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Abstract

The estimation of optical flow plays a key-role in several computer

vision problems, including motion detection and segmentation, frame

interpolation, three-dimensional scene reconstruction, robot naviga-

tion, video shot detection, mosaicking and video compression. In this

work we propose a new algorithm for computing a dense optical flow

field between two or more images of a video sequence, which tackles

the inherent problems of conventional optical flow algorithms. These

algorithms usually show a bad performance in regions of low texture

as well as near motion boundaries. We try to overcome these prob-

lems by segmenting the reference frame into regions of homogeneous

color. The color segmentation incorporates the assumption that the

motion inside regions of homogeneous color varies smoothly and mo-

tion discontinuities coincide with the borders of those regions. The

affine motion model is used to describe the motion inside a segment.

To initialize the model parameters, we estimate a sparse set of cor-

respondences. Layers are extracted from the initial segments, which

represent the dominant motions likely to occur in the scene. Every

color segment is then assigned to exactly one layer. This assignment

is optimized by minimizing a global cost function with a graph-based

technique.

The cost function is defined on the pixel level, as well as on the

segment level. On the pixel level, a data term measures the pixel simi-

larity based on the current flow field. Furthermore, occluded pixels are

detected symmetrically. The segment level is connected to the pixel

level in a way that the segmentation information is enforced on the

pixel level. Additionally, a smoothness term is defined on the segment

level.

Furthermore, we allow our algorithm to use multiple input frames

in order to discriminate the motion of different layers when the inter-

frame motion is small.

Finally, we demonstrate the good performance and robustness of

our approach with results obtained from standard test sequences as

well as one self-recorded video.
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Zusammenfassung

Die Berechnung des Optical Flow spielt eine wesentliche Rolle in ei-

ner Reihe von Problemen im Bereich des computerunterstützten Sehen,

wie beispielsweise Bewegungserkennung, Bewegungssegmentierung,

Frame-Interpolation, dreidimensionale Szenenrekonstruktion, Roboter-

steuerung, Videoschnitterkennung, Mosaicking und Videokompression.

In dieser Arbeit wird ein neuer Algorithmus für die Berechnung eines

dichten Optical Flow Feldes zwischen zwei oder mehr Bildern einer Vi-

deosequenz vorgestellt, welcher darauf abzielt, die Probleme konven-

tioneller Optical Flow-Algorithmen zu bewältigen. Solche Algorithmen

zeigen für gewöhnlich eine schlechte Leistung in schwach texturierten

Regionen, sowie in der Nähe von Bewegungsgrenzen. Diese Probleme

sollen durch Segmentierung des Referenzframes in Regionen homogener

Farbe gelöst werden. Die Farbsegmentierung unterliegt der Annahme,

dass Bewegungsänderungen innerhalb einer farblich homogenen Regi-

on stetig sind und Bewegungsunstetigkeiten nur an den Grenzen dieser

Regionen auftreten. Um die Bewegung innerhalb eines Segmentes zu

beschreiben, wird das affine Bewegungsmodell verwendet. Zur Initia-

lisierung der Modellparameter verwenden wir eine Menge korrespon-

dierender Punkte. Aus den Segmenten werden dann Layer extrahiert.

Layer beschreiben dominante Bewegungen, welche wahrscheinlich in

der Sequenz auftreten. Anschließend wird jedes Segment genau einem

Layer zugeordnet. Die Güte einer Zuordnung wird durch eine Kosten-

funktion gemessen, welche mit einer graphenbasierten Technik mini-

miert wird.

Die Kostenfunktion ist sowohl auf der Pixelebene als auch auf der

Segmentebene definiert. Auf der Pixelebene misst ein Datenterm die

Ähnlichkeit der Pixel basierend auf dem berechneten Optical Flow

Feld. Die Erkennung von Verdeckungen erfolgt symmetrisch. Die Seg-

mentebene ist mit der Pixelebene verbunden, sodass die Segmentie-

rungsinformation auf die Pixelebene übertragen wird. Zusätzlich ope-

riert ein Smoothnessterm auf der Segmentebene.

Um die Bewegung der Layer auch bei kleinen Bewegungen zwischen

den Frames unterscheiden zu können, ist es möglich mehr als zwei Fra-

mes zur Berechnung zu verwenden.

Abschließend zeigen wir die gute Leistung und die Robustheit un-

seres Algorithmus anhand mehrerer Resultate, welche wir mit unserem

Algorithmus für Standardtestsequenzen und für eine selbst aufgenom-

mene Sequenz berechnet haben.
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1 Introduction

1.1 Motivation & problem statement

The estimation of the two-dimensional velocity field between two images
of a video sequence is one of the oldest and most active research topics in
computer vision. One of the first important studies on the computation of
optical flow was published by Horn and Schunk [18] already in the year 1981.
According to their work, we define optical flow as follows.

The optical flow is a velocity field in the image, which transforms one im-
age into the next image in a sequence. As such it is not uniquely determined;
the motion field, on the other hand, is a purely geometric concept, without
any ambiguity - it is the projection into the image of three-dimensional mo-
tion vectors [19].

The optical flow of an image sequence can be estimated by the displace-
ment of brightness patterns over time. As a consequence, the optical flow
does not always correspond to the true motion field. For instance, let us
assume a fixed sphere of homogeneous color, which is illuminated by a mov-
ing source. Although the sphere is not moving, non-zero optical flow will
be computed. On the other hand, if we consider the same sphere rotating
under fixed illumination, no optical flow will be detected. This example is
illustrated in figure 1.

(b)(a)

Figure 1: (a) A fixed sphere illuminated by a moving source generates non-
zero optical flow, since the shading changes. (b) For a rotating sphere under
constant illumination no optical flow can be determined.

Apart from the above mentioned problem, algorithms which try to com-
pute the optical flow are based on further assumptions, which are sometimes
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not met in real scenes. These assumptions include that the optical flow
varies smoothly and no specular reflections or occlusions occur in the scene.
In practice, specular effects, shadows, low textured regions and occlusions
can make the correct estimation of the true motion field very difficult. Nev-
ertheless, good approximations are possible.

1.2 Contribution

Although many years have passed since Horn and Schunk published their
well known work on the calculation of optical flow [18] and a lot of research
has been devoted to this topic, the task of determining the correct velocity
field between two images remains challenging due to several reasons. First
of all, most of the conventional optical flow algorithms suffer from their in-
capability to determine the correct velocity field in regions of homogeneous
color as well as in regions of texture with only a single orientation, due to
the well-known aperture problem. In addition, the estimated velocities near
motion discontinuities tend to be unreliable, since oftentimes algorithms ig-
nore the fact that occlusions (pixels that are only visible in one image) are
present.

In this work, we propose a new method for computing a dense optical
flow field between two or more images of a video sequence, which tries to
overcome the problems of conventional optical flow algorithms. As a pre-
processing step, we apply color segmentation to the reference frame. We
assume that the motion inside such segments varies smoothly and motion
discontinuities coincide with the borders of the segments. The affine motion
model is used to describe the motion inside a segment. To initialize the
affine model parameters, we estimate a set of sparse correspondences. We
extract layers from the initial segments, which represent the dominant mo-
tions likely to occur in the scene. Every segment is then assigned to exactly
one layer. This assignment is optimized by minimizing a global cost function.

The cost function is defined on the pixel level as well as on the segment
level. On the pixel level, a data term measures the pixel similarity based on
the current flow field. Furthermore, occluded pixels are detected symmet-
rically in both views. The segment level is connected to the pixel level in
a way that the segmentation information is enforced on the pixel level. A
smoothness term is then defined on the segment level.

To improve the robustness of the algorithm as well as the quality of re-
sults, we allow for the use of more than two input images to compute the
optical flow. Unfortunately, optimization of the resulting cost function is
NP-complete. However, it is possible to compute a strong local minimum
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by the use of a graph-cut algorithm.

In the experimental results, we show that our segmentation-based prob-
lem formulation helps to accurately identify motion discontinuities. More-
over, we demonstrate the robustness of our approach by using it to perform
motion segmentation on a complete video sequence. As an application ex-
ample, we insert a new video object into an existing sequence.

