exactly at the minimum of a quadratic form. For 
functions f that are not exactly quadratic forms, it won’t be exactly at the 
minimum; but repeated cycles of N line minimizations will in due course 

converge quadratically to the minimum. 
 
 

Powell’s Quadratically Convergent Method 
 
Powell first discovered a direction set method that does produce N mutually 
conjugate directions. Here is how it goes: Initialize the set of directions ui to the 
basis vectors, 
 

ui = ei     i = 1, …, N  

 
Now repeat the following sequence of steps (“basic procedure”) until your 
function stops decreasing: 
 
• Save your starting position as P0. 
• For i = 1, …, N, move Pi-1 to the minimum along direction ui and call this 

point Pi. 
• For i = 1, …, N - 1, set ui ←  ui+1. 
• Set un ←PN - P0. 
• Move PN to the minimum along direction un and call this point P0. 

 
Powell, in 1964, showed that, for a quadratic form, k iterations of the above 
basic procedure produce a set of directions ui whose last k members are 
mutually conjugate. Therefore, N iterations of the basic procedure, amounting 
to N (N + 1) line minimizations in all, will exactly minimize a quadratic form 

[Brent73]. Unfortunately, there is a problem with Powell’s quadratically 
convergent algorithm. The procedure of throwing away, at each stage, u1 in 
favor of PN - P0 tends to produce sets of directions that “fold up on each other” 

and become linearly dependent. Once this happens, then the procedure finds 
the minimum of the function f only over a subspace of the full N -dimensional 

case; in other words, it gives the wrong answer.  
 
To fix up the problem of linear dependence in Powell’s algorithm you can give 
up the property of quadratic convergence in favor of a more heuristic scheme 
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(due to Powell), which tries to find a few good directions along narrow valleys 
instead of N necessarily conjugate directions. This is the method that was 

implemented by [Press88], which we use for our optimization problem. 
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Chapter  6  

Results and Conclusion 

6.0. Tracking System 
 

Prerequisite:  Precise tracking system, with linear behavior  
over the whole working volume. 

 
The calibration procedures described in the previous chapters were all tested 
and evaluated with an optical tracker system called DTrack, which is produced 
by the company Advanced Realtime Tracking [Art01]. This system was chosen 
for the evaluation of the calibration procedures because it features linear 
behavior over the whole working volume, high update rates of up to 60 Hz, 
small system lag of about 20-40 ms, and high overall precision. The 
manufacturer gives the following example for the accuracy of a 4 Camera 
tracking system, which resembles our test setup: 
 
In this setup a central measurement volume is defined as that part of the total 
measurement volume that is seen by all four cameras simultaneously and that 
covers most of the tracked persons movements. A typical result for the tracking 
of a person’s head position and orientation (the person is wearing a head 
mounted display) is given in the table below:  

 
Possible accuracy  (conditions like 
described below, ideal measurement): 

Target 
position 

Target 
orientation 

Accuracy absolute 
(RMS over central measurement volume) 

250 µm 0.12 deg 

Repeatability 
(standard deviation) 

60 µm 0.03 deg 

Maximum error 
(calculated, in central measurement volume) 

900 µm 0.4 deg 

Noise 30 µm 0.015 deg 

Table 1 Accuracy possible with the DTrack optical tracking system. 
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The following conditions apply: 
 

• camera position: in the 4 upper corners of a cube, ca. 6m x 6m x 4m 
• rigid body: 5 spherical markers of 30 mm diameter 
• ca. 200 mm size of the rigid body 
• central measurement volume: cube of ca. 3.5m x 3.5m x 1.5m, located in 

the center of the 6x6x4m-cube and in 1m height above the floor 
• ideal measurement: target in central measurement volume, seen by all 

tracking cameras, no occlusions 
     
 
 

6.1. Test setup and evaluation of  
stylus calibration 

 
 
The stylus calibration procedure was tested with the ART optical tracker. A 
standard target was mounted on a stylus (Figure 29) with a rather sharp tip, so 
that the tip would not easily move from its fixed position on a table.  
 
 

 

Figure 29  
The stylus with 

mounted target for 
optical tracking. 

 

Figure 30 
Point cloud sampled during the stylus calibration 

procedure. 

 
 
 
The procedure was repeated five times. For each run of the procedure 500 or 
more samples were taken. The sample filter, which imposes a minimum 
distance between any two samples, was set to 5 mm. This particular 
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combination of settings forces the user to cover a great portion of the part of the 
sphere she can cover within the given physical limits (Figure 30). The average 
acquisition time was less than 30 seconds. 
 
