
Bakkalaureatsarbeit

Automatic Generation of
Graphical User Interfaces in

Studierstube

ausgeführt am:
Institut für Softwaretechnik und Interaktive Systeme

der Technischen Universität Wien

unter der Leitung von:

Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Dieter Schmalstieg

unter Mitbetreuung von:

Dipl.-Ing. Thomas Psik

durch
Valérie Maquil

Matrikelnummer 0126539

Wien, am 14. Juli 2004

Valérie Maquil

Automatic Generation of
Graphical User Interfaces in

Studierstube

Bachelor Thesis

Performed at the

Institute for Software Technology and Interactive Systems
of the Vienna University of Technology

Supervised by

Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Dieter Schmalstieg
and

Dipl.-Ing. Thomas Psik

Vienna, 2004

Abstract

Studierstube is a system build to develop collaborative augmented reality
applications. Interaction in this system is realised by means of the Personal
Interaction Panel (PIP), composed of a notebook-sized handheld panel and
a pen. Traditional interaction elements are projected on this panel to enable
widget interaction and parameter manipulation.

To create a user interface on this panel, each interaction object needs to
be placed individually on the panel with an explicit transformation. This
approach however implies that creating and changing the layout of a user
interface takes a lot of time.

This thesis presents a new system able to automatically generate graph-
ical user interfaces in Studierstube. Therefore, all application’s functions
need to be specified by means of a tree of state variables and commands,
whose structure is then analysed in order to compute a GUI for this applica-
tion. The process used to generate the GUI is adopted by the PUC system
presented by Nichols et al. in [4] [3].

i

Kurzfassung

Studierstube ist ein System, das zur Entwicklung kollaborativer Augmented
Reality Applications erstellt wurde. Die Interaktion in diesem System wird
durch das Personal Interaction Panel (PIP) ermöglicht, welches aus einer
leichten Platte in der Größe eines Notebooks und eines Stiftes besteht. Auf
diese Platte werden dann traditionelle Interaktionskomponente projeziert
um so eine Veränderung der Parameter zu ermöglichen.

Um eine Benutzerschnittstelle für diese Platte zu erstellen, muß jedes
einzelne Interaktionsobjekt anhand einer expliziten Transformation plaziert
werden. Durch diesen Ansatz jedoch wird das Erstellen und das Verändern
graphischer Benutzerschnittstellen sehr zeitaufwendig.

Diese Arbeit beschreibt ein neues System, das ein automatisches Er-
stellen von graphischen Benutzerschnittstellen in der Studierstube ermöglicht.
Hierfür werden alle Funktionen der betreffenden Applikation anhand eines
Baumes aus Variablen und Befehlen spezifiziert. Die Struktur dieses Baumes
wird dann analysiert um eine Benutzerschnittstelle für die Applikation zu
erstellen. Der Prozess, der hierfür verwendet wird, basiert auf dem PUC
System, beschrieben von Nichols et al. in [4] [3].

ii

Contents

1 Introduction 1
1.1 Interaction tools . 2
1.2 Problem statement . 2

2 Related work 5
2.1 Personal universal controller (PUC) 5

2.1.1 Architecture . 5
2.1.2 Specification Language 6
2.1.3 Graphical Interface Generation 7

2.2 Visual Techniques for Traditional Layouts 7
2.2.1 Balance and Symmetry 8
2.2.2 Regularity . 8
2.2.3 Alignment . 9
2.2.4 Proportion and Horizontality 9
2.2.5 Grouping . 9
2.2.6 Sparing . 10
2.2.7 Consistency . 10

2.3 Automatic User Interface Generation 10
2.3.1 Automatic dialog box layout 11
2.3.2 Customisation of user interface styles 11
2.3.3 The generate-and-evaluate strategy 11

3 Implementation aspects 13
3.1 Implementation details . 13

3.1.1 High-level overview . 13
3.1.2 Application objects . 14
3.1.3 Defining the initial structure 15
3.1.4 Apply layout rules . 16
3.1.5 Transforming application data into interaction objects 18

3.2 Implementing a new layout action 19
3.2.1 Creating the action . 19
3.2.2 Making the action accessible 21
3.2.3 Results . 22

4 Discussion 24

5 Conclusions 26

6 Appendix 28

iii

1 Introduction

The concept of Augmented Reality (AR) describes the combination of the
real world with a computer generated virtual environment in a real time
interactive manner. Wearing see-through glasses, the users are able to per-
ceive the real world surrounding them, with virtual objects superimposed
upon it. Exact alignment of both environments in 3D creates the illusion of
virtual objects coexisting with real ones. This concept thus aims, in opposi-
tion to virtual reality, an enhancement of the reality and not a replacement
of the latter.

The computer graphics institute of the University of Technology in Vi-
enna has developed the AR system Studierstube, which is an environment
for the development of collaborative augmented reality applications. An
important property of this system is that it allows multiple users to inter-
act in the same virtual 3D workspace. Furthermore, the workspace is not
limited to a single application and it supports multitasking so that multiple
users can use simultaneously multiple applications in the same workspace.
Presentation of the virtual scene is done using see-through head mounted
displays or back-projection display surfaces like the virtual table (VT).

Research in the field of augmented reality is subsequently done on differ-
ent system setups and potential applications. The possible range of appli-
cations includes medical visualisations, industrial design, annotations, edu-
cational and entertainment setups. Figure 1 shows some examples of such
applications. SignPost is an augmented reality application that is able to
guide a person through an unfamiliar building, the Virtual Construction Kit
allows you to quickly build an architectural model with buildings, trees and
people, and Construct3D is a three dimensional geometric construction tool
specifically designed for mathematics and geometry education.

Figure 1: Recent research applications developed for Studierstube: Sign-
Post, Virtual Construction Kit and Construct3D.

1

Further information about Studierstube, its properties and the current
research projects are provided in [5] and on the world wide web (www.studier-
stube.org).

1.1 Interaction tools

Interaction with virtual objects in the augmented part of Studierstube is
done with the Personal Interaction Panel (PIP). It is composed of a light-
weight, notebook-sized handheld panel and a pen. Both of these components
are tracked in position and orientation, so that their physical properties cor-
respond to the feedback provided by the PIP elements in the augmented
scene.

The pen alone can be moved in six degrees of freedom and can thus
handle any 3D pointing operations or direct manipulations. The panel is
virtually augmented by a projection of traditional interaction elements to
enable widget interaction and parameter manipulation. These interaction
elements may also be extended for 3D manipulations including 3D widgets,
clipboard functionalities and drag-and-drop in 3D.

Figure 2: The personal interaction is a pen-and-pad combination that is
overlaid with graphics

For use with the PIP, simple 3D widgets have been implemented: but-
tons, sliders and list boxes. These widgets are based on their 2D desktop
counterpart: properties that were familiar have been kept, while their be-
haviour has been extended to make them controllable with the PIP. Figure
3 shows examples of the current widget implementations.

1.2 Problem statement

As the PIP is used as interaction tool in Studierstube, its user interface may
be treated similarly to the one of a traditional desktop computer. Widgets
are placed on a plane surface of a certain size where position and size of
the different components are crucial for the quality and aesthetic look of the

2

Figure 3: Simple 3D widgets have been implemented for use with the PIP:
toggle buttons, push buttons, list boxes and sliders.

user interface. Visual techniques like simplicity, grouping and alignment give
some hints about how to construct a graphical user interface; all decisions
concerning the resulting layout however have to be taken by the designer.

As for conventional applications, the whole process of building a GUI for
Studierstube consists of the following steps [1]:

1. access details of the data model

2. determine how each element of the data model is to be mapped into a
control widget

3. access and apply layout rules to position and size each component

In the current system, each of these steps needs to be carried out by
the programmer, what makes this procedure very time-consuming and thus
difficult to expand or modify. Small changes at the level of the data model
lead to a complete new generation of the user interface. By taking a closer
look to the steps explained above, we notice that part of their tasks could be
automatised by using layout style rules following certain visual techniques.