1.3 Applications

The estimation of optical flow is crucial for many applications in computer
vision, including motion detection [29] and segmentation [39, 42], frame in-
terpolation [34], three-dimensional scene reconstruction [43, 11], robot navi-
gation [15], video shot detection [16], mosaicking [21], video coding [30] and
compression. In the following, we give a survey on motion segmentation
with particular focus on MPEG-4.

The goal of motion segmentation is to divide a frame of a video sequence
into regions undergoing similar (constant, affine, projective, etc.) motion. In
general, these regions correspond to objects in the scene. Once the motion
segmentation of every frame is achieved, the video data can be represented
by different layers. Wang and Adelson [39] describe the decomposition of a
video stream into several layers, where the motion of each layer is described
by a parametric motion map. Figure 2 shows the layered representation of
the video data.

The automatic extraction of layers from an image sequence has broad
applications, such as video compression and coding. One standard, which
tries to standardize algorithms for audiovisual coding in multimedia appli-
cations, is MPEG-4. According to this standard, video coding is achieved
by segmenting each frame of a video sequence into a number of arbitrarily
shaped regions, called video object planes (VOP). The video object planes
of one frame are illustrated in figure 3.

Video object planes in successive frames, which describe the same ob-
ject in the scene, are grouped to video objects (VO). Each video object can
be encoded in a different way. For instance, a higher compression rate can
be used for video-objects in the background, while foreground objects can
be encoded with a higher quality. Furthermore, the layered representation
allows interactivity between the user and the encoder and decoder, respec-
tively. For example, the user can manipulate the temporal frame rate or
remove and add objects to the scene. The user interaction in the coding
process is shown is figure 4.
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Figure 2: Layered representation of video data. [39]

However, MPEG-4 does not specify how to extract video objects planes
from a video sequence. One approach is to obtain them by motion segmen-
tation.

1.4 Organization

The rest of this thesis is organized as follows. In section 2, we give an
overview on techniques used for classical optical flow estimation and give
several examples of specific implementations.

Furthermore, in section 2.2, we give a summary of previous work which
we consider most relevant to our approach. More precisely, we present pub-
lications that use color segmentation to solve the correspondence problem.
In section 2.2.2, we give a short introduction to graph-cuts and present a
variety of papers that use graph-cuts to minimize cost functions in computer
vision tasks.

In this work, we propose a new method for computing dense optical flow
between two images of a video sequence. The algorithm is explained in sec-
tion 3. We illustrate the process of extracting segments from the reference

9



(b) (c)

(a)

Figure 3: Video object planes extracted from an MPEG test sequence. (a)
Original frame. (b) Video object plane speaker. (c) Video object plane
background.

view in section 3.1. The computation of correspondences between the views
and the estimation of motion parameters for each segment is covered in sec-
tions 3.2 and 3.3, respectively. Furthermore, we describe the extraction of
layers in section 3.4. The assignment of segments to layers according to a
cost function is explained in section 3.5. The cost function itself is defined in
section 3.5.2. Furthermore, we present an extension to our algorithm, which
makes it capable of using multiple frames, in section 3.6. Finally, we explain
how to find the optimal assignment of segments to layers using graph-cuts
in section 3.7. The construction of the graph can be found in the appendix.

Section 4 gives an insight into the current implementation of our al-
gorithm. We explain the functionality and interconnection of all relevant
classes. Furthermore, we describe important methods and attributes, as
well as the parameters of the algorithm. Finally, we give an overview of
external libraries and algorithms which are used in our implementation.

Experimental results produced by our algorithm are presented and dis-
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Figure 4: Interactivity between user and encoder or decoder.

cussed in section 5. Finally, we present our conclusions and ideas for further
research in section 6.
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2 Optical flow algorithms

2.1 Classical optical flow estimation

In this section, we give an overview on different techniques which are used
to estimate the optical flow in conventional optical flow algorithms. Fur-
thermore, we give examples of algorithms that implement the different tech-
niques. Since we do not cover these algorithms in detail, the reader is
referred to the original papers for further information. For a comprehensive
evaluation of optical flow algorithms we recommend the articles of Barron
et al. [2] and McCane et al. [27].

Optical flow estimation techniques can be grouped into two classes:

• Differential techniques, which compute the velocity from spatiotempo-
ral derivates of the image intensity.

• Area matching techniques, which define the velocity as the shift that
returns the best fit between image areas at different instances of time.

Apart from their differences, the presented techniques implement three
processing stages. According to Barron et al. [2] these steps are as follows.

1. Noise reduction by applying low-pass or band-pass filters on the input
frames.

2. Extraction of basic measurements, such as spatiotemporal derivatives
(to measure normal components of velocity) or local correlation sur-
faces.

3. Integration of these measurements, to derive a two-dimensional motion
field, which often involves assumptions on the motion field such as that
the motion varies smoothly.

2.1.1 Differential techniques

The differential techniques derive the velocity at an image point by comput-
ing the spatiotemporal derivatives of the image intensity. These techniques
assume that a point occurring in the scene has the same intensity in ev-
ery frame. In other words, the brightness of a scene point is considered to
be constant over time. This basis for all differential optical flow algorithms
is known as the motion constraint equation and is explained in the following.
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t t + td

(x + x ,y + y)d d

(x,y)

Figure 5: The intensity at image-point (x, y, t) is the same as at (x+ δx, y +
δy, t + δt).

Motion constraint equation Let I(x, y, t) be the continuous space-time
intensity function, where x and y are the x- and y-coordinates of the image-
point, respectively, and t denotes the time.

Now let us suppose that the point moves by δx, δy in time δt to I(x +
δx, y+δy, t+δt). According to the above mentioned assumption, we assume
that the intensity remains constant along a motion trajectory and therefore

I(x, y, t) = I(x + δx, y + δy, t + δt). (1)

This assumption, which is illustrated in figure 5, usually holds true if dx,
dy and dt are not too large. By applying a first-order Taylor series expansion
on I(x, y, t) we get

I(x + δx, y + δy, t + δt) = I(x, y, t) +
∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt + · · · (2)

with the dots representing higher order terms that can be be ignored, since
we assume them to be small. Due to equation (1) we can write equation (2)
as

13



∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt = 0 or

∂I

∂x

δx

δt
+

∂I

∂y

δy

δt
+

∂I

∂t

δt

δt︸︷︷︸
1

= 0 and finally

∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
= 0

(3)

where ∂I/∂x, ∂I/∂y and ∂I/∂t are the spatial derivatives of the image
brightness and vx = δx/δt and vy = δy/δt are the x- and y-components of
the velocity, which are referred to as optical flow. For a better readability
we write the partial derivatives as:

Ix =
∂I

∂x
, Iy =

∂I

∂y
and It =

∂I

∂t
. (4)

Now equation (3) can be compactly rewritten as

(Ix, Iy) · (vx, vy) + It = 0. (5)

Since the spatial derivatives of the image brightness are the components
of the spatial gradient ∇I we can also write

∇I · v + It = 0 (6)

where v = (vx, vy) is the velocity or optical flow.

Unfortunately, we cannot find a unique solution for equation (6), since
there are two unknown components of v in one linear equation. This problem
is known as the aperture problem: The motion of a homogeneous contour is
locally ambiguous. We are looking at the image contours through something
like an aperture and within that aperture different physical motions are
indistinguishable. For instance, figure 6a shows a line which is moving along
the right-top direction. The line is observed through a circular aperture.
Therefore, we can only recover the normal velocity vn of the line, while it
is impossible to recover the full motion vector v. As shown in figure 6b, the
optical flow constraint equation is a line in v space. Only one velocity on
the line is the correct one, but only the velocity with the smallest magnitude
(normal velocity) can be derived. The normal velocity vn is defined by

vn = vnn̂ (7)
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t

vx
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(a) (b)

Figure 6: (a) The aperture problem: We cannot recover the motion vector
v, which defines the motion from the initial line position to the final line po-
sition, since our observation window (aperture) is limited in size. Although
the direction of the gradient vn can be estimated, we cannot compute the
tangential component vt of the motion. (b) The optical flow constraint
equation is a line in v = (vx, vy) space. Only one velocity on the line is
the correct one, but only the velocity of the smallest magnitude vn can be
derived.

where vn and n̂ are the magnitude and the direction of the normal velocity
unit direction, respectively. The magnitude and the direction are computed
by

vn =
−It

‖∇I‖2

and n̂ =
(Ix, Iy)

‖∇I‖2

. (8)

In order to solve equation (6) for both components of v, further con-
straints have to be made. There are many possibilities to do this. In the
following, we present the optical flow algorithms of Lucas and Kanade and
Horn and Schunk that use different approaches to recover the full motion
vector v.

