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Abstract

The human auditory sense may be regarded as the second most

important sense after the sense of sight. This valuation is reflected in

the field of information retrieval where until recently research concen-

trated on visual information retrieval. Even research in audio retrieval

(AR) focused on one single aspect of hearing, namely understanding of

speech. With the upcoming of large music databases in recent years,

a second area of AR gained importance: music information retrieval

(MIR). The goal of MIR is to enable efficient search and retrieval in

the music databases mentioned above. The latest research area in the

domain of audio retrieval is the retrieval of environmental sounds. One

may argue that environmental sound retrieval deserves a more promi-

nent role than it has. Most sounds humans hear are neither speech

nor music but various environmental sounds. By incorporating envi-

ronmental sounds into retrieval systems, a vast amount of additional

information becomes available.

In this thesis the applicability of a range of audio features in the

domain of environmental sound retrieval is investigated. Furthermore

state-of-the-art techniques in audio retrieval are identified by a broad

survey of relevant literature covering all three areas of AR (speech,

music, and environmental sounds). The quality of the features is ex-

amined with three different classification techniques. Finally, a set

of novel audio features, developed by the author, is compared to es-

tablished features. Results indicate that further research is necessary.

There is particularly a lack of low-dimensional and computationally

cheap audio descriptors suitable for the use in environmental sound

retrieval.
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Zusammenfassung

Der menschliche Hörsinn kann als der zweitwichtigste Sinn nach dem

Sehsinn betrachtet werden. Diese Wertung spiegelt sich im Informa-

tion Retrieval wider; bis vor kurzem konzentrierte sich die Forschung

dort auf visuelle Information. Selbst das Audio Retrieval war nur auf

einen Teil des menschlichen Hörens fokusiert und zwar auf die Spra-

cherkennung. Mit dem Aufkommen von großen Musikdatenbanken ge-

wann ein zweites Forschungsgebiet, Music Information Retrieval, an

Gewicht. Das Ziel des MIR is es, effizientes Suchen und Finden in

den oben genannten Musikdatenbanken zu ermöglichen. Das jüngste

Forschungsgebiet im Audio Retrieval stellt das Erkennen von Umge-

bungsgeräuschen dar. Erkennung von Umgebungsgeräuschen verdient

eine wichtigere Rolle als bisher: schließlich hört der Mensch meist Um-

gebungsgeräusche und nicht Sprache oder Musik. Durch das Miteinbe-

ziehen von Umgebungsgeräschen in das Retrieval erschließt sich eine

Fülle an zusätzlicher Information.

In dieser Arbeit werden in einer breit angelegte Literaturrecherche

aktuelle Methoden aus allen drei Teilbereichen des Audio Retrievals

identifiziert. Weiters wird die Eignung weit verbreiteter Audiofeatures

für das Retrieval von Umgebungsgeräuschen untersucht. Die Qualität

der Features wird mit drei Klassifikationsmethoden beurteilt. Außer-

dem wird ein neues Audiofeature eingeführt und mit etablierten vergli-

chen. Die Ergebnisse verdeutlichen, dass weitere Forschungarbeit auf

dem Gebiet der Umgebungsgeräuscherkennung notwendig ist. Insbe-

sondere ist ein Mangel an niedrigdimensionalen und leicht zu berech-

nenden Audiofeatures festzustellen, die für dieses spezielle Einsatzge-

biet geeignet sind.
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1 Introduction

Multimedia information retrieval is a growing research field that gained im-

portance in recent years, due to the increasing number of available digital

media. Traditionally, research focuses on visual information retrieval (VIR).

The rise of audio information retrieval was motivated by the development

of efficient audio compression techniques that support the distribution of

digital audio. Another application of audio retrieval is multimodal informa-

tion retrieval, where visual, textual, and acoustic information is combined

to take advantage of synergetic effects. Audio recognition is also employed

for automatic extraction of semantic annotations in multimedia databases.

This thesis addresses the retrieval of environmental sounds. Therefore a

broad set of audio features and several classifiers are surveyed. Additionally,

a new set of features is introduced and their quality for a selected set of

classes of environmental sounds is evaluated. Due to the complexity of the

retrieval task, the quality of non-speech sound recognition is typically lower

than the quality of speech recognition, which is already well understood.

Retrieval results presented in this work are comparable to the results of

state-of-the-art research in the area of environmental sound recognition.

1.1 Motivation and Problem Statement

Audio recognition and retrieval has been an important and challenging re-

search field for more than fifteen years. Although the research community

yielded great technical advances in the past, work in this area is still at a

preliminary stage. The long-term goal is to achieve results comparable to

the human sense of hearing. The human auditory sense provides optimal

performance, since it is able to bridge the semantic gap described in Sub-

section 2.2. Audio recognition and retrieval techniques can at best narrow

the semantic gap. Although there is a huge research community, publishing

a vast amount of scientific papers for many years, there are still a lot of un-

solved problems. The representation of audio signals by numerical features

is currently at a low level of abstraction that does not consider semantic in-

formation. Measuring similarity of audio signals is a very difficult task, still

open to research. Audio retrieval is currently only applicable to a limited
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domain of sounds. In contrast to speech recognition, the domain of envi-

ronmental sounds is nearly infinite. The retrieval quality decreases rapidly

with an increasing number of classes that have to be distinguished. Besides,

the quality of retrieval degrades with increasing inhomogeneity of the au-

dio samples that belong to the same class. Furthermore, the partitioning

of sounds into disjoint classes is ambiguous and subjective due to cultural

influences. Another challenge is the representation of queries in retrieval

systems. Early approaches employed query-by-example techniques. Later,

query-by-humming gained importance particularly in the field of music re-

trieval [22]. A retrieval task always is a tradeoff between universality and

assumptions - about the domain, about the media, and about the user. The

retrieval quality is proportional to the number of assumptions the investiga-

tion is based on. Most investigations examine a limited domain of sounds.

For example this thesis deals with animal sounds and does not consider ar-

bitrary environmental sounds. Other assumptions concern knowledge about

the media objects. For example whether the media objects contain sounds

from different classes or not. Furthermore, knowledge about the user of the

retrieval system may lead to new assumptions. For example, the users’ ex-

pectations to the retrieval system and the purpose the system is used for.

All assumptions together allow for optimization of the retrieval task.

The problem of content-based audio retrieval can be stated as follows:

Content-based audio retrieval concerns itself with searching in multimedia

databases for audio samples specified by a query that describes properties of

the desired audio samples. Often retrieval is the task of deriving a parametric

model from raw data. From a given set of audio signals, each annotated with

a class label, a more compact abstract numerical representation by features

must be derived that characterizes the properties of the classes well. During

the training phase a (parametric) model, the classifier, is fit to the feature-

data. The goal of training is to correctly predict the class membership of

all possible audio signals in the scope of the defined classes. Based on the

parametric model, retrieval is performed by defining and evaluating a query.
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1.2 Contribution

Distinction of different classes of environmental sounds is one goal of this

thesis. The author’s contribution to this research field is represented by a

thorough investigation of the applicability of state-of-the-art audio features

in the domain of environmental sound recognition. Therefore a database

consisting of several hundred environmental sounds was built. Traditional

features developed for speech recognition and features applied in audio seg-

mentation and music retrieval are considered. Additionally, a set of novel

features is introduced and compared with established audio features. The

new features are time-based and follow an intuitive approach to describe the

waveform of a signal. The quality of the features investigated is evaluated by

a representative set of popular classifiers. Furthermore, an extensive survey

of state-of-the-art features and classifiers is given. Finally, a comprehensive

overview of related research in the field of content-based audio retrieval is

provided.

1.3 Applications

Environmental sound retrieval has a wide range of applications. It may play

an important role in applications for handicapped people. Such a technique

could be part of a supporting system for the deaf, providing information

about the surrounding environment. A deaf person could be equipped with

a microphone and a mobile device that is responsible for retrieval. The user

would be visually informed by the application about interesting or dangerous

events, indicated by sounds.

A popular application is automatic surveillance. It usually employs mul-

tiple cameras and microphones to monitor an area of interest. Such a system

produces huge amounts of data that contain only little information. Envi-

ronmental sound retrieval may be applied, for example to detect approaching

cars that can not be seen by the mounted cameras.

A traditional research field is the annotation of time-dependent media.

Environmental sound retrieval may be part of a system that automatically

generates meta-information from audio and video streams. A related ap-
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plication is the annotation of movies in a multimedia database to improve

search capabilities.

Additionally, life logging applications could take advantage of such a

technique. Life logging applications accompany human users during their

working life and leisure time and automatically capture and annotate events

of interest in a multimodal diary. Usually, life logging applications employ

multiple different sensors, such as video cameras, microphones, GPS, ac-

celerometers, and thermometers [1]. Information is extracted from the sin-

gle signal and combined with retrieved data of other measured signals. The

resulting diary consists of the retrieved annotations combined with a time

stamp. A thorough survey of applications related to content-based audio

retrieval and environmental sound retrieval is given in Section 5.

1.4 Organization

The remainder of this thesis is organized as follows: In Section 2, the prin-

ciples of pattern recognition, retrieval and digital audio are given. Section 3

addresses the experiments and discusses features and classifiers. Results are

depicted in Section 4. A survey of related work is performed in Section 5.

Finally, in Section 6 conclusions and future work are presented.
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2 Background

In this section some basic ideas of audio retrieval are discussed. First, the

field of information retrieval is surveyed. Then, the author presents the

fundamentals of pattern recognition. Finally, basics of digital audio are

discussed.

2.1 Information Retrieval

Information retrieval is concerned with searching documents in a database

by a textual query. Early applications focused on retrieval of text docu-

ments. Information retrieval is performed by searching in the documents

themselves or by searching for documents by annotated metadata. A popu-

lar application of information retrieval are search engines in the World Wide

Web. Pioneers in the area of information retrieval are Salton [52] and van

Rijsbergen [60].

In the last decades the number of available media has grown. Audio

and video data have become available due to the development of efficient

compression techniques and the distribution of multimedia over the internet.

Traditional text-based information retrieval is not appropriate for retrieval of

audio and video data. Manual creation of textual metadata from multimedia

objects by humans is not applicable because it is too time-consuming, error-

prone and costly. The limitations of metadata-based retrieval techniques

can be overcome by examining the content of media objects. Content-based

information retrieval is a separate branch of research of information retrieval

where information about audio and video documents is extracted directly

from their content. There is no need for a priori knowledge concerning the

documents. Depending on the media type, we distinguish between content-

based image retrieval (CBIR), content-based video retrieval (CBVR) and

content-based audio retrieval (CBAR).

2.2 Pattern Recognition

Most approaches dealing directly with the content of multimedia documents

are applications of pattern recognition. Pattern recognition is concerned
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with analyzing and classifying data objects by contained patterns. A pattern

recognition system consists of multiple parts. A sensor (e.g. a microphone

or video camera) provides the system with the raw signal data. The size of

the data is reduced by feature extraction. This results in a more abstract

description that represents the most meaningful information that best char-

acterizes the signal. Based on this representation, classification is performed.

Classification is a process that groups similar patterns represented by fea-

tures together. Figure 1 illustrates this process. In a content-based retrieval

raw data

Feature Extraction

Classification

predicted

 class

 labels

description

Figure 1: Sequencediagram of a typical pattern recognition task.

application the user addresses queries to the retrieval system. Queries can

be expressed in different ways. One approach is query-by-example, where

the query is of the same media type as the documents in the database. Al-

ternatively, a textual description of the favored document (e.g. “find sounds

of cars” or “find pictures of cats”) can be formulated as the query.

According to Watanabe, patterns are “the opposite of chaos” [62]. A

pattern has a structure that is characterized by features, which are numerical

representations of that pattern, such as the height of a person or the pitch
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of a human voice. A feature is regarded as a mapping from pattern space

(raw data) to feature space. The value of a feature is usually represented by

a scalar. In practice, several features are combined into a feature vector.

Feature extraction denotes the process of computing features. In context

of content-based retrieval, features often represent the coefficients of basic

signal processing transforms such as the Fast Fourier Transform (FFT) or

the Discrete Cosine Transform (DCT). The advantage of such transforms is

that a few coefficients suffice to represent most of the original signal. Due to

this property, these transforms are applied in signal compression techniques

such as JPEG and MPEG. Subsection 3.4 gives a thorough discussion of a

variety of audio features. This thesis describes the application of the features

in content-based audio retrieval.

As mentioned above, features are often combined to feature vectors. Fea-

ture selection is the process of choosing a maximal informative subset from a

given set of features. Statistical methods, such as the Principal Component

Analysis (PCA) that maximizes the variance among the features, are often

applied for feature selection. Besides, PCA can be used to generate new

features based on existing ones [39].

