
Flexible Parametrization of Scene Graphs

Gerhard Reitmayr∗and Dieter Schmalstieg†

Vienna University of Technology

Favoritenstrasse 9-11/188/2, 1040 Vienna, Austria

ABSTRACT

Scene graphs have become an established tool for developing in-
teractive 3D applications, but with the focus lying on support for
multi-processor and multi-pipeline systems, for distributed appli-
cations and for advanced rendering effects. Contrary to these de-
velopments, this work focusses on the expressiveness of the scene
graph structure as a central tool for developing 3D user interfaces.
We present the idea of a context for the traversal of a scene graph
which allows to parameterize a scene graph and reuse it for different
purposes. Suchcontext sensitive scene graphsimprove the inher-
ent flexibility of a scene graph acting as a template with parameters
bound during traversal. An implementation of this concept using
an industry standard scene graph library is described and its use in
a set of applications from the area of mobile augmented reality is
demonstrated.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—graphics data structures and data types, languages
D.2.11 [Software Engineering]: Software Architectures—domain-
specific architectures H.5.1 [Information Interfaces and Presen-
tation]: Multimedia Information Systems—Artificial, augmented,
and virtual realities

Keywords: scene graphs, software design, 3D user interfaces

1 INTRODUCTION

Scene graphs have become an established tool for developing inter-
active 3D applications. They offer an object-oriented and structured
approach to describing the application’s graphical needs and inter-
actions with the 3D presentation.

Scene graphs have been extended to cope with additional re-
quirements. Shared scene graphs were developed to support dis-
tributed applications. Multi-threaded extensions efficiently use
SMP hardware and drive multiple rendering sub-systems by par-
allel render traversals or staged multi-threaded pipelines. Another
direction of research investigates how to incorporate new rendering
methods such as multi-pass methods within the scene graph. Some
results are discussed in the following section on related work.

All these developments address technical issues and usually
trade-off structural flexibility for improved performance. However,
the original idea of the scene graph is to allow for rapid and flex-
ible implementation of 3D user interfaces. Here the emphasis lies
more on the expressiveness of the data structure and the effects that
combinations of individual nodes can achieve.

Scene graphs are subject to a number of forces in the software
design of an application. Content of an application is stored in a
scene graph as a set of graphical models consisting of geometric
shapes and transformation hierarchies. Dynamic applications need

∗e-mail: reitmayr@ims.tuwien.ac.at
†e-mail:schmalstieg@ims.tuwien.ac.at

Figure 1: An example of a 3D user interface shows the user’s view
of an indoor navigation application. The building geometry is aug-
mented, a world-in-miniature display shows her current location in
the building and a set of navigation aids points to the next door
along the chosen path.

to change this content database either due to users’ actions or algo-
rithmic updates.

Presentation of the content requires information on materials,
render styles, lighting calculation modes, render buffer settings and
tests and even render algorithms. Such information is also stored
in the scene graph as an additional set of nodes interleaved with
the geometry nodes. More complex render algorithms such as hid-
den line rendering or outline rendering can be composed of several
traversals of the same content with different presentation options.
Again an application may require to vary the presentation of its
content either for all of it or only selected parts. Also, the same
content may be rendered with different presentations in one scene,
requiring various combinations of presentation and content nodes.

Scene graphs are hierarchical structures, and varying both con-
tent and presentation nodes usually requires reassembling new
scene graphs from other information or modifying a scene graph by
replacing or changing all relevant nodes. The latter either requires
a list of all relevant nodes or extensive information on how to find
them in the scene graph. Both solutions usually add a substantial
layer of complexity to a scene graph based application.

There are two limitations to traditional scene graphs that give
raise to the described complexity. (1) The scene graph is a static
structure and can only be changed via an API requiring the logic
to drive the change within the application. (2) The structure is
given by the close coupling of nodes created by the limited com-
munication means between them. Nodes in a scene graph need to
communicate state information to achieve the variability of differ-
ent combinations of such nodes. Traditionally, there are two ways
to transfer such information.

Firstly, via traversal state during traversals of the graph. Traver-
sals present the common way to work with scene graphs. They



compute and accumulate state and output information while walk-
ing the scene graph. A visited node uses information stored in the
current state to implement its functionality. For example, a shape
node uses the current drawing style and color to draw itself cor-
rectly. A transformation node updates the current transformation
by multiplying its own local one with it and storing it again in the
state. Such type of the state information is closely coupled to the
functionality of the traversal such as a rendering traversal. Also its
effect and range is usually dictated by the functionality. The color
node will only affect a well defined set of shapes nodes defined by
proximity in the scene graph.

Secondly, nodes can be directly connected via some other mech-
anism. For example, Open Inventor [18] provides a data flow graph
between fields of nodes allowing for arbitrary communication of
nodes. This is essentially an implementation of the Observer pat-
tern [5] and requires knowledge of the identity of the sender and
receiver to establish the connection. Therefore such a solution re-
quires references of all nodes that need to receive a certain piece of
data, which adds considerable complexity to an implementation.

We propose a new way to pass on information through a scene
graph that does not depend on local order or direct connections.
Furthermore, we achieve this without adding another software con-
struct to the scene graph, but rather rely on a well understood com-
ponent of it, the traversal state.

The core of the idea is to extend the state construct by exposing
a generic state to the application. Such state can be used to store
application specific information that adds to evaluating the scene
graph through traversals. Nodes can set and evaluate the generic
state allow to interact with it without the need to create new node
types or traversals. Thus, the overhead of implementing a new state
type is eliminated.

A further, second extension builds on the first one. By storing
sub-scene-graphs in the state, whole nodes and sub-graphs can be
reused at various spots within a traversed scene graph. As the bind-
ing to the nodes stored in the traversal state happens only during
traversal itself, the nodes can be changed for each traversal and pro-
vide a very flexible way of building scene graphs.