Lucas and Kanade Lucas and Kanade [26] assume that the motion in
a small neighborhood of an image-point is constant. The optical flow v

can then be computed by minimizing a weighted least squared fit of local
constraints (6) over a small spatial neighborhood:

∑

pi∈Q

W 2(x, y)[(∇I(x, y, t))v + It(x, y, t)]2 (9)
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where pi = (x, y), Q is a small area of size N × N and W (x, y) denotes a
window function that gives more influence to constraints at the center of Q.
The solution of this least squares problem is given by

v = (AT W 2A)−1AT W 2b (10)

where the ith row of the N2×2 matrix A is the spatial image gradient evalu-
ated at point pi. The N2-dimensional vector b denotes the partial temporal
derivatives of the image brightness evaluated at p1, p2, . . . , pN2 after a sign
change. The vector v is defined as the optical flow at the center of Q.

Horn and Schunk Horn and Schunk [18] combine the motion constraint
(6) with a global smoothness term to constrain the estimated velocity field
v = (vx, vy). The optical flow is then computed by minimizing

∫

D

(∇I · v + It)
2+

+ λ2

[(
∂vx

∂x

)2

+

(
∂vx

∂y

)2

+

(
∂vy

∂x

)2

+

(
∂vy

∂y

)2
]

dxdy

(11)

where D is the domain (the image) over which the equation is defined and
λ defines the relative influence of the smoothness term. Iterative equations
are used to minimize equation (11) and the optical flow can be obtained
from the Gauss Seidl equations that solve the appropriate Euler-Lagrange
equations.

2.1.2 Area matching techniques

Algorithms based on numerical differentiation may be impractical due to
noise, aliasing artifacts or because only a small number of frames exist.
In these cases matching techniques can be used. These algorithms define
the velocity v as the shift d = (dx, dy) that returns the best fit between
image areas at different instances of time. This corresponds to maximizing
a similarity measure over some search range. Oftentimes, the sum of squared
difference (SSD) is applied:

SSD1,2(x : d) =
n∑

j=−n

n∑

i=−n

[I1(x + (i, j)) − I2(x + d + (i, j))]2

= W (x) ∗ [I1(x) − I2(x + d)]2

(12)

where W is a discrete two-dimensional window function. Instead of SSD
other similarity measures (e.g. cross-correlation) can be used as well.

16



Kanade-Lucas-Tomasi One algorithm which belongs to the class of area
matching techniques is the Kanade-Lucas-Tomasi feature tracker (KLT) [36].
The basic principle of the KLT is to determine features that can be tracked
well. These features are then tracked through the frames of a video sequence.
A good feature is thereby defined as textured patch with high intensity vari-
ation in x- as well as in y-direction. Therefore, corners in the image are
potentially good candidates. The KLT uses a root-mean squared error dis-
similarity measure, which quantifies the change of appearance of a feature
between two frames, allowing affine image changes. Nevertheless, a dissim-
ilarity measurement that is restricted to pure translational motion leads to
better results if the inter-frame camera motion is small. Therefore, the KLT
algorithm uses both an affine as well as a translational motion model. The
feature is tracked through the video sequence by determining the best match
in terms of both dissimilarity measurements. If the dissimilarity grows too
high, the feature is likely to be lost and is therefore abandoned.

2.2 Related work

In this section we give an overview on previous work that we consider most
relevant to our approach. At first, we review approaches that use image seg-
mentation to overcome matching ambiguities in stereo and motion. Then we
focus on recent graph-based optimization techniques that were successfully
used in computer vision.

2.2.1 Color segmentation

Recently, color segmentation was successfully employed on several computer
vision tasks including stereo vision, video view interpolation and motion. In
the context of stereo and motion, color segmentation is used to overcome
inherent problems of many existing stereo algorithms, which are the estima-
tion of correct disparity (and motion) in areas of low texture and at motion
boundaries. Color segmentation relies on the assumption that large discon-
tinuities in disparity (and motion estimates) only occur at the boundaries
of homogeneous colored segments.

Tao and Sawhney [37] present a stereo algorithm which applies color seg-
mentation to the reference image and models the disparity inside a segment
using a planar surface plus small depth variations for each pixel. Errors in
the disparity map are eliminated by propagating plane models among ad-
jacent segments by hypothesis testing. The quality of the disparity map is
thereby obtained by image warping. The idea behind image warping is that
if the disparity map was correct, the projection of the reference view to the
second view should be very similar to the real second view.
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Bleyer and Gelautz [6] present a stereo algorithm that employs a lay-
ered model. Again, the disparity inside a segment is represented by a planar
equation. To obtain robustness, segments are clustered to layers according to
their disparity information. The disparity of each segment is then described
by one of the extracted layers, whose disparity is computed according to its
spatial extent. The assignment of layers to segments is optimized efficiently
with a greedy algorithm, by computing the local minimum of a global cost
function. The quality of such an assignment is measured by image warping.
A Z-buffer enforces visibility and is used to detect occlusions in both views.
In a further publication, Bleyer et al. [7] adopted this work for motion. The
motion of each segment is thereby described by the affine motion model.
Analogously to the stereo algorithm, initial motion segments are clustered
to derive a set of robust layers. Again, the assignment of segments to layers
is improved by computing a local minimum of a global cost function.

Another stereo algorithm of Wei and Quan [40] uses the segmentation
results in a progressive framework to avoid the computational costs of global
optimization.

In the context of motion, Ke and Kanade [22] present a layer extraction
algorithm, which uses color segmentation to derive an initial set of motion
segments. In their implementation, translational or affine models represent
the motion of a segment. A region sampling algorithm determines valid seg-
ments, whose affine motions are used to compute a linear subspace. Affine
motions are projected into the subspace and grouped to layers by applying
a mean-shift based clustering algorithm. Finally, segments which were not
selected by the region sampling algorithm are assigned to layers in a refine-
ment step.

Finally, Zitnick et al. [44] present a color segmentation-based stereo
algorithm to generate high-quality video view interpolation from multiple
synchronized video streams. The goal of their work is to render dynamic
scenes with interactive view point control using a small number of video
cameras. The authors estimate good-quality disparity maps that are used
to manipulate the scene by inserting or deleting objects.

2.2.2 Graph-based optimization

Recently, graph-based optimization techniques were successfully used for
minimizing cost functions in various computer vision problems, such as
stereo, motion, image segmentation and image restoration. In the following,
we give an outline on minimizing cost functions via graph cuts and explain
what type of cost functions can be minimized by them.
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Minimizing cost functions The classical use of cost minimization is to
solve the pixel-labeling problem [24, 10, 38]. This is a generalization of
such problems as stereo, motion or image restoration. Pixel labeling is the
task of assigning each pixel p ∈ P to a label fp ∈ L. For motion or stereo
these labels can for example correspond to disparity values, while for image
restoration they are usually intensities. The goal is to find a labeling f that
minimizes some cost function, which generally has the form of

C(f) = Cdata(f) + Csmooth(f). (13)

The term Cdata measures the appropriateness of a label configuration
compared to the observed data. Usually, Cdata is in the form of

Cdata(f) =
∑

p∈P

Dp(fp) (14)

with Dp(fp) being a function which measures the costs of assigning the label
fp to the pixel p. The smoothness term Csmooth implements the smoothness
assumptions made by the algorithm and therefore measures to which extent
f is not piecewise smooth. In its unrestricted form it can be written as

Csmooth(f) =
∑

p,q∈N

Vp,q(fp, fq) (15)

where N ⊂ P × P is a neighborhood system on pixels and Vp,q(fp, fq) mea-
sures the cost of assigning the labels fp and fq to the neighboring pixels p
and q. Considering equations (14) and (15), we can rewrite equation (13) as

C(f) =
∑

p∈P

Dp(fp) +
∑

p,q∈N

Vp,q(fp, fq). (16)

If V is a convex function, neighboring pixels which are assigned to very
different labels are not likely to occur, since they will receive a high penalty.
However, in a lot of computer vision problems (such as stereo) these config-
urations can be observed at the borders of objects. To allow large discon-
tinuities in the label configuration, a non-convex function is better suited.
These cost functions are called discontinuity-preserving and are extremely
difficult to minimize, even if V is of a very simple form. For example, let
us consider a smoothness term in the form of the Potts-model [31], which is
given by
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V (fp, fq) = T (fp 6= fq) (17)

where T (·) is a function, which returns 1 if its argument is true and 0 oth-
erwise. Despite its simple form, the Potts-model is shown to be NP -hard
to minimize [10].