The aim of this research was to develop an automatised mechanism for
Studierstube providing more facility in the generation of a GUI. Our system
actually automatises the two last steps of the above generation process and
creates and lays out the PIP interaction elements. It does this by reading
a textual specification of the appliance’s functions, including a high-level
description of every function and a hierarchical grouping of those functions.
In addition to this specification, hints concerning layout and style of the
user interface are given. With all these information a GUI able to control

3

that application is automatically created.

We shall first describe related systems that have been used as base for
the development of our system. After that, we shall explain how parts of the
presented systems have been used to develop our framework for Studierstube
and give details about its implementation. Finally, we shall discuss the
results and describe some possibilities to extend the system.

4

2 Related work

Quite a number of research groups are working on how to automatically
generate graphical user interfaces. The personal universal controller (PUC)
is a system able to control appliances from handheld devices by generating
a user interface for this device from a textual specification of the appliance’s
functions. The specification of this PUC system contains a lot of useful
indications concerning the architecture and the specification language. The
generation of user interfaces for the PIP is however more complicated as for
handhelds, so information provided by the PUC system may be extended
with research done on visual techniques for layouts and on automatic user
interface generation.

2.1 Personal universal controller (PUC)

Nichols et al. describe in [4] [3] a system developed as an approach for im-
proving the interfaces to complex appliances by introducing an intermediary
graphical or speech interface. This system, called personal universal con-
troller (PUC) automatically generates a user interface with which the user
interacts as a remote control for any application.

Figure 4: A diagrammatic overview of the PUC. A graphical or speech
interface is introduced and communicates with the appliance by means of
the specification language.

2.1.1 Architecture

The PUC architecture consists of appliance adaptors, a specification lan-
guage, a communication protocol and interface generators. The appliances
allow connection to the PUC by means of the appliance adaptor which rep-
resents a translation layer to its built-in protocol. The communication be-
tween PUC devices and appliances is enabled by a two-way communication

5

protocol and a specification language that allows each appliance to describe
its functions to an interface generator. The specification language consti-
tutes the separation of the appliance to the type of interfaces it uses. The
interface generator builds then the interface for the device that is going to
control it, such as a graphical interface on a Handheld or a Pocket PC or a
speech interface on a mobile phone. A diagram of this architecture is shown
in figure 5.

Figure 5: An architectural diagram of the PUC system showing one connec-
tion.

2.1.2 Specification Language

The PUC specification language is XML-based and represents all manipula-
ble elements as state variables and commands. State variables are specified
with one of seven generic types: boolean, integer, fixed point, floating point,
enumerated, string or custom. The interface generator knows how to ma-
nipulate these types and can infer the functions coupled with them. The
custom type allows specifying standard widget arrangements representing
a familiar set of interface elements. Commands represent functions whose
results cannot be described easily in the specification.

All the elements must also have information about how to label their in-
terface components. As the label information depends on form factors and
interface modalities, every element has a so-called label dictionary. This
dictionary contains a set of labels as plain text, phonetic representations
and text-to-speech.

To group similar elements close together, state variables and commands
are specified as leaf nodes in an n-ary group tree. Each branching node is a
group and each group may contain any number of state variables, commands

6

and other groups.

Furthermore, the two-way communication feature allows it to use de-
pendency information, which is information about what components are
disabled depending on the values of other state variables. These are speci-
fied with three types of dependencies: equal-to, greater-than, and less-than,
combined with the logical operations AND and OR. This dependency in-
formation can also be used to structure graphical interfaces or to interpret
ambiguous phrases uttered to a speech interface.

2.1.3 Graphical Interface Generation

The dependency information is used by the graphical interface generator to
determine how to divide the screen into panels, and to assign branches of
the group tree to each panel. If two variables are never available at the same
time, they might be placed on separate panels. This mutual exclusiveness is
found by checking each state variable that other commands and state vari-
ables depend upon. This dependency structure is then analysed to decide
whether panels are created and how they are controlled.

Once the initial structure is defined, the generator traverses the group
tree and uses a decision tree to select a component for each state variable
and command. Recursively the components are then inserted in an inter-
face tree which represents the panel structure of the generated interface and
is used for translating abstract layout relationship to a concrete interface.
This tree contains information on the relative position of the panels to each
other and of the components of each panel to each other. These layout rules
determine also where the label of each component should be placed.

The interface is made concrete by determining size and location of each
panel and each component. Labels are assigned by picking the largest label
that fits in the allocated space.

2.2 Visual Techniques for Traditional Layouts

Vanderdonckt and Gillo summarise in [6] visual techniques exported from
the area of visual design that provide the designer a wide range of means
for laying out interaction objects.

The following sections describe a selection of these visual techniques,
which are interesting and applicable for our field of work.

7

2.2.1 Balance and Symmetry

Balance is a highly recommended technique that searches for equilibrium
along a vertical or horizontal axis in the layout (figure 6). It places its com-
ponents equally around a gravity centre located on this axis. It is justified
by human perception and intense need for it in visual layout. The opposite
of balance is instability and occurs when interaction objects are not dis-
tributed equally on each hand of the axis.

Figure 6: Balanced and unbalanced layouts

Symmetry consists of duplicating the visual image of interaction objects
along a horizontal and/or vertical axis (figure 7). When a layout is symmet-
ric, it is automatically balanced too. The opposite however is not justified.

Figure 7: Horizontal and vertically symmetric layouts

2.2.2 Regularity

Regularity is a visual technique that is concerned with the horizontal and
vertical uniformity and equilibrium. Interaction objects are placed uniformly
according to some principle, method or convention that does not change in
one particular layout (figure 8). Irregularity arises when no logical order of
components is present and unexpected, unusual and unconforming layout
grids are emphasised.

Figure 8: Regular and irregular layouts

8

2.2.3 Alignment

Alignment is guaranteed by reducing the number of vertical alignment points
in a row and the number of horizontal alignement points in a column (figure
9). It is probably the most accessible and practical visual technique. A
misaligned layout has a significantly high number of alignment points.

Figure 9: Vertical, horizontal alignments and misalignments

2.2.4 Proportion and Horizontality

Proportion strives for an aesthetically appealing ratio between the dimen-
sions of an interaction object (figure 10). This can be either an aesthetic
proved ratio as the Golden Ratio 1 : 1+

√
5

2 or a widely and conventionally
prefered ratio (e.g. 1 :

√
2, 1 : 2, 1 : 1.29, 1 : 1 : 5, 1 : 3

4 , 1 : 1.6). Dispropor-
tion is implied when large differences appear between the two dimensions.

Figure 10: Proportioned and disproportioned layouts

Horizontality and analogous verticality arise when layouts with horizon-
tal ratio (greater length than height) or vertical ratio (greater height than
length) are predominant. Horizontality is highly preferred to verticality:
long, narrow vertical dialog boxes are not aesthetic.

2.2.5 Grouping

Grouping is a visual technique that uses relative interaction between a set
of components. The attraction of these components can be manipulated
by changing the distance between these components or creating an optical
similarity within that group (figure 11). With grouping, hidden connections
can be set and a layout can be structured by providing an aesthetic appear-
ance that helps remembering and accelerating a layout search. In a splitted

9

structure, all interaction objects are placed without the ability to visually
perceive an attraction or repulsion between them.

Figure 11: Grouped and splitted layouts

2.2.6 Sparing

Sparing suggests to keep the visual loading of a layout within reasonable
boundaries (figure 12). Density, the opposite of sparing, takes no care
about stacking interface components too tightly in the layout. It is usu-
ally measured by dividing the number of lighted pixels by the total number
of available pixels.

