
A Testing Environment for Video-Based Multiview
Computer Vision Research

Efstathios Stavrakis and Margrit Gelautz
Interactive Media Systems Group

Institute for Software Technology and Interactive Systems

Vienna University of Technology

Favoritenstrasse 9-11/188/2, A-1040 Vienna, Austria

e-mail: stathis@ims.tuwien.ac.at, gelautz@ims.tuwien.ac.at

Abstract

We describe the methodology, design considerations and practical implementation of an
environment used in developing and testing video-based, multiview computer vision algo-
rithms. The environment we have built is composed by a variety of heterogeneous hard-
ware devices for acquisition and display, connected together into a coherent system by
object-oriented software components. Much attention has been paid into the development
of a Vision-Device Abstraction Layer (VDAL) that handles the operation of hardware im-
age acquisition devices. The software components are divided into User Interface and
Low-Level computer vision constituents. These are combined into more complex entities,
Modules, that perform a complete computer vision process. Our environment is capable of
providing output on disk, in real-time on common monitors, but can also take advantage of
large stereo displays. It is designed with modularity, extensibility and reusability in mind.
The main contribution of this paper is to describe the setup and efficient implementation
of a coherent environment for video-based multiview applications and algorithms’ devel-
opment. We provide our experience of how a variety of different hardware and software
has been glued together to form the basis of our computer vision processing environment.

1 Introduction

Computer vision video-based research and applications lack a common framework definition
and guidelines due to the diversity of algorithms and requirements, as well as the fast emerg-
ing advances in the field. The advent of more powerful hardware in conjunction with the
development of software tools that take advantage of its capabilities have enabled research and
applications in computer vision to be increased exponentially. However, we believe that rele-
vant literature and insight on setting up, designing and implementing unified systems needs to
be enriched.

A multitude of image acquisition devices exists in the market. These range from cheap
webcams to expensive high-speed cameras and have different functionality. A common limi-
tation is mixing heterogeneous acquisition devices. Devices may support certain features, such
as specific resolutions, frame rates, etc. This poses no problem for single view processing, but
has undesired effects in multiview processing. In most cases introducing functionality that
does not exist on hardware is not possible. However, via proper software design alternative
functionality may be provided or operation between homogeneous devices may be enforced
when this is necessary. Many researchers prefer to use identical acquisition devices on their
research platforms in order to alleviate themselves from the overhead of dealing with differ-
ent hardware and its management. As pointed out above, the field is evolving at such a rate,
that newly introduced devices produce better results and give solutions to computational bot-
tlenecks. Having the possibility of using various different acquisition devices is always an
advantage. To achieve this, an abstract way of handling them is desired so that heterogeneous
devices may be incorporated within a system.

Apart from the hardware of a system, its software plays a central role. While there is an
enormous amount of different software tools[5] that perform computer vision tasks, only a few
can be used out-of-the-box and interfacing such systems with image acquisition devices may
impose significant effort. Nevertheless, systems such as Khoros and Matlab are preferred, for
their algorithms collection and visual programming tools, but sometimes they are inadequate
when performance is critical and manual intervention of the programmer is needed right on
the lower-level core of the system, which is not available. Contrary to those systems, there are
also open source software libraries that may be used. These are quite detached and isolated
from user interfaces, mainly for efficiency and portability. Sometimes it is not clear to the
developer how to bring to life his envisioned application using these computer vision libraries
together with Graphical User Interface (GUI) libraries. Also the selection of the appropriate
software tools that can fulfill a research task is at large a dependable process to the previous
experience of the researcher.

The above pieces of software usually take advantage of processor special instructions to
improve processing speed. On the other hand, there is a trend towards hardware accelerated
implementations on the Graphics Processing Unit (GPU) found in most commodity hardware
graphics cards. Using the GPU frees the main processor from expensive tasks and it can
be used to perform other operations such as disk access, user interfacing and processing in
parallel to the GPU for even more optimized performance, especially in multiview temporal
processing.

User interface components can be developed with most existing GUI libraries available,
which vary in complexity, but also in functionality. Apart from the native Window Manager
system libraries (i.e. MFC for Windows, or Xlib for X11), one may use any other object-
oriented library for GUI component development. Selecting a library to use in building com-
ponents for an application is mostly a matter of preference, but is also heavily depending on
the selection of the working platform.

Reviewing the above considerations on software design and use of off-the-shelf libraries
to implement a working environment, one should make a compromise between installation
subtleties, management effort, development complexity and environment usability, reusability,

performance and extensibility. In other words, the implementation of highly complex and
elaborate environments for the purpose of research due to time constraints is usually not an
option for many computer vision researchers, hence balance between complexity and time has
to be preserved.