2 RELATED WORK

The basic components of scene graphs have been described suc-
cinctly by Strauss & Carey [18]. These components are the hier-
archical structure of nodes aggregating attributes, traversal based
on the Visitor pattern [5] to compute results and data flow between
attributes to implement animations and interactive behavior.

Distributed systems are required to implement collaborative ap-
plications. Using the scene graph as a distributed and structured
shared memory provides a transparent way of implementing col-
laborative applications. Implementations of shared scene graphs
synchronize the local scene graph structures of participating ap-
plication instances. The level of transparency to the programmer
varies between different implementations. Avango [20] requires
explicit instantiation of distributed data flow between shared in-
stances, Repo-3D [9] distributes full scene graphs but requires the
implementation of various callbacks to notify the application pro-
gramm of changes. Distributed Inventor (DIV) [6] transparently
distributes Open Inventor scene graphs and relies on the frame-
work’s features to communicate with the application programm.
The Scene-Graph-As-Bus work [23] uses an abstract scene graph
to translate between different implementations in a distributed sys-
tem on the fly.

To address the requirements of realistic real-time rendering more
constrained and optimized scene graphs were developed. IRIS Per-
former [15] provides a staged multi-process pipeline to efficiently
use multi-processor machines. OpenSceneGraph [1] and OpenSG
[12] are new developments that provide thread-safe execution and

support for multiple rendering pipelines. The general trend to spe-
cial purpose scene graph engines is evident in the gaming industry
which relies on optimized scene descriptions for maximum perfor-
mance and visual fidelity. These scene graph implementations ab-
stain from providing a dedicated file format and only provide import
filters for geometrical and luminance data.

Some work addresses the fixed traversal structure in hierarchi-
cal scene graphs. The Virtual Rendering System [3, 7] extends the
general traversal notion with software objects that can perform spe-
cialized traversals for multi-pass rendering techniques. However,
they only provide support through the programming API and do
not have a general high-level language to describe these traversals.
Reiners [11] describes a framework that supports different traversal
orders by decoupling the visiting of nodes from the selection of the
next nodes to visit.

Closer to our view of the scene graph is VRML [2] which aban-
dons the programmer API and only provides a declarative language
to build scenes and animations. Embedded scripts can provide more
complex computations than the predefined nodes but do not have
access to the rendering system itself.

Another approach is to wrap the programming API in a high-
level language. Obliq-3D [10] and Avango provide bindings for
interpreted languages which allow for rapid iterative development.
An approach similar to our work is Fran [4] which is explicitly de-
veloped as an embedded domain specific language [21] for develop-
ing interactive 3D animations. However, it is based on the features
of the pure functional host language Haskell which has excellent
features for research but probably does not appeal to a wide audi-
ence of developers.

The work closest in spirit is described by Schmalstieg and Ger-
vautz [17] who modelled parallel term rewriting systems with cyclic
scene graphs. However, it did not provide for a generic language
feature reusable for other purposes as well.

To our knowledge, no work up to know has been focusing on ex-
tending the expressive power of the scene graph structure itself. We
view a scene graph as an embedded domain specific language that
raises the level of abstraction for the application programmer and
simplifies the task of implementing an application. Our implemen-
tation is based on Open Inventor which is a long standing standard
for developing interactive 3D applications and relies only on stan-
dard features of the library. Therefore it is directly reusable by any
application implemented in Open Inventor. The research presented
here was developed in the context of a software framework for aug-
mented reality applications calledStudierstube[16].

3 CONCEPTS

Traversal is the common method of computing results from a scene
graph. A software object called action traverses the scene graph
by recursively iterating through all nodes and calling a method on
each node. The overall result depends on the structure and content
of the scene graph as well as on the performed operations during
traversal. The structure is usually static and the traversal occurs in
a predefined order that may depend on the action and nodes as well.

Actions implement a double-dispatch technique. Each type of
action manages a table of functions for each type of node. Upon
visiting a node, the action looks up the corresponding function and
passes the node and itself as parameters. Thus, it allows to vary
the operation executed depending both on the type of action and
the type of node. The function table technique also allows to easily
extend the framework with new nodes by adding a new entry to the
function table of existing actions or with new actions by defining a
new function table and appropriate functions.

Nodes use traversal state to communicate with each other during
traversal. For example, shape nodes need to know the current color
value to draw themselves correctly. The current color is stored in



a dedicated state element and is manipulated by material property
nodes that set the state during traversal. Typically, a scene graph
library provides a number of dedicated state elements for rendering
attributes, transformation matrices and similar information.

3.1 Context state

We propose to add an independent and genericcontext stateto any
traversal. The proposed generic context state is a generalization of
the concept of state for traversals. The scene graph library tracks
a state as a stack of data elements during traversal to enable the
action to compute its results. Normally, the type and operation of
these elements are fixed and tailored to specific nodes and actions.
We augment the state with a general purpose element. The element
is tracked for all actions and can be set and used by all nodes. Con-
sequently, a set of additional nodes can influence traversal based on
the new element but independent of the type of action.

The additional traversal element is calledcontextand a scene
graph annotated with context is acontext sensitive scene graph. The
context is tracked by an additional state that is processed during
traversal. Because it is independent of the operation of any action,
it is applicable to all actions in the same way.

The context state is a modelled as an associative array mapping
index strings to value strings. For each index either the associated
value or the empty string is returned if the index is not present in
the array. The mapping itself is implemented using the map data
structure from the standard template library of C++. The empty
string is returned from the state, if the given index is not stored as a
key in the map.