However, these functions can be minimized with general purpose opti-
mization techniques such as simulated annealing. Since these techniques
require exponential computation time and are therefore very slow, they are
not used in practice. Efficient algorithms based on graph-cuts are used in-
stead.

Graph cuts Let us suppose a directed graph G = (V, E) with non-negative
edges and two special nodes, which are called the source src and the sink
snk. A cut is a partitioning of the vertices V into two disjoint sets SRC and
SNK, where scr ∈ SRC and snk ∈ SNK. The costs of a cut are defined
by the sum of all weights from those edges pointing from the SRC to the
SNK:

C(SRC, SNK) =
∑

u∈SRC,v∈SNK,(u,v)∈E

C(u, v). (18)

The minimum cut in the graph is the one which generates the lowest
costs. A cut is a binary partition of the graph and can be therefore regarded
as binary labeling.

Global optimal solutions via graph cuts For a restricted class of cost
functions C, a global minimum can be obtained efficiently by computing a
single cut in a specialized graph. If V is a convex function, Ishikawa [20]
showed that it is possible to compute a global optimal solution in polyno-
mial time.

Roy and Cox [32] describe a stereo algorithm which computes a global op-
timum via graph cuts. They minimize a cost function with a convex smooth-
ness function V . Since these functions are not discontinuity-preserving the
results suffer from oversmoothing at borders of objects. This shortcoming
is shown in figure 7. The relatively poor performance of such algorithms is
shown by the low ranking on stereo-benchmarks [33].
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(a) (b)

(c) (d)

Figure 7: Results of the stereo algorithm of Roy and Cox [32], which uses
a non-discontinuity-preserving smoothness term. Note the poor results in
areas of disparity discontinuities. (a) Ground truth disparity map. (b)
Computed disparities. (c) Signed disparity error. (d) Bad pixels (absolute
disparity error > 1).

Local optimal solutions via graph cuts The smoothness term V has
to be a non-convex function to overcome the oversmoothing problem. Since
minimization of the cost function is then known to be NP-complete, approx-
imation algorithms are used to find a strong local minimum. The results
of these algorithms have shown to be quite good. Two cost minimization
algorithms developed by Boykov et al. [10] exist, which are explained in the
following.

For the first algorithm, which is the swap move algorithm, we consider
a pair of labels (α, β). A labeling f́ is one α−β swap move away from f , if
the label configuration of some pixels that were assigned to α are assigned
to β in f́ and vice versa. The other labels remain unchanged. An example
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(a)

(c)

(b)

Label 1

Label 2

Label 3

Figure 8: (a) The image pixels are assigned to three different labels. (b)
Swap move of labels 2 and 3. Some pixels that were assigned to label 2
change to label 3 and vice versa. The other pixels remain unchanged. (c)
Expansion move of label 1. A subset of pixels changes to label 1, while the
others remain unchanged.
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of a swap move is shown in figure 8c. The swap move algorithm performs
the α−β swap move for each pair of labels {α, β} ⊂ L. It finds the configu-
ration within one α−β swap move from the current labeling that generates
the lowest costs. If this swap move generates lower costs than the current
labeling, the current labeling is replaced by the new one. The algorithm
terminates, if there is no α − β swap move that can further decrease the
costs. The swap move algorithm is illustrated in figure 9.

The second algorithm is the expansion move algorithm, which is one of
the most effective algorithms for minimizing discontinuity-preserving cost
functions. Let us consider a label-configuration f and a particular label
α ∈ L. The labeling f́ is one α − expansion move away from f , if for all
pixels p, f́p = fp or f́p = α. An α − expansion move changes the label con-
figuration of a subset of pixels to the label α. The others remain unchanged.
An example of an α − expansion move is shown in figure 8b.

The expansion move algorithm iterates all labels α ∈ L (in fixed or
random order). It finds the configuration within one α − expansion move
from the current labeling that generates the lowest costs. If this expansion
move generates lower costs than the current labeling, the current label-
ing is replaced by the new one. The algorithm terminates, if there is no
α − expansion move that can further decrease the costs. The expansion
move algorithm is illustrated in figure 9.

Cost functions that can be represented via graph cuts A cut in a
graph can be regarded as binary labeling. Therefore, any cost minimization
technique based on graph-cuts relies on intermediate binary variables. For
example, the expansion move algorithm solves a problem over non-binary
variables. However, the key subproblem is one single α − expansion move,
which solves a binary labeling problem and therefore can be solved with a
single cut.

According to Kolmogorov and Zabih [24], a cost function C of n binary
variables is called graph-representable, if there exists a graph G = (V, E)
with terminals src and snk and a subset of vertices V′ = {v1, . . . , vn} ⊂ V −
{src, snk} such that for any configuration x1, . . . , xn the costs C(x1, . . . , xn)
of this configuration are equal to a constant plus the costs of the minimum
cut among all cuts in which vi ∈ SRC, if xi = 0 and vi ∈ SNK, if xi = 1
(1 ≤ i ≤ n). C is exactly representable by G, if this constant is zero.

Kolmogorov and Zabih [24] describe the cost functions of n binary vari-
ables that can be minimized via graph cuts. According to their results, cost
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procedure Swap move algorithm
begin

success ← 1;
while success do

success ← 0;
for each pair of labels {α, β} ⊂ L do

find f̂ = arg min C(f̂) among f́ within
one α − β swap of f

if C(f̂) < C(f)

f ← f̂
success ← 1

end if C(f̂) < C(f)
end for

end while

return f
end

procedure Expansion move algorithm
begin

success ← 1;
while success do

success ← 0;
for each labels α ∈ L do

find f̂ = arg min C(f̂) among f́ within
one α expansion of f

if C(f̂) < C(f)

f ← f̂
success ← 1

end if C(f̂) < C(f)
end for

end while

return f
end

Figure 9: Pseudocode of the swap move algorithm (top) and the expansion
move algorithm (bottom).
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functions C of n binary variables with pairwise interactions that are defined
by

C(x1, . . . , xn) =
∑

i

Ci(xi) +
∑

i<j

Ci,j(xi, xj) (19)

are graph-representable if and only if each term of Ci,j satisfies the unequa-
tion

Ci,j(0, 0) + Ci,j(1, 1) ≤ Ci,j(0, 1) + Ci,j(1, 0). (20)

Functions that satisfy equation (20) are called regular.

Graph cut based work Cost functions in the form of (16) arise in many
computer vision problems including stereo. For instance Boykov et al. [10]
present a stereo algorithm which optimizes a cost function consisting of a
data term that measures the pixel dissimilarity and a smoothness term,
which imposes a constant penalty on pixels assigned to different dispari-
ties. To handle occlusions, Kolmogorov and Zabih [23] extend this work
by implementing the uniqueness constraint. However, both algorithms use
a smoothness term, which motivates the generation of piecewise constant
disparities. Therefore, the algorithm might produce suboptimal results for
slanted surfaces. In order to handle slanted surfaces, Birchfield and Tomasi
[4] present a stereo and motion algorithm which minimizes a cost func-
tion that allows affine warpings instead of constant displacements. Lin and
Tomasi [25] extend this work by symmetrical treatment of occlusions. Ad-
ditionally, they use a spline model to describe the disparities of the surfaces.