Common types of output of such systems are most commonly either 2D images or 3D
scenes. For their visualisation, conventional monitors are used as output devices or files are
written directly on disk for later use. However there are cases where stereo or immersive
displays are more appropriate to perceive the results.

In section (2) we describe the methodology and theoretical basis upon which we have
founded the construction of our environment. In section (3) we describe the System Archi-
tecture together with the setup and implementation considerations of our own environment.
Finally in section (4) we summarize and propose directions for future work.

2 Methodology

The most important part in video-based research, but also applications, is to identify the desired
outcome of the system. This outcome has to be thought of as a general entity or broader
definition of a goal and not as a practical quantity, such as an image or a video stream. In
practice this goal may be the development of a novel algorithm for 3D reconstruction or a
real-life surveillance application. A careful decision and analysis on this initial step will allow
proper design and implementation of the individual tasks required in fulfilling this goal.

Naturally, after the identification and analysis of the system’s goal, it is vital to choose the
type of system input sources. The selection of input sources is crucial for such an environment,
because it can directly affect the possibilities and capabilities of the system. This successively
also has an impact on the quality of the achieved results. Some algorithms may require special
types of image stream acquisition devices, such as stereo cameras, etc.

Apart from a goal and input sources, it is necessary to also develop software components
that will enable the use of these acquisition devices, will perform operations on the acquired
data and also provide a suitable format of the processing results for communicating them
effectively to the user.

Handling and using hardware acquisition devices, especially when they have special fea-
tures, is always a necessary task. In addition, interfacing algorithms with new devices can
be time consuming, but the definition of a common layer of functionality can minimize the
required effort.

An aspect that is sometimes overlooked in research is user interfacing and its implications
to the workflow. Even though many proficient researchers prefer to have direct access to the
lowest level and may develop and use a command line tool, rather than a complete environ-
ment, sometimes the complexity and multiple-step nature of todays algorithms is prohibiting
for such an approach. Since research involves the inspection, testing and evaluation of multiple
algorithms of the same domain, switching between algorithms that perform only one step of
the complete algorithm provides insight on the suitability of a particular technique. For exam-
ple, on a 3D reconstruction algorithm, it is not uncommon to inspect various stereo matching

algorithms before deciding which one presents the best possible solution.
To tackle the problems related to hardware devices and user interfacing in our approach,

we have created an environment that such workload is reduced by providing high-level access
to hardware devices and a set of easy to use reusable object-oriented GUI components. In
addition, high-level results of multiview temporal algorithms are better visualised and evalu-
ated via video streams, so comparison and evaluation may require viewing them in parallel via
custom elegant user interfaces that are not readily available in the GUI libraries. We consider
communication of multiview video streams to the user an important aspect within our environ-
ment and for this reason we separately define and handle it as an individual component.

The requirements of a multiview video-based computer vision environment as identified
above are summarised below:

1. Environment Goals: the multiview video-based research we would like to conduct within
our environment.

2. Environment Inputs: hardware devices for acquisition, their installation and operation,
as well as file formats for disk based stream input, if appropriate.

3. Environment Bridging Components: middleware software for user interfacing, data ac-
quisition, processing, testing, evaluation and comparison. The combination of multiple
Bridging Components into unified processing units of the environment are defined as
Modules.

4. Environment Outputs: display devices used for visualisation of results, but also file
formats used to store outputs on disk.

In the next section, steps (2) through (4) are described in more detail in respect to our
multiview video-based research goal.

3 System Architecture

The methodology described in the previous section allows one to selectively setup or develop
parts of the environment. As stated earlier, the environment is build with reusability, modular-
ity and expandability in mind, which successively allows one to use the same environment for
several research tasks by adding new parts and performing minor modifications in software.
In our System Architecture, as presented in more detail on Fig. 1, we take an object-oriented
multi-threaded approach in developing our software. We use the C++[7] programming lan-
guage for its speed and widespread adoption, but any other object-oriented language could
be used. The goals of our environment include research in the areas of 3D reconstruction,
stereo viewing and tracking from multiple views. We will describe our environment parts in
a generic form, but we will also give examples and experience notes linked to our current
research projects.