Context state needs to be set and traversals or nodes need to re-
act to the context. These two operations are embedded in special
nodes that are part of the scene graph. A dedicated property node
allows the modification of the context state during traversal and im-
plements the following operations on the state:

ADD inserts a set of (index, value) pairs into the current con-
text. Older entries with the same keys are overwritten by the new
values.

SET sets the context mapping to a given set of (index, value)
pairs after deleting all former entries.

REMOVE deletes a set of entries defined by a set of indices
from the map. If an entry for a given index is not present, the index
is ignored.

CLEAR resets the context to the default state which contains
no entries at all.

Other nodes react on the current context during traversal. It
would be possible to directly map different states to different be-
havior such as selecting a color from a given list, based on the value
of certain index in the context state. However, this requires imple-
menting a new node for every aspect that the application would like
to influence by setting the context.

In effect the context state exposes the usually hidden state mech-
anism to the application on the level of the scene graph configu-
ration. Up to now applications had to implement their own state
elements and access nodes to have access to the same facilities of
the traversal framework. Using the proposed context state an ap-
plication can directly use the information transport mechanism em-
bodied by action state and build scene graphs whose components
react to application state. However, there is no need for a direct
link between the application state and the acting node because the
transport mechanism of action state effectively decouples the the
state-changing nodes from the influenced ones.

3.2 Node references in the context

A second extension, building upon the exposed state, is storing node
references in the context state and accessing them during traversal.
References to scene graph nodes are stored in the context state for
later retrieval. Upon retrieval they are traversed to execute their
specific functionality at the current traversal position.

Such a mechanism allows to construct a scene graph as a tem-
plate with named slots that are filled during traversal from the con-
text state. The slots can carry different nodes for each reference
to the template scene graph or each traversal. For example, dif-
ferent sets of property nodes that influence render style and ma-
terial colors can be configured to be used in specified places in the
scene graph. Thus, the same scene graph can be rendered in various
styles. Moreover, the actual location of the slots is encoded in the
scene graph itself and decoupled from the application code which
only has to take care of setting the node references before traversal.

4 IMPLEMENTATION

The implementation of the context sensitive scene graph is straight-
forward based on Open Inventor’s built in extension mechanisms.
Open Inventor stores the state during traversal in a set of stacks
comprised of individual elements. For each type of element a dedi-
cated stack tracks the current value of the element. The framework
provides for extending the traversal state with new elements inde-
pendently of any action and to enable the use of these elements dur-
ing all actions. A more detailed exposition on using this mechanism
can be found in [22], chapter 2.

4.1 Basic context management

A new elementSoContextElementwas implemented that stores the
current map describing the context. Accessor methods to add, set,
remove elements to and from the context and to clear it were im-
plemented together with the necessary interfaces of the framework.
Moreover, the use of the new element together with every action
was enabled.

SoContext {

SFEnum mode ADD

MFString index []

MFString value []

}

Figure 2: Specification of the SoContext node. The first column
specifies the type of the field, the second column the name and the
third the default value. index and value define the (index, value)
pairs and mode the operation to execute.

A dedicated property nodeSoContextwas created that modifies
the context during traversal. The node uses the element’s accessor
methods to update it according to its own parameters which are set
using a number of fields off the node. The exact specification of the
node is given in Figure 2. The enumeration fieldmode can take the
valuesADD, SET, CLEAR andCLEAR ALL which correspond to the
four operations on the context. The multiple value fieldsindex and
value denote (index, value) pairs for theADD andSET operations
while theCLEAR operation only uses theindex field.

Two nodes react on the current context during traversal. AnSo-
ContextReportnode simply reports subsets of the context. It mirrors
the fieldsindex andvalue of the SoContext node and sets the field
value to the values associated with the indices specified in the field
index within the context in the current traversal (see Figure 3).

The SoContextReport node is a generic interface to the context
during traversal. By connecting itsvalue field to the field of an-



SoContextReport {

MFString index []

MFString value []

}

Figure 3: Specification of the SoContextReport node. The field
index specifies the values to read from the current context and the
field value outputs the values for further use.

other node following in the traversal order, any context value can
be used to set arbitrary parameters of nodes. This functionality is
enabled by Open Inventor providing implicit conversion between
field data types where applicable.

Another node provides a short cut to directly change the traver-
sal depending on the context. TheSoContextSwitchnode uses the
entries in the context map to compute which children to traverse
(see Figure 4 for the full specification). The fieldindex sets the in-
dex to use in looking up a value in the context. The returned value
is then interpreted as an integer specifying the index of the child
to traverse. The fielddefaultChild sets the index of the child to
traverse, if the index is not present in the context and is therefore
mapped to the empty string.

SoContextSwitch {

SFString index INT32_MIN

SFInt32 defaultChild -1

}

Figure 4: Specification of the SoContextSwitch node. index specifies
the entry in the context to read out and defaultChild the behavior
if the index is not present.

4.2 Nodes as context values

A more complex extension of the above implementation allows to
store and retrieve references to nodes in the context state. Again,
a pair of dedicated nodes provide the access to the state. The node
references are simply encoded in the value strings and additional
list in the context implementation stores the indices that point to
nodes rather than strings.

SoNodeContext {

SFEnum mode ADD

MFString index []

MFNode value []

}

Figure 5: Specification of the SoNodeContext node. Again mode

specifies the operation. Values are now references to scene graph
nodes and are stored as such in the context state.

A new property nodeSoNodeContextnow stores references to
the nodes configured in itsvalue field in the context. The fields
mode andindex work as in the original SoContext node.