The objective of classification is to predict the class membership of a

pattern represented by a feature vector. A class ωi is defined by a class

label i ∈ N . Each pattern/feature vector belongs to exactly one class. A

classifier can be regarded as a function c(x) of a feature vector x with:

c(x) = i⇔ x ∈ ωi (1)

The outputs of a classifier are the predicted class labels of the feature

vectors. Most classifiers have to be trained before they can be applied to

arbitrary test patterns. For this purpose, the sample database is split into

training and test sets. The training samples are chosen randomly. The

training set usually is much smaller than the test set. During training, the

classifier determines the class boundaries based on feature vectors from the

training set. After training, the classifier is fit to the data and ready for

classification. The quality of classification is evaluated using a test set. The

test set contains feature vectors that are not contained in the training set.

A classifier should be able to correctly classify not only the training vectors,
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but all arbitrary vectors belonging to one of the selected classes. This is

called the generalization ability of a classifier [15]. In Subsection 3.5, three

classifiers employed in the investigations are presented in detail.

The quality of content-based retrieval depends on the features that rep-

resent the signal and on the classifiers that discriminate between classes of

signals. An optimal feature shows minimal variations inside a class and

high variations between multiple classes. A good representation of data by

features is necessary for successful classification. Results of the classifiers

basically depend on the quality of the features. No feature is a priori good

or bad. The quality of a feature has to be analyzed in context of the input

data, the application domain, and the classes that are distinguished. Simi-

larly, classifiers cannot be evaluated in isolation. They have to be considered

together with the features on which they operate.

Pattern recognition tasks (e.g. remote sensing, computer vision, im-

age understanding, and content-based retrieval) are inversions of well-posed

problems. Computer graphics is the well-posed inversion of pattern recog-

nition and content-based image retrieval. Similarly, sound synthesis is the

well-posed inversion of content-based audio retrieval. In general an inverse

problem concerns with the estimation of model parameters by manipula-

tion of observed data [63]. The inversion of a well-posed problem is often

ill-posed. The term ill-posed means that the conditions mandatory for well-

posed problems are not met. Conditions for well-posed problems are defined

by Hadamard in [25]. According to Hadamard, a well-posed problem has

the following properties:

1. A solution exists,

2. the solution is unique, and

3. the solution depends continuously on the data in some reasonable

topology.

Content-based retrieval is an ill-posed problem. In a retrieval task, model

parameters are derived from input data (audio, image or video data). Model

parameters are terms, properties and concepts that may represent class la-
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bels (e.g. terms as “car” and “cat,” properties as “male” and “female,” and

concepts as “outdoor” and “indoor”).

The semantic gap is related to the ill-posed nature of content-based

retrieval. The semantic gap refers to the mismatch between high-level con-

cepts and low-level descriptions. In content-based retrieval the semantic gap

is positioned between the content of media and textual information describ-

ing the semantics of the content. The gap cannot be bridged due to the

ill-posed nature of content-based retrieval. Today the goal of the research

community is to narrow the semantic gap as far as possible. All content-

based retrieval branches, such as CBAR, CBVR, and CBIR suffer from the

problems introduced by the semantic gap and apply similar techniques to

narrow it.

2.3 Content-Based Retrieval Systems

CBIR came up in the 1990s. One of the first image retrieval systems was

QBIC [19]. The QBIC system is able to query a multimedia database by

example images or videos. Around the same time the first investigations on

CBAR were performed. Pioneering work is presented by Wold, Blum, and

Wheaton in [64]. The authors developed an audio retrieval system called

Muscle Fish that is able to distinguish a wide range of sounds.

Multimedia retrieval systems have a complex architecture. The core of

a retrieval system is the database that stores the (multimedia) documents.

Additionally, it stores annotated metadata and extracted features. Features

are automatically computed by a feature extraction mechanism. Tradition-

ally, annotations were created manually by human users. Modern systems

support automatic extraction of annotations. A search engine is connected

to the database that receives queries from the user. A retrieval system may

support multiple types of queries. Query-by-example techniques directly use

documents as query objects. The retrieval system computes features from

the query documents and the search engine tries to locate similar documents

in the database by applying a similarity model. For example, in the vector

space model, similarity can be measured by a distance measure such as the

Euclidian distance. Alternatively the classifier itself may be employed to es-
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timate similarity. Another method is query-by-text, where the user defines

the desired class of documents or terms describing the documents. Query-

by-text makes use of media annotations stored in the database. Another

part of the retrieval system is responsible for visualization of the retrieved

documents. It provides the user with an interface to browse the returned

media objects.

Different evaluation methods for retrieval systems do exist. The most

popular measures are Recall and Precision. Recall is the proportion of re-

trieved relevant documents of all relevant documents in the database. Let

Ret be the set of retrieved documents and Rel the set of relevant documents

in the database. Recall R is defined as:

R =
|{Ret ∩Rel}|

|{Rel}|
(2)

Precision is the percentage of relevant documents retrieved in relation to the

total number of documents retrieved. Precision P is defined as:

P =
|{Ret ∩Rel}|

|{Ret}|
(3)

Recall and Precision are inversely related. Precision decreases with increas-

ing Recall and vice versa. The tradeoff between Recall and Precision is

usually illustrated in a Recall-Precision Graph. The Recall-Precision Graph

shows the Precision on the ordinate for different Recalls on the abscissa.

The Recall-Precision pairs are obtained by varying the number of retrieved

documents. A typical Recall-Precision Graph is given in Figure 2.

2.4 Content-Based Audio Retrieval

The rising number of audio, video, and image databases brings forth the

need for efficient retrieval. The exponential growth of computational power

enables multiple applications for content-based retrieval, such as real-time

surveillance, video analysis, and music information retrieval. These trends

encourage research in this area. Today several hundred scientific publica-

tions are published every year.

CBAR is a relatively young research area. The techniques applied are

tightly coupled to CBIR. CBAR additionally employs methods of speech
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Figure 2: A typical Recall-Precision Graph, illustrating the tradeoff between

Recall and Precision.

recognition. Speech recognition is a research field with long tradition. It was

one of the first challenges in digital audio analysis. Due to the similar nature

of the approaches in both research areas, knowledge from speech recognition

may be reused in CBAR. Today speech recognition is well understood and

well engineered. It is extensively surveyed by Rabiner and Juang in [48]. The

results of CBAR currently cannot compete with those of speech recognition.

The reason for this may be the significant impact of the semantic gap.

There are different branches of research in CBAR. Segmentation covers

distinction of different types of sound such as speech, music, silence, and

environmental sounds. Segmentation is an important preprocessing step

used to identify homogeneous parts in an audio stream. Based on segmen-

tation the different audio types are further analyzed by more appropriate

techniques such as speech recognition, music information retrieval and en-

vironmental sound recognition.

Traditionally speech recognition addresses the recognition of the spoken

word on the syntactical level. Besides, research focuses on the recognition of

the spoken language. A popular research field is speaker recognition which is

employed for authentification. Other investigations deal with the extraction

of emotions from human speech.
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In the last decade analysis and retrieval of music became a popular

research field [17]. On the one hand research deals with retrieval of instru-

ments, artists and musical styles. On the other hand researchers concentrate

on the extraction of semantic information in pieces of music.

Another research field is environmental sound retrieval which comprises

all types of sound that are neither speech nor music. Since the domain of

environmental sounds is arbitrary in size, most investigations restrict to a

limited domain of sounds. A thorough investigation of related work is given

in Section 5.

2.5 Digital Audio

Sound in context of this work is defined as vibrations transmitted through

an elastic media (be it solid, aeriform or liquid) that are detectable by the

human auditory sense. The detectable vibrations have frequencies ranging

from 20 Hz to 20 000 Hz.

Since physical sound is analog it has to be digitized to be processable

with digital hardware. Usually digital sound recording means recording a

number of samples of that sound at certain time intervals. In order to en-

able a perfect reconstruction of the digital signal, the analog signal has to be

sampled uniformly and at a frequency that is equivalent to at least twice its

bandwidth. This theorem is known as the Nyquist-Shannon sampling theo-

rem, illustrated in Figure 3. Pulse Code Modulation (PCM) is a standard

technique for digitally encoding analog audio. It dates back to 1937 when

a French engineer named Alec Reeves introduced PCM for the purpose of

telephone transmission. The analog signal is sampled at uniform intervals

and quantized into a digital code. The sampling rate defines the bandwidth

of the encoded signal according to Nyquist-Shannon sampling theorem. Be-

sides, the quantization depth is a critical quality measure since it determines

the resolution of the amplitude information. Quantization always introduces

some noise, known as quantization noise, that is not necessarily audible. A

widely known example for digitally encoded analog audio is the CD-Audio

standard. It defines a sampling rate of 44 100 Hz and a quantization depth
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(a) oversampled signal (b) reconstructed oversampled signal

(c) undersampled signal (d) loss of information in recon-

structed undersampled signal

(e) signal sampled with twice its

bandwidth (Nyquist-Shannon limit)

(f) reconstructed signal

Figure 3: Audio sampling at different rates: 3(a) and 3(b) illustrate, that

no gain is achieved by oversampling. The reconstructed signal in 3(b) is

identical to the original signal. 3(c) and 3(d) show the devastating effect of

undersampling. The signal cannot be reconstructed properly. Sampling at

the optimal rate is depicted in 3(e) and 3(f).
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of 16 Bits. Such an encoding preserves all perceivable frequencies and does

not introduce audible quantization noise.
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3 Experiments

In this section, the performed experiments are described. Different features

and classifiers are applied and compared. First, scope and objectives of

the experiments are discussed. Then the setup of the experiments and the

test environment that supports the experiments are described. Finally, the

features and classifiers employed in the tests are presented.

3.1 Scope

Five types of environmental sounds, namely cars, crowds, footsteps, signals,

and thunder are chosen for investigation. Sounds of cars, thunder and crowds

show significant similarities on the technical and perceptual level. This

qualifies the selected classes to measure the quality of features and classifiers

without bias.

The goal is to compare techniques in context of the domain of environ-

mental sounds. A system that is able to correctly classify about 80% of the

environmental sounds contained in the test set may be regarded as a suc-

cess. The system learns the differences that characterize the different sounds

from a training set that is much smaller than the test set. The techniques

applied for retrieval should be easy to compute, to meet the demands of

mobile environments such as in a life logging application.

3.2 Setup

The author built a database of sound samples from an internet search. The

database contains 557 samples (105 cars, 127 crowds, 118 footsteps, 105

signals and 102 thunder sounds). The data have a sample rate of 11025 Hz,

are quantized to 16 bit and are single channel. A sound sample contains

one or more repeated sounds of one class. File lengths and loudness levels

vary over the samples. Classification is performed on entire sound files (file-

based classification). Each sound sample is assigned to exactly one of the

five classes.

Numerous experiments are performed to test each feature with each clas-

sifier. All experiments have the same structure. An experiment consists of a
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number of inputs and outputs with corresponding parameters. The following

inputs exist:

• data defines the directories where test set and training set are located.

Optionally, a file can be specified where the test and training set are

stored as a binary file.

• feature(s) specifies the feature(s) to compute. One or more features

can be defined. Each feature may return a feature vector containing

several components. For each feature the corresponding parameters

are given.

• feature selection defines the components of the feature vectors that

are used in the experiment.

• classifier denotes the classification technique used and its specific

parameters.

Currently, the following outputs are defined:

• data file is a binary file where the raw data from the test and training

set are stored. The data file includes metadata such as sample rate,

file size, file path, class name and class label.

• feature(s) file(s) are binary files that store the feature vectors, ex-

tracted from the sound samples in test and training set.

• retrieval evaluation defines a technique to identify the quality of

classification. The current implementation supports Recall and Preci-

sion.

The inputs and outputs together with their parameters are stored in an ex-

periment file. The uniform structure of experiments enables efficient and

consistent tests of various features and classifiers. All experiments are con-

ducted in MATLAB using an extensible framework introduced in Subsec-

tion 3.3 that supports experiment files defined as above [44].

The ground truth is common to all experiments. The sample database

is split into a test set and a training set. The training set comprises of 12
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randomly chosen samples per class, except the training set for the signals

class that contains 25 samples because the class members show a wide di-

versity. This fact is tightly connected to the semantic gap discussed earlier.

The training samples are chosen randomly to gain an unbiased training set.

The remaining samples form the test set: 93 cars samples, 115 crowds sam-

ples, 106 footsteps samples, 81 signals samples and 90 thunder samples. The

training set is chosen to be very small (approximately 12.5% of the data) to

prove the ability of the classifiers to generalize.

The experiments are split into two test series. In the first run, all fea-

tures are tested individually. Their quality is evaluated by a set of classifiers.

