
iOrb - Unifying Command and 3D Input for Mobile Augmented Reality

Gerhard Reitmayr, Chris Chiu, Alexander Kusternig, Michael Kusternig, Hannes Witzmann
Vienna University of Technology

reitmayr@ims.tuwien.ac.at,{e9825608|e0026571|e9926002|e0126743}@student.tuwien.ac.at

Abstract

Input for mobile augmented reality systems is noto-
riously difficult. Three dimensional visualization would
be ideally accompanied with 3D interaction, but accurate
tracking technology usually relies on fixed infrastructure
and is not suitable for mobile use. Command input is sim-
pler but usually tied to devices that are not suitable for 3D
interaction and therefore require an additional mapping.
The standard mapping is to use image plane techniques rel-
ative to the user’s view. We present a new concept - the
iOrb - that combines simple 3D interaction for selection and
dragging with a 2D analog input channel suitable for com-
mand input in mobile applications.

Keywords: Command Input, 3D Interaction, Mobile Com-
puting, Augmented Reality

1. Introduction and related work

Three dimensional input for mobile augmented reality
(AR) systems is usually hard, because accurate tracking
technology relies on fixed infrastructure and bulky hard-
ware. As a result the standard tracking devices used in
such setups are source-less inertial trackers for orientation
of the head, cameras for optical inside-out tracking and
GPS. Usually only the head of the user is tracked in full 6D
pose because more devices are costly and require additional
processing effort.

As a result 3D interaction is usually limited to the user’s
view and makes heavy use of image plane techniques which
map a 2D cursor in the image plane to a constraint 3D in-
teraction such as translation, rotation or scale. The same
2D cursor can also be used for ray intersection to allow se-
lection and other forms of manipulation at a distance. A
single system uses two 2D cursors to allow more complex
manipulations [6]. Other approaches use optical 3D inside-
out tracking by reusing the camera that is used to capture
the video background for video see-through AR. Such so-
lutions may depend on fiducials [7] or use natural feature
tracking [3], but usually are not very accurate and robust.

Figure 1. The iOrb operated by a user.

Command input in mobile AR applications is better de-
veloped. A variety of devices can be used to manipulate
menus and widgets in a heads-up display. For example,
hand-held trackballs [2], touchpads worn by the user [8],
pinch gloves [5] or simple buttons are used in several sys-
tems. Another possibility is the use of an additional hand-
held device such as a PDA or tablet PC [2] for both display
and interaction with a 2D GUI that controls the application.
However, such input devices are again only useable as 3D
input devices via image plane techniques.

We present a new interaction device dubbed iOrb - inter-
active orb - that unifies the common ray casting operation
with command input in a single device that can be used in-
tuitively without image plane techniques and therefore de-
couples the 3D operation from head movements. The iOrb
consists of an off-the-shelf inertial tracker for measuring 3D
orientation build into a convenient sphere-like case and a
single button, activated by pressing the two half-spheres to-
gether (see Figure 1).

The resulting device overcomes the limitation of 3D in-
teraction being restricted to the user’s view. The measured
orientation can be used together with the head position to
create a second 6D pose that is partly independent from the
view pose. The device pose is used for ray casting to al-

Figure 2. The interior houses a commercial
inertial tracker measuring 3D orientation and
a simple switch triggered by pushing the two
hemispheres together.

low view independent selection and interaction which can
be beneficial for dragging and other manipulations.

Moreover, the iOrb can be reused as a 2D input device
similar to a trackball. The 2D input is achieved by mapping
the 3D orientation to a 2D parametrization. Together with
a build in button a user can operate hierarchical menus and
other widgets like sets of checkboxes or lists.

2. iOrb hardware

Two hemispheres form the iOrb case providing room for
an orientation tracker and a small button, each fixed in one
half. The two parts are connected with screws and kept apart
with coil springs. The mechanics enable the user to activate
the button by pressing the ball which does not prescribe a
certain way of holding the device to activate an external
button. The iOrb is easy to dismantle without destroying
any parts. Hence, the tracker can simple be exchanged with
other models.

3. Principles of operation

To use the iOrb as a 2D input device we need to define a
2D parametrization of the 3D orientation. Then the result-
ing two dimensional parameter vector can be used as input.
One way to define a mapping of a 3D orientation to a 2D
analog device is to decompose the full 3D rotation into two
consecutive rotations around orthogonal axes. The two an-
gles become the two input dimensions.