A SoNodeContextReportnode simply reports node references
stored in the context. It mirrors the fieldsindex and value of
the SoNodeContext node and sets the fieldvalue to the node refer-
ences associated with the indices specified in the fieldindex within
the context in the current traversal (see Figure 6). If an index does
not reference an node, the respective entry is set to NULL. Fur-
thermore the SoNodeContextReport can also traverse the nodes re-
trieved from the context allowing to add nodes to the scene-graph
for the purpose of traversal only. Two boolean fieldstraverse

SoContextReport {

MFString index []

MFField value []

SFBool traverse TRUE

SFBool report TRUE

}

Figure 6: Specification of the SoNodeContextReport node. The field
index specifies the values to read from the current context and the
field value outputs the values for further use. The two boolean
variables traverse and report control whether to traverse and/or
report the nodes retrieved from the context.

andreport control the actual traversal or reporting of nodes in the
value field.

5 USING CONTEXT IN SCENE GRAPHS

The nodes described above allow the construction of scene graphs
that can be controlled without detailed knowledge of their struc-
ture. Such scene graphs act like function objects that are reusable
and change their behavior based on arguments set in the context.
Some examples of using the context mechanism are described in
the following.

5.1 Decoupling of model and control

A simple setup embeds SoContextSwitch nodes throughout the
scene graph to only traverse partial subgraphs. For example, a scene
graph might store different representations of objects locally for
each object separately but as children of SoContextSwitch nodes.
The nodes are configured to use the same index and the order of
the children corresponding to different presentations is the same
for each object. Then an application can control the presentation
by manipulating a single SoContext node above the scene graph
to set the common index to the desired value. Figure 7 shows the
schematic structure of such a scene graph.

Several of such indices can be overlaid to produce a matrix like
structure of options. Typically combinations can be arranged by
simply serializing SoContextSwitch nodes configured with differ-
ent indices for different aspects. For example, one index could se-
lect the color of an object and a second one the render style such
as lines, flat shaded polygons or Phong-shaded polygons. Because
they can be set independently, the switches can be arranged in any
order and do not depend on each other. Figure 8 details the struc-
ture of a scene graph allowing to switch between two independent
options.

SoContextSwitch

Different representations

Object A Object B
Context

sets context
to select re-
presentation

Figure 7: A context sensitive scene graph to select between differen
representations of a set of objects.



Index 1 Index 2

Material
0

Material
1

Texture
0

Texture
1

Figure 8: A context sensitive scene graph to select between multiple
options at the same time to allow different combinations.

More complex computations can be implemented by alternating
switches and SoContext nodes in the scene graph. Then, the choice
of one or more indices can influence the setting of another set of
indices, implementing a general mapping from a tuple of indices
to another tuple. Recursively building such mappings can lead to
powerful computations by simply arranging scene graphs in the ap-
propriate way.

5.2 Direct use of context values

The SoContextReport node allows to directly use context values to
set the parameters of scene graph nodes. Figure 9 shows how to
read out a color value from the context and apply it to a subsequent
geometry.

Group {

DEF Color SoContextReport {

index "myColor"

}

Material {

diffuseColor = USE Color.value

}

Sphere {}

}

Figure 9: Using an SoContextReport to set arbitrary field values in
the scene graph.

The SoContextReport node namedColor reads out the value
of the context index"myColor" and the following material node
sets its diffuse color to the value provided by the SoContextReport
node. The following sphere geometry will then be rendered in the
specified color. Reusing this scene graph fragment throughout a
larger scene graph allows to set the rendering color by specifying
an SoContext node with the parameters index set to"myColor" and
value to the desired color.

5.3 Scene graph templates

The mechanism of storing nodes in the scene graph provides the
greatest flexibility. A scene graph can be fitted with SoNodeCon-
textReport nodes that act as placeholders for the nodes that are to be
traversed during a later traversal of the overall scene graph. There-
fore, various details and configuration options can be left during
construction and are only added at traversal time enabling a kind of
late-binding of parts of the scene graph. Figure 10 shows a simple
example of the principle.

Furthermore, the application does not need to keep track of the
location within the scene graph of the placeholders or manage ref-
erences to them. Only during creation or change of the scene graph
the correct structure needs to be created.

DEF SG Separator {

SoNodeContextReport {

index "RenderStyle"

traverse TRUE

}

Sphere {}

}

...

SoContextReport {

index "RenderStyle"

mode ADD

value Material { diffuseColor 1 0 0 } # red color

}

USE SG # draw the Sphere in red color

SoContextReport {

index "RenderStyle"

mode ADD

value Group {

Material { diffuseColor 0 0 1 } # blue color

DrawStyle { style LINES } # and wireframe

}

USE SG # draw the Sphere in blue wireframe

Figure 10: A template scene graph traversed with two different values
set for its parameter.

Late-binding and referential transparency simplify the creation
of applications that require dynamic scene graphs. For example, a
mobile AR application in a wide area environment will only load
parts of the required world model for display purposes. The sub-
set of the world model will change while the user moves about the
environment and the scene graph within the application will be up-
dated by a central service to reflect the relevant subset. If the central
service creates the required slots in the provided scene graph, the
application does not have to deal with the structure of the graph to
set the required rendering attributes, but rather simply specifies the
nodes to fill the template slots. On the other hand, the central ser-
vice does not need to know about the desired rendering attributes.
Therefore, the template mechanism effectively decouples the con-
tent from the presentation.

5.4 Meta-programming of scene graphs

The context sensitive scene graph mechanism shifts the complex-
ity of managing multiple presentations from the application code
to the scene graph data structure. However, it also enforces a uni-
fied approach to dealing with multiple representations and dynamic
switches between them. That is, if several objects require to provide
the same parametrization, the representing scene graphs will follow
a common pattern and vary in the specific geometry and other de-
tails of the objects. To enforce the common pattern on all these
objects some forms of meta-programming of the scene graph are
required. Such meta-programming can be applied on three levels:
scene graph implementation level, scene graph language level and
scene graph meta-language level.