The author employs popular techniques from machine learning and artificial

intelligence. These are Learning Vector Quantization (LVQ) and a Support

Vector Machine (SVM). Additionally, the K-Nearest Neighbor (K-NN) clas-

sifier is applied because of its simplicity. The results of these experiments

are discussed in Subsection 4.1. In the second run, the features are combined

to improve the quality of retrieval. The corresponding results are illustrated

in Subsection 4.3. The large number of experiments enables an objective

comparison of the employed classifiers in Subsection 4.5.

3.3 Test Environment

The author implemented an extensible framework that supports the defini-

tion of experiment setups by configuration files. Configuration files specify

ground truth, test data, features, classifiers, and result output options as

discussed in Subsection 3.2. The author decided for the MATLAB environ-

ment because it provides a comfortable interface for audio processing and

a large number of basic audio algorithms. Furthermore multiple toolboxes

exist, such as [47], [5], [16], and [40] that deal with audio analysis, speech

recognition and classification.

The goal of the framework is to provide common interfaces for basic

pattern recognition tasks such as feature extraction and classification. An

experiment represents an entire retrieval process. The framework is able to

represent an entire experiment as a short description that may be stored in

a configuration file.
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The MATLAB framework integrates the implementations of all features

employed in the experiments. It encapsulates the feature implementations

and provides standardized interfaces for the features. The same function-

ality is provided for the classifiers. The framework operates on a few data

structures that contain the feature data and the raw sample data. Inter-

faces to features and classifiers operate on these common data structures.

Integration of new features and classifiers is performed by implementing an

interface that encapsulates its specific logic.

The framework provides a mechanism to store and import sample data

and precomputed feature data. This speeds up repeated experiments enor-

mously and allows further analysis of feature data. The structure of the

framework is depicted in Figure 4.

The experiments are performed on a PC with an Athlon 64 3000+ and

512 MB of RAM. MATLAB version 6.5 is used for the experiments.

DB

Data
Import

Feature
Extraction

Feature
Selection

Classi-
fication

Evaluation

Feature
vectors

Recall &
Precision

Experiment
parameters parameters

parametersparameters

parameters

Sample
data

Figure 4: The MATLAB framework employed for the experiments. Each

experiment is represented by a configuration file defining the parameters of

the different retrieval processes, such as feature extraction, features selec-

tion, classification and evaluation.
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3.4 Feature Extraction

In this section, popular audio features applied in speech recognition, music

information retrieval and environmental sound recognition are discussed.

The goal is to identify suitable features for the domain of environmental

sounds.

Content-based retrieval usually does not operate on the original data.

Instead, features are computed that represent the content more efficiently.

For illustration consider one second of an audio file in CD-quality: The orig-

inal data contain 44100 samples. The first several hundred Mel Frequency

Cepstral Coefficients (MFCCs) of the same signal may suffice for retrieval

(see Subsection 3.4.8). This is a significant reduction of the amount of data

that has to be processed.

There is no widely accepted taxonomy of audio features. A basic ap-

proach is to consider the domain of the feature. Time-based features are

extracted from the signal in time domain. Spectral features are derived af-

ter the signal has been transformed using one of the basic signal processing

transforms such as Fourier, Cosine, and Wavelet Transform. Another way

to classify audio features is to analyze whether they aim at imitating the

human auditory sense. Such features are called perceptual features. The

author considers features as either time-based or spectral. The ability of

a feature to imitate the human auditory sense is regarded as a superordi-

nate property. Time-based features in the investigation comprise of Zero

Crossing Rate and Short-Time Energy. Additionally, the author introduces

a set of new time-based features that describe the properties of the wave-

form of the signal. They are Length of High Amplitude Sequence (LoHAS),

Length of Low Amplitude Sequence (LoLAS) and Area of High Amplitude

(AHA). Spectral features employed are Spectral Flux, Fourier Transform,

Cosine Transform, Wavelet Transform, Constant Q Transform, Pitch, Sone,

Cepstral Coefficients, Linear Predictive Coding, Perceptual Linear Predic-

tion (PLP) and RASTA-PLP. Perceptive features are Sone, Pitch, PLP, and

RASTA-PLP.
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3.4.1 Spectral Flux

The Spectral Flux (SF) is the summation of differences between adjacent

samples of the signal spectrum in a single frame [20]. It is computed as

follows:

SF =
∑

n

‖ |S [n]| − |S [n+ 1]| ‖ (4)

In the experiments statistical moments of first and second order of the SF

for each file are employed.

3.4.2 Fourier Transform

The continuous Fourier Transform (FT) named after Joseph Fourier, is an

integral transform that re-expresses a function in terms of sinusoidal basis

functions, i.e. as a sum or integral of sinusoidal functions multiplied by some

coefficients (amplitudes). It offers a frequency domain representation of the

signal. The coefficients of the FT may directly be used as a feature. They

are also the basis for computations of more complex features (for example

MFCC, see Subsection 3.4.8). The FT of a signal is given by Equation 5

and sometimes called the forward FT.

F (k) =

∫

∞

−∞

s (n) e−2πikndn (5)

Equation 6 is called the inverse FT and is used to obtain a reconstruction

of the signal in the time domain.

s (n) =

∫

∞

−∞

F (k) e−2πikndk (6)

For digital audio the Discrete Fourier Transform (DFT) is needed. It is

defined over discrete, finite or infinite domains. Equations 7 and 8 show the

formulae for the calculation of the DFT/Inverse DFT.

F (k) =
l−1
∑

n=0

s (n) e
−2πikn

l , k = 0, · · · , l − 1 (7)

s (n) =
1

l

l−1
∑

k=0

F (k) e
2πikn

l , j = 0, · · · , l − 1 (8)
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In 1965, Cooley and Tukey [10] first discussed the Fast Fourier Transform

(FFT), a DFT algorithm that reduces the complexity of computations for

N samples from O
(

N2
)

to O (N · logN). Today, the FFT is a standard

technique to compute the FT of a digitized signal.

The first 60 DFT coefficients are used to form a feature vector. Option-

ally zero-padding is applied to equalize the length of the samples.

3.4.3 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is closely related to the DFT. In

contrast to the DFT, which uses complex numbers, the DCT is real-valued.

The DCT approximates a signal by a weighted sum of cosine functions with

different frequencies. There are several variants of the DCT with slightly

modified definitions. The variant DCT-II in Equation 9 is commonly referred

to as the DCT.

fj =
N−1
∑

n=0

s(n) · cos

(

jπ

N

(

n+
1

2

))

(9)

Equation 10 presents the variant DCT-III which is commonly referred to as

the inverse DCT (IDCT).

sj =
1

2
f (0) +

N−1
∑

k=1

f(k) · cos

(

nπ

N

(

j +
1

2

))

(10)

Similarly to DFT the computation for the DCT is in O (N · logN). In

practice DCT is often used for lossy data compression (e.g. JPEG) and

visual information retrieval. A modified transform, the modified DCT is

used in MP3 and Vorbis audio compression. This area of application is

motivated by the property of the DCT that most of the signal information

tends to be concentrated in the low frequency components of the DCT.

Because of the lower computational complexity of the DCT, it is employed

as an approximation of the Principal Component Analysis (PCA), a linear

transform that optimally keeps the subspace that has largest variance, thus

decorrelating the input data.

Selected DCT coefficients, the low frequency components, are usable

as a feature for classification. Analogously to the DFT the first 60 DCT

coefficients are employed for retrieval.
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3.4.4 Wavelet Transform

The Wavelet Transform (WT) is a group of time-frequency transforms. It

dates back to the early 20th century, when Alfred Haar, a Hungarian math-

ematician, introduced the first Discrete Wavelet Transform. Generally the

WT aims at representing a signal by a finite length or fast decaying oscil-

lating waveform that is scaled and translated to reproduce the signal. This

waveform is called the mother wavelet. There is a large number of different

mother wavelets, the most common ones are Haar and Daubechies named

after Alfred Haar and Ingrid Daubechies [14]. In fact each mother wavelet

defines one WT, but for the sake of simplicity one refers to the WT. Selec-

tion of the optimal mother wavelet depends on the application. Recently,

WT started to replace FT in several research and application areas, such as

signal processing, speech recognition, and astrophysics.

The drawback ob the FT is, that it does not preserve any spatial in-

formation. From the Fourier spectrum we cannot determine where certain

frequencies occur in the original signal. The Short-Time Fourier Trans-

form (STFT) aims at tackling this issue. This is performed by dividing the

original signal into short frames. Each frame is Fourier transformed. This

results in a spectrum that contains local information. The spatial resolution

depends on the frame size. With decreasing frame size the spatial resolution

increases. At the same time the frequency resolution decreases.

The WT shares these properties of the STFT. Instead of framing the

signal, the WT moves a function (the mother wavelet) over the original

signal. While the wavelet is translated, it is scaled to match the signal. For

each scale and translation value pair, the WT yields a coefficient. The set of

all coefficients represent the original signal in terms of the mother wavelet.

Two types of WT exist: Discrete Wavelet Transform (DWT) and con-

tinuous Wavelet Transform (CWT). The CWT applies all scales and trans-

lations of the mother wavelet. The CWT is given in Equation 11.

c (a, b) =

∫

∞

−∞

s (n)ψ (an+ b) dn (11)

Where a are the scale values and b the translation values. The corresponding

coefficient of a and b is c (a, b). CWT is commonly used for signal analysis

28



in scientific research. It is infinitely redundant but sometimes useful to

comprehend particular signal properties. The DWT uses a specific subset

of scale and translation values which fulfill the conditions in Equation 12.

ψ
(

2kn+ l
)

with k, l ∈ Z (12)

DWT is employed in computer science and engineering as a means of signal

coding and compression. The DWT is computed by the use of filter banks

containing FIR filters. Similar to the FFT, a fast version of the DWT

exists, the Fast Wavelet Transform (FWT) [3]. In contrast to the FFT, the

computational complexity of the FWT is linear (O (N)). Similarly to DCT

and FFT coefficients, DWT coefficients are directly employed as features.

In the experiments feature vectors containing the first 100 DWT coefficients

are used. The mother wavelet employed is the Haar wavelet.

3.4.5 Constant Q Transform

In order to overcome the shortcomings of the Fourier transform for analy-

sis of Western music, Brown introduced the Constant Q Transform (CQT)

in [6]. The DFT yields frequency components that are separated by a con-

stant frequency difference and feature constant resolution. These frequency

components do not map efficiently to musical frequencies. The Constant Q

Transform is similar to the FT but has a constant ratio of center frequency

f to resolution δf . Equation 13 illustrates the computation of the CQT:

X (k) =
1

M (k)

M(k)−1
∑

n=0

W (k, n) s (n) exp

(

−i2πQn

M (k)

)

(13)

with:

• window: W (k, n) = α+ (1 − α) cos
(

2πn
M(k)

)

• variable window width: M (k) = SamplingRate·Q

2k/24

• and Q = ⌊f/δf⌋.

The Constant Q Transform aims to convert the problem of instrument identi-

fication or fundamental frequency identification into a straightforward pat-

tern recognition task. The CQT data are transformed against log (fre-

quency). Under this view, sounds with harmonic frequency components
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show constant patterns in low frequency space. Figures 5(b) and 5(a) il-

lustrate the presence of this effect with the CQT and its absence with the

DFT.

(a) signals transformed with FFT (b) signals transformed with CQT

Figure 5: FT and CQT of three complex sounds having 20 harmonics with

equal amplitude [6]. Sounds with harmonic frequency components show

constant patterns in low frequency space of the CQT. The FFT lacks this

property.

The author utilizes the implementation provided by Brown in [6] using

default values to compute CQT coefficients. Mean and variance of the CQT

coefficients over each transform window are applied as features.

3.4.6 Pitch

Pitch is the perceptual counterpart of the physical frequency. It is the per-

ceived frequency of a sound. Pitch can not be measured physically, since it is

an auditory sensation. Two sounds with measurably different frequencies do

not need to have two different pitches, but differences in the perceived pitch

implies different frequencies. The author employs a pitch detection algo-

rithm devised by Sun in [56]. For the experiments the maximum bandwidth

the algorithm supports is used. Mean and variance of the time dependent

pitch are used as features.

3.4.7 Sone

Sone is a unit on a perceptually motivated loudness scale. Loudness is a

subjective measure of sound pressure. One phon is defined as the loudness
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of a 1 kHz tone at 40 dB SPL (Sound Pressure Level). One sone equals 40

phons. The ratio of sone to phons (1:40) was chosen to represent a doubling

of loudness with a doubling in sone. A sound with a loudness of two sone

is perceived twice as loud as a sound with loudness one sone. The loudness

values of selected frequency bands mapped to sone may be used as features.

For the experiments the MATLAB toolbox of Pampalk is employed [47].

The author computes sone values for 20 frequency bands with a window size

of 256 samples. Mean and variance of all sample windows serve as features,

hence for each file a 40-dimensional feature vector is obtained.