Hong and Chen [17] propose a stereo algorithm which takes advantage
of both color segmentation and graph cuts. In their approach, the reference
image is segmented into non-overlapping segments and the disparity inside a
segment is approximated by a plane in disparity space. Instead of operating
on the pixel level, they formulate the stereo problem on the segment level.
Thereby, a disparity plane is assigned to each segment according to a cost
function that is minimized with a graph-based technique. The cost function
consists of two parts: A data term, which measures the disagreement of
segments to their matching regions based on the assumed disparity planes,
and a smoothness term that measures the disparity smoothness between
adjacent segments. This cost function is minimized by a graph-based tech-
nique. However, since the algorithm only operates on the segment level, it
is quite difficult to handle occlusions. Therefore, the authors try to identify
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the occlusions before the optimization step.

Bleyer and Gelautz [5] embed the reasoning about occlusions into the
optimization algorithm. Therefore, the cost function is defined on the seg-
ment, as well as on the pixel level. The pixel level measures the disagreement
of pixels to their matching points based on the current disparity map and
detects occlusions symmetrically in both views. While a smoothness term,
defined on the segment level, measures the disparity smoothness between
neighboring segments, another term propagates information between the
segment and the pixel level. Again, the cost function is minimized by a
graph cut algorithm.

Recently, graph-based optimization techniques were used to obtain
strong results from motion segmentation. Shi and Malik [35] use the nor-
malized graph cut to extract layers from a video sequence. Wills et al. [41]
propose a motion segmentation algorithm for scenes containing objects with
large interframe motion. Graph cuts are used to optimize the assignment of
pixels to layers. Finally, Xiao and Shah [42] present a graph-based layer ex-
traction algorithm that explicitly determines occlusions between overlapping
layers.
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3 Algorithm

The overall algorithm can be divided into six major steps as shown in fig-
ure 10. The input is represented by two consecutive frames to which we
refer as reference view (first frame) and second view (second frame) in the
following. In the initial step, color segmentation is applied to the reference
view and the motion inside a segment is characterized by the affine motion
model. We assume that the motion parameters are constant inside a seg-
ment and motion discontinuities coincide with segment borders. We refer
to this assumption as segmentation assumption. The model parameters for
every segment are estimated using a set of correspondences between the ref-
erence and the second view.

To make it more likely that the segmentation assumption is met, we
oversegment the image. Unfortunately, the motions of segments with only
small spatial extents tend to be unreliable. Therefore, motion segments that
can be described with the same motion parameters are grouped to layers in
the layer extraction step. Afterwards, the affine motion for every layer is
computed according to its spatial extent that is given by the union of all
segments which belong to the layer. As a result, we derive robust motion
parameters for the layers, since the area which is covered by a layer is usu-
ally much larger than the one of a segment. The resulting affine motions of
the layers describe the most dominant motions that occur in the scene.

Once we know the motion layers, we aim at finding out which part of the
image is best covered by which motion. This is done in the layer assignment
step, where every pixel of both views is assigned to at most one layer. For
occlusion detection, a pixel is also allowed to be assigned to no layer at all.
Occlusions are treated symmetrically by taking both views into account. To
implement the segmentation assumption, the pixel level is also connected to
the segment level. The assignment on the segment level influences the pixel
level and vice versa. However, we only regard the segment level as the final
result. The quality of an assignment is measured by a cost function, which
is optimized using a robust graph-based technique.

Optionally, a layer refinement step is invoked. Thereby, new layers are
generated by estimating the motion parameters over the layers’ new spatial
extents. Then the layer assignment step is invoked. This process is iterated
until there is no layer that further decreases the costs. Finally, the dense
optical flow field can be generated using the final assignment of segments to
layers.
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color segmentation of the reference
image

calculate correspondences with
KLT

initialize affine motion parameters for
every segment

layer extraction

compute affine motion parameters for
each layer

layer assignment

dense optical flow field

two adjacent frames

Figure 10: Algorithmic outline.

3.1 Color segmentation

We assume that for regions of homogeneous color the motion varies smoothly
and motion discontinuities coincide with the borders of those regions, which
holds true for most natural scenes. To implement this segmentation assump-
tion, we apply color segmentation to the reference view. To assure that the
segmentation assumption is met, we oversegment the image. Therefore,
smooth surfaces are split into several segments. However, this can be ig-
nored since color segmentation is not our final goal. We only segment the
reference view, since due to different image formations the segmentation
results would be inconsistent across views. By segmenting the image into
regions of homogeneous color we can overcome the inherent problems of
conventional optical flow algorithms. These algorithms usually show a bad
performance in regions of low texture as well as close to motion boundaries.
In our implementation, we apply a color segmentation algorithm proposed
by Christoudias et al. [12], using default parameters. Figure 11 shows the
result of the segmentation process for the flower-garden sequence.
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(a) (b)

Figure 11: Color segmentation. (a) Original frame of the flower-garden
sequence. (b) Computed color segmentation.

3.2 Initial optical flow estimation

To initialize the motion parameters of each segment, we compute a set of
initial correspondences between the reference view and the second view.
We tested the performance of several optical flow algorithms including the
OpenCV [1] implementations of the Horn & Schunck [18] and the Lucas
Kanade algorithms [26]. Furthermore, we used the KLT algorithm of Stan
Birchfield [3], which is an implementation of the Kanade-Lucas-Tomasi Fea-
ture Tracker as described in [36]. The Horn & Schunk algorithm computes a
dense optical flow field, whereas the Lucas-Kanade and the KLT algorithm
provide sparse, but more reliable feature points. For our purposes the KLT
algorithm performed best. The resulting flow field of the KLT is visualized
in figure 12.

3.3 Motion model estimation

The motion inside a segment is defined by the parameters of the affine
motion. Affine motion is defined by the equations:

Vx(x, y) = ax0 + axxx + axyy

Vy(x, y) = ay0 + ayxx + ayyy
(21)

with Vx and Vy being the x- and y-components of the motion vector and the
a’s being the parameters of the affine transformation. For initialization of
the parameters, the sparse correspondences of the KLT are used. We are
not able to compute the affine motion parameters for segments that enclose
only one or two feature points. For those segments, we only estimate trans-
lational motion. Furthermore, regions that do not enclose any feature point
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Figure 12: Initial correspondences computed by the KLT algorithm between
frame 1 and 4 of the flower-garden sequence.

are labeled as invalid and are not used for further processing.

Given the sparse set of correspondences, the appropriate affine model
for each segment, which is supported by at least three feature points, can
be derived by applying a standard linear regression technique [39]. Let
aT

i = [ax0i axxi axyi ay0i ayxi ayyi] be the i-th hypothesis vector in the
six dimensional affine paramter space with aT

xi = [ax0i axxi axyi] and aT
yi =

[ay0i ayxi ayyi] corresponding to the x- and y-components and φT = [1 x y]
be the regressor. Then equation (21) can be written as

Vx(x, y) = φT axi

Vy(x, y) = φT ayi.
(22)

A linear least squares solution for the affine parameters ai within a given
region, Ri, is then given by

[ayi axi] = [
∑

Ri

φφT ]−1
∑

Ri

(φ[Vy(x, y) Vx(x, y)]). (23)

Unfortunately, the method of least squares is sensitive to outliers. There-
fore, a robust regression procedure is applied, in order to eliminate outliers.
At first, we calculate an initial regressor by taking all data points into ac-
count. We then compute the affine parameters for all data points that have
a distance smaller than a predefined threshold from our initial solution. This
threshold is set to 2 in our implementation. This process is iterated until
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Figure 13: Fitting of the motion parameters. (a) The regressor is fitted to all
points. (b) There are three points of high motion representing outliers that
attract the regressor. To eliminate the outliers, we reject points which lie
outside a predefined threshold (dashed line). (c) The regressor is recomputed
for the remaining points.

convergence. Figure 13 illustrates the implemented least minimum squares
algorithm for the one dimensional case. The resulting motion segments are
used as input for the layer extraction step.