However, the choice of axes is crucial. Here the main
idea is to sense a main axis from the current orientation
of the user’s hand instead of using a fixed axis. The rota-
tion axis for supination/pronation of the forearm (see Fig-
ure 3) is sensed during the first moments of the interaction

Figure 3. Forearm supination and pronation
define the main rotation axis of the iOrb (red).
The secondary rotation axis (blue) is orthog-
onal to the main axis.

to determine such a main axis. The assumption behind this
choice is that such a movement is the simplest for the hu-
man hand and will therefore be used almost unconsciously
and as the first intuitive movement of any interaction. Other
movements induced by wrist flexion/extension or abduc-
tion/adduction require more awareness of the user.

3.1. Deriving two analog dimensions

Any interaction with the device begins with an explicit
action by the user. The program stores the initial orienta-
tion of the device as reference to which all further move-
ments are relative to. In the next initialization state it sam-
ples the first measurements to establish a main axis. In the
final operational state the two input values are computed
continuously and drive widgets. The operational state ends
with the end of the interaction. The detailed computations
are explained in the following.

During the initial state the software samples n measure-
ments and computes the optimal fitting rotation axis for the
rotations relative to the reference orientation. The number
of measurements is small (n = 10) and therefore the time
interval is very short (100 ms) and does not disturb the inter-
action. The rotation axes are transformed to lie in the same
half-space by comparing them to the first sampled rotation
axis and mirroring them as necessary. Then we simply aver-
age all the rotation axes and normalize the result to compute
an approximating main axis. A more accurate computation
would minimize the angle between the optimal axis and all
measured axes while enforcing the constraint of the axis be-

Figure 4. The set of available widgets for the iOrb.(a) Rings widgets (b) Array or linear widgets (c)
The Option Ball maps the 3D rotation to a selection (d) Fader widget for continuous values.

ing of length 1. However, the difference is negligible in the
standard operation.

In the operational state the sensed rotations rs are de-
composed into two factor rotations rm, ro such that rm is
a rotation around the main axis, ro is a rotation around an
axis orthogonal to the main axis and rs = ro · rm. Refer to
[4, chapter 8] for a detailed analysis of such factorizations.
During the interaction we get the following output from the
process: the fixed main axis, the angle of rotation around
the main axis, the variable secondary axis, and the angle of
rotation around the secondary axis.

3.2. Ray casting

A number of possibilities exist to derive the direction
for ray casting from the device. In the simplest form its
absolute orientation can be used. However, this approach
would require calibration at system start and during opera-
tion, because inertial trackers do not operate with a fixed
reference frame and accumulate errors during operation.
Another approach is to only use the relative orientation to
the pose at the start of the interaction. Finally we can also
map the 2D input derived in the last section to a fixed ro-
tation scheme. For example, we can map the main rotation
to the azimuth of the resulting direction and the secondary
rotation to the elevation. The result is a standard way of us-
ing the ray casting interaction independently of the device’s
pose.

4. Widgets

In order to optimize the iOrb’s method of interaction,
user interface widgets have to be adapted. Here we followed
traditional 1D command widgets as used before in virtual
environments [1, chapter 8]. We created widget types that
are both familiar in style, yet are intuitively usable through
a rotational parameter. This parameter is typically the pri-
mary axis rotation provided by the 2D parametrization men-

tioned above. A second dimension for interaction can also
be added by utilizing the secondary axis rotation.

4.1. Menu System

Part of the iOrb concept is a hierarchical menu system
concept including a set of widgets optimized for the oper-
ation of the iOrb. Utilizing these widgets, the typical com-
mand input tasks of applications are possible. The common
classes of widgets in this framework are ring widgets, array
widgets, a fader-style widget, and a full rotational command
selection widget (the Option Ball).

The hierarchy is obtained by implementing a system
where the user can go forward to the next menu by click-
ing a menu item in a command array or command ring, and
a mechanism to return to the previous menu. Two meth-
ods of ”menu return” were designed: a button press time
out mechanism and utilizing the secondary rotation from
the parametrization. In the first method, pressing the but-
ton for a specified time interval will return the user to the
previous menu. In the latter method, the secondary rotation
crossing a specified threshold angle triggers the return.

Ring Widgets An intuitive way to map a single rotation to
user interface interaction is to reflect this rotation directly.
The result is the ring widget, a list of menu items or option
items arranged in circular form (see Figure 4a). The pri-
mary rotation given from the 2D parametrization is mapped
to the ring’s rotation, either directly or with a certain rota-
tion scale factor. Selection of a menu item, command item,
or option is done by changing the orientation of the iOrb,
and a click on the iOrb button will activate the command
or check the option. Ring widgets can incorporate a list of
commands or a single or multi selection option list.

Array Widgets Array widgets are list type widgets that
display their content in a linear form. Here the primary ro-
tation from the 2D parametrization is mapped to a linear

movement of the list and the selection focus (see Figure
4b). This widget supports scrolling of list items in order
to support long lists. The iOrb click has the same seman-
tics as with ring widgets. Array widgets can incorporate the
same kinds of lists that ring widgets can - command lists,
and single or multi selection option lists.