3.4.8 Cepstral Coefficients

Cepstral Coefficients (CCs) are a popular feature in audio retrieval [37], [65].

The authors of [59] define the cepstrum as the Fourier Transform (FT) of

the logarithm (log) of the spectrum of the original signal.

signal → FT → log → FT → cepstrum

In practice, CCs are derived from FFT or DCT coefficients or linear predic-

tive analysis [5]. CCs offer a compact and accurate high order representa-

tion of signals. Peaks in the cepstrum correspond to harmonics in the power

spectrum.

MFCCs (Mel Frequency Cepstral Coefficients) are an instance of CCs.

Computation of MFCCs includes a conversion of the logarithmized Fourier

coefficients to Mel scale. After conversion, the obtained vectors have to be

decorrelated to remove redundant information. A DCT is applied to receive

a decorrelated, more compact representation. In the following sequence the

computation of MFCCs is illustrated:

signal → FT → log →Mel → DCT →MFCCs

MFCCs are computed using VOICEBOX, a speech processing toolbox

for MATLAB [5]. In the experiments the first 20 MFCCs are combined into

a feature vector. MFCCs are computed for small signal windows. Hence

mean and variance of each coefficient are calculated. Optionally, the author
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tries to enhance retrieval quality through the use of delta and double delta

features.

BFCCs (Bark Frequency Cepstral Coefficients) are computed similarly to

MFCCs. They differ in the applied scale (Bark scale):

signal → FT → log → Bark → DCT → BFCCs

Bark scale and Mel scale are perceptually motivated acoustical scales that

nonlinearly map the signal frequency. Both nonlinear scales offer higher

resolution for low frequencies than for high frequencies.

Again, VOICEBOX is utilized to compute BFCCs. The first 20 BFCCs

are selected and their mean and variance is calculated. Additionally, the

influence of delta and double delta features is examined.

3.4.9 Linear Predictive Coding

Linear Predictive Coding (LPC) is one of the most powerful speech analysis

techniques [49], [58]. The goal of LPC is to estimate the basic parame-

ters of a speech signal, e.g. pitch, formants, spectra, and vocal tract area

functions. Formants describe the vocal tract (mouth, throat) of a speaker

by its resonances. The formants are extracted by a linear predictor. The

linear predictor tries to express the value of a sample by a linear combina-

tion of values of previous samples. LPC estimates coefficients using linear

prediction, that minimize the mean square error (MSE) between the origi-

nal signal and the predicted signal. The coefficients of the linear predictor

represent the formants of a speech signal. LPC coefficients are employed

in speech recognition to distinguish between phonemes. In [45] the authors

successfully introduce LPC coefficients to environmental sound recognition

in the context of animal sounds. The VOICEBOX implementation is used

to obtain LPC coefficients. The first 20 coefficients computed by covariance

LPC analysis are employed in the experiments.

3.4.10 Perceptual Linear Prediction

Perceptual linear prediction (PLP) was introduced by Hermansky in 1990 for

speaker-independent speech recognition [26]. PLP is based on the concepts
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of linear predictive (LP) analysis and additionally emphasizes perceptual

issues. LP analysis approximates the original signal in each frequency band

equally well. This is not consistent with human hearing where the resolution

decreases with increasing frequency. PLP overcomes the shortcomings of LP

by implementing several properties of human hearing.

In the first processing step of PLP the windowed audio signal is Fourier

transformed. The resulting power spectrum is warped to the Bark scale.

The warped spectrum is convolved with an asymmetric critical-band mask-

ing curve. The critical-band masking curve approximates the shape of au-

ditory filters. It specifies the spectral resolution of human hearing for each

frequency. The resulting spectrum is sampled at approximately 1 Bark in-

tervals. This results in 18 spectral samples for an analysis bandwidth of 0

to 5 kHz (0-16.9 Bark).

The sampled values are weighted by an equal-loudness curve that sim-

ulates the sensitivity of human hearing at different frequencies. Cubic-root

amplitude compression approximates the power law of hearing that describes

the nonlinear relation between the intensity of sound and its perceived loud-

ness in human hearing.

Finally, the spectral samples are approximated by an all-pole model,

usually applied in LP analysis. The coefficients of the all-pole model can be

used as features directly. Alternatively, they can be further transformed to

cepstral coefficients. The computational costs of PLP are similar to those

of LP analysis.

The author employs the MATLAB toolbox by Ellis that supports PLP

and RASTA-PLP [16]. All 18 coefficients are used in the experiments. PLP

coefficients are computed for entire files.

3.4.11 RASTA-PLP

Relative spectral - perceptual linear prediction (RASTA-PLP) is an ex-

tension of PLP introduced in [27]. The objective of RASTA-PLP is to

make PLP more robust to spectral distortions of the communication chan-

nel. RASTA-PLP considers the fact that human perception is sensitive to

relative values (changes) and not to the absolute values of a signal. Human
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hearing is insensitive to slow variations in the input signal and constant

noise introduced by the communication channel. The RASTA technique

simulates this by band-pass filtering each frequency channel.

The steps of the RASTA-PLP technique are depicted in Figure 6. From

FFT

Critical-Band Integration and Resampling

FFT

Logarith

Filtering

Equal-Loudness Curve

Power-Law of Hearing

Inverse Logarithm

Inverse Discrete Fourier Transform

Solving of Set of Linear Equations

Cepstral Recursion

Cepstral Coefficients of RASTA-PLP Model

Speech

Figure 6: The RASTA-PLP method.

the Fourier Transform of the windowed speech signal, the critical-band spec-

trum is computed as with PLP. The spectral amplitudes are logarithmized.

The log critical-band spectrum is filtered by a band-pass filter. The effect

of the band-pass filter is that constant or slowly-varying components in the

spectrum are suppressed. Spectral changes below the low cut-off frequency

of the filter are ignored in the output. This removes any constant or slowly-

varying components from the spectrum. The high cut-off frequency is the

upper limit of spectral changes which are preserved. Spectral changes above
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the high cut-off frequency of the band-pass filter are suppressed to smooth

out artifacts (fast frame-to-frame spectral changes) caused by short-time

analysis. Figure 7 illustrates the effect of the band-pass filter on the spec-

trum. After band-pass filtering the equal loudness curve and cubic-root

S(f)

f

band-pass filter

chcl

III

Figure 7: S(f) is the spectrum of a signal s(n). The band-pass filter removes

constant and slowly varying components below the low cut-off frequency

cl (area I). Furthermore, artifacts above the high cut-off frequency ch are

removed (area II).

amplitude compression is applied to the relative log spectrum, equivalent to

PLP. Prior to the approximation of the spectrum by an all-pole model, the

inverse logarithm of the spectrum is computed.

Analogously to the PLP technique, the coefficients or their cepstral co-

efficients may be employed as audio features. According to Hermansky [27],

the RASTA-PLP technique outperforms the PLP technique in applications

where the communication channel introduces noise and spectral coloration

to the signal (e.g. telephone line). The RASTA technique yields more robust

results and decreases error rates in recognition.

In the experiments RASTA-PLP coefficients are computed analogously

to PLP coefficients. Again mean and variance of all 76 coefficients, provided

by the algorithm of Ellis, are selected for retrieval [16].

3.4.12 Zero Crossing Rate

The Zero Crossing Rate (ZCR) is the number of zero-crossings in the time

domain within one second. According to Kedem [31] the ZCR is a measure

for the dominant frequency in a signal.
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The mean ZCR for entire sample files is used as a feature.

3.4.13 Short-Time Energy

The Short-Time Energy (STE) of an audio signal reflects the amplitude vari-

ations over time. The main area of application of STE is the discrimination

between silence and non-silence. Equation 14 illustrates the computation.

STE = ∆t
N
∑

n=1

|s [n]|2 (14)

Mean and variance of the STE are computed for entire files.

3.4.14 LoHAS, LoLAS & AHA

The author introduces a set of new time-based low-level features for au-

dio [45]. The features follow a simple perceptually driven approach. A

human observer distinguishes between sounds among other things by the dis-

tribution of loud portions and silent portions. Sounds often consist of similar

recurrent fragments. Environmental sounds match this concept; footsteps

and sirens are repeating sounds. The human auditory sense uses this infor-

mation to recognize and distinguish between sounds. For example, footsteps

differ from a sound of a siren in the repeat rate and the length of the sin-

gle sounds. On a technical level that means that the high energy segments

are different in length. Similarly, the length of pauses between high energy

segments contains valuable information.

The introduced features are motivated by this observation. They de-

scribe characteristics of the waveform such as peaks and silence. The fea-

tures are computed based on an adaptive threshold. This threshold sep-

arates segments with high amplitudes from segments with low amplitudes

in the waveform. The threshold for a particular sound sample is the sum

of mean and standard deviation of the absolute sample values. Based on

this threshold the length of high amplitude sequences (LoHAS) is computed.

The length of a high amplitude sequence represents the number of consecu-

tive samples that have a value greater or equal to the threshold. All LoHAS

together represent the distribution of the lengths of high energy segments

in the signal. Figure 8(a) illustrates this feature. Analogously, the length of
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a low amplitude sequence (LoLAS) is defined as the number of consecutive

samples that have a lower value than the threshold. The set of LoLAS de-

scribes the distribution of lengths of silent segments in the signal. Details are

depicted in Figure 8(b). The length of a high amplitude sequence contains

temporal information but no information about the loudness of the signal

at this section. Sequences with high amplitude can be further characterized

by the area below the waveform. The area of high amplitudes (AHA) is the

area between the threshold and the signal in a high area sequence. In other

words, the AHA feature represents the extent of high energy segments in

the signal. Figure 8(c) illustrates this concept.

abs(s(n))

s(n)

t(s(n))

(a) LoHAS

abs(s(n))

s(n)

t(s(n))

(b) LoLAS

abs(s(n))

s(n)

t(s(n))

(c) AHA

Figure 8: LoHAS, LoLAS, and AHA for signal s (n) with threshold t (s (n)):

(a) Length of High Amplitude Sequence (LoHAS); (b) Length of Low Am-

plitude Sequence (LoLAS); (c) Area of High Amplitude (AHA).
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Statistical properties of LoHAS, LoLAS, and AHA are considered to

build features that describe entire sample files. The final features comprise

means, standard deviations, and medians of LoHAS and LoLAS over the

entire signal. Additionally, the means of AHA are extracted. This results in

a feature vector with seven dimensions that is used for classification. LoHAS,

LoLAS and AHA are also referred to as Amplitude Descritpor (AD).

3.5 Classification

Classification is an important step in content-based retrieval. The process of

classification tries to correctly predict the class of a sample. In this section

the classifiers employed in the experiments are described.

There is a large number of classification techniques following different

approaches. Statistical methods such as Bayes classification and Gaussian

Mixture Models try to estimate the probability density function of the un-

derlying data [28]. Another group of classifiers are learning algorithms that

employ artificial intelligence techniques. Some algorithms fit a paramet-

ric model to the underlying data. There are supervised learning methods

such as Support Vector Machines, neural networks, and non-supervised tech-

niques such as Self-Organizing Maps [34]. A classification technique similar

to Self-Organizing Maps is Learning Vector Quantization. Beside paramet-

ric techniques (e.g. Support Vector Machines), there are non-parametric

techniques such as the Nearest Neighbor.

Three supervised classifiers are selected for the experiments. The sim-

plest way to classify feature vectors is the nearest neighbor rule. The K-

NN classifier is employed. The K-NN is a generalization of the nearest

neighbor classifier. In the experiments the implementation of Roger Jang is

applied [29]. Additionally, the author implemented Learning Vector Quanti-

zation (LVQ) using standard MATLAB routines. Finally, a Support Vector

Machine (SVM) is applied in classification with different kernels. For this

purpose the OSU SVM MATLAB toolbox is used [40].
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3.5.1 K-Nearest Neighbor

K-Nearest Neighbor (K-NN) is a popular non-parametric classifier. Details

are given in [12]. In contrast to parametric techniques that fit a model to the

data or that describe the probability distribution of the data, non-parametric

techniques operate on the data directly. The data are a combination of a

training set X = (x1, ...,xN ) ∈ Rd×N containing N training vectors of

dimension d and a vector y = (y1, ..., yN ) ∈ R1×N of corresponding class

labels.

The 1-NN (NN) algorithm assigns a new vector x the class label ys of

the nearest training vector xs, where

s = arg min
i

‖x − xi‖, 1 ≤ i ≤ N. (15)

Similarity in nearest neighbor classification can be measured by any simi-

larity (distance) measure. Frequently, Euclidean distance is used for K-NN.

This assignment scheme partitions the feature space according to a Voronoi

tessellation. Each cell belongs to one class. Figure 9 illustrates a Voronoi

tessellation in two dimensional space. The union of all cells that are assigned

to the same class, is the decision region for this class.