1. Open Inventor applications can codify common scene graph
patterns by implementing so-callednodekits. Nodekits form a spe-
cial class of scene graph nodes that encapsulate a fixed sub-scene-
graph and allow to enforce additional constraints such as fixed field
values and connections between fields. They also hide the inter-
nal scene graph and only provide access to specified sub-nodes and
fields. Nodekits are C++ classes and thus are nodes with a fixed
behaviour configurable only as far as the developer intended. They
also become new elements of the scene graph language itself and
can be used in subsequent creation of scene graphs.

2. The particular implementation of Open Inventor this work
is based on [19] also supports the VRML97 syntax and allows to



Index name Description
User user id associated with the current output window.
Application Application id of the application that contains the current node.
Window Window id of the window widget that contains the current node.
Eye a value LEFT or RIGHT specifying into which buffer the current render traversal writes.
DivMode the value MASTER or SLAVE specifying the mode of the application the current node is in.

Table 1: Context information provided by the Studierstube framework.

mix and match node types from both language sets. The VRML97
nodes are implemented as Open Inventor node types. VRML97
features a concept for reusable components similar to the nodekits
described before. APROTOis a definable node that is described by
a prototype scene graph which is instantiated wherever a node of the
defined type is encountered. The definition and reuse of a PROTO
is part of the file format and therefore happens at the language level
itself. Because the context enabling nodes can be used in the defini-
tion of a new PROTO, it becomes possible to define common scene
graph patterns in the file format itself. We also developed a Python
binding for Open Inventor and implemented a Script node using the
binding. A flexible Script node can provide ”glue code” which is
often required to calculate complex functions of context state for
further use.

3. Finally, automatic methods of generating a scene graph file
can be applied to cope with the added complexity in the scene
graph. We have investigated this approach in a set of location based
mobile augmented reality applications [14] that operate within the
city of Vienna. A generic XML database stores building models,
street networks and information on interesting locations in an ap-
plication independent format. Then dedicated transformations gen-
erate scene graph files for specific applications. The resulting files
already contain the necessary sub-structures using context informa-
tion to switch between different representations.

6 RESULTS AND APPLICATIONS

The general mechanism provided by context sensitive scene graphs
is used in theStudierstubeframework to implement functions rang-
ing from providing system level information to supporting the needs
of individual applications. Some demonstrated uses are described
in the following sections.

6.1 System management in Studierstube

Applications withinStudierstubeneed different system level infor-
mation to implement their behavior.Studierstubesupports multiple
users and allows to drive multiple displays simultaneously to pro-
vide user-specific views. Displayed information can depend on the
user, whether the image is rendered for the left or right eye, the id
of the application a node is part of, the collaborative session used to
distribute the information and many more parameters. Such infor-
mation can be transported in a traversal independent manner using
the context of a traversal. We cannot employ global variables to
transport such information because some items are only applicable
to certain subgraphs and may change for different ones. For ex-
ample, in the overall scene graph structure used by aStudierstube
process, there are several application identifiers for the different ap-
plications executed in parallel.

Studierstubedefines a set of well-known context indices as pa-
rameters (see Table 1). The information about the user id and the
selected buffer is only available during a render traversal, because
it is not applicable for other actions.

Several nodes in theStudierstubeframework use the system spe-
cific context information to implement adaptive presentations. The

SoWindowKitnode draws window borders in different colors de-
pending on each user’s window focus. The focus color can be con-
figured for each user individually. The SoWindowKit node uses the
user id information during a render traversal to index into an array
of color values storing these user dependent colors and sets the win-
dow borders’ color to the user’s focus color. The context distributes
the information on which user is rendered for from all the instances
of windows that might be present in a scene graph.

Another optimization concerns the use of the application id.
Widgets need to implement special behavior in a distributed setting
and need to change field values without the propagation of these
changes to other replicas. Fields are selectively put into and re-
moved from filters in the replication mechanism to disable or en-
able propagating changes. Therefore, a widget needs to know the
instance of the session object responsible for its part of the scene
graph. The instance can be retrieved with a simple look-up based
on the application id provided via the context mechanism. This ap-
proach is much more efficient than the alternative, namely to search
the scene graph from a common root node for the widget node and
then walk the computed path to look for any session objects that are
ancestors of the widget node.

6.2 Signpost - attributing of a general model tree

The Signpost application described in [13] is an indoor navigation
application based on a wide area tracking solution. It provides nav-
igational hints to a user roaming a building. The user interface pro-
vides a number of graphical representations of the building geome-
try (see Figure 1).

World-in-Miniature A miniature world model with the current
location of the user floats in a head stabilized position in front of
the user. Its orientation is either fixed to north-up or changed to
align with the user’s viewing direction.

Augmentation of room geometryThe room geometry of the
building can be augmented by a wire frame representation. Dif-
ferent rendering modes such as hidden-line removal or full X-ray
vision are possible.

Navigation aidesThe navigation system computes the shortest
path fro the current room to the destination room selected by the
user. Doors along the way are highlighted to aid the user. A world
stabilized arrow points to the next door to pass and a compass-like
widget shown in a heads-up display gives overall orientation infor-
mation.

A core requirement of the software architecture was to build a
modular, extensible system that allows to easily add application fea-
tures. To address this issue we separated the building model from
the components that are responsible for different presentations and
interactions. A dedicatedmodel servercomponent holds the scene
graph of the building model and presents an interface for client
components to reuse it in their own scene graph for rendering. The
model scene graph is annotated with SoContextReport nodes to set
various aspects of the presentation. Client components reuse the
model scene graph within their own graph and prepend a set of So-
Context nodes to provide their specialized rendering parameters.