Format A

Format B

Format N

Device A

Device B

Device N

V
D
A
L

F
I
L
E
S

Bridging Components

Low-Level
Components

User Interface
Components

Modules

User

Output

Figure 1: System Architecture

Type A
Camera
Subclass

Type B
Camera
Subclass

Type N
Camera
Subclass

Generic
Camera

Superclass

class Camera {
 virtual Camera(); // initialise
 virtual ~Camera(); // destroy object
 virtual start(); // start operating
 virtual stop(); // stop operating
 virtual IMG* getImageBuffer(); // grab image
 virtual String* getName(); // get device name
 virtual setName(string); // set device name
 .
 .
};

class CamTypeA : public Camera {
 CamTypeA(); // initialise
 ~CamTypeA(); // destroy object
 start(); // start operating
 stop(); // stop operating
 IMG* getImageBuffer(); // grab image
 String* getName(); // get device name
 setName(string); // set device name
 .
 .
};

Figure 2: Vision Device Abstraction Layer Implementation

3.1 Inputs

Inputs can be acquired via hardware devices and their respective software APIs. To relieve
ourselves from the task of reimplementing functionality from program to program and one
device to another, we have developed an Application Programming Interface (API) in the form
of a system library. We call this API, ‘Vision-Device Abstraction Layer’ (VDAL). Its func-
tion is to provide a common programming interface mechanism to hardware image acquisition
devices. The VDAL is built on top of the lower-level proprietary APIs provided by the hard-
ware vendors of particular devices. This abstraction layer encapsulates the functionality of the
hardware devices, so that new types of hardware can be added to the framework with minimal
effort. In software engineering terms, each device has an associated object-oriented class that
is a subclass of a superclass that describes an acquisition device in a generic form, as shown in
Fig. 2. This generic form exposes access points such as retrieving an image buffer, setting or
retrieving common camera parameters, i.e. buffer width, height, device shutter speed, etc. Of
course there are features on some devices that are not present on others, usually specialised.
We give direct access points to the developer for those and provide alternative functionality for
those that lack features, whenever possible, or appropriate feedback that can be parsed by our
Bridging Components. This allows the developer to perform more elaborate specialised work
if required. As an example, we have a Point Grey Bumblebee stereo camera which provides
disparity maps at interactive frame rates, whereas our other devices do not have such a feature.
We allow the developer to request the disparity map whenever required instead of calculating
it, as he would do when dealing with other cameras.

In our VDAL we handle multiple types of video devices. In particular we use a High-
Speed RedLake[2] MotionPro10000 camera, a number of Point Grey[6] DragonFly, FireFly
and BumbleBee cameras, and also Philips[4] ToUcam Pro webcams. This allows us to carry
out research in our environment by enabling us to use both specialized and commodity end-
user hardware acquisition devices selectively. In practice, the VDAL generates a list of avail-
able supported hardware acquisition devices upon initialisation. The VDAL is then internally
responsible of maintaining control of them, providing to the developer the functionality that is
exposed via the API. It should be noted that the VDAL is an API that is used by other envi-
ronment components in order to provide high-level interfacing to the user, as described in the
next section.

3.2 Bridging Components

The glue of our environment is the middleware software that puts together user-interfacing,
hardware device accessibility and output. We have split the Bridging Components in two
sub-categories that are tightly related; namely, the User-Interface Components and the Low-
Level Components. Modules of the system are created by the combination of a collection of
Bridging Components. Most of the Bridging Components are separate threaded objects that
give our environment multithreaded capabilities, that can take advantage of multiprocessor
architectures.

(a) Calibration Module (b) Recorder Module

Figure 3: Screenshot of the actual software. (a) Example Module used to calibrate multiple
stereo pairs, (b) another Module that is used to record from multiple cameras on disk.

3.2.1 Low-Level Components

Low-Level Components include programmed algorithms that perform common low-level op-
erations in the computer vision domain, such as edge detection, image resampling and trans-
forms. An advantage of these Low-Level Components is that the developer has the choice
of implementing low-level algorithms from scratch or alternatively he can create wrappers
around off-the-shelf computer vision software libraries. In our particular implementation we
mainly use OpenCV[3], but migration and mixture with other libraries is supported by the
component-based modular design of our system architecture. Since performance is one of the
most important factors in image processing and analysis, some of our already implemented
Low-Level Components are taking advantage of graphics hardware to utilise the process-
ing power of the Graphics Processing Unit (GPU). We do this by using OpenGL and the
OpenGL ARB Imaging extention found in most modern graphics cards. Particulars for devel-
oping hardware accelerated Low-Level Components can be found in [8].

3.2.2 User Interface Components

The User-Interface group of software components is a collection of GUI widgets. These wid-
gets provide access to the VDAL functionality, they include enhanced widgets that deliver
output on display devices and also a variety of common reusable template widgets, such as
drop-down boxes that group together similar Low-Level Components for easy access and in-
terchange by the user on the fly. We would also like to point out that user interfacing in com-
puter vision is sometimes sacrificed for efficiency or simply overlooked, however, we found
that accessing algorithms via GUIs speeded up our progress and increased our work capacity.