The K-NN algorithm with K > 1 considers more than just the nearest

neighbor for classification. K denotes the number of nearest neighbors of

a new feature vector x that are considered for classification. From these

K vectors, kj vectors belong to class ωj , with
∑c

j=1 kj = K where c is the

number of classes. Vector x is assigned to class ωi with the greatest number

of representatives in the set of K neighbors:

i = arg max
j
kj , 1 ≤ i ≤ c (16)

During training the K-NN classifier learns the training set by rote. Hence,

memory and computation costs grow linearly with the size of the training

set (O(N)).

In the experiments the K-NN classifier is applied with different values

for K. The initial value for K = 1. K is incremented as long as classification

results improve. NN is considered to indicate the quality of the features.

Features that discriminate classes well, provide disjoint partitions in the

feature space.
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x1

x2

Figure 9: Voronoi tessellation in R2 of a binary classification problem. Dots

are feature vectors of class A, crosses are feature vectors of class B. The gray

area is the decision region of class A.

3.5.2 Learning Vector Quantization

Learning Vector Quantization (LVQ) is a classification technique belonging

to the basic competitive neural networks. It was introduced by Kohonen [35]

and is related to Self-Organizing Maps, also by Kohonen [34].

The LVQ algorithms approximate class distributions of pattern vectors.

According to their creator, LVQ algorithms define very good approximations

for the optimal decision borders.

Let x be a sample vector and Sk be the k-th class of an N class clas-

sification problem. We first randomly assign a subset of codebook vectors

to each class Sk and then search the codebook vector mi with the smallest

Euclidean distance from x. It is possible to perform this assignment with-

out intermixing codebook vectors that belong to different classes, even if

the class distributions overlap. The sample x is thought to appertain to the

same class as the closest mi. The decision border is defined by the codebook

vectors closest to the class border. The mi have to be placed into the signal
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space in such a way that the nearest-neighbor rule minimizes the average

expected misclassification probability.

Let

c = arg min
i

{‖x − mi‖} (17)

define the index of the nearest mi to x. Let x = x (t) be a time-series

sample of input, and let the mi (t) represent sequential values of the mi in

the discrete-time domain. LVQ1, the basic Learning Vector Quantization

process is given in Equations 18 to 20:

mc (t+ 1) = mc (t) + α (t) [x (t) − mc (t)] , x,mc ∈ Sk (18)

mc (t+ 1) = mc (t) − α (t) [x (t) − mc (t)] , x ∈ Si,mc ∈ Sj , i 6= j (19)

mi (t+ 1) = mi (t) , i 6= c (20)

The asymptotic values of mi obtained in the above process define a vector

quantization for which the rate of misclassification is approximately mini-

mized. The learning rate α (t) is usually made to decrease monotonically

with time. Kohonen recommends an α < 0.1. The exact law α = α (t) is not

crucial. If only a restricted set of training samples is available, they may be

applied cyclically, and α (t) may even be made to decrease linearly to zero.

The basic LVQ algorithm is illustrated in Figure 10.

The optimized-learning-rate LVQ1 (OLVQ1) is an improved version of

the LVQ1 presented above. OLVQ1 differs from LVQ1 in a way that it

uses an individual learning rate αi (t) that is assigned to each mi. Let c

be defined in Equation 17, and let f (x) = +1, f (x) = −1 denote correct

respectively incorrect classification of x. Equations 21 to 23 define the new

learning process:

mc (t+ 1) = mc (t) + αc (t) [x (t) − mc (t)] , f (x) = +1 (21)

mc (t+ 1) = mc (t) − αc (t) [x (t) − mc (t)] , f (x) = −1 (22)

mi (t+ 1) = mi (t) , i 6= c (23)

If all samples are used with equal weight, the statistical accuracy of the

learned codebook vectors is approximately optimal. OLVQ1 is not the only

derivative of LVQ algorithm, several others exist (LVQ2, LVQ3, etc.) [33].
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x1

x2

(a) data set

x1

x2

(b) initial codebook vectors

x1

x2

(c) after 25 learning steps

x1

x2

(d) after 50 learning steps

Figure 10: The learning process of the LVQ classifier: (a) the original data

set with shape-coded class labels; (b) the circles mark the initial codebook

vectors for each class; (c) and (d) display the path of the codebook vectors

while they move towards the group of training patterns that belong to the

same class.
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Kohonen suggests the use of the same number of codebook vectors for

each class. The upper limit of the total number of codebook vectors is

determined by time and computational constraints.

In the experiments, an LVQ with eight hidden neurons, a learning rate

of 0.01 and 200 epochs is used. The classifier is supplied with the distribution

of classes in the training set.

3.5.3 Support Vector Machines

Support Vector Machines (SVMs) are supervised, statistical learning meth-

ods applicable for classification and regression [4], [61]. They are also known

as maximum-margin classifiers.

Given two separable clouds of points (x1, y1), · · · , (xk, yk) where xi ∈ Rn

and yi ∈ {−1,+1}, an SVM constructs an optimal separating hyperplane

wx + b = 0, that maximizes the distance between the hyperplane and

the nearest data points of each cloud (these points are the support vectors).

The distance between the support vectors and the hyperplane is called mar-

gin. Figure 11 depicts the difference between a suboptimal and an optimal

separating hyperplane.

g

h i

(a)

m1m1
m2m2k

(b)

Figure 11: Optimal Separating Hyperplanes (OSH): (a) g, h, i are valid but

not optimal separating hyperplanes. (b) k is the OSH, the distance between

k and m1 respectively m2 is equal and maximal.

The hyperplane is not constructed in feature space. Instead the saddle

point of the following Lagrange functional is calculated:

L(w, b, α) =
1

2
‖w‖2 −

l
∑

i=1

αi {yi [(w · x) + b] − 1} , (24)
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where αi are the Lagrange multipliers. Equation 24 may be transformed

into problem 25 which is easier to solve,

w̄ =
l
∑

i=1

ᾱiyixi, b̄ = −
1

2
w̄ · [xr + xs] (25)

where xr and xs are two arbitrary support vectors with ᾱr, ᾱs > 0, yr =

1, ys = −1. Slack variables ζi and a penalty function F (ζ) =
∑l

i=1 ζi

are the means by which SVMs become applicable for the non-separable

case [11]. The separating hyperplane is constructed in such a manner that

the number of falsely classified xi is minimal. This consequently minimizes

F (ζ). The slack variables only influence the Lagrange multipliers αi. Hence,

the solution for the optimization problem stays the same as for the separable

case.

In practice, most problems are not linearly separable. Instead of identi-

fying a non linear separating function, the data points are transformed into a

higher order space in which they become linearly separable. This is achieved

by the use of kernels. Figure 12 illustrates the effect of a polynomial kernel

that maps the input space into a feature space of higher order.

(a) not linearly separable (b) linearly separable

Figure 12: The kernel maps the one-dimensional input space (a) into a

feature space of higher dimensionality, where the inputs become linearly

separable (b).

Equation 26 describes the SVM classifier, where K (xi,xj) is the kernel

used.

f (x) = sign

(

∑

support vectors

ᾱiyiK (xi,xj) + b̄

)

(26)
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There are three typical kernel functions:

1. polynomial: K (xi,xj) = [(xi · xj) + 1]d,

2. Radial Basis Function (RBF):

K (xi,xj) = exp
(

− (xi − xj)
2 /2γ2

)

, and

3. sigmoid: K (xi,xj) = tanh (scl · (xi · xj) − off),

where scl (scale) and off (offset) are parameters that have to be chosen with

care. The kernel becomes invalid for particular parameter values.

Kernel functions are not limited to the ones mentioned above. Any

continuous symmetric non-negative definite function (Mercer’s Theorem) is

a valid kernel function [2].

Beside K-NN and LVQ, an SVM classifier is applied in the experiments.

Since there is no method to determine the optimal kernel function, different

kernels are tested. Additionally to a linear kernel, polynomial kernels of

second and third order and an RBF kernel are employed.
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4 Results

In this section the results of the experiments are presented. For easier un-

derstanding we distinguish between four levels of retrieval quality:

very good > good > mediocre > poor.

Table 1 lists the four levels and their numerical correspondents. As discussed

very good ≥ 80 %

good < 80 %

mediocre < 60 %

poor < 40 %

Table 1: The four levels of retrieval quality and their numerical correspon-

dents.

in Subsection 2.3, computation of Recall and Precision relies on the set

of retrieved documents. In this thesis the set of retrieved documents is

always the entire test set. High Recall values indicate high recognition rates

for the classes. High Precision values suggest that only a small number

of documents not belonging to the class are retrieved (false positives). A

class with high Precision values is well separated from the others. Retrieval

quality is regarded to be very good if Precision and Recall are ≥ 80%. If

Recall is 91% and Precision is 30% the overall quality is considered to be

poor. Note that this quantization is valid only for this specific dataset.

The following parameters were used for the classifiers: K-NN classifica-

tion was performed with k ∈ {1, 2, 3}. LVQ used a learning rate α = 0.01

and 200 epochs for training. SVM was tested with polynomial kernels of

first, second and third order as well as an RBF kernel with γ = 0.

Subsections 4.1.1 to 4.1.7 address retrieval results obtained with the

previously discussed features and classification algorithms. In Subsection 4.3

the results for one optimized combination of features and the NN classifier

are shown. Finally, in Subsection 4.5 performance of the three classifiers is

discussed.
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4.1 Individual Features

As mentioned above the experiments were first conducted with all features

separately. Starting with the basic signal processing transforms in Subsec-

tion 4.1.1 and ending with the cepstral coefficients in Subsection 4.1.7. This

section will list only the optimal results that were achieved using the above

mentioned classifiers. The features are loosely grouped by performance and

type. It is noteworthy that several features designed for speech processing

perform fairly well in the domain of environmental sounds.

4.1.1 Basic Signal Processing Transforms

The basic signal processing transforms, namely DWT, CWT, FFT, and

DCT, yield mediocre results at best. Coefficients of the Discrete Wavelet

Transform (using a Haar motherwavelet and 100 coefficients) are no discrim-

inative feature for the used dataset (see Table 2).

DWT K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 100% 19% 100% 19% 0% 0%

crowds 0% 0% 0% 0% 0% 0%

footsteps 0% 0% 0% 0% 0% 0%

signal 0% 0% 0% 0% 100% 17%

thunder 0% 0% 0% 0% 0% 0%

Table 2: Results (recall and precision) of DWT for each class (rows) obtained

by different classifiers (columns).

All three classifiers fail. They are not able to discriminate the classes.

All samples are assigned to one single class. Coefficients of the continuous

Wavelet transform perform slightly better, though results stay disappointing

(see Table 3).

The best performing classifier is the NN algorithm. Results are poor for

all classes except for crowds where a mediocre level is reached. LVQ and

SVM fail to distinguish between the classes; all samples are assigned the

same class label.
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CWT K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 48% 16% 100% 19% 0% 0%

crowds 43% 46% 0% 0% 0% 0%

footsteps 14% 41% 0% 0% 0% 0%

signal 10% 18% 0% 0% 100% 17%

thunder 0% 0% 0% 0% 0% 0%

Table 3: Results (Recall and Precision) of CWT for each class (rows) ob-

tained by different classifiers (columns).

The most suitable classifier with the DCT coefficients feature is the LVQ

technique. Performance of the LVQ is slightly above the performance of the

NN method. The SVM classifier achieves only poor results. It does not

distinguish between three of the five classes. Cars, crowds and signals are

regarded as one class as illustrated in Table 4.

DCT K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 43% 44% 76% 51% 0% 0%

crowds 68% 48% 84% 50% 30% 64%

footsteps 25% 46% 20% 62% 0% 0%

signal 60% 40% 38% 89% 95% 20%

thunder 28% 47% 49% 54% 36% 67%

Table 4: Results (Recall and Precision) of DCT for each class (rows) ob-

tained by different classifiers (columns).

FFT coefficients used as features perform comparable to other coeffi-

cients of basic signal processing transforms. Table 5 illustrates the results

that indicate that FFT coefficients may be used in combination with other

(better performing) features, but are not discriminative to be used as a

reliable feature for classification.

The results described above are not surprising. With the basic sig-

nal processing transforms, information in the high frequency bands is lost.
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FFT K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 74% 50% 58% 53% 32% 38%

crowds 52% 44% 50% 49% 26% 42%

footsteps 8% 40% 8% 69% 32% 40%

signal 60% 52% 59% 59% 56% 43%

thunder 33% 31% 56% 29% 61% 37%

Table 5: Results (Recall and Precision) of FFT for each class (rows) obtained

by different classifiers (columns).

Therefore discrimination is based on the low frequency bands, that obviously

do not carry enough discriminative information.