Figure 12: Uncluttered and cluttered layouts

2.2.7 Consistency

Consistency is a visual technique for developing a layout whose components
are dominated by one sound, uniform, constant thematic. Consistency takes
place not only in the ordering of interaction objects, but also in their small
differences. Variation has no burdens for one or many themes and can be
assumed by a set of widgets from which contents, shapes, colours, themes
vary significantly.

2.3 Automatic User Interface Generation

Won Chul Kim and James D. Foley [2] have tried to develop a framework
that provides high-level assistance for generating a presentation design. This
tool, named DON, works in two stages, corresponding to the logical steps a
designer takes.

10

The first step is accomplished by an organisation manager which uses
a top-down design methodology to assist designers in organising the in-
formation, and selecting appropriate interface objects and their associated
attributes. This manager embodies two main sets of rules: (1) organisation
rules that determine how the layout should be organised, and (2) selection
rules that select the appropriate interface object types and their attributes.
To complete the presentation design, the presentation manager is used,
which automates the actual layout of menus and dialog boxes. Therefore
layout rules and designer-specified layout preferences are followed to create
different design alternatives that are evaluated by means of the evaluation
metrics.

2.3.1 Automatic dialog box layout

The layout process works with a tree of bounds that is generated auto-
matically by the organisation rules. The strategy consists in organising
the bounds recursively from the leaf nodes up to the roots of the dialog box
tree, to systematically reduce the complex layout problem into many smaller
problems.

Two bounds of a same subgroup node are then selected; their arrange-
ment is determined by a shape and size analysis and form a new bound
in the same pool. This process is repeated for each unknown group node
until all the bounds in the pool are exhausted (figure 13). The designer may
modify the rules for shape and size analysis to have additional fine control
on the layout algorithm.

2.3.2 Customisation of user interface styles

DON provides an explicit method for specifying the layout constraints for
each dialog box design instance. The framework makes it possible to set
certain specifications global to all the dialog box instances, but also to over-
write specific constrains for exceptions. The designer has the possibility to
control margins and spacing, as well as the location and orientation of ’OK’
and ’Cancel’ buttons.

2.3.3 The generate-and-evaluate strategy

The generate-and-evaluate method of design facilitates exploration by allow-
ing a designer to view many automatically generated dialog box layouts that
are evaluated by various evaluation metrics. The designer can then select
the best generated layout structure by comparing the alternatives and use

11

Figure 13: Illustration of the layout process, working with a tree structure
of bounds.

an iterative strategy to finetune the detailed visual attributes. The evalua-
tion criteria DON uses are based on calculation of balance, symmetry, dialog
box size ratio, dialog box size range and negative space percentage.

12

3 Implementation aspects

3.1 Implementation details

The implementation of the framework able to generate automatically user
interfaces, is based on the process suggested in the PUC system in sec-
tion 2.1. The research however contains little information about techniques
concerning the generation of the layout, so we have used the work of Van-
derdonckt and Gillo [6], and Kim and Foley [2] to extend and adapt the
structure of the resulting user interfaces for the PIP.

The following sections describe the architecture and implementation of
our framework, developed for the environment of Studierstube.

3.1.1 High-level overview

SoPucPipLayout

SoBuildPanelAction

state

command widget

group tree

subtree

interface tree as

SoPanelGroup

panel sheet as

SoWidgetLayoutGroup

SoBuildStbStyleAction SoBuildPucStyleAction SoBuildPucExtStyleAction

SoWidgetSelectionFromPuc

Figure 14: Diagram of the high-level structure of the software components

The main class controlling the user interface generation is the SoPuc-
PipLayout class. It contains the specification of the appliance’s functions
and hints concerning the size and style of the layout to be generated. When
created it starts the SoBuildPanelActionwhich analyses the base structure
of the group tree and defines a panel structure for the interface if needed.

For each panel the SoBuildPanelAction now starts the action corre-
sponding to the style chosen by the user. There are three different layout

13

actions implemented: the SoBuildPucStyleAction, the SoBuildStbStyle-
Action and the SoBuildPucExtStyleAction. These layout actions generate
the whole layout for one panel sheet. They start the traversal at the group
node corresponding to the root node of the content of the panel, determine
for each element an interaction object and construct an interface tree consist-
ing of SoWidgetLayoutGroup’s and widgets. Based on the structure of this
interface tree, size and location for each component is allocated and the cor-
responding values and transform nodes are added to this tree. After traversal
this part of the interface tree is returned to the SoBuildPanelAction and
the procedure is repeated for the remaining panel sheets.

When all the panels are constructed the SoBuildPanelAction returns
the interface tree to the SoPucPipLayout class where the user interface is
rendered and presented to the user.

The process may be adapted and improved by implementing new layout
actions with specific behaviour. This case is handled in section 3.2.

3.1.2 Application objects

As recommended in section 2.1.2 all appliance’s functions are specified in
form of states variables and commands. These are implemented in the fol-
lowing classes:

• the SoPucCommand represents a command

• the SoPucStateBool represents a boolean state

• the SoPucStateInt represents an integer state

• the SoPucStateFloat represents a floating point state

• the SoPucStateFixed represents a fixed point state

• the SoPucStateEnumerated represents an enumerated state

• the SoPucStateString represents a string state

• the SoPucGroup represents a group of elements

Each element contains a set of labels in labels where at least one label must
be specified and a priority indicating the importance of the element. This
importance can be used by the interface generator to make certain decisions.
In contradiction to the SoPucCommand, all state variables own a value whose
type depends on the state, and other type specific parameters.

14

Grouping is possible by means of the SoPucGroup which may contain
any number of state variables, commands and other groups. Hierarchical
use of the SoPucGroup structures all application objects into a group tree.
Figure 15 shows an example of such a group tree.

Figure 15: All appliance’s functions are specified in a n-ary group tree with
a state variable or command at each leaf.

3.1.3 Defining the initial structure

The first step of the generation process consists in analysing the base struc-
ture of the group tree. According to PUC system this should be done by
determining mutual exclusiveness for the different states and commands and
decide by means of this structure if a panel structure should be introduced.
We reduce this algorithm by considering only the structure of the group
tree independently of mutual exclusiveness. This simplification may provide
unsatisfactory results in different cases, but we assume it acceptable for this
work.

Figure 16 illustrates how our system defines this initial structure. Key
component of the process is the SoBuildPanelAction, an action travers-
ing only the PUC groups in the higher hierarchies. If the first child is a
SoPucStateEnumerated and each of the remaining children a SoPucGroup,
it creates a SoPanelGroup where each of the SoPucGroup’s forms one sep-
arate panel sheet, and the labels of these sheets are extracted from the
different enumerations of the SoPucStateEnumerated. To allow interaction
between the panel sheets, a SoTextListBox is constructed, which has as
possible values the labels of the sheets. The content of the panel can then
be switched by activating a different button of this list box.

In case where the above conditions are not provided, no SoPucGroup

15

SoPucGroup

SoPucGroup SoPucGroupSoPucState-
Enumerated

SoBuildPanelAction

titles

sheets

Figure 16: Diagram illustrating the generation of the initial structure of the
user interface.

is created and the whole PIP-space is considered as one single panel sheet
where all the components are placed on.

3.1.4 Apply layout rules

As soon as the initial structure is defined, the layout of the different panel
sheets needs to be computed. Now decisions have to be taken concerning
the number of columns or rows per page, the alignment of the widgets, the
proportions of the components, ... In our system this task is fulfilled by
a layout action, which commutes for each component its location and size.
Figure 17 illustrates the generation of a simple layout.