The model server’s scene graph relies on two dedicated nodes,
SoBAUBuiling to model a whole building andSoBAURoomto
model a single room contained within a building. The scene graph



Reference reuses
BAUBuilding node

BAU
Building

BAU
Room

Report
’portal-
color’

Report
’wall-color’

portal
geometry

wall
geometry

BAU
Room

Client 1

Set ’portal-
color’

Set ’wall-
color’

Client 2

Set ’portal-
color’

Set ’wall-
color’

Reference
BAU

Building

BAU
Room ...Communicates color

for portals

Communicates color
for walls

Reference reuses the
BAUBuilding node

Figure 11: Structure of the BAURoom scene graph and its use by two clients. The BAURoom node annotates the different geometries with
report nodes that read a set of parameters from the context such as rendering color or drawing style. Each client holds a reference to the overall
building scene graph and prepends it with context nodes to set the value of the individual parameters.

encapsulated by an SoBAUBuilding node contains a switch node
holding all the rooms of the building. The switch node allows to
traverse only a subset of all rooms to limit the rendering to a certain
selection. The SoBAURoom node contains a scene graph describ-
ing the geometry of a room separated into different sets of polygons
for wall, ceiling, floor and other surfaces. Also portal geometry
representing doors and connections to other rooms are modelled
separately. Every set of polygons is rendering individually with its
own render parameters. These parameters are set by dedicated So-
ContextReport nodes that are controlled by individual indices (see
Figure 11). A global naming scheme allows to set attributes such
as color, lighting model, drawing style and more for each set of
polygons individually.

A client of the model server obtains a reference to the top level
SoBAUBuilding node. Then it configures a set of SoContext nodes
with the well-known names for different attributes of the model.
Moreover, it can also select to only traverse a subset of the rooms.
The client can repeat this construction for each presentation style
and subset of rooms it requires to display.

The different client components implementing the WIM, aug-
mentation or navigational hints all use one or more SoBAUClient

results in hidden-line
rendering

Model
Server

Building
model

Augmentat
ion

filled, z-
buffer only Reference wireframe,

colors Reference

results in hidden-
line rendering

original instance is
not traversed

results in hidden-
line rendering

original instance
is not traversed
by model server

Figure 12: Using a BAUBuilding for multi-pass rendering. The model
scene graph is reused twice, once to render the filled polygons into
the Z-Buffer only and a second time to render the colored wire frame
model resulting in a hidden-line drawing.

nodes in their scene graph. They all set different presentations
styles using the context while being independent of the actual build-
ing scene graph. For example, the augmentation component uses an
SoBAUClient node with styles to render the polygons in wire frame
mode with different colors for walls, ceiling, floor and portals. A
second SoBAUClient node can be switched into the scene graph to
render filled polygons into the Z-buffer only before rendering the
wire frame to achieve a hidden line effect (see Figure 12).

The client applications are separated from the overall building
model and do not have any detailed information about its struc-
ture. Any changes to the model are transparent and instantaneously
available to the applications. Also adding a new application requir-
ing different presentation styles does not affect the existing ones.
The modularity also furthers reuse of the individual components in
new interfaces.

6.3 Information filtering for mobile augmented reality

To demonstrate the dynamic possibilities of the context sensitive
traversal we investigated the implementation of a number of user
interface techniques for augmented reality. Julier et al. [8] describe
a region-based information filtering algorithm designed to automat-
ically reduce the number of visible objects in an augmented reality
display. Based on an aura-nimbus approach and a model of the rel-
evance of an object to the user’s current task, it computes whether
an object should be visible to the user or not.

Each user is surrounded by a focus area modelled as an axis-
aligned bounding box. Moreover, for each user a task vector defin-
ing the current state of the user is configured. Objects which are
candidates for display are surrounded by an impact zone modelled
again as an axis-aligned bounding box and an importance vector
which describes the relevance of the object to a set of tasks. For
each user and object a correlation between the task vector and im-
portance vector using a weight matrix is computed and is used to
inflate the object’s impact zone resulting in the nimbus of the object.

Finally, the focus of the user and the nimbus of an object are
intersected to arrive at the final relevance value of the object for
the current user. If the user’s position intersects the nimbus, the
relevance is 1. If no intersection between focus and nimbus takes
place, the relevance is 0. Otherwise the relevance is 1 minus the
minimum distance between the perimeter of the nimbus and the



computes size of
nimbus and relevance

Object

Report
user pos

Report
user focus

Report
user task

cor-
relation

trans-
parency

rele-
vance

geometrytrans-
formation

computes task
correlation

computer size of
nimbus and relevance

User A User B

Object 1 Object 2 Object 3

Reference

sets user position,
focus and task

locally calculates
filtering

set user position,
focus and task

calculates filtering
locally

computes correlation

(a) (b)

Figure 13: (a) Structure of a single information object. Report nodes retrieve the user’s parameters and feed engines that calculate the nimbus
size and relevance. The relevance is fed back into a Material node setting the transparency. (b) The overall scene graph sets the parameters of
two users and references the object graph after each user.

user’s current position, normalized to the interval[0,1] (see Figure
14). The resulting relevance value then controls the transparency of
the object in the user’s display. Whenever the user’s location or task
vector change, or an object’s state or location changes the relevance
value needs to be recalculated to update the user’s view.

Our implementation relies solely on a scene graph instrumented
with context information and local computations of the relevance
information as described above. It separates global state of the user
and the local state of the individual information objects. The global
state consists the user’s location, the size of the focus and the val-
ues of the task vector. The state is set with a variety of SoContext
nodes at the root of the scene graph. Then the global information is
transported during traversal to all nodes.