4.1.2 Constant Q Transform

The CQT originally was introduced as a replacement for the FT that is

better suited for analysis of western music. With the SVM and LVQ algo-

rithms, the results are disappointing. In contrast to that, the NN technique

performs well. Uniformity inside the classes crowds and thunder results in

Precision values above 70%. However results are far from satisfactory for

practical use. As can be seen in Table 6 three classes are classified well,

i.e. recall > 60% in combination with precision > 60%. The two remaining

classes show mediocre and poor performance.

CQT K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 60% 60% 100% 19% 0% 0%

crowds 91% 72% 0% 0% 0% 0%

footsteps 89% 61% 0% 0% 0% 0%

signal 38% 100% 0% 0% 100% 17%

thunder 51% 78% 8% 100% 0% 0%

Table 6: Results (Recall and Precision) of CQT for each class (rows) ob-

tained by different classifiers (columns).
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4.1.3 ZCR, STE, and SF

The Zero Crossing Rate is an indicator for the fundamental frequency. Ta-

ble 7 shows the results for the ZCR feature. Results are poor throughout

the classifiers, this supports the assumptions that the critical information for

distinguishing between the considered five classes of environmental sounds

is in the high frequency bands.

ZCR K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 40% 22% 0% 0% 3% 60%

crowds 33% 37% 0% 0% 1% 25%

footsteps 15% 21% 0% 0% 1% 100%

signal 32% 20% 0% 0% 98% 17%

thunder 1% 14% 100% 19% 0% 67%

Table 7: Results (Recall and Precision) of ZCR for each class (rows) obtained

by different classifiers (columns).

STE performs poorly. Since Short-Time Energy is a short time feature

one may expect poor performance in an environment where analysis is per-

formed on entire files. STE is applicable in frame-based approaches where

sound files are considered as series of short (overlapping) sound frames. Sur-

prisingly, the NN classifier yields mediocre results for two classes, namely

footsteps and signal (see Table 8).

STE K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 30% 18% 0% 0% 0% 0%

crowds 19% 37% 0% 0% 0% 0%

footsteps 70% 54% 0% 0% 0% 0%

signal 58% 50% 100% 17% 100% 17%

thunder 9% 24% 0% 0% 0% 0%

Table 8: Results (Recall and Precision) of STE for each class (rows) obtained

by different classifiers (columns).
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The Spectral Flux has hardly any discriminative power. Except for

crowds which are classified comparably to the NN and the SVM techniques

(see Table 9). The LVQ algorithm fails. Again all files are regarded to belong

to one single class. One may argue that this is due to the fact that analyis is

performed for entire sound files. The spectral fluctuation inside a sound file

may only contain useful information if the sound has tone-like structure. In

order to achieve this, frame-based analysis has to be performed. Sufficiently

short frames, should contain sound information that could be regarded as

one tone.

SF K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 16% 23% 0% 0% 0% 0%

crowds 67% 59% 0% 0% 75% 59%

footsteps 16% 38% 0% 0% 1% 17%

signal 73% 31% 100% 17% 84% 21%

thunder 32% 53% 0% 0% 9% 53%

Table 9: Results (Recall and Precision) of Spectral Flux for each class (rows)

obtained by different classifiers (columns).

4.1.4 Pitch, PLP, and RASTA-PLP

Pitch is the perceptual counterpart of the physical dominant frequency. Re-

sults are poor throughout the classifiers. The NN technique performs best,

managing to discriminate one class with an acceptable precision, namely

signals (see Table 10).

PLP as well as RASTA-PLP show mediocre performance. Results are

not consistent; some classes are separated well while others are not. This is

true for NN and SVM classifiers. LVQ fails with both features as illustrated

in Table 11 and Table 12. Features that are based on linear predictive coding

(such as PLP and RASTA-PLP) perform better, the less they are optimized

for speech. This becomes evident when results of the LPC coefficients (see

Table 14) are compared with the results in Tables 11 and 12.
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Pitch K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 46% 46% 0% 0% 23% 91%

crowds 63% 51% 100% 24% 26% 50%

footsteps 33% 42% 0% 0% 24% 86%

signal 78% 57% 0% 0% 88% 46%

thunder 29% 46% 0% 0% 92% 38%

Table 10: Results (Recall and Precision) of Pitch for each class (rows) ob-

tained by different classifiers (columns).

RASTA- K-NN LVQ SVM

PLP Recall Precision Recall Precision Recall Precision

cars 55% 41% 0% 0% 19% 41%

crowds 54% 51% 100% 24% 88% 41%

footsteps 45% 62% 0% 0% 42% 52%

signal 32% 54% 0% 0% 31% 66%

thunder 41% 33% 0% 0% 27% 32%

Table 11: Results (Recall and Precision) of RASTA-PLP for each class

(rows) obtained by different classifiers (columns).

It is noteworthy, that PLP coefficients yield slightly better classification

results than RASTA-PLP coefficients. This indicates that the optimizations

for speech integrated in RASTA-PLP decrease performance for environmen-

tal sounds.

4.1.5 LoHAS, LoLAS & AHA

It was not possible to achieve consistently good retrieval results with the

amplitude-describing features introduced in [45]. Results are disappoint-

ing as can be seen in Table 13. LoHAS, LoLAS and AHA (short Ampli-

tude Descriptor AD) do not contain enough discriminative information that

would make them useful for classification as the single discriminative fea-

ture. Analysis of the waveforms of the data used explains the achieved per-

formance. With the selected classes of environmental sounds, discriminative
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PLP K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 59% 50% 0% 0% 77% 50%

crowds 56% 53% 100% 24% 63% 58%

footsteps 33% 52% 0% 0% 37% 48%

signal 68% 73% 16% 100% 37% 79%

thunder 70% 56% 0% 0% 64% 60%

Table 12: Results (Recall and Precision) of PLP for each class (rows) ob-

tained by different classifiers (columns).

information is encoded in the amplitude. LoHAS, LoLAS and AHA use an

adaptive threshold that destroys large portions of this important amplitude

information.

AD K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 53% 34% 42% 61% 39% 47%

crowds 57% 50% 52% 50% 61% 53%

footsteps 60% 74% 75% 68% 55% 83%

signal 49% 52% 65% 41% 81% 52%

thunder 29% 52% 36% 57% 59% 66%

Table 13: Results (Recall and Precision) of the amplitude describing features

LoHAS, LoLAS & AHA for each class (rows) obtained by different classifiers

(columns).

4.1.6 LPC and Sone

LPC coefficients represent the formants of a speech signal. Use of LPC

coefficients in the context of environmental sound recognition is debatable.

Nevertheless, the author incorporated LPC in the experiments. The ob-

tained results are presented in Table 14. The NN classifier yields incon-

sistent results for the LPC coefficients. The quality indicators range from

poor to very good. Results obtained from the LVQ classifier are comparable
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to those of the NN but slightly more consistent. The SVM algorithm per-

forms equally well to the other classifiers, with a linear kernel. Other kernels

yield worse results. Surprisingly, classification with LPC coefficients yields

results on a higher quality level than classification with other features that

are theoretically more suitable for environmental sound recognition.

LPC K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 68% 83% 73% 67% 76% 72%

crowds 82% 73% 72% 69% 55% 82%

footsteps 39% 63% 42% 67% 57% 66%

signal 67% 92% 68% 65% 79% 60%

thunder 84% 49% 78% 61% 79% 63%

Table 14: Results (Recall and Precision) of LPC for each class (rows) ob-

tained by different classifiers (columns).

The Sone feature contains perceived loudness information of 40 frequency

bands. The results obtained by this feature are shown in Table 15. Perfor-

mance is sufficient for this dataset. With the NN classifier results around

70% recall are obtained. This is a satisfactory performance for environmen-

tal sounds. The LVQ algorithm fails due to the assignment of all samples

to a single class. The SVM classifier yields very good results for crowds and

footsteps, good results for cars and thunder and mediocre results for signals.

Sone K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 70% 66% 0% 0% 78% 78%

crowds 70% 80% 0% 0% 83% 74%

footsteps 79% 94% 0% 0% 91% 84%

signal 75% 72% 100% 17% 43% 70%

thunder 76% 61% 0% 0% 78% 71%

Table 15: Results (Recall and Precision) of Sone for each class (rows) ob-

tained by different classifiers (columns).
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4.1.7 BFCC and MFCC

The cepstral coefficients, namely BFCCs and MFCCs, yield predominantly

good and very good results shown in Table 16 and Table 17. Results are

consistent throughout all classifiers. All classification methods generate high

recall precision pairs.

BFCC K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 52% 80% 67% 72% 65% 67%

crowds 96% 87% 80% 84% 94% 82%

footsteps 93% 90% 80% 87% 92% 86%

signal 68% 96% 65% 80% 59% 89%

thunder 92% 63% 78% 56% 71% 66%

Table 16: Results (Recall and Precision) of BFCC for each class (rows)

obtained by different classifiers (columns).

MFCC K-NN LVQ SVM

Recall Precision Recall Precision Recall Precision

cars 56% 79% 47% 56% 59% 66%

crowds 92% 87% 95% 80% 83% 93%

footsteps 92% 87% 69% 78% 82% 93%

signal 65% 96% 54% 72% 79% 89%

thunder 87% 60% 72% 57% 83% 56%

Table 17: Results (Recall and Precision) of MFCC for each class (rows)

obtained by different classifiers (columns).

It is noteworthy, that the very similar results are a consequence of the

computation methods of BFCCs and MFCCs. Subsection 3.4.8 gives the

explanation: BFCCs and MFCCs differ only in the perceptual scale they

use. The information they contain is virtually the same. As the best per-

forming features, BFCCs and MFCCs are candidates for the basis of feature

combinations discussed in the next section.
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4.2 Preliminary Summary

In the previous sections, multiple features were evaluated individually for the

purpose of environmental sound recognition. The results obtained are satis-

factory. While simple features, such as coefficients of basic time to frequency

transforms (DFT, DWT, and DCT), are not able to capture discriminative

properties of the classes, features of high complexity, such as cepstral coef-

ficients, are well suited for recognition of environmental sounds. Beside the

complexity, quality of retrieval often depends on the dimensionality of the

features. While low-dimensional features, such as ZCR are limited in their

expressiveness, high-dimensional features provide more explanatory power.

For example, retrieval quality of MFCCs improves with increasing number

of selected components.

The classifiers, selected for the experiments, perform differently for the

individual features. Although SVM is a sophisticated technique compared

to K-NN, results of K-NN are comparable to those of the SVM. This results

from the low dimensionality of the feature vectors. For high-dimensional

feature vectors the performance of K-NN decreases, while the SVM often

benefits from additional dimensions. The results of LVQ are not as consis-

tent as the results of the other classifiers. LVQ is not able to explain poor

features. For example, the feature data of DFT or Pitch are too complex

for LVQ. The reason for this may be the simple classification scheme of LVQ

applied in the experiments. Since every class is represented by only one

codebook vector, the available information about a class reduces to a single

data point in feature space. During training, the test samples are assigned

to the class of the nearest codebook vector. This classification scheme is

too simple to explain the complex structure of several features in the exper-

iments. Good results of LVQ indicate that each class forms a single cluster

in feature space. Due to this property, LVQ is well suited for analyzing the

structure of high-dimensional data.

There are different reasons for the poor retrieval quality of some features

in the experiments. The coefficients of DCT, DFT, and DWT, contain only

information of low frequency bands. High frequencies, that are necessary to

characterize certain environmental sounds, are neglected. This explains the
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poor quality of retrieval, obtained by the transform coefficients. Pitch and

ZCR suboptimally perform in the experiments. Due to their low-dimension,

they fail to explain test and training data. Nevertheless, these features

may improve retrieval quality in combination with other features (see Sec-

tion 4.3).

The experiments presented comprise of features traditionally applied in

speech recognition, such as LPC, PLP, and RASTA-PLP. While PLP and

RASTA-PLP yield moderate retrieval results, LPC coefficients outperform

most of the other features employed. All classifiers yield consistent results

for the LPC feature. This indicates that the LPC coefficients are highly

discriminative for environmental sounds in the experiments. Even classifi-

cation by LVQ yields high Recall and Precision values, which confirms the

assumption that LPC coefficients cluster the feature space according to the

classes of the data set.

Cepstral coefficients (MFCCs and BFCCs) perform comparably to LPC.

Most information is contained in the first few coefficients. That allows for

low-dimensional but expressive feature vectors. Both K-NN and LVQ per-

form well for cepstral coefficients. Consequently, the structure of cepstral

coefficients is easy to explain.

The Amplitude Descriptor (AD) yields inconsistent results. In contrast

to cepstral coefficients and LPC, the AD comprises only time-based features.

In general, a combination of spectral and time-based features is promising

because it explains different aspects of the signal. While spectral features

characterize frequency characteristics, time-based features incorporate tem-

poral information and loudness. In Section 4.3, the author combines features

of different domains in order to improve the recognition rate.