SoPucGroup

SoPucStateBoolSoPucStateBool SoPucStateInt

SoBuildPucStyleAction
(SoBuildPucExtStyleAction,
 SoBuildStbStyleAction)

Figure 17: Diagram illustrating the generation of the interface structure of
one panel sheet.

As the generation process a human designer usually follows, is very com-
plicated and hard to imitate, we need an approximation of this process,
which provides user interfaces of acceptable quality.

The PUC system places the components of one tree using a one-column
layout with adjacent labels, and has some additional rules for special struc-
tures. This one-column layout is appropriate for handhelds and desktop
computers where the size of the surface is of vertical ratio. The PIP how-
ever is of horizontal ratio and using a one-column layout would thus require
to either limit the number of components or distort the proportions of the
different components. For a high number of interaction objects this dispro-
portion leads then to unsatisfactorily results.

16

A solution to this problem is to provide an additional set of generating
methods using visual techniques adapted to a higher quantity of compo-
nents. The current system supports three generating methods implemented
in different layout actions:

1. The default layout action, SoBuildPucStyleAction, arranges the com-
ponents in a one-column layout with adjacent labels as in the PUC
system. It remains at the user’s own responsibility to limit the num-
ber of components to avoid disproportion. Lower hierarchies of groups
are ignored. This case corresponds to the method showed in figure 17.

2. The SoBuildPucExtStyleAction allows to generate an extended ver-
sion of the PUC style. An additional parameter permits to specify
the number of columns used for the layout. This style supports thus
a higher capacity of components per sheet. To preserve balance, the
widgets are placed individually in the column having the lowest level
of widgets at that point. Lower hierarchies of groups are still not taken
in account.

3. The SoBuildStbStyleAction is an approach to respect groupings in
between the widgets of one panel sheet. The main structure consists
of a number of rows that are filled up subsequently with widgets. The
components of two different SoPucGroup’s are never placed in a same
row. This implies that grouping is preserved, the layout may however
not be balanced. The number of widgets placed in one row can be
specified by the parameter units.

These three generation methods are illustrated in figure 18.

Figure 18: Illustration of the generation mode for the PUC style, PUCEXT
style and STB style.

It is also at this place where the layout hints are taking effect. There
are currently three layout hints that can be specified and are respected
dependently on the chosen layout style:

• The dimensions (width, depth, height) of the desired user interface
have to be indicated for each style.

17

• The number of columns can be specified for the PUCEXT style.

• The number of units per row can be indicated for the STB style. This
parameter indicates how many widgets should be placed in one row:
buttons correspond to one unit; sliders and list boxes to two units.

The layout actions determine the graphical layout with a layout grid.
Such a grid consists of a set of parallel horizontal and vertical lines that
divide the layout into regularly or irregularly sized rectangles, defining size
and location of the interaction objects [6].

The implementation of this layout grid is done with the SoWidgetLayout-
Group, that places its elements into a given number of columns and rows
with a specified relative size. For each of the elements of this group, space
and location is allocated depending on its position on the grid. Further di-
vision is possible by hierarchical use of the SoWidgetLayoutGroup.

3.1.5 Transforming application data into interaction objects

In this step the generator chooses the kind of component and label to as-
sign to each state variable and command. Therefore we use, as in the PUC
system, a decision tree taking in account the type of the application object,
the number of possible values and the style. Usually, a command is always
represented by a push button, a boolean state by a toggle button, enumer-
ated states by list boxes and states related to numbers (integer, fixed point,
float) are represented by sliders or list boxes.

The choice of the label and its location depends only on the style: the
PUC style always uses the longest label; PUCEXT and STB styles use the
smallest one.

All these decisions are made in the different layout actions where for each
state variable and command a static method from SoWidgetSelectionFrom-
Puc is called which returnes the corresponding widget node.

Figure 19 illustrates this transformation into widgets.

SoPucStateInt

SoWidgetSelectionFromPuc
adjacent label

Figure 19: Diagram illustrating the generation of the different widgets.

18

3.2 Implementing a new layout action

Lets presume we want to implement a new layout action able to generate a
user interface based on different rules. Hereafter we shall describe how this
layout action can be implemented and made accessible.

3.2.1 Creating the action

The creation of our action requires some steps that are described hereafter.

Selecting a name The first step consists in selecting a name. To preserve
consistency it should take the form of SoBuild*StyleAction. We presume
that our action can be described by the word ”new” and thus we call it
SoBuildNewStyleAction.

Our class has to be inherited by SoBuildPucStyleAction, the default
layout action. To allow external access, we add the class to the library
PUC PIP LAYOUT API

class PUC_PIP_LAYOUT_API SoBuildNewStyleAction :
public SoBuildPucStyleAction}

As for each action we have to call the SO ACTION HEADER() macro for
our action.

SO_ACTION_HEADER(SoBuildNewStyleAction);

Initialising the action Each action must be initialised before any in-
stance of the class is created. This is usually done in the method initClass()
where the macro SO ACTION INIT CLASS() does the required work.

SO_ACTION_INIT_CLASS(SoBuildNewStyleAction, SoAction);

In addition, a static method for each supported node class has to be
registered in this method. This includes default action behaviour for basic
node classes and specific action behaviour for classes describing elements of
the group tree.

SO_ACTION_ADD_METHOD(SoNode, callDoAction);
SO_ACTION_ADD_METHOD(SoNodeKitListPart, callDoAction);
SO_ACTION_ADD_METHOD(SoGroup, callDoAction);

SO_ACTION_ADD_METHOD(SoPucStateBool, stateBoolAction);

19

SO_ACTION_ADD_METHOD(SoPucStateFixed, stateFixedAction);
SO_ACTION_ADD_METHOD(SoPucStateFloat, stateFloatAction);
SO_ACTION_ADD_METHOD(SoPucStateInt, stateIntAction);
SO_ACTION_ADD_METHOD(SoPucGroup, pucGroupAction);
SO_ACTION_ADD_METHOD(SoPucCommand, commandAction);
SO_ACTION_ADD_METHOD(SoPucStateEnumerated, stateEnumAction);

Defining the constructor The macro SO ACTION CONSTRUCTOR() does
the basic work that has to be done in the constructor.

SO_ACTION_CONSTRUCTOR(SoBuildNewStyleAction);

Traversal Behaviour If you need to initialise the action each time it
is applied, you should use the beginTraversal() method. Usually the
base layout is build in this method, i.e. a SoWidgetLayoutGroup with a
specified number of columns or rows is constructed. After the initialisa-
tions traverse(node) has to be called to guarantee the continuation of the
traversal.

Operations that need to be performed after traversal should be imple-
mented in endTraversal().

void SoBuildPucStyleAction::beginTraversal(SoNode *node)
{

//your initialisations

traverse(node);
}

Implementing static methods Now we have to implement all methods
that describe the specific behaviour of our action during the traversal. For
basic node classes, all we need to do is calling doAction()where its ”typical”
action behaviour is implemented.

void SoBuildNewStyleAction::
callDoAction(SoAction *action, SoNode *node)

{
node->doAction(action);

}

The specific layout behaviour for all node classes describing elements of
the group tree has to be implemented in the corresponding static methods

20

registered in initClass(). You need to specify here how each state variable
and command is to be transformed into an interaction object, where its label
should be placed and of what length it should be. Additionally, you may
want to do some checks to decide in what row or column the current state
variable or command has be placed.

Additional requirements In addition to the standard requirements of
the implementation of an action class, there are some important require-
ments for this kind of layout action.