The standard deviation within one calibration is about 6 mm on average. The 
metric for the standard deviation is the distance between the calculated 
position of the hotspot for one 6DOF sample we took, i.e. the optimized offset is 
transformed from stylus space to world space by the sampled translation and 
rotation, and the average of all calculated positions of the hotspot, i.e. the 
“mean” hotspot. Figure 31 shows the error distribution from two different 
views. The sphere in the center of the two pictures depicts the “mean” hotspot 
of the stylus. The point cloud around the “mean” hotspot visualizes the “real” 
hotspots for each taken sample. The central sphere has a diameter of 1 mm, 
which is also the scale of the ruler. 
 
 

 
 

Figure 31 Distribution of hotspot positions calculated from optimized offset 
and sampled positions/orientations depicted from two different viewing angles. 

 
 

The standard deviation of the offsets vectors we retrieved from the five test runs 
was 1.354 mm and the standard deviation of the length of these offset vectors of 
1.202 mm was in the same league. This means that we get a very good result for 
repeatability of the stylus calibration. A test for the accuracy of the resulting 
offset vector was performed, by activating the calculated offset vector, i.e. the 
position that is associated with the stylus and delivered to the Studierstube 
system by the OpenTracker framework now indicates the actual position of the 
stylus’ tip. We now performed the same task as for the calibration itself, i.e. 
moving the stylus around the steady stylus’ tip. The sampled data is shown in 
Figure 32. Ideally all samples should converge in one point, since the stylus’ tip 
is supposed to be steady. What we see is a small point cloud, which gets rather 
dense around the calculated mean of all sampled points. The standard 
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deviation of 1.288 mm confirms this observation and shows the good accuracy 
of the retrieved styluses offset. 
 

 

 
 

Figure 32 Distribution of sampled hotspot positions after applied registration. 
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6.2. Test setup and evaluation of HMD 
calibration 

 
 
For the test setup of the HMD calibration procedure we used the 
aforementioned ART optical tracking system with four cameras. One rigid body 
was mounted on the HMD and a second was fixed to the stylus.  
 
The user was guided by the distance constraint described in section 4.2.2, 
which indicated the right distance between the stylus hotspot and the head 
tracker (about 80 cm for ‘far’ markers and 35 cm for ’near’ markers). The error 
threshold for the procedure was set to 0.75% of the display resolution for the 
maximum RMS error in image space. For the HMD we used, which has a 
resolution of 800 by 600 pixels and a horizontal FOV of about 32 degrees, this 
means that we tolerate a RMS horizontal angular error of 0.24 degrees. This 
translates to a positional error of 2.9 mm at about arms length away from the 
user, which also marks the border of the ideal working volume for this 
calibration method. Since only samples from within the volume, limited by the 
user’s arm length, are taken into account when calculating the viewing 
parameters, the registration is best within this volume. 
 
 

  
 

Figure 33  For better stability, the HMD is mounted in a helmet; the rigid 
body tracked by the optical tracker is mounted on the helmet (left). The user 

aligns the hotspot of the stylus with the virtual marker displayed via the HMD 
(right). 
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Since the acquisition of the samples and the calculation of the viewing 
parameters for each eye are independent, the user had to repeat only the 
procedure for the eye, for which no registration within the given threshold was 
possible. The time it took on average to calibrate one eye (eight markers have to 
be aligned with the stylus hotspot) was about one minute, translating to a time 
of about two minutes for the whole calibration procedure, including the 
calibration steps that had to be repeated. The computational time for the 
calculation and optimization of the viewing parameters of fewer than one 
second seems not relevant, when looking at the whole procedure. 
 
For the evaluation of the quality of the registration we calculated the RMS error 
in image space, which also served as threshold parameter, as mentioned above. 
So we calculated the distances between the known positions of the virtual 
markers in image space (reference points) and the sampled 3D positions 
associated with these markers projected to image space using the calculated 
viewing parameters (the resulting registration). An example is given in Figure 
34.  Figure 35 shows the relative distances (errors) between sampled points and 
reference points in image space. As stated in chapter 4.2.2 we perform two 
optimization steps. The first takes all sampled positions into account, whereas 
the second discards the two samples which show the largest error. Since right 
and left eye calibrations are independent, we took the data from all 10 
calibrations (left and right combined) to compile the following table.  
 
 
 Worst 

maximum 

single 

error 

Best 

maximum 

single 

error 

Average 

maximum 

single 

error 

Worst 

RMS 

error 

Best  

RMS 

error 

Average 

RMS 

error 

After 1st 

optimization 
2.645 0.640 1.579  1.468 0.512 0.992 

After 2nd 

optimization 
1.136 0.290 0.686 0.746 0.208 0.483 

Table 2 Comparison of single and RMS error for 1st and 2nd optimization step. 
The errors are given in percentage of image space resolution. 