4.3 Combined Features

In this section results of feature combinations are discussed. Table 18 shows

the results for one such combination of features.

Empirically, features were combined and removed from the combination

until an optimal solution was found for the NN classifier with K = 1. The

basis for the feature combination (FC) are the first 13 MFCCs. All 20 LPC
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Com- K-NN LVQ SVM

bination Recall Precision Recall Precision Recall Precision

cars 82% 85% 75% 67% 76% 86%

crowds 99% 88% 3% 75% 97% 89%

footsteps 90% 97% 78% 86% 94% 93%

signal 79% 94% 90% 33% 65% 95%

thunder 87% 77% 60% 92% 88% 70%

Table 18: Results (Recall and Precision) of one optimized feature combi-

nation composed of for each class (rows) obtained by different classifiers

(columns).

coefficients, five statistical moments of first and second order of the LoHAS,

LoLAS & AHA features, the mean Spectral Flux, the first RASTA-PLP

coefficient and the mean sone value comprise the entire 41-dimensional FC

vector.

4.4 Data Analysis

In order to gain further insights into the structure of the feature data Prin-

cipal Component Analysis is performed. The correlation matrix is used for

computation and Varimax rotation is applied. The Varimax rotation rotates

a factor loading matrix in a way that preserves the orthogonal positions of

the eigenvectors. In PCA, Varimax Rotation is used to maximize the sum

of the variances of the factor loadings [55], [30]. Factor loadings are in the

interval between -1 and 1. The factor loadings represent the amount of

information of a Principal Component that is contained in a feature com-

ponent. High factor loadings (high absolute values) indicate that significant

information of the corresponding Principal Component is contained in the

feature component. A load of zero indicates that the feature component

contains no information represented by the corresponding factor.

The Principal Component Analysis of the feature set identifies princi-

pal components describing 72% of the data (21 components explain 90%

of the data). The first Principal Component explains around 12% of the

variance. These facts support the hypothesis that the components of the
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feature combination (FC) do not depend heavily on one another. Table 19

lists a selected portion of the Factor Loading Matrix. Only the Principal

Components that are loaded significantly (|loading| ≥ 0.70) by two or more

feature componentes are listed.

Principal Component

Feature 1 2 3 5 7

mean LoHAS 0.93 -0.20 0.01 -0.03 -0.05

mean LoLAS 0.59 -0.19 0.37 0.13 -0.02

AHA mean 0.86 0.09 0.05 0.04 -0.17

median LoHAS 0.93 -0.04 -0.07 -0.01 0.11

median LoLAS 0.53 -0.19 -0.26 -0.19 0.13

SF 0.00 0.68 -0.06 -0.33 -0.03

LPC 1 -0.73 0.13 0.30 0.28 -0.16

LPC 6 -0.15 0.77 0.00 0.16 0.00

LPC 7 0.03 0.00 0.03 -0.08 0.73

MFCC 3 0.23 -0.42 0.00 -0.05 -0.70

MFCC 4 0.26 -0.73 0.18 -0.14 -0.26

MFCC 5 -0.01 -0.28 0.42 -0.13 -0.62

MFCC 6 0.08 -0.36 0.76 -0.19 -0.02

MFCC 7 -0.10 0.17 0.76 -0.09 -0.01

MFCC 10 -0.08 -0.02 0.02 0.81 0.14

MFCC 11 -0.08 0.18 -0.03 0.77 0.09

RASTA-PLP -0.01 0.06 -0.07 0.57 -0.23

Sone 0.40 -0.16 -0.52 -0.40 -0.35

Table 19: Selected parts of the Factor Loading Matrix for the feature com-

bination.

Three components of the AD highly load on the first Principal Com-

ponent indicating a certain level of redundancy. It is not surprising that

the median and the mean of LoHAS/LoLAS are correlated. Two pairs of

MFCC significantly load two Principal Components, but factor loadings are

not high enough to justify speaking of redundancy. Principal Components

two and seven are loaded by one LPC coefficient and one MFCC, respec-
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tively. The MFCC and LPC coefficients are correlated, they load the same

components. Generally, LPC coefficients show low redundancy. Eight LPC

coefficients exhibit significant factor loadings, all eight load different Princi-

pal Components.

Data analysis proves that the selected feature combination is suited well

for the given data, redundancy is low. For more general statements about

the quality of the feature combination more test data are needed.

4.5 Comparison of Classifiers

As expected, classification quality does not depend primarily on the classifier

but on the feature. In general, the three classifiers K-NN, LVQ, and SVM,

perform comparably with good features, though there is a disadvantage for

the LVQ algorithm. In several cases the LVQ technique fails to explain the

underlying distribution of the data (for illustration see Subsection 4.1.4 and

Subsection 4.1.6). This is due to the employed implementation using one

codebook vector per class. Thus, the complexity of the decision boundary

is limited.

SVM differs from the other classifiers applied in the experiments. K-NN

and LVQ depend on the clustering of samples in feature space. They deliver

satisfactory results when the classes form disjoint clusters. In contrast, SVM

constructs a more abstract parametric model, such as a linear or polynomial

model, depending on the kernel used. As a consequence SVM depends

less on the distribution of samples in feature space. A model of low order

tends towards better generalization ability, while with a model of high order,

classification runs the risk of overfitting.

SVM and K-NN perform comparably in the experiments. There is no

clear winner. For high dimensional feature vectors, SVM usually outper-

forms K-NN. SVM is a sophisticated classification technique that exhibits

its strengths with high-dimensional data (hundreds of dimensions). Perfor-

mance of K-NN decreases with high-dimensional data. In the experiments

relatively low-dimensional feature vectors are employed. This may be the

reason for the similar performance of SVM and K-NN in the presented in-

vestigations.
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In most experiments K-NN is used with K = 1. The K-NN with different

K > 1 is tested to identify an optimal classification. In the majority of cases

K of one yields the best results.

The author employs different SVM kernels for the discrimination of en-

vironmental sounds. The linear kernel is well suited for most features. That

indicates a clear structuring of the feature data. Polynomial kernels are

outperformed by linear and RBF kernels.

Computational complexities of the investigated classifiers are different.

SVM and K-NN can be trained faster than the LVQ algorithm (less than

0.2 seconds versus 15 seconds). There is no significant difference in the time

used for classification. Classification is performed in less than 0.2 seconds.

All three classifiers are well suited for frame-based classification. Further-

more, they may be employed in mobile respectively real time applications.
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5 Related Work

There are few studies that survey techniques for environmental sound recog-

nition. An unbiased survey should consider methods from various research

fields dealing with audio. This is what this thesis tries to achieve.

There are different types of audio retrieval techniques. Numerical rep-

resentation of signals by features is common to all methods. Approaches

can be grouped by the way similarity among different signals is detected.

A straight-forward technique is to apply a distance measure directly to the

features. Pioneering work in this area concerning audio is performed in [64].

The authors develop a content-based audio retrieval system (Muscle Fish)

that distinguishes classes such as animals, machines, musical instruments,

telephone, etc. They extract features such as loudness, pitch, brightness and

bandwidth. Similarity is measured using a weighted Euclidean distance (Ma-

halanobis distance). Classification is accomplished by the nearest neighbor

rule. An alternative to directly measuring similarity is the use of artificial

intelligence techniques such as Support Vector Machines (SVM) [11], Hid-

den Models (HMM) or Artificial Neural Networks (ANN). An early example

in the domain of audio processing is presented in [18]. The authors apply

a self-organizing neural network to cluster similar sounds. Another way

of classification is based on template matching [21]. The author extracts

MFCC features from the audio signal and clusters the feature space into

distinct cells with a quantization tree (Q tree). Histograms are considered

as templates. They represent the distribution of feature vectors over the

partitions of the tree. Templates are compared by distance measures (e.g.

Euclidean distance or cosine distance).

Segmentation is an important preprocessing step of audio analysis. It

is employed to discriminate different types of sound such as speech, mu-

sic, environmental sounds and combinations of these. The authors of [53]

separate music and speech with low level features. They apply Spectral

Centroid, Spectral Flux (SF), Zero Crossing Rate (ZCR), Spectral Roll-off,

and Percentage of Low Energy Frames to represent the audio signal. Differ-

ent classification techniques such as Gaussian Mixture Model (GMM) and

Nearest Neighbor (NN) are used to separate speech from music based on
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these features [28]. The same task is accomplished in [7] using a different

set of features (e.g. Amplitude, Cepstra, and Pitch).

A more comprehensive study on audio segmentation is necessary to sep-

arate environmental sounds from speech and music. In [68] the authors

successfully separate speech, music, song, environmental sounds and some

selected combinations of these sound types. Features for this purpose include

Energy, ZCR, Fundamental Frequency, and Spectral Peak.

Based on successful segmentation of an audio stream, different audio

types can be further analyzed. The most intensive research took place in

the area of speech recognition. Beside classical recognition of speech [48],

researchers focus on recognition of the spoken language [46]. Another field

of research is classification of the speaker (e.g. for customization issues or

authentication) [50]. In the area of multimodal dialog systems, recognition

of human emotions from audio gains focus [8].

Not only speech recognition but music information retrieval (MIR) also

gained importance through the availability of huge amounts of digital mu-

sic. MIR consists of classification and structural analysis. Classification

concerns recognition of instruments, artists and genres. A number of speech

recognition features are applicable to the classification of music. In [37]

the authors distinguish between instruments (e.g. Brass, Keyboard, and

String) by extracting features such as ZCR, Short Time Energy (STE),

Bandwidth, Pitch, Formant Frequencies and Mel-Frequency Cepstral Coef-

ficients (MFCC). These features are computed from short frames of the audio

signal. The mean and standard deviations of the features over all frames

add up to the feature vector that represents the signal. Classification is per-

formed by GMM and NN. Instrument recognition is proposed in [43]. The

authors extract Pitch, Onset Asynchrony, and information about Tremolo

and Vibrato of the audio sample. The Fisher projection method is used to

build a hierarchical Fisher classifier. Music genre classification is addressed

in [23]. In this paper the authors propose the Discrete Wavelet Packet De-

composition Transform to distinguish music genres.

Structural music analysis tries to extract similarities and recurrences in a

piece of music. A comprehensive structural analysis is performed in [41]. Au-

tocorrelation is computed to extract Rhythm from the wavelet-decomposed
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signal. Pitch Class Profiles in combination with HMM separate chords. Vo-

cal and instrumental sections are characterized in terms of Octave Scaled

Cepstral Coefficients (OSCC). An SVM trained with OSCC features sepa-

rates vocal from instrumental sections.

Environmental sound recognition addresses the identification of sounds

that do not originate from speech or music. The range of environmental

sounds is extremely wide. Hence, most investigations concentrate on a re-

stricted domain. A popular research field is audio recognition in broadcasted

video. In [38] the authors recognize the scene content of TV programs (e.g.

weather reports, advertisement, basketball and football games) by analyz-

ing the audio track of the video. They extract Pitch, Volume Distribution,

Frequency Centroid and Bandwidth to characterize TV programs. Classifi-

cation is performed by a neural network for each class. A well investigated

problem is highlight detection in sport videos. The authors of [57] retrieve

crucial scenes in soccer games by analyzing play-breaks. Whistles, that of-

ten refer to play-breaks in sports, are detected using Spectral Energy within

an appropriate frequency band. Another indicator for highlights is the au-

dience. Excitement is quantified by Loudness, Silence, and Pitch. A similar

approach is followed by Xu [65]. The authors analyze keywords in com-

mentator speech and audience which are relevant to important actions of

the game. They apply an HMM trained with low level features (Energy

and MFCCs including delta and double delta features) to recognize the key-

words. Investigations presented in paper [51] address extraction of highlights

in baseball games. Beside visual features, the authors extract audio features

(e.g. MFCC, Pitch, Entropy). An SVM detects excitement of the audience.

Template matching is applied for baseball hit detection. These two audio

cues are combined to improve quality of highlight detection. Another area

of interest is surveillance and intruder detection. The authors of [9] de-

tect intruders in a room by monitoring variations in a room-specific transfer

function. A broad survey of audio features and classification techniques, in

context of automatic surveillance is given in [13].

In [67] multilevel classification is proposed. First the authors apply

a coarse level segmentation to separate speech, music and environmental

sound. In a second step HMMs are employed to analyze environmental
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sounds (e.g. footstep, laughter, rain, windstorm). The authors of [32]

present an audio indexing system using MPEG-7 features [42]. They apply

Audio Spectrum Basis (ASB) and Audio Spectrum Projection (ASP) de-

scriptors to distinguish classes such as “Dog,” “Bell,” “Water,” and “Baby”

with HMMs. They show that MPEG-7 descriptors perform similar to MFCC.