If your action needs some parameters to be set, implement a public
method making this work. This method will then be called in SoBuildPanel-
Action before the action will be applied.

void SoBuildNewStyleAction::setParameter(int parameters_)
{

parameters = parameters_;
}

At the end of traversal a pointer to the resulting SoWidgetLayoutGroup
needs to be returned to the SoBuildPanelAction. This is done by means
of getLayoutGroup() where mainLayoutGroup is returned. You can use
this variable to store your layout information, or you can overwrite the
getLayoutGroup() method.

3.2.2 Making the action accessible

To make the action accessible during the generation process you need to
perform some changes in SoBuildPanelAction and SoPucPipLayout.

SoBuildPanelAction

1. Include the action in the header file:
#include <SoBuildNewStyleAction.h>

2. Initialise the action in the constructor:
SoBuildNewStyleAction::initClass();

3. Add an enumeration for the action in style:
enum style PUC = 0,STB = 1,PUCEXT = 2, NEW = 3 ;

4. Add an if-clause in applyLayoutAction() where in case of action-
Style == NEW the parameters of your action are set, your action is
applied and the resulting SoWidgetLayoutGroup is returned.

21

5. In case there are parameters to be set, add a public method to set
these parameters from SoPucPipLayout:
void setParameters(int parameters);

SoPucPipLayout

1. If parameters for your action need to be set, add a field to store the
parameter.
SoSFInt32 parameters; and SO NODE ADD FIELD(parameters,(2));

2. Add the same enumeration as above for the action in style and add
the macro for the enumeration of the field:
SO NODE DEFINE ENUM VALUE(Style, NEW);

3. Call the method setting your parameters in doLayout():
panelAction.setParameters(parameters.getValue());

More information on how to create new actions can be found in [7].

3.2.3 Results

Figure 19 shows the generation of the group tree of figure 15 with different
styles and layout hints.

22

style PUC

style PUCEXT columns 2 style PUCEXT columns 3

style STB units 4 style STB units 6

Figure 20: The group tree of figure 15 has been generated with the three
different styles and different layout hints.

23

4 Discussion

We have now presented the results of the project aiming to develop a system
that is able to automatically create graphical user interfaces for an applica-
tion in Studierstube. According to Nichols et al. [4], such a system should
analyse a given specification of the application’s functions in form of a group
tree with state variables and commands at its leaves and decide by means
of this information how to construct a user interface for that application.
Kim and Foley [2] describe how this generation process can imitate the usual
steps a human designer follows, and Vanderdonckt and Gillo [6] show what
visual techniques allow computing a user interface of good quality.

This project is justified by the fact that the generation of GUI’s in
Studierstube was very time-consuming, inflexible and only weakly supported
by frameworks. Furthermore, by using as application objects the PUC states
and PUC commands, the constructed GUI’s are compatible with the PUC
system and may be controlled by additional devices.

To develop this system for Studierstube we have imitated the process
used by Nichols et al. [4] in the PUC system. This imitation however led us
immediately to some problems: Nichols et al. have developed their system
for handhelds or pocket PC’s where the construction of a GUI is realised by
a different manner and with different requisites. When building a user in-
terface for these devices the designer has the possibility to use a whole set of
different interaction objects and to be supported by frameworks facilitating
this task. Studierstube however owns only a small set of interaction objects
without features like scroll bars or panels and is also not able to define user
interfaces by means of a layout grid. These circumstances forced us to firstly
develop the necessary helper classes to guarantee a similar environment as
the one described in the PUC system.

Moreover, as interaction with a pen and a panel is not as precise as with
2D pointing devices, we have decided not to implement a scroll bar as on
conventional dialog boxes. This implied that the usable space is limited in
dimension and proportion and thus we need a more performant interface
generator following visual techniques to allow an optimal placing of the dif-
ferent components. The realisation of this interface generator turned out
to be very complex. A human designer building a GUI uses its experience
and intuition to decide the base structure of the layout, qualities that would
afford an artificial intelligence. The implementation of such a generator
would however exceed the field of work for this research, so we decided to
charge the user with giving some layout hints determining the structure of
the user interface. For each generation he needs to choose the style that is
best adapted to the application objects. Each style works according to cer-

24

tain visual techniques what implies that there are always some techniques
that haven’t been followed.

With these adaptations and limitations we have been able to implement
the considered system for Studierstube. In comparison with the PUC sys-
tem there are however some aspects that haven’t been satisfied. One point
is that dependency information isn’t supported. This information is impor-
tant for a lot of decisions in the interface tree and allows reaching a better
quality of the user interfaces. For example a panel group should only be
created when the different groups of components are mutually exclusive.
The dependency information is also useful to determine the importance of
singular components, so that important widgets may be placed on locations
where they are best visible.

Furthermore, due to the use of layout hints one requirement of the PUC
system is not fulfilled: the specification still includes specific layout infor-
mation [3]. To get best results, it is necessary to understand how the system
reacts on different groupings and then decide how to choose the structure
of the group tree and the layout hints. To solve this problem we suggest
working on the interface generator and develop an AUTO modus using some
metrics to extract the best style and the corresponding best parameters.

To find out what characteristics and visual techniques are most impor-
tant to allow an easy use of the PIP, a study could be done, comparing
different GUI’s built according different visual techniques. These GUI’s
could then be tested on a certain number of test persons in the environment
of Studierstube in order to evaluate their quality.

In general, the project has met its promises. GUI’s may be produced in
much shorter time and may also easily be modified and extended. More-
over, it is possible to remotely control the PIP by using the PUC. The helper
classes describing a panel structure or a layout grid turned out to be very
useful. These can be used to manually generate GUI’s without the explicit
specification of transformations and can therefore be used when the user
would like to have more control on look and feel of the layout. In com-
parison to the automatic generation, the specification file is elongated and
includes all layout information, but it is still easy to add or change its com-
ponents.

If the user doesn’t have concrete ideas about how the generated UI should
look like, the automatic generation is surely the best solution. If he however
would like to control the positioning of the singular components, use of the
helper classes is recommended. In both of the cases the project has provided
means exceeding those available so far.

25

5 Conclusions

This research aimed to facilitate the generation of GUI’s in Studierstube
by using state variables and commands defined for use with the PUC and
develop a mechanism able to automatically generate a GUI out of them.
This mechanism should be closely related to the PUC system described by
Nichols et al. [3] [4].

This goal has been satisfied and it is now possible to generate user in-
terfaces in a much shorter time and also to modify or extend them easily.
In comparison to the requirements made by the PUC, there have been some
limitations: the system doesn’t support dependency structure and its spec-
ification language still includes specific layout information. Additionally to
the automatic generation of user interfaces, means have been provided to
facilitate the manual generation of user interfaces.

It is a project of high usability that offers lots of possibilities to be
extended and improved.

26

References

[1] Dennis J. M. J. de Baar, James D. Foley, Kevin E. Mullet, and
Charles A.van der Mast. Coupling application design and user inter-
face design. Technical Report DUT-TWI-92-03, Delft, The Netherlands,
1992.

[2] W. C. Kim and J. D. Foley. Providing high-level control and expert assis-
tance in the user interface presentation design. In Proc. of INTERCHI-
93, pages 430–437, Amsterdam, The Netherlands, 1993.

[3] Jeffrey Nichols and Brad A. Myers. Studying the use of handhelds to
control everyday appliances.

[4] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes,
Thomas K. Harris, Roni Rosenfeld, and Mathilde Pignol. Generating
remote control interfaces for complex appliances. In Proceedings of the
15th annual ACM symposium on User interface software and technology,
pages 161–170. ACM Press, 2002.

[5] Dieter Schmalstieg, Anton Fuhrmann, Gerd Hesina, Zsolt Szalavari,
L. Miguel Encarnacao, Michael Gervautz, and Werner Purgathofer. The
studierstube augmented reality project. Presence: Teleoper. Virtual En-
viron., 11(1):33–54, 2002.