The individual objects are represented by sub-scene-graphs that
follow a common pattern. Each reads out the user’s parameters
from the context and computes its own visibility. The scene graph
is shown in Figure 13. A report node reports the user’s task vector
which is fed into an SoCalculator engine that calculates the cor-
relation between the user’s state and the object’s properties. The

x

o

o

o

relevance 1
fully visible

relevance < 1
transparent

relevance = 0
invisible

focus

nimbus

object C

object A

object B user

Figure 14: The focus - nimbus interaction. If focus and nimbus
do not intersect, an object not rendered (A). If the user’s position
intersects the nimbus, the object is fully visible (B). Otherwise it is
rendered transparent proportionally to the user’s distance from the
nimbus (C).

user’s position and focus size is also reported to another engine that
calculates the final relevance value from the correlation value and
the other parameters. The relevance value is then used to set the
transparency of the object’s geometry during the traversal.

The resulting scene graph supports multiple users by design. For
each user’s display the context values are set to the user’s infor-
mation and then the scene graph is traversed. Any changes to the
object’s parameters are also taken into account, because they will
directly influence the result during the next traversal. Therefore the
implementation is fully dynamic with respect to the users’ and the
objects’ parameters and also allows to dynamically add and remove
objects.

Figure 15 shows a set of shots demonstrating the algorithm. Two
users move through a city environment with different interests. The
focus for each user is displayed as dark wire-frame box. The nimbi
of each object with respect to the different users is rendered as a
light wire-frame box. Wherever the focus and nimbus intersect dur-
ing the movement of a user the object is gradually faded in and out.

We plan to use the algorithm in an existing demonstration setup
for outdoor navigation and information display using augmented
reality [14]. An extension of the described algorithm is to take into
account a route computed by the navigation system. By intersecting
the nimbus boxes of objects with the calculated path a more focused
selection of presented objects can be determined. The required path
information would again be transported via context sensitive traver-
sal by adding the list of waypoints along the path to the context.
Then each object could also perform the required calculations lo-
cally.

7 DISCUSSION

The proposed mechanism provides a flexible way to communicate
information between nodes in a scene graph and furthermore com-
pose scene graphs on the fly. Different presentations are simply dif-
ferent instances of a template scene graph combined with different
presentation parameters. Combinations of content and presentation
are created during traversal only which is the actual moment in time
they are required.

Global information delivery could be addressed by other means
as well. For example a publish-subscribe mechanism or an event
bus architecture could provide for the simple means of decoupling
the source of information and the scene graph nodes using it.

Because context state is implemented in terms of the standard
scene graph state mechanism, it directly supports the caching mech-



(a) (b) (c)

Figure 15: Simulation environment for the information filtering algorithm. (a) gives an overview of the system where two users are simulated
moving through the environment. The colored solid lined boxes show the nimbus boxes for user 1 and the colored dashed lined boxes for user
2. The users’ focus boxes are drawn with black, solid or dashed lines.(b) shows user 1 close to three objects which are rendered transparent.
(c) moving into the large nimbus box into the right, the object becomes fully visible.

anisms that build on it. The caching mechanisms determine based
on state values whether a certain subgraph needs to be re-rendered
or a stored display-list can be used instead. While a pure global
data structure could achieve the same effect, such a solution would
not be transparent to the existing scene graph implementation and
therefore would require changes to the caching mechanisms.

Finally, changes to the scene graph structure are transparent to
the transport mechanism. Therefore, it is more flexible than direct
connections such as the observer pattern which require references
to the end-points to be set up or destroyed.

The context sensitive scene graph traversal introduces aspects
of declarative programming using the structure of the scene graph.
While the original scene graph approach already represents a pow-
erful application of the Composite pattern [5], the declarative pro-
gramming possible by constructing a scene graph was previously
limited to a fixed visual appearance dictated by the structure.

A scene can now be made a reusable and parameterizable ob-
ject using the SoContextReport and SoNodeContextReport nodes.
Therefore, it can become a function like object that produces differ-
ent rendering results based on the parameters set with the SoCon-
text and SoNodeContext nodes. Because Open Inventor provides
a human-readable file format, such programming can be done in a
declarative style within the file format.

Similar effects can be achieved by using a dynamic language that
also provides a scene graph API. For example, the Scheme binding
used in Avango [20] allows to directly declare a scene graph in a
source file. Language features of Scheme would allow to encapsu-
late the creation of the scene graph in a function and pass param-
eters to it that are used in the created instance. By binding such
parameters later to different values, a global communication mech-
anism is established again. However, modifying the scene graph
would require the new nodes to be passed the same parameter, again
creating some complexity in the application. The binding provided
by the context sensitive scene graph is even later than variable bind-
ing, it only happens during a specific traversal and can vary between
individual traversals.

8 CONCLUSIONS AND FUTURE WORK

The interpretation of the scene graph structure as a declarative lan-
guage provides the developer with a new tool set. Programming
the scene graph structure directly raises the level of abstraction and
frees the developer from much bookkeeping and overhead work in
creating the scene graph. The interpreted nature of describing the
used scene graph structure allows for quick turn around times dur-

ing iterative development and is thus well suited for developing user
interfaces. It also lends itself naturally to data-driven application
designs.

The structural complexity of a context sensitive scene graph can
increase dramatically with the number of objects and number of
features that are varied. This development can be countered relying
on meta-programming of the scene graph with automated methods.
A data-driven program architecture will allow to generate the re-
quired scene graph from given data and a template pattern to apply
to the set of objects passed in. The programmer then only needs to
create the template instead of manually applying the same structure
to all objects. We have started to investigate an architecture [14]
that realizes such a method for large-scale mobile AR applications.