 
What we see in Table 2 is that after the second optimization step the errors are 
reduced by about 50%. The results achieved by each single run of the 
calibration procedure show quite large divergences. This is of course due to the 
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fact that we rely heavily on the user input data. But by imposing the 
aforementioned threshold, we nevertheless achieve an average RMS error of 
0.48%, which translates to an average angular error of 0.155 degrees or a 
positional error of 1.9 mm at about arms length away from the user.  
 
We also compared the position of the virtual and the physical tip of the stylus 
while wearing the registered HMD, which is also described in section 4.2.2 as 
“visual control of the achieved registration”. Thereby we found that this 
practical experiment confirms the above-discussed numerical results, which 
basically only measure the ability of the algorithm to find a good solution for 
the provided set of data samples, though it is hardly possible to exactly quantify 
the real registration error.  
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Figure 34 Typical distribution of the sampled 3D points after they have been 
projected onto the image plane using the viewing parameters calculated during 

the 1st and 2nd optimization step. (Note: The lines are used for better 
visualization of the positions of the projected sample points.) 

 
 
The first real test for the accuracy this calibration procedure can achieve will be 
the Augmented Reality Aided Surgery (ARAS) project. This project’s goal is to 
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display 3D pre-operative data for the surgeon via HMD in the operating 
theater. Therefore a quick and accurate calibration procedure is mandatory.  
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Figure 35 Relative error of sampled points in image space. 

 
To have a measure for the repeatability of the procedure we compared the eye 
distances calculated during separate runs of the calibration procedure. The 
results are given in the table below. 

 

Eye distance 66.58 mm 68.31 mm 66.39 mm 71.57 mm 69.20 mm 

Table 3 Comparison of eye distance of one user, calculated in multiple runs of 
the calibration process for both eyes 

This translates to a standard deviation of the calculated eye distances for one 
user of 2.122 mm. 
 
The precision of our method still depends heavily on the input data, but when 
executed carefully it delivers good accuracy with small time exposure and 
without the need for additional hardware for an existing Studierstube setup.  
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6.3. Test setup and evaluation of  
Projection calibration 

 
 
As test setup we used a virtual table (BARCO BARON), a back-projection desk 
specifically designed for VR applications. It has a resolution of 1024 by 768 
pixels and features active stereo. Therefore the user has to wear shutter glasses 
to perceive the rendered scene in stereo. As tracking device we once again used 
the ART optical tracker.One rigid body was mounted on the shutter glasses to 
realize head tracking and a second was fixed to the stylus, which again served as 
sampling device. 
 
 

 

Figure 36 Virtual Table (left); User wearing tracked shutter glasses for head 
tracking and controlling an application with the PIP (right) 

 
The calibration of the projection plane was performed five times, to get a 
measure for the repeatability of the procedure. The acquisition time to retrieve 
the sample points was in the range of 15 seconds. The results are presented in 
the table below. 
 
For the calibration of the eye offsets, we set the angular constraint to be 25 
degrees, the distance constraint to be 25 cm and the constraint for the 
intersection of the rays to be 1 cm . This particular set of parameters was chosen 
to impose a tight limit on the input data and therefore elevate the chances of a 
good registration result. The eyepoint calibration was also repeated five times. 
The time it took on average to calibrate one eye (four markers have to be 
aligned with the stylus hotspot) was about one minute, translating to a time of 
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about two minutes for the whole calibration procedure. Note that since we 
impose only constraints and no thresholds on this task, it is not necessary to 
repeat a calibration step, but it took the users longer to align the hotspot of the 
stylus and the displayed marker, since the input constraints where harder to 
fulfill than in the case of the HMD calibration. 
 
 

 
Plane position 

(center) 

Plane 

orientation 
Width Height 

Standard 

deviation 
1.588 mm 0.0276 degrees 3.105 mm 3.35 mm 

Table 4 Results of the plane registration portion of the projection device 
calibration, giving a measure for the repeatability of the plane parameter 

registration.  

 
 
We took the standard deviation of the resulting eye distances as measure for the 
repeatability of the procedure. The results are given in the table below. 
 
 

Eye 

distance 66.48 mm 69.11 mm 67.42 mm 70.34 mm 66.97 mm 

Table 5 Comparison of eye distance of one user, calculated in multiple runs of 
the calibration process for both eyes 

 
 
This translates to a standard deviation of 1.612 mm for the calculated eye 
distance of one user. 
 