[6] Jean Vanderdonckt and Xavier Gillo. Visual techniques for traditional
and multimedia layouts. In Proceedings of the workshop on Advanced
visual interfaces, pages 95–104. ACM Press, 1994.

[7] Josie Wernecke. The Inventor Toolmaker: Extending Open Inventor,
Release 2. Addison-Wesley Longman Publishing Co., Inc., 1994.

27

6 Appendix

Online documentation of the relevant classes.

28

Generating User Interfaces in Studierstube

All widgets

This section describes the fields which are inherited from SoLayoutKit or SoBehaviorKit and
proper to all widgets.

width, depth, height

Determine the size of the widget.

label, labelplacing

The field 'label' allows you to indicate textual or graphical information describing the widget. It
contains one SoLabelKit that, inherited from SoShapeKit, can have any shape. A textual label can
be entered by means of the multiple field 'text'. The different entries of this multiple field will then
be separated by a line break.
The field labelplacing may take as possible values NONE, TOP, LEFT, RIGHT, BOTTOM or
ONWIDGET and indicates where the label should be placed.
See: SoLabelKit

enable

Indicates if the widget should be enabled (TRUE) or not.

The SoPushButton

The SoPushButton implements a "normal" button. When pressed, the button goes down, a
command is executed and the button releases immediately.

Example

SoPushButton {}

The SoToggleButton

The SoToggleButton implements a 2D check box widget. It can have two values: pushed or not
pushed. When the button is pushed, it goes down and stays at that position until you release it by
pressing it a second time.

Example

SoToggleButton { label SoLabelKit { text "1" } labelPlacing LEFT}
SoToggleButton { label SoLabelKit { text "2" } labelPlacing LEFT}
SoToggleButton { label SoLabelKit { text "3" } labelPlacing LEFT}
SoToggleButton { label SoLabelKit { text "4" } labelPlacing LEFT}

The SoSimpleSlider

The SoSimpleSlider class implements a typical 2D slider widget. It allows setting a range of
values and selecting from that by moving the slider knob.

minValue, maxValue

The minimum and the maximum of the range of values are specified by these fields. The minimum
value is reached when the slider knob is moved completely to the left, the maximum at the further
right.
Note: It is also possible to implement a decreasing slider by specifying a minValue bigger than the
maxValue.

value, alpha

The value of the slider is always coherent with the position of the slider knob. If one of both
changes, the other is adapted too.
The alpha represents a normalized version of the value [0;1]. It also changes with the value and
the slider knob, and the slider may be controlled by it.

Example

SoSimpleSlider {
 width 10 depth 4 height 3
 label SoLabelKit { text "slider" }
 labelPlacing TOP
}

The SoIncrementalSlider

The SoIncrementalSlider class implements a typical 2D slider widget. It allows setting a range of
values and selecting from that by moving the slider knob or pressing the buttons on the left and
the right.

minValue, maxValue, value, alpha, widthDragger,
scaleDraggerPath

Same behaviour as for the SoSimpleSlider (see above).

increment, cropValueToIncrement

The increment specifies the resolution of the slider, i.e. the interval between two possible values.

hideSlider

If TRUE the slider and the moving knob will not be rendered. Interaction is now only possible with
the increment and decrement buttons.

buttonSpace

Specifies how much space of the slider should be used by one of the increment and decrement
buttons. The portion of space is given in normalized percentage [0;1].

Example

SoIncrementalSlider {
 width 10 depth 4 height 3
 increment 1.5
 label SoLabelKit { text "slider" }
 labelPlacing TOP
}

The SoLabelListBox

This class provides a simple list box interface with a number of buttons showing different items and
a SoIncrementalSlider allowing navigating through the possible items. When there are more
items than buttons, the slider can be used to navigate up and down through the list. When all the
items can be displayed on one page, the slider is disabled.

multipleSelections, noneSelectionAllowed

These two fields specify how many items can be simultaneously selected. If both are FALSE
(default), only one item can be selected, if multipleSelections is TRUE multiple items can be
selected and if noneSelectionAllowed is TRUE, no selection may be made.

Default values: multipleSelections = FALSE, noneSelectionAllowed = FALSE

numOfRows, numOfCols

These fields determine the structure of the list box. The visible items are placed in numOfRows
rows and numOfCols columns, so these fields determine additionally the maximum number of
buttons that will be visible. When the navigation slider is used, this structure remains unmodified;
only the connections button-to-item will be changed.

Default values: numOfRows = 5, numOfCols = 1

spacingWidth, spacingDepth, startEndSpacingDepth,
startEndSpacingWidth

With these fields the spaces between all the components of the list box can be specified. The fields
spacingWidth and spacingDepth indicate the space between two buttons, the field
startEndSpacingDepth specifies the size of the top and bottom margin, and startEndSpacingWidth
the size of the left and right margin. All the values are given in percent [0;1].

Default values: spacingWidth = spacingDepth = startEndSpacingDepth = startEndSpacingWidth
= 0.05 (5)

navigationSize, navigationButtonToSliderRatio, navigationPlacing

These fields specify location, size and structure of the navigation slider. The ratio of the navigation
buttons to the whole slider is given by the field navigationButtonToSliderRatio, the ratio of the
navigation slider to the whole list box is given by the field navigationSize. Both values are given in
percent [0;1]. The position of the navigation slider can be specified by the field navigationPlacing.
Possible values for this enumeration field are NONE, TOP, LEFT, RIGHT, BOTTOM, INLINE_ROW and
INLINE_COL. For the INLINE values no slider will be displayed. Instead the first and last visible
buttons will be used as buttons to navigate through the list.

Default values: navigationSize = 0.2, navigationButtonToSliderRatio = 0.2, navigationPlacing =
LEFT

Example

SoLabelListBox {
 width 15 depth 6 height 3
 numOfRows 2 numOfCols 2
 spacingWidth 0.1 spacingDepth 0.1
 startEndSpacingWidth 0.1 startEndSpacingDepth 0.1
 navigationPlacing LEFT
 navigationButtonToSliderRatio 0.2

 labels NodeKitListPart { containerNode Group {
 SoLabelKit {
 appearance SoAppearanceKit { material SoMaterial {diffuseColor .8 .2

.2 } }
 shape SoCube {width .4 height .4 depth .4 }}

 SoLabelKit {

 appearance SoAppearanceKit { material SoMaterial {diffuseColor .2 .8
.2 } }

 shape SoCube {width .4 height .4 depth .4 }}

 SoLabelKit {
 appearance SoAppearanceKit { material SoMaterial {diffuseColor .2 .2

.8 } }
 shape SoCube {width .4 height .4 depth .4 }}

 SoLabelKit {
 appearance SoAppearanceKit { material SoMaterial {diffuseColor .2 .8

.8 } }
 shape SoCube {width .4 height .4 depth .4 }}

 SoLabelKit {
 appearance SoAppearanceKit { material SoMaterial {diffuseColor .8 .2

.2 } }
 shape SoSphere { radius .2 }}

}}} #SoLabelListBox

The SoTextListBox

This class implements a list box with similar appearance and behaviour as the SoLabelListBox.
The only difference lies in the type of the labels. In the SoTextListBox, labels representing the
different items can only be text strings, and are specified in the field 'values'.

Field inherited from SoLabelListBox

The fields multipleSelections, noneSelectionAllowed, numOfRows, numOfCols, spacingWidth,
spacingDepth, startEndSpacingDepth, startEndSpacingWidth, navigationSize,
navigationButtonToSliderRatio and navigationPlacing are inherited from SoLabelListBox and have
the same characteristics as those described above.

values

This multiple field encloses text strings for the different items. These strings are taken as textual
labels for the buttons of the list box.