3.2.3 Modules

Nowadays most computer vision algorithms are usually composed by a smaller set of tunable
operations. Combining and swapping individual parts of such multifaceted algorithms can be
a cumbersome and time consuming task if an object-oriented programming paradigm is not
followed. We prefer to build the low-level parts and also respective user interfaces as reusable
objects. By combining several Bridging Components we build Modules that are complete
software supersets of the previously described parts of our system and these are exposed to
the end-user. Such an approach relieves the user from typing command line parameters and
also presents a solution in interchanging between available algorithms and tuning their param-
eters. The usefulness of this approach, especially in research, is the flexibility of being able
to selectively or in parallel generate and visualise output of algorithms in the same domain,
for comparison and evaluation. Furthermore, related Modules are designed to interoperate so
that information and data can be propagated from one another whenever desired. An example
of our system modules is shown in Fig. 3, we have built a Calibration Module (see Fig. 3a),
that is used to calibrate stereo pairs. The calibration data are then broadcasted within the uni-
fied environment of our Modules, which allows us to correct our images for lens distortions
and to rectify them from within other Modules of the system. The same principle of Module
interoperation can be used with other type of algorithms if required.

Figure 4: Stereo Viewing on a Baron BARCO display.

3.3 Outputs

Output of the system is desired to be stored on disk or shown on screen in realtime. Both
of these tasks are handled by the Bridging Components. We developed Low-Level Compo-
nents that can use multiple file formats for storing and retrieving the video streams to and
from disk. In realtime processing mode we use widgets to draw the image buffers. At first
sight this appears common practice and for simplicity it would make sense to disguise it un-
der the structure of the Bridging Components. Nevertheless, we found that it is much more
intuitive and easier to manage Outputs if treated separately within the environment’s archi-
tecture. The unique set of custom widgets we developed so far for realtime visualisation of
the results of algorithms provide utilities through the user interface that are independent of
displayed output. Such utilities include verbal and visual communication of color informa-
tion at user defined image coordinates, gradient estimation, but also more elaborate operations
such as scanline alignment checking between views of different rectified images. This set of
utilities that are attached directly to the widgets, can be expanded to include other operations
one may commonly use within the scope of his research interests. Another reason for treating
the output functionality separately is that sometimes visualisation of results from a variety of
algorithms is not meaningful without special display hardware. The motivation came directly
from our on-going research in video-based stereo viewing. To visualise the stereo pairs of
image sequences we developed a more specialised type of output widget that takes advantage
of OpenGL’s stereo capabilities, we rendered the output on a high resolution Baron BARCO
display[1] and viewed it using active stereo shutter glasses, as shown in Fig. 4. By separating
the outputs of our system, we managed to develop a small set of reusable elements that are
transparently handling the output of our Modules onto disk and the display devices we cur-
rently use. Essentially this is another layer of abstraction that handles the output functionality
in our environment, similar to the VDAL described for our input facilities.

4 Conclusions and Future Work

We have presented the methodology, system architecture and implementation directions for
setting up and using a coherent testing environment for multiview video-based research. Our
environment is based on the principles of object-oriented software engineering paradigm and
takes a multithreaded stance. Particular attention has been paid into the implementation of a
Vision-Device Abstraction Layer that manages hardware image acquisition devices. We built
middleware that is aparted from both low-level algorithms and also user interface reusable
and modular elements. When these components are composed together, they provide coherent
Modules for multistep computer vision research tasks.

We plan to expand our system by developing more Bridging Components and integrating
other types of acquisition devices into the VDAL. Currently the environment is implemented
for Microsoft Windows platforms, however we have intentionally chosen the underlying soft-
ware libraries to provide cross-platform support, so that other operating systems can be sup-
ported in the future. Finally, we are planning to develop a Scene Graph-based processing
engine and accompanying GUI tool that will enable the researcher to combine Bridging Com-

ponents into Modules via high-level interfacing, instead of programming, providing visual
programming functionality within our environment.

5 Acknowledgement

This work was supported by the Austrian Science Fund (FWF) under project P15663.

References

[1] Barco. Baron. URL: http://www.barco.com/VirtualReality/en/products/product.asp?element=312.

[2] Roper Scientific B.V. Redlake. URL: http://www.redlakeeurope.com.

[3] Intel Corporation. Open source computer vision library. URL:
http://www.intel.com/research/mrl/research/opencv/.

[4] Philips Electronics. Philips webcams. URL: http://www.pc-cameras.philips.com.

[5] Computer Vision Homepage. Image processing toolkits. URL: http://www-
cgi.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-source.html.

[6] Point Grey Research Inc. Hardware image acquisition devices. URL:
http://www.ptgrey.com.

[7] Bjarne Stroustrup. The C++ Programming Language - Special Edition. Addison-Wesley,
February 2000.

[8] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming Guide
- Third edition. Addison-Wesley, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