In future work we will continue to apply the context sen-
sitive scene graphs to user interfaces for mobile augmented
reality. The implementation itself is complete and available
as part of theStudierstubeaugmented reality framework at
http://www.studierstube.org/

ACKNOWLEDGMENTS

The authors would like to thank Anton Fuhrmann for his early in-
put to the concept of context sensitive scene graphs. The presented
work was sponsored by the Austrian Science FoundationFWF un-
der contracts no. P14470 and Y193, and Vienna University of Tech-
nology by Forschungsinfrastrukturvorhaben TUWP16/2002.

REFERENCES

[1] Don Burns and Robert Osfield OpenSceneGraph
http://openscenegraph.sourceforge.net/index.html, April 6th, 2004

[2] Rikk Carey and Gavin Bell.The Annotated VRML 2.0 Reference Man-
ual. Addison-Wesley, 1997.

[3] Jürgen D̈ollner and Klaus Hinrichs. A generalized scene graph.
In Proc. VMV 2000, pages 247–254, Saarbrücken, Germany, 2000.
Akademische Verlagsgesellschaft.

[4] Conal Elliott. Modeling interactive 3d and multimedia animation with
an embedded language. InProc. of the first conference on Domain-
Specific Languages, Santa Barbara, CA, USA, October 15–17 1997.
USENIX, The USENIX Association.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, USA, 1995.

[6] Gerd Hesina, Dieter Schmalstieg, and Werner Purgathofer. Distributed
open inventor : A practical approach to distributed 3D graphics. In
Proc. ACM VRST’99, pages 74–81, London, UK, December 1999.



[7] Jürgen D̈ollner and Klaus Hinrichs. A generic rendering system.IEEE
Transactions on Visualization and Computer Graphics, 8(2):99–118,
April–June 2002.

[8] Simon Julier, Marco Lanzagorta, Yohan Baillot, Lawrence Rosen-
blum, Steven Feiner, and Tobias Höllerer. Information filtering for
mobile augmented reality. InProc. ISAR 2000, pages 3–11, Munich,
Germany, October 5–6 2000. IEEE and ACM.

[9] Blair MacIntyre and Steven Feiner. A distributed 3D graphics library.
In Proc. ACM SIGGRAPH ’98, pages 361–370, Orlando, Florida,
USA, July 19–24 1998.

[10] Marc A. Najork and Marc H. Brown. Obliq-3D: a high-level, fast-
turnaround 3D animation system.IEEE Transactions on Visualization
and Computer Graphics, 1(2):175–193, June 1995.

[11] Dirk Reiners. A flexible and extensible traversal framework for scene-
graph systems. InProc. 1st OpenSG Symposium, 2002.

[12] Dirk Reiners, Gerrit Vo, and Johannes Behr. OpenSG: Basic concepts.
In Proc. 1st OpenSG Symposium, 2002.

[13] Gerhard Reitmayr and Dieter Schmalstieg. Location based appli-
cations for mobile augmented reality. In Robert Biddle and Bruce
Thomas, editors,Proc. AUIC 2003, volume 25 (3) ofAustralian Com-
puter Science Communications, pages 65 – 73, Adelaide, Australia,
February 4 – 7 2003. ACS.

[14] Gerhard Reitmayr and Dieter Schmalstieg. Collaborative augmented
reality for outdoor navigation and information browsing. InProc.
Symposium Location Based Services and TeleCartography - Geowis-
senschaftliche Mitteilungen, volume 66, pages 53–62, Vienna, Aus-
tria, January 28–29 2004. Wiley.

[15] John Rohlf and Jim Helman. IRIS performer: A high performance
multiprocessing toolkit for real-time 3D graphics. InComputer
Graphics (SIGGRAPH’94 Proc.), pages 381–394. ACM, July 1994.

[16] Dieter Schmalstieg, Anton Fuhrmann, Gerd Hesina, Zsolt Szalavari,
L. Miguel Encarnao, Michael Gervautz, and Werner Purgathofer. The
Studierstube augmented reality project.PRESENCE - Teleoperators
and Virtual Environments, 11(1), 2002.

[17] Dieter Schmalstieg and Michael Gervautz. Modeling and rendering of
outdoor scenes for distributed virtual environments. InProc. VRST’97,
pages 209–216, Lausanne, Switzerland, Sep. 15–17 1997. ACM.

[18] P. Strauss and R. Carey. An object oriented 3D graphics toolkit. In
Proc, ACM SIGGRAPH’92. ACM, 1992.

[19] Systems in Motion. Coin 3d library. http://www.coin3d.org/, April
5th 2004.

[20] H. Tramberend. Avocado: A distributed virtual reality framework. In
Proc. IEEE Virtual Reality’99. IEEE, IEEE Press, 1999.

[21] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: an annotated bibliography.SIGPLAN Not., 35(6):26–36, June
2000.

[22] Josie Wernecke.The Inventor Toolmaker: Extending Open Inventor.
Addison-Wesley, 2nd edition, April 1994.

[23] Bob Zeleznik, Loring Holden, Michael Capps, Howard Abrams,
and Tim Miller. Scene-graph-as-bus: Collaboration between het-
erogeneous stand-alone 3-D graphical applications. InProc. EURO-
GRAPHICS 2000, volume 19(3), 2000.


	Introduction
	Related work
	Concepts
	Context state
	Node references in the context

	Implementation
	Basic context management
	Nodes as context values

	Using context in scene graphs
	Decoupling of model and control
	Direct use of context values
	Scene graph templates
	Meta-programming of scene graphs

	Results and applications
	System management in Studierstube
	Signpost - attributing of a general model tree
	Information filtering for mobile augmented reality

	Discussion
	Conclusions and future work

		reitmayr@ims.tuwien.ac.at
	2004-09-06T09:32:20+0200
	Gerhard Reitmayr
	Ich bin der Verfasser dieses Dokuments