3.4 Layer extraction

During the segmentation process a single surface may be split into several
segments, since it is nearly impossible for the color segmentation algorithm
to identify a textured surface as a single segment. Furthermore, we prefer
an oversegmentation to assure that a segment does not overlap a motion
discontinuity. Therefore, segments are usually relatively small and as a con-
sequence their motion parameters are quite unreliable. In the following, we
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describe one way to group segments which can be well approximated by the
same affine motion to layers.

We take the affine motions, which were computed over the segments, as
our initial set of layers. Every segment is assigned to exactly one of these
layers, in order to minimize a global cost function. This cost function mea-
sures the optimality of an assignment and consists of a data term and a
smoothness term. The overall cost function is the sum of both terms. The
data term measures the color difference of a segment by projecting it to the
second view, according to its motion parameters. For measuring the color
difference, the sum of absolute differences is used. By summing up the color
difference of every segment we obtain the costs generated by the data term.

The smoothness term regulates the solution by imposing the smoothness
assumption. The smoothness term gives a penalty to adjacent segments
which are labeled different and therefore have different motion parameters.
The imposed smoothness penalty is thereby multiplied by the border length
between the adjacent segments. Note that this cost definition corresponds
to equation (13), but operates on the segment level instead of the pixel
level. This formulation is similar to [17] and has the advantage of being
computationally inexpensive. On the other hand, it is incapable of handling
occlusions, which we deal with in the next section.

To find an optimal assignment of segments to layers, we use the
expansion-move algorithm that we described in section 3.7.1. Once the
expansion-move algorithm has converged, we refine the layers by estimating
the motion parameters over the layers’ new spatial extents. Again, we obtain
an optimal assignment by minimizing the cost function with the expansion-
move algorithm. The layer extraction algorithm is illustrated in figure 14.

The resulting layers can be obtained with small computational effort,
since the cost function is only defined on the segment level. Therefore, a
lot of layers can be tested, which increases the chance of finding the correct
motion layers. Nevertheless, we ignore the fact that there are occlusions in
the scene. As a consequence, we get unreliable results in regions close to
motion boundaries, which is shown in figure 15. The wrong assignments can
partially be identified, since they usually show large pixel dissimilarity and
are relatively small. We therefore remove such layers.

3.5 Layer assignment

In the previous section, we computed a set of layers whose motion parame-
ters describe the motion in the scene. In this section, we address the problem
of finding the spatial support for each layer, i.e. which motion fits each im-
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procedure LayerExtractor
begin

L ← motion models of all segments;
bestcosts ← inf;
loop

use α − expansion move algorithm
to optimize C(f) = Cdata + Csmoothness;

L ← L − {Layers that are not present in the current solution};
if ¬(C(f) < bestcosts)

break;
L ← L ∪ L based on the new spatial extents;
bestcosts ← C(f);

end loop

return L;
end

Figure 14: Pseudocode of the layer extraction algorithm.

age region best. Therefore, every pixel of both views is assigned to exactly
one layer. By assigning a pixel to a layer its motion becomes defined through
the affine parameters of the layer. As a consequence, we can also compute
its corresponding point in the other view.

The decision of which layer is optimal for a pixel basically relies on the
color dissimilarity between the point and its matching point in the other
view. Furthermore, we introduce a number of constraints, which help to
regularize the solution space.

Since in our implementation we are taking both views into account, one
constraint is that the label configuration has to be symmetrically. This
means that in the case that one pixel of a view is assigned to a layer, its
corresponding point in the other view has to be assigned to the same layer
as well. In this case, we do not get additional information from the second
view, which is not true for occlusion. Due to the fact that occlusions are
different in each view, using only one frame would result in an unsymmet-
rical treatment of those. Furthermore, not all information from both views
would be exploited by only using one of them.

To implement the segment consistency constraint, we introduce the seg-
ment level. The pixel level is connected to the segment level in a way that
the segmentation information is explicitly enforced. However, we only use
the segmentation information of the reference view, since segmenting both
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Figure 15: Result of the layer extraction step for the flower-garden sequence.
Unreliable results are achieved in regions close to motion boundaries (e.g.
at the left side of the tree trunk).

views would result in inconsistent segmentation results.

The introduction of the segment level has several advantages. First,
global approaches often minimize some variation of equation (13). Since
this smoothness terms aims at minimizing the border length it is difficult
to handle complex shapes. This is overcome by enforcing the segmentation.
Second, smoothness inside a segment is already achieved. Finally, occluded
regions are naturally filled in with meaningful motion values “for free” on
the segment level.

3.5.1 Layer assignment as labeling problem

The process of assigning pixels and segments to layers can be regarded as
labeling problem. The labels 1, 2, . . . , N correspond to the N layers. The
special label 0 to which we refer to as occlusion label indicates that the pixel
or segment is occluded. A labeling function f(·) operates on the pixel level
as well as on the segment level and assigns pixels and segments to a label.

On the pixel level, we define p = (x, y, v) to be a pixel with the im-
age coordinates x and y of the view v ∈ {LEFT, RIGHT}. The set I =
ILEFT ∪ IRIGHT is the union of all pixels from both views, where ILEFT is
the reference view and IRIGHT is the second view. The labeling function
f(p) projects every pixel p ∈ I to exactly one label k:

∀p ∈ I : f(p) = f(x, y, v) = k, k ∈ {0, 1, 2, . . . , N}. (24)
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Let S be the set of segments of the reference view. For the segments
s ∈ S the labeling function f(s) is defined as follows:

∀s ∈ S : f(s) = k, k ∈ {0, 1, 2, . . . , N}. (25)

By projecting a pixel p to a label k which is different from the occlusion
label, the motion and therefore the matching point m[k](p) of p becomes
defined. The matching point can be computed by adding the corresponding
motion vector to the coordinates of the pixel. The motion vector is derived
using the affine motion parameters of the k-th layer by evaluation of equation
(21). The computation of the matching point is expressed by

m[k](p) = m[k](x, y, v) =

= (x + Vx[k](x, y, v), y + Vy[k](x, y, v),¬v)
(26)

where ¬LEFT = RIGHT and vice versa. The motions in x- and y-
directions are denoted by Vx[k](x, y, v) and Vy[k](x, y, v), respectively. The
parameters of the affine motion of the k-th layer depend on the view v. For
estimating the matching point of a pixel of the LEFT view, we can use the
original motion parameters, whereas for a transformation from RIGHT to
LEFT , the inverse parameters are applied.

3.5.2 Cost function

In the layer assignment process, we implement rules to decide which label
configuration is optimal. We therefore construct a cost function C(f) that
measures the quality of a certain label configuration f . The cost function
C(f) consists of individual terms that implement our basic assumptions.
Some of these terms operate on the pixel or on the segment level. These
are the Data term and the Occlusion term (on the pixel level) as well as
the Smoothness term (on the segment level). The other terms model in-
teractions between components and propagate information between them.
This includes the Mismatch term (connection between the left and the right
views) and the Segment term (connection between the pixel level and the
segment level). The individual terms are visualized in figure 16. The overall
cost function C(f) is computed by the sum of these terms:

C(f) = Tdata + Tocclusion + Tmismatch + Tsegment + Tsmoothness. (27)

Color consistency We assume that pixels of two consecutive frames that
receive contribution from the same object point at different instances of time
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Figure 16: Terms of the cost function and their scope.

show similar color values. In other words, the matching point of a pixel
should have approximately the same color as the pixel itself. To incorporate
this assumption, we estimate the color dissimilarity of every visible pixel
in both views. We refer to this term as data term Tdata, which is formally
expressed by

Tdata =
∑

p∈I

{
dissimilarity(p, m[f(p)](p)) : f(p) 6= 0

0 : otherwise
(28)

where dissimilarity(p1, p2) denotes a function computing the color dissim-
ilarity of two pixels p1 and p2. As a dissimilarity measurement we use the
summed up absolute differences of RGB-values.