The precision of our method again depends on the input data, but by imposing 
strict constraints to the input data we achieve quit good accuracy and 
repeatability. 
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6.4. Conclusion 
 
As we showed in this chapter, good results for the repeatability and accuracy of 
the stylus calibration were achieved. For the HMD calibration we also got good 
results for solving of the optimization problem and satisfying results for the 
repeatability of the whole procedure. Since the accuracy of the achieved 
registration for the optical see-through HMD was only verified subjectively, it 
would be interesting to develop a method for measuring the ‘objective’ 
registration error. The calibration of the projection table was very accurate and 
repeatable regarding the calibration of the projection plane. The calibration of 
the eye offsets again showed a good repeatability. Its accuracy was also 
satisfying but was again verified only subjectively. The accuracy of all 
calibration procedures is dependent on the quality of the input data gathered by 
the user. By imposing constraints on the input data and evaluating quality 
criteria for the achieved registrations this major factor of error was minimized 
effectively. 
 
The users testing our calibration procedures were able to execute any 
calibration task in short time (at most a few minutes), after they were given a 
short explanation of the task they had to perform. The response of the users 
was quite positive in respect to the ease of use and accuracy of the results of the 
calibration procedures. The real field test will take place, when all users of 
Studierstube utilize the whole calibration suite.  
 

96 



 

Chapter  7  

Future Work 

With the work presented in this thesis, static registration, the basis for correct 
overall registration, has been implemented for the Studierstube Augmented 
Reality environment. Possible further improvements of the existing 
implementation and the Studierstube system in particular regarding 
registration are discussed in this chapter. 
 

7.1. Additional constraints and thresholds 
 
A major contributing factor for the precision of the procedures is obviously the 
precision of the user’s input samples, as stated in the previous chapters. 
Therefore input constraints with visual feedback (see chapter 5.2.2) were 
implemented to both guide the user through the process and enforce the 
acquisition of valid samples. To further improve the guidance of the user and to 
ensure the best achievable accuracy during the sampling stage of the calibration 
procedures additional, mostly geometric constraints could be imposed on the 
input data. When doing so it has to be observed not to ask too much of the user, 
i.e. it should always be clear for the user, what constraint she has to comply 
with. 
 
Since precise or even valid input data cannot be guaranteed, despite the before 
mentioned input constraints, different accuracy thresholds are currently 
implemented. If such an accuracy threshold is exceeded the user is asked to 
repeat the last step of the calibration process. Firstly the existing thresholds 
could be further tuned to balance the numerical accuracy of the registration and 
the possibility a user has to repeat a calibration step better. Secondly additional 
thresholds could be implemented, to add further control to the accuracy that 
should be achieved by the particular registration procedure.   
 
Another possibility for improving the quality of the input data would be to fix 
the stylus in a certain place, so that the user only has to move her head to align 
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virtual and real markers. This would eliminate any jitter introduced by 
unintentional hand movement. 
 

7.2. Faster HMD calibration 
 
At the moment a user has to sample eight points per eye to achieve good results 
with the HMD calibration procedure described in this thesis (see section 4.2.2). 
To further reduce the time and effort needed to perform an HMD calibration, 
we could use the information gathered during previous HMD calibrations a 
user has performed, e.g. the eye distance of the user, to reduce the number of 
viewing parameters we have to calculate. Hence it should be possible to develop 
a method, which needs less user interaction – less input samples – and 
therefore should be quicker to perform. 
  

7.3. Dynamic registration  
 
Static errors, which we dealt with in this thesis, are the ones that cause 
registration errors even when the user's viewpoint and the objects in the 
environment remain completely still, whereas dynamic errors have no effect 
until either the viewpoint or the objects begin moving. Dynamic errors occur 
because of system delays, or lags. The end-to-end system delay is defined as the 
time difference between the moment that the tracking system measures the 
position and orientation of the viewpoint to the moment when the generated 
images corresponding to that position and orientation appear in the displays. 
To the user, the virtual objects appear to "swim around" and "lag behind" the 
real objects. For current HMD-based systems, dynamic errors are the largest 
contributors to registration errors.  
 
Hence the next step to making the Studierstube Augmented Reality 
environment a believable experience is to implement dynamic registration. 
 
Methods used to reduce dynamic registration errors fall under these main 
categories [Azuma97a]: 
 
• Reduce system lag 
• Reduce apparent lag 
• Predict future locations 

 

The last method, which is the most promising one, is to predict the future 
viewpoint and object locations. If the future locations are known, the scene can 
be rendered with these future locations, rather than the measured locations. 
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Then when the scene finally appears, the viewpoints and objects have moved to 
the predicted locations, and the graphic images are correct at the time they are 
viewed. For short system delays (under ~80 ms), prediction has been shown to 
reduce dynamic errors by up to an order of magnitude [Azuma94]. It will be our 
future work, to test and implement methods for prediction. 
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