Default value: values = ""

Example

SoTextListBox {
 width 10 depth 8 height 2
 numOfRows 2 numOfCols 2
 spacingDepth .05
 spacingWidth .05

 navigationSize .2
 multipleSelections TRUE

 navigationButtonToSliderRatio 0.1

 values ["1" "2" "3" "4" "5"]

 } #SoTextListBox

The SoWidgetLayoutGroup

The SoWidgetLayoutGroup allows you to build user interfaces without explicitly specify the
transformations and size of each widget. Therefore all widgets are structured onto a grid with a
specified number of columns and rows. This grid can then be hierarchically subdivided furthermore
in a more detailed grid.

 To build the layout for your purposes you need to structure the widgets into
SoWidgetLayoutGroup's. A SoWidgetLayoutGroup can contain widgets and
SoWidgetLayoutsGroup's which can themselves contain other widgets and
SoWidgetLayoutGroup's. For each SoWidgetLayoutGroup you may specify the number of
rows and columns, their sizes, the spacings between widgets, and all the widgets and groups
being element of this group. These elements are then placed on the specified grid.

elements

In this part the different elements of this SoWidgetLayoutGroup are defined. Everything what is
inherited from SoLayoutKit may be added as element.

Example:

SoWidgetLayoutGroup {
 width 22 depth 17 height 0.5
 numOfCols 2
 numOfRows 2

 elements NodeKitListPart { containerNode Group {

 SoPushButton { label SoLabelKit { text "1" } }
 SoPushButton { label SoLabelKit { text "2" } }

 SoWidgetLayoutGroup {

 numOfCols 1
 numOfRows 2

 elements NodeKitListPart { containerNode Group {
 SoPushButton { label SoLabelKit { text "3" } }
 SoPushButton { label SoLabelKit { text "4" } }

 }}} #SoWidgetLayoutGroup

 SoPushButton { label SoLabelKit { text "5" } }

}}} #SoWidgetLayoutGroup

width, depth, height

Fields inherited from SoLayoutKit. To start the building process, you need to set these fields of
the first SoWidgetLayoutGroup, representing the space of the pip sheet which should be filled up
by the UI. Width and depth will then be calculated individually for each child. The height will remain
constantly over all sub hierarchies

Note: It isn't possible to change the sizes of the widgets in lower hierarchies by manually
setting their width and depth. These ones will be overwritten. You should change the
spacingWidth and spacingDepth instead.

numOfCols, numOfRows

By setting these values you will be able to determine the structure of the layout. Default value is
for both of the fields -1. There are 3 possible cases:

• just one of the values is set: the other one is calculated so that all the children will find a
place in the grid

• both of the values are set: if there aren't enough places in the grid to include all children,
the number of rows is increased

• none of the values is set: the number of rows is determined by taking the square root of
the number of children to achieve an approximately regular distribution of the widgets.

You will obtain best results by setting just one of both values.

sizeOfCols, sizeOfRows

With these fields you can vary the width of the rows and columns. The fields take as input a
multiple field with a number of integers which indicate the size of each row and column. If the
array is longer than the respective number of rows or columns, it will just be truncated; if it is
shorter it will be filled up with 1's.

Example:
In this example distribution sizeOfCols [1, 2, 2] has been used. The second and third columns
appear twice as big as the first.

SoWidgetLayoutGroup {
 width 22 depth 10 height 0.5
 numOfCols 3
 numOfRows -1
 sizeOfCols [1, 2, 2]
 spacingDepth 0.2

 elements NodeKitListPart { containerNode Group {

 SoToggleButton { label SoLabelKit { text "1" } }
 SoIncrementalSlider { label SoLabelKit { text "2" } }
 SoIncrementalSlider { label SoLabelKit { text "3" } }
 SoToggleButton { label SoLabelKit { text "4" } }
 SoIncrementalSlider { label SoLabelKit { text "5" } }
 SoIncrementalSlider { label SoLabelKit { text "6" } }

}}} #SoWidgetLayoutGroup

spacingWidth, spacingDepth

These fields specify how much space should be left between each row and column. Given as a
normalised number representing a percentage of the size of an average row or column.
Default value: 0.20 (20 %)

Example

 SoWidgetLayoutGroup {
 width 21 depth 16 height 2
 numOfCols 1 numOfRows 2
 sizeOfRows [3, 2]
 spacingDepth .2

 elements NodeKitListPart { containerNode Group {

 SoWidgetLayoutGroup {
 numOfCols 2 numOfRows -1
 spacingWidth .2

 elements NodeKitListPart { containerNode Group {

 SoWidgetLayoutGroup {
 numOfCols 1
 numOfRows -1

 elements NodeKitListPart { containerNode Group {

 SoIncrementalSlider { label SoLabelKit { text "X" } }
 SoIncrementalSlider { label SoLabelKit { text "Y" } }
 SoIncrementalSlider { label SoLabelKit { text "Z" } }

 }}} #SoWidgetLayoutGroup

 SoLabelListBox {
 numOfRows 2 numOfCols 2

 labels NodeKitListPart { containerNode Group {
 SoLabelKit {

appearance SoAppearanceKit { material SoMaterial
{diffuseColor .8 .8 .2 } }

 shape SoCube {width .5 height .5 depth .1 }}
 SoLabelKit {

appearance SoAppearanceKit { material SoMaterial
{diffuseColor .8 .2 .2 } }

 shape SoCube {width .5 height .5 depth .1 }}
 SoLabelKit {

appearance SoAppearanceKit { material SoMaterial
{diffuseColor .2 .8 .2 } }

 shape SoCube {width .5 height .5 depth .1 }}
 SoLabelKit {

appearance SoAppearanceKit { material SoMaterial
{diffuseColor .2 .2 .8 } }

 shape SoCube {width .5 height .5 depth .1 }}
 SoLabelKit {

appearance SoAppearanceKit { material SoMaterial
{diffuseColor .2 .8 .8 } }

 shape SoCube {width .5 height .5 depth .1 }}
 SoLabelKit {

appearance SoAppearanceKit { material SoMaterial
{diffuseColor .8 .2 .8 } }

 shape SoCube {width .5 height .5 depth .1 }}

 }}} #SoLabelListBox

 }}} #SoWidgetLayoutGroup

 SoWidgetLayoutGroup {
 numOfCols 3
 numOfRows -1
 sizeOfCols [1 1 2]
 spacingWidth .25

 elements NodeKitListPart { containerNode Group {

 SoToggleButton { label SoLabelKit { text "1" } labelPlacing

LEFT}
 SoToggleButton { label SoLabelKit { text "2" } labelPlacing

LEFT}
 SoWidgetLayoutGroup {}

 SoToggleButton { label SoLabelKit { text "3" } labelPlacing

LEFT}
 SoToggleButton { label SoLabelKit { text "4" } labelPlacing

LEFT}

 SoWidgetLayoutGroup {
 numOfCols 2
 numOfRows -1

 elements NodeKitListPart { containerNode Group {
 SoPushButton { label SoLabelKit { text "Button 1" } }
 SoPushButton { label SoLabelKit { text "Button 2" } }
 }}} #SoWidgetLayoutGroup

 }}} #SoWidgetLayoutGroup

 }}} #SoWidgetLayoutGroup

The SoPanelGroup

The SoPanelGroup represents a panel structure, which consists of a SoLabelListBox specified in
'titles' and a certain number of SoWidgetLayoutGroup's specfied in 'sheets'. The list box is placed at
the top or at the right side of the pip and the remaining space is reserved for the different sheets.
Each button of the list box is coupled with a panel sheet corresponding to the order in which they
have been defined.