Occlusion handling Since declaring all pixels as occluded would form a
trivial optimum of the cost function, occluded pixels have to be penalized.
Therefore, we introduce the occlusion term Tocclusion that imposes a non-
negative penalty λocc for each occluded pixel:

Tocclusion =
∑

p∈I

{
λocc : f(p) = 0
0 : otherwise .

(29)

View consistency For all non-occluded pixels of both views that receive
contribution from the same scene point, we assume that their motion is the
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same. They should therefore be assigned to the same label. In other words,
if one pixel of the left view gets assigned to a label which is not the occlusion
label, its matching point in the right view should also be assigned to the
same label and vice versa. As a consequence, the view consistency term
propagates the layer assignment from one view to the other. As a result we
get a consistent labeling configuration in both views. The view consistency
term Tmismatch is defined by

Tmismatch =
∑

p∈I

{
λmismatch : f(p) 6= 0 ∧ f(p) 6= f(m[f(p)](p))

0 : otherwise
(30)

with λmismatch being a non-negative constant penalty.

The mismatch penalty λmismatch is set to a slightly higher value than
λocc. As a consequence, a view inconsistent label configuration always pro-
duces higher costs than declaring this pixel as occluded, even if the pixel
dissimilarity of the view inconsistent pixel is zero. Hence, a view incon-
sistent pixel is assigned to the occlusion label. Moreover, view consistent
pixels which have a pixel dissimilarity larger than λmismatch are declared as
occluded.

Segment consistency To meet the segmentation assumption, every non-
occluded pixel inside a segment has to be assigned to the same motion layer.
We therefore introduce a term which propagates information between the
segment and the pixel level. We refer to this term as segment consistency
term Tsegment. The term gives an infinite penalty to visible pixels that are
labeled different than the segment to which they belong. However, pixels
are still allowed to carry the occlusion label. If we therefore label one pixel
of a segment, all other pixels of this segment and the segment itself have
to be assigned to the same label or be declared as occluded. The segment
consistency term is defined as

Tsegment =
∑

p∈ILEFT

{
∞ : f(p) 6= 0 ∧ f(p) 6= f(segment(p))
0 : otherwise

(31)

with segment(p) being a function that returns the segment to which the
pixel p belongs.

Smoothness An explicit smoothness assumption was already done by the
incorporation of the segmentation assumption. Unfortunately, the image will
be oversegmented in general. Therefore, not all segment borders coincide
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with motion discontinuities. Hence, we aim at generating identical labellings
for segments which can be well described by the same layer. We include this
assumption by introducing a smoothness term on the segment level. It
penalizes neighboring segments that are assigned to different layers. The
smoothness term Tsmoothness is computed by

Tsmoothness =

∑

si,sj∈S∧(si,sj)∈NB

{
λdisc · bl(si, sj) · colorsim(si, sj) : f(si) 6= f(sj)

0 : otherwise

(32)

with λdisc being a non-negative constant penalty and NB denotes the set of
all neighboring segments. The function bl(si, sj) computes the border length
between the segments si and sj , which is defined as the number of neighbor-
ing pixels (pi, pj) in 4-connectivity, where pi belongs to segment si and pj

to sj . Optionally, the function colorsim(si, sj) measures the color similarity
between two adjacent segments si and sj . By weighting the smoothness
penalty with the color similarity between two segments, we motivate seg-
ments of similar color to be labeled equally. Furthermore, we support the
assumption that for regions of homogeneous color the motion parameters do
not vary. The color similarity function colorsim(si, sj) is implemented as

colorsim(si, sj) =
(

1 −
min (|meancolor(si) − meancolor(sj)| , 255)

255

)
· 0.5 + 0.5

(33)

with meancolor(s) computing the componentwise summed up RGB values
of all pixels inside segment s, divided by the total number of pixels of the
segment. To compute the absolute difference of the two RGB values, we
sum up the absolute differences of each color component. By using an 8-
bit coding for each color channel, we get a maximum absolute difference of
3 · 255. The result of the color similarity function is 1 for identical mean
color values. If the absolute difference between the two mean color values
is larger than or equal to 255, a value of 0.5 is returned. As a result, the
costs for assigning two segments of high color similarity to different layers
are higher than those for two segments of low color similarity.

3.6 Extension to multiple frames

In the previous section, we restricted the algorithm to use only two frames
as input. Choosing these two frames might be a difficult task. If there is
only small motion, regions of different motions might be described by the
same layer, since the motion is too small to discriminate them. On the other
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Figure 17: Structure of the view-pairs.

hand, if there is large motion, the matching process becomes more difficult,
since in these situations there are also large occluded regions. We therefore
decided to allow more than two input frames.

The video sequence of F frames is split into F −1 view-pairs V P , where
the k-th view-pair consists of the left view, which is the first frame of the
video sequence, and the right view, which is the (k + 1)-th frame (second
view of the clip). The grouping of the video clip into view-pairs is illustrated
in figure 17.

Color segmentation is always applied to the reference view of the video
clip only. Initial correspondences are estimated between the first and the
last frame of the video sequence, which corresponds to the flow between
the left and the right view of the last view-pair. The model parameters for
all segments are computed as explained in section 3.3. Since we only know
the initial correspondences of the last view-pair, we interpolate the models
for the other view-pairs. The layer extraction stage remains unchanged,
but only operates on the last view-pair, which means that the intermediate
frames are ignored.

3.6.1 Motion model interpolation

We calculate the initial correspondences between the first and the last frames
of the video clip. As a consequence, we only compute the affine motion inside
the last view-pair. If we want to take advantage of the other frames, we have
to estimate the affine motion of the remaining view-pairs as well. Therefore,
we perform linear interpolation of the affine motion by

Vx,vp(x, y) =
ax0

V P + 1 − vp
+

(
axx − 1

V P + 1 − vp
+ 1

)
x +

axy

V P + 1 − vp
y

Vy,vp(x, y) =
ay0

V P + 1 − vp
+

ayx

V P + 1 − vp
x +

(
ayy − 1

V P + 1 − vp
+ 1

)
y

(34)
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Figure 18: The terms of the extended cost function and their scope.

where Vx,vp and Vy,vp are the x- and y-components of the motion vector of
the vp-th view-pair, the a’s are the parameters of the affine motion of the
vp-th view-pair and V P is the number of view-pairs.

3.6.2 Extended cost function

By extending our input data from two consecutive frames to a video clip,
the terms of our cost function are affected as well. Therefore, the data term
Tdata as well as the mismatch term Tmismatch is now applied to all view-pairs,
where the matching points inside a view-pair can be computed according to
the appropriate motion parameters. Furthermore, the segment consistency
term Tsegment interacts between the segment level and all reference views of
all view-pairs. Therefore, the segment consistency term propagates informa-
tion between all view-pairs. The terms and their interactions are visualized
in figure 18.

3.7 Optimization using graph cuts

In section 2.2.2, we described how to minimize cost functions via graph cuts
and explained what type of cost functions can be minimized by them. In
this section, we show how to obtain an optimal assignment of segments and
pixels to layers via graph cuts.
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3.7.1 α-expansion move and greedy algorithm

Unfortunately, finding the label configuration f which minimizes C(f) is
shown to be NP-complete. Nevertheless, we can find a strong local opti-
mum by using an efficient optimization strategy for labeling problems in
computer vision based on graph cuts, which was presented by Boykov et
al. [10]. We therefore adopt their α − expansion move to our problem
formulation. An α − expansion move changes the label configuration of a
subset of pixels and segments to the label α, whereby the rest remains un-
changed. Let f be the current label configuration. The configuration f́ is
within one α − expansion move from f , if for all pixels p, f́(p) = f(p) or
f́(p) = α and for each segment s, f́(s) = f(s) or f́(s) = α. An example
of an α − expansion move is illustrated in figure 19. Finding the optimal
α− expansion move on the segment level, i.e. the one that gives the largest
improvement of costs, can be efficiently solved to optimality by a graph-
based technique. Since an α − expansion move simultaneously changes the
label configuration of a large number of pixels and segments respectively, we
achieve a strong local optimum.