Fader Widget The fader widget was modeled after the
commonly used real life widget, the fader control (some-
times called knob or dial control). This widget is capable of
dialing a value within a certain range. The primary rotation
of the parametrization directly influences the position of the
dial, which in turn reflects a new value (see Figure 4d).

Option Ball The option ball doesn’t utilize the 2D para-
metrization but maps the rotation directly. Option elements
are arranged around a ball, which rotates according to iOrb
input (see Figure 4c). The element in front is the selected
one. The selection is achieved by a picking mechanism;
the option ball contains a logical geometric element with a
certain number of faces, which are picked to determine the
selected element. Thus, if this logical geometric element is
a cube, 6 option elements are possible.

4.2. Discrete picking

With the combination of a position and the orientation
from the iOrb device, a variation on ray casting is possible.
The position will typically be obtained from a positional
tracker, e.g. GPS coordinates, and act as the source point
for a ray casting action.

The orientation then determines the direction of the ray.
A 3D point set is provided by the framework user out of
which the picker will select one or none (discrete picking).
The selected point is calculated by comparing the angle be-
tween the ray vector and the vector between the start posi-
tion and the point in question. An additional separation an-
gle can be specified by the user to limit the selection process
to a certain tolerance level. A high separation angle will typ-
ically create a picker setup that will always select one point,
while a low separation angle will make it necessary to point
more accurately. This widget is not a widget in the sense
that it visualizes itself; it can be visualized and integrated
into a setup as the application programmer sees fit.

5. Conclusions and future work

The work is currently in a very early stage. We have as-
sembled the device and implemented the basic software to
derive the 2D input and a set of widgets for command in-
put and ray casting. As a next step we will include it into a
mobile AR system and use it as the sole input device for the

system replacing a touch pad currently in use. We would
like to experiment with the possibilities of operating the ray
casting direction independently from the view direction. Se-
lection and simple manipulation of objects will be the focus
of the 3D interaction.

We also require user studies to see if and what differ-
ences are there in manipulating the widgets with either a
trackball, a touchpad or the iOrb. Another direction is to
compare the different approaches to controlling the ray cast-
ing direction with the device. Finally, symbolic input for
text is interesting, for example using the Dasher [9] input
method.

Acknowledgments

This work was sponsored by the Austrian Science Foun-
dation FWF under contracts START Y193, and Vienna
University of Technology by an infrastructure lab grants
(”MARDIS”).

References

[1] D. A. Bowman, E. Kruijff, J. J. LaViola Jr., and I. Poupyrev.
3D User Interfaces: Theory and Practice. Addison-Wesley, 1
edition, July 2004.

[2] T. Höllerer, S. Feiner, T. Terauchi, G. Rashid, and D. Hall-
away. Exploring MARS: developing indoor and outdoor user
interfaces to a mobile augmented reality system. Computer &
Graphics, 23(6):779–785, 1999.

[3] M. Kölsch, M. Turk, and T. Höllerer. Vision-based interfaces
for mobility. In Intl. Conference on Mobile and Ubiquitous
Systems (MobiQuitous), August 2004.

[4] J. B. Kuipers. Quaternions and Rotation Sequences. Prince-
ton University Press, 1998.

[5] W. Piekarski and B. H. Thomas. Tinmith-hand: Unified user
interface technology for mobile outdoor augmented reality
and indoor virtual reality. In Proc. IEEE VR 2002, Orlando,
Florida, USA, March 2002. IEEE.

[6] W. Piekarski and B. H. Thomas. Augmented reality working
planes: A foundation for action and construction at a distance.
In Proc. ISMAR 2004, Arlington, VA, USA, November 2–5
2004. IEEE.

[7] G. Reitmayr and D. Schmalstieg. OpenTracker – an open soft-
ware architecture for reconfigurable tracking based on XML.
In Proc. IEEE Virtual Reality 2001, pages 285–286, Yoko-
hama, Japan, March 13–17 2001.

[8] B. H. Thomas, K. Grimmer, D. Makovec, J. Zucco, and
B. Gunther. Determination of placement of a body-attached
mouse as a pointing input device for wearable computers. In
Proc. ISWC’99, pages 193–194, San Francisco, CA, USA,
October 18–19 1999. IEEE.

[9] D. J. Ward, A. F. Blackwell, and D. J. C. MacKay. Dasher -
a data entry interface using continuous gestures and language
models. In Proc. UIST 2000, pages 129–137, San Diego, CA,
USA, November 5–8 2000. ACM.

	. Introduction and related work
	. iOrb hardware
	. Principles of operation
	. Deriving two analog dimensions
	. Ray casting

	. Widgets
	. Menu System
	. Discrete picking

	. Conclusions and future work