To define a panel structure, only the SoPanelGroup is needed where the 'titles' and 'sheets'
have to be specified. The SoPanel is an intermediary class needed to compute the real
geometry of this structure. The sheets of the SoPanelGroup are then transferred to the
SoPanel, which adds them as children of a SoSwitch node.

titles

This part must contain a SoLabelListBox or SoTextListBox where each of the items corresponds
to the designation of one of the panel sheets. Each button is then coupled to one of the panel
sheets and you can change the current visible sheet by pressing one of the buttons. The navigator
of the SoLabelListBox will be placed INLINE_COL or INLINE_ROW.

sheets

This list part contains the different panel sheets defined as SoLayoutKit or inheritances of it.
Usually these are SoWidgetLayoutGroup's, but you can also nest multiple SoPanelGroup's or define
a single widget as panel sheet.

navigationPlacing, titlesToSheetsRatio, numOfButtons

These fields determine the structure and layout of the panel group. The field navigationPlacing
specifies where the navigation list box should be placed. Possible values are LEFT and TOP. The
field titlesToSheetsRatio defines the percentage of space that should be assigned to the navigation
list box, and numOfButtons specifies how many buttons should be displayed.

Default values: navigationPlacing = TOP, titlesToSheetsRatio = 0.20, numOfButtons = 3

Example

SoPanelGroup {
 width 22 depth 17 height 2
 navigationPlacing TOP
 numOfButtons 2
 titlesToSheetsRatio 0.20

 titles SoTextListBox {
 values ["Sliders" "Push Buttons"]
 }
 sheets NodeKitListPart { containerNode Group {
 SoWidgetLayoutGroup {
 numOfCols 1 numOfRows -1
 elements NodeKitListPart { containerNode Group {
 SoIncrementalSlider { label SoLabelKit { text "slider 1"

} labelPlacing LEFT}

 SoIncrementalSlider { label SoLabelKit { text "slider 2"
} labelPlacing LEFT}

 SoIncrementalSlider { label SoLabelKit { text "slider 3"
} labelPlacing LEFT}

 SoIncrementalSlider { label SoLabelKit { text "slider 4"
} labelPlacing LEFT}

 }}} #SoWidgetLayoutGroup

 SoWidgetLayoutGroup {
 numOfCols 1 numOfRows -1
 elements NodeKitListPart { containerNode Group {
 SoPushButton { label SoLabelKit { text "1" }

labelPlacing LEFT}
 SoPushButton { label SoLabelKit { text "2" }

labelPlacing LEFT}
 SoPushButton { label SoLabelKit { text "3" }

labelPlacing LEFT}
 SoPushButton { label SoLabelKit { text "4" }

labelPlacing LEFT}

 }}} #SoWidgetLayoutGroup

}}} #SoPanelGroup

Automatic generation of GUI’s: the SoPucPipLayout

The SoPucPipLayout is able to automatically generate GUI's for appliances that are able to
control them. All appliances functions are specified in "pucAppliances" where they should be
hierarchically grouped to form a "group tree". Additionally some layout hints concerning size and
style may be indicated in the corresponding fields. The generation of the user interface is then
performed in three steps:

• In the first step the base structure of the group tree is analysed: if the first child of the first
group tree is of type SoPucStateEnumerated and all the remaining ones of type
SoPucGroup, then a SoPanelGroup is created where each of the SoPucGroup's
corresponds to one separate panel sheet, and the titles of these sheets are extracted from
the different enumerations of the SoPucStateEnumerated.

• In the second step the layout of each sheet is generated by following some layout rules
which differ for each style.

• In the third step each state and command is transformed into a widget.

pucAppliances

In this part all appliances functions need to be specified with the state variables and commands:
SoPucCommand, SoPucStateBool, SoPucStateInt, SoPucStateFixed, SoPucStateFloat,
SoPucStateEnumerated and SoPucStateString. The SoPucGroup allows you to hierarchically
structure these elements into a group tree. This group tree has to be specified as part in a
SoPucDevice belonging to a SoPucServer.
Example:
DEF LAYOUT_GROUP SoPucPipLayout {
 width 23 depth 18 height 2.0

 pucAppliances SoPucServer {

 serverName "Studierstube Demo"
 devices NodeKitListPart { containerNode Group {
 DEF RADIUSDEVICE SoPucDevice {
 deviceName "example"
 groups NodeKitListPart { containerNode Group {

 SoPucGroup { #root of the group tree
 ...

 }#SoPucGroup
 }}}#SoPucDevice
 }}}#SoPucServer
}#SoPucPipLayout

width, depth, height

These fields indicate the total size of the space that the user interface should fill up. The values will
be assigned to the main SoWidgetLayoutGroup or SoPanelGroup determing the initial structure
of the user interface.

style, units, columns

These fields allow you to specify some layout hints. The field 'style' may take three different values
producing a layout based on different layout rules.

• The default style, the PUC style, arranges the components in a one-column layout with
adjacent labels as in the PUC system. This style thus supports only a small number of
components. Lower hierarchies of puc groups are ignored.

• The PUCEXT style allows generating an extended version of the PUC style. You can indicate
the number of columns in the field 'columns'. To preserve balance, the widgets are placed
individually in the column having the lowest level of widgets at that point. Lower
hierarchies of puc groups are still not taken in account.

• The STB style is an approach to respect grouping in between the widgets of one panel
sheet. The main structure consists of a number of rows that are filled up subsequently with
widgets. The widgets of two different SoPucGroup's are never placed in a same row. This
implies that grouping is preserved, the layout may however not be balanced. The number
of widgets placed in one row can be specified by the field 'units', where each button
corresponds to one unit, and each slider and list box to two units.

The PUC style always chooses the longest possibility as label; the PUCEXT and STB style always
chooses the shortest one.

Examples

 DEF LAYOUT_GROUP SoPucPipLayout {
 width 22 depth 18 height 2.0
 style PUC

 pucAppliances SoPucServer {
 serverName "Studierstube Demo"
 devices NodeKitListPart { containerNode Group {
 DEF RADIUSDEVICE SoPucDevice {
 deviceName "example"
 groups NodeKitListPart { containerNode Group {

 SoPucGroup {
 priority 10
 members NodeKitListPart { containerNode Group {

 DEF GROUP1 SoPucGroup {
 members NodeKitListPart { containerNode Group {
 DEF BOOL_STATE1 SoPucStateBool { labels ["bool",

"boolean state"]}
 DEF BOOL_STATE2 SoPucStateBool { labels ["bool",

"boolean state"]}
 DEF INT_STATE1 SoPucStateInt { labels ["int",

"integer"] min 0 max 6 incr 2 }
 DEF FIXED_STATE1 SoPucStateFixed { labels

["fixed", "fixed point"] min 0 max 3.14 incr
1.57 pointpos 2}

 DEF FIXED_STATE2 SoPucStateFixed { labels
["fixed", "fixed point"] min 0 max 2 incr 0.1 }

 DEF FLOAT_STATE SoPucStateFloat { labels ["float",
"floating point"] min 0 max 1 }

 }}} # SoPucGroup

 DEF GROUP2 SoPucGroup {
 members NodeKitListPart { containerNode Group {

 DEF ENUM_STATE1 SoPucStateEnumerated { labels

["enum", "4 enumerations"] valueLabels ["a",
"b", "c", "d"]}

 DEF ENUM_STATE2 SoPucStateEnumerated { labels
["enum", "7 enumerations"] valueLabels ["a",
"b", "c", "d", "e", "f", "g"]}

 DEF COMMAND1 SoPucCommand { labels ["command"]}
 DEF COMMAND2 SoPucCommand { labels ["command"]}

 }}} # SoPucGroup
 }}} # SoPucGroup

 }}} # SoPucDevice
 }}} # SoPucServer
 }#SoPucPipLayout

style PUC

style PUCEXT
columns 2

style PUCEXT
columns 3

style STB
units 4

style STB
units 6