SVMs are successfully applied to environmental sound recognition in [24].

The authors compare and combine cepstral features (MFCCs) with percep-

tual features (Total Spectrum Power, Subband Powers, Brightness, Band-

width, and Pitch). In [24], perceptual features outperform cepstral features.

Best results are obtained by a combination of both. Also in [24], SVM

performs better than NN and K-NN.

A challenging area of environmental sound recognition is life logging.

This research field is concerned with continuously analyzing the environmen-

tal sounds surrounding a user. From this information a diary is constructed

where major events and the user’s activities are stored. Fundamental re-

search in the domain of life logging is performed in the Forget-me-not sys-

tem [36]. Forget-me-not is a mobile application that analyzes the activities

of a user in his office. This includes monitoring the workstation, telephone,

printer and the location of the user. In [1], Aizawa presents a life logging

system that captures video and audio. Audio information is considered to

detect human voice to recognize conversation scenes. The system supports

GPS and provides inertial trackers to measure motion. Additionally it has

access to documents, web pages, and emails.

The applications discussed in this section prove the importance of en-

vironmental sound recognition for future information systems. Due to this

survey, a number of features and classification techniques are identified that

are applicable to environments sound recognition.
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6 Conclusions and Future Work

More and more research is performed in the domain of environmental sounds.

This development is among other reasons driven by the will to automate sur-

veillance and annotation of audio visual media. This thesis addresses the

applicability of state-of-the-art audio features for this specific domain. A

database containing 617 environmental sounds from five classes was con-

structed for testing. Experiments show that popular features employed in

speech recognition such as LPC coefficients and MFCCs separate classes of

environmental sounds well. Furthermore, one may observe that low complex

features such as Fourier coefficients and Wavelet coefficients perform poorly

on environmental sounds.

The author introduced a set of novel time-based audio features that are

easy to compute. They follow an intuitive way to describe the characteristic

shape of a waveform. They perform in a satisfactory but far from opti-

mal way. A combination of state-of-the-art features with the introduced

novel feature set enables successful classification of more than 85% of the

environmental sounds contained in the database.

Three popular classifiers are employed in the experiments. The SVM and

the K-NN classifier perform equally well. Both achieve satisfactory precision

and recall values. LVQ is more sensitive to the feature data than the other

classifiers in the test. LVQ yields satisfactory results for well discriminating

features, while its results for weak features are poor.

The results of the investigation are promising for future research in this

area. Frame-based analysis may further improve results of file-based classi-

fication. While file-based classification operates on entire files, frame-based

techniques deal with analysis and classification of short frames of a signal.

That involves the neighboring frames for classification of a frame. For this

purpose context sensitive classifiers such as Hidden Markov Models and Ar-

tificial Neural Networks will be employed. [54]. Further work will include

comparison of features discussed in this thesis with MPEG-7 features in the

domain of environmental sounds [42].

Another future goal is the distinction of different sounds from the same

class. Such a tool may be useful in surveillance, for example identification
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by characteristic sounds of footsteps. Besides, focus has to be directed

towards the design of new audio features for environmental sounds. These

new features should be low-dimensional and easy to compute. Another field

of interest are mobile information systems such as life logging and supportive

systems for handicapped people.

Eventually, retrieval quality may be improved by employing hierarchical

classification. This technique operates on a hierarchy of classes and applies

appropriate classifiers for different groups of classes. Visual information

usually accompanies audio information. Multimodal retrieval combines in-

formation from different media. This approach is one of the most promising

directions in multimedia information retrieval.
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Appendix

In the appendix the author provides the source code of features used for

environmental sound retrieval.

A Implementation

This section contains Java implementations of features employed in the in-

vestigations. In Subsection A.1 the Java source code of the Amplitude De-

scriptor introduced in [45] is presented. In Subsections A.2 and A.3 the

author provides source code for Short-Time Energy and Zero Crossing Rate

(see Section 3).

A.1 Amplitude Descriptor - LoHAS, LoLAS, AHA

package org.vizir.audio.feature;

/**

*

* Implementations of features LoHAS (Length of High Amplitude Sequence),

* LoLAS (Length of Low Amplitude Sequence) and AHA (Area of High Amplitude).

* The features were introduced in:

* Discrimination and Retrieval of Animal Sounds,

* Vienna University of Technology

* TR-188-2-2005-05

* Mitrovic, D. and Zeppelzauer, M.

* 2005.

*

* After construction of the class, the get-functions may be used to retrieve

* statistical properties such as mean, variance, and median of LoHAS, LoLAS and AHA

*

* (c) by Dalibor Mitrovic and Matthias Zeppelzauer

*/

import org.vizir.util.*;

import java.util.ArrayList;

public class AmplitudeDescriptor {

private float[] mSignal = null;

private float[] mLoHAS = null;

private float[] mLoLAS = null;

private float mAHA = 0.0f;
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/**

* Constructs a new Amplitude Descriptor and computes LoHAS, LoLAS and AHA

*

* @param signal the input signal

*/

public AmplitudeDescriptor(float[] signal)

{

this.mSignal = signal;

mLoHAS = new float[3];

mLoLAS = new float[3];

//calculate absolute values of signal

for (int i=0; i<this.mSignal.length; i++) {

this.mSignal[i] = Math.abs(this.mSignal[i]);

}

//calculate adaptive threshold

float threshold =

Statistics.mean(mSignal)+(float)Math.sqrt(Statistics.variance(mSignal));

//compute LoHAS, LoLAS, and AHA

boolean new_LoHAS = false;

boolean new_LoLAS = false;

int counter_LAS = 0;

int counter_HAS = 0;

float accumulator_AHA = 0.0f;

ArrayList list_LoHAS = new ArrayList();

ArrayList list_AHA = new ArrayList();

ArrayList list_LoLAS = new ArrayList();

for (int i=0; i<this.mSignal.length; i++) {

if (this.mSignal[i] >= threshold && new_LoHAS) {

counter_HAS = counter_HAS + 1; //continue HAS

accumulator_AHA =

accumulator_AHA + (this.mSignal[i]-threshold); //increase AHA

}

else if (this.mSignal[i] >= threshold && !new_LoHAS) {

// new HAS

new_LoHAS = true;

counter_HAS = 1;

// end LAS

new_LoLAS = false;

list_LoLAS.add(new Integer(counter_LAS));

// init AHA
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accumulator_AHA = this.mSignal[i]-threshold;

}

else if (this.mSignal[i] < threshold && new_LoLAS) {

// continue with LAS

counter_LAS = counter_LAS+1;

}

else if (this.mSignal[i] < threshold && !new_LoLAS) {

if (new_LoHAS) {

// end HAS

list_LoHAS.add(new Integer(counter_HAS));

new_LoHAS = false;

// end AHA

list_AHA.add(new Float(accumulator_AHA));

}

// new LAS

new_LoLAS = true;

counter_LAS = 1;

}

}

//copy ArrayLists to float arrays:

float[] array_LoHAS = convertIntegerListToFloatArray(list_LoHAS);

float[] array_LoLAS = convertIntegerListToFloatArray(list_LoLAS);

float[] array_AHA = convertFloatListToFloatArray(list_AHA);

//calculate statistical properties from the float arrays:

this.mLoHAS[0] = Statistics.mean(array_LoHAS);

this.mLoHAS[1] = Statistics.variance(array_LoHAS);

this.mLoHAS[2] = Statistics.median(array_LoHAS);

this.mLoLAS[0] = Statistics.mean(array_LoLAS);

this.mLoLAS[1] = Statistics.variance(array_LoLAS);

this.mLoLAS[2] = Statistics.median(array_LoLAS);

this.mAHA = Statistics.mean(array_AHA);

}

private float[] convertFloatListToFloatArray(ArrayList list) {

float[] array = new float[list.size()];

for (int j=0; j < list.size(); j++) {

array[j] = ((Float)list.get(j)).floatValue();

}

return array;

}

74



private float[] convertIntegerListToFloatArray(ArrayList list) {

float[] array = new float[list.size()];

for (int j=0; j < list.size(); j++) {

array[j] = ((Integer)list.get(j)).floatValue();

}

return array;

}

/**

* getLoHAS returns the statistical properties of LoHAS.

*

* @return an array with the mean (position [0]),

* variance (position [1]) and median (position [2]) of LoHAS

*/

public float[] getLoHAS() {

return mLoHAS;

}

/**

* getLoLAS returns the statistical properties of LoLAS.

*

* @return @return an array with the mean (position [0]),

* variance (position [1]) and median (position [2]) of LoLAS

*/

public float[] getLoLAS() {

return mLoLAS;

}

/**

* getLoHAS returns the mean of AHA.

*

* @return the mean of AHA

*/

public float getAHA() {

return mAHA;

}

}
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A.1.1 Statistical Utility Functions

The implementation of the features of the Amplitude Descriptor (LoHAS,

LoLAS, and AHA) requires the calculation of statistical moments of first and

second order (mean and variance). Additionally a function that estimates

the median is needed. The following class provides implementations for

these functions.

package org.vizir.util;

/**

*

* Utility class to calculate mean, variance and median of an array of float values

*/

public class Statistics {

/**

* Compute the mean of the input array

* @param values an array of float values

* @return the mean of the input values

*/

public static float mean(float[] values) {

float sum = 0.0f;

for (int i=0; i<values.length; i++) {

sum += values[i];

}

if (values.length > 0)

return sum/values.length;

else

return 0;

}

/**

* Compute the variance of the input array

* @param values an array of float values

* @return the variance of the input values

*/

public static float variance(float[] values) {

float meanValue = mean(values);

float[] helper = new float[values.length];

for (int i=0; i<values.length; i++) {

// Y = (X-mu)^2

helper[i] = (values[i] - meanValue)*(values[i] - meanValue);

}

float variance = mean(helper);
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return variance;

}

/**

* Determine the median of the input array

* @param values an array of float values (unsorted)

* @return the median of the input values

*/

public static float median(float[] values) {

float[] sortedValues = sort(values);

float med = 0.0f;

if (sortedValues.length > 0) {

int halfLen = (int)(sortedValues.length/2);

if (sortedValues.length % 2 == 0) { // even length

med = (float)(0.5 * (sortedValues[halfLen-1] +

sortedValues[halfLen]));

}

else { //odd length

med = sortedValues[(int)((sortedValues.length+1)/2-1)];

}

}

return med;

}

/**

* Simple sort algorithm in O(N^2)

* @param an array of float values (unsorted)

* @return the sorted input array array

*/

public static float[] sort(float[] values) {

float helper = 0.0f;

for (int i=0; i<values.length; i++) {

for (int j=0; j<values.length-1-i; j++) {

if (values[j] > values[j+1]) {

helper = values[j];

values[j] = values[j+1];

values[j+1] = helper;

}

}

}

return values;

}

}
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A.2 Short-Time Energy

package org.vizir.audio.feature;

/**

*

* Calculates the short-time energy of a framed audio signal

*/

public class ShortTimeEnergy {

/**

* getShortTimeEnergy returns the a float array containing

* the shorttime-energy for each frame

*

* @param signal the input signal

* @param samplingRate the samplingrate of the input signal

* @param frameSize the desired framesize in ms (milliseconds)

* @return the short time energy per frame

*/

public static float[] getShortTimeEnergy(float[] signal, float samplingRate,

float frameSize) {

int samplesPerFrame = (int) Math.floor(samplingRate / 1000.0 * frameSize);

int numOfFrames = signal.length / samplesPerFrame;

float[] ste = new float[numOfFrames];

for(int j = 0; j < numOfFrames; j++) {

for(int i = 0; i < samplesPerFrame; i++) {

try {

ste[j] += (Math.pow((signal[j * samplesPerFrame + i]), 2)

/ samplesPerFrame);

}

catch (ArrayIndexOutOfBoundsException ex) {

ste[j] = -1;

}

}

}

return ste;

}

}
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A.3 Zero Crossing Rate

/**

*

* Calculates the number of zero crossings in an audio signal

*/

public class ZeroCrossings {

/**

* getZeroCrossings calculates the zero crossings per second

* of the input <code>signal</code>. This is a measure for the

* fundamental frequency

* @param signal the input signal

* @param samplingFrequ the sampling frequency of the input signal

* @return the number of zero crossings per second

*/

public static float getZeroCrossings(float[] signal, float samplingFrequ) {

int numOfZeroCrossings = 0;

int len = 0, idx = 0;

float a = 0, b = 0;

float factor = 0;

factor = samplingFrequ / (float) signal.length;

for(int i = 0; i < (signal.length - 1); i++) {

idx = i + 1;

a = Math.signum(signal[i]);

b = Math.signum(signal[idx]);

if ( a != b) numOfZeroCrossings += 1;

}

return numOfZeroCrossings * factor;

}

}
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