Since we want to test for all layers whether they can improve the current
solution, we embed the α − expansion move into a greedy algorithm that
we described in section 2.2.2. This expansion move algorithm applies the
α− expansion move for all labels. As the initial solution we can use the re-
sult from the layer extraction step. However, the graph-based optimization
strategy is robust enough to find a strong local optimum even if the initial
configuration is far away from the global optimum. We can therefore as well
initialize the configuration by declaring all pixels and segments as occluded.
This is done in our implementation.

After defining the initial configuration the expansion move algorithm
applies the α − expansion move for every layer, in fixed or random order.
Since we want to allow pixels to be declared as occluded, we also test against
a special layer which carries the occlusion label. If one move decreases the
costs, the new layer configuration is accepted. We iterate this procedure
until there is no layer that further decreases the costs, which is usually the
case after very few iterations.

3.7.2 Optimal α-expansion move via graph cuts

Finding the optimal α−expansion move, i.e. the move that gives the largest
improvement of costs according to our cost function, among all possible
moves, can be efficiently solved to optimality by computing the minimum
cut in a special purpose graph. This weighted, directed graph G = (V, E) has
two special nodes, which are called the source src and the sink snk. A cut
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Layer 1

Layer 2

Layer 3

(a) (b)

Figure 19: α − expansion move on the segment level. (a) The image is
divided into a set of segments. Every segment is assigned to one of three
motion layers. (b) After the α − expansion move of layer 1 some segments
change their assignment to layer 1, while the remaining segments keep their
old assignments.

is thereby the partitioning of the vertices V into two disjoint sets SRC and
SNK, where scr ∈ SRC and snk ∈ SNK. The costs of a cut are defined by
the sum of all weights from those edges which are pointing from the SRC
to the SNK. The minimum cut in the graph is the one which generates the
lowest costs. According to the theorem of Ford and Fulkerson [14], finding
the minimum cut in a graph is equivalent to computing the maximum flow.
In our implementation, we use the maximum flow algorithm of Boykov and
Kolmogorov [9], which is optimized for graphs in which the rate of vertices
to edges is high.

To find the optimal α−expansion move we construct a weighted directed
graph, where every segment and every pixel of both views is represented by
one vertex vi. Terms of the cost function build the edges in the graph. The
graph contains the vertices src and snk as well. There is a correspondence
between the new label configuration f́ within one α− expansion move from
the current assignment f and a cut in the graph, since both can be regarded
as binary labeling. Therefore, we can represent every segment and pixel
as a binary variable xi with xi = 0 if the old label is kept (f́(p) = f(p))
and xi = 1, if the label α is assigned (f́(p) = α). Analogously, xi = 0, if
vi ∈ SRC and xi = 1, if vi ∈ SNK, after computing the cut in the graph.
We can formally express this by

xi =

{
0 : vi ∈ SRC

1 : vi ∈ SNK.
(35)
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Figure 20: The layout of the graph. Every segment as well as every pixel
of both views is represented by a vertex. The segment level is connected to
the reference view. The reference view is connected to the second view. Not
all edges are shown for legibility. Each vertex is connected to the src and
the snk.

Therefore, a cut in the graph represents the new label configuration f́ .
We insert the edges into the graph in a way that the costs of every cut in the
graph are equal to the costs of the resulting label configuration. Therefore,
if we compute the cut that generates the lowest costs, also the resulting label
configuration has minimal costs. The structure of our graph is illustrated in
figure 20.

Since not every cost function can be minimized by graph cuts, we have
to show that our cost function belongs to the class of cost functions that
can be minimized. According to Kolmogorov and Zabih [24] cost functions
of n binary variables in the form of

C(x1, . . . , xn) =
∑

i

Ci(xi) +
∑

i<j

Ci,j(xi, xj) (36)

can be optimized by graph cuts if and only if

Ci,j(0, 0) + Ci,j(1, 1) ≤ Ci,j(0, 1) + Ci,j(1, 0). (37)
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In appendix A, we show that our cost function can be represented by a
set of function of binary variables that fulfill condition (37) and explain how
to build the overall graph.
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4 Implementation

In this section, the current implementation of the algorithm is explained
in detail. The algorithm was implemented in C++ on a Windows XP sys-
tem. As compiler we use the Microsoft Visual C++ compiler. For color
segmentation we use the “edge detection and image segmentation system”
(EDISON) [28, 13]. Furthermore, we use the OpenCV library (Intel Open
Source Computer Vision Library) [1] for basic image processing operations,
like reading and saving images. For computing the initial correspondences,
we use the OpenCV implementations of several optical flow algorithms as
well as the KLT algorithm implemented by Birchfield [3]. In the following,
we explain the classes and methods that are relevant for understanding the
implementation. Methods that are only used for data processing and visu-
alization of the results are not dealt with. Moreover, we explain the input
parameters for the algorithm.

4.1 Class overview

The UML class diagram in figure 21 gives an overview of all relevant classes
of the implementation. Only classes that are relevant for the general under-
standing of the implementation are displayed. The classes that appear in
figure 21 can be grouped according to their functionality.

The classes Segmenter, OpticalFlow, ModelEstimator, LayerExtractor
and LayerAssigner build the algorithmic parts of the implementation,
whereas the classes VideoStream, Model, AffineModel, PixelData, SetOf-
PixelData, Layer, SetOfLayers, Scanline, Segment, SetOfSegments, View-
Pair and SetOfViewPairs are basically used as data structures and therefore
most of their methods are used for data access. In the following, we discuss
each of the above mentioned classes in detail.

4.1.1 Segmenter

This class performs the color segmentation of the input frame as described
in section 3.1. The reference frame is processed by the EDISON algorithm,
which returns an image where pixels which belong to the same segment
have the same color. To extract segments from the image, a flood-fill-like
algorithm is used. In the following, the methods of the class are described
in more detail.

• The method CalcSegments performs color segmentation using the
EDISON algorithm. Thereby, the parameters MeanShiftRadius and
MinimumRegionArea determine the spatial extent of a segment. By
setting these parameters to a low value, the output of the EDISON
algorithm usually results in an oversegmented image. Furthermore, the

45



Scanline Segment SetOfSegments

Layer SetOfLayers

Model

VideoStream

AdjacentSegments

PixelData SetOfPixelData ViewPair SetOfViewPairs

Segmenter

LayerExtractor

LayerAssigner

OpticalFlow

AffineModel

ModelEstimator

1..* 1..*
1..*

1..*

0..*

1..* 1..* 1..*

1..*

1..*

1..* 1..*

Figure 21: UML class diagram.
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function extracts the Segments from the resulting image by invoking
the method ExtractSegment for every unprocessed image point. We
define an unprocessed image point as a point which is not assigned to
a segment already. Finally, the extracted Segments are grouped to a
SetOfSegments and returned.

• The method ExtractSegment extracts regions of homogeneous
color from an image. We therefore implemented a flood-fill-like algo-
rithm, which extracts a segment by computing the start and endpoints
of its scanlines. As a seed point for the algorithm, we use the first pixel
which is not already assigned to some segment. Since we search for
such pixels by processing the image from left to right, the seed-point
always corresponds to a start-point of a scanline. We determine the
end-point of this scanline by computing the rightmost pixel that has
the same color as the seed-point. Furthermore, we locate and record
starting points for scanlines on the adjacent scanlines. At each sub-
sequent step, we fetch the next start-point from the stack and repeat
the process. The pseudocode of the algorithm is shown in figure 22.

4.1.2 OpticalFlow

This class computes the initial optical flow (between the first and the last
frame of an input video sequence) as described in section 3.2. For the com-
putation of the optical flow field, different algorithms are provided. These
algorithms are not part of our implementation. We use the optical flow al-
gorithms provided by the OpenCV library [1] as well as an implementation
of the Kanade-Lucas-Tomasi feature tracker from Stan Birchfield (KLT) [3].
The most important methods of this class are explained in the following.

• The method CalcOpticalFlowLK computes the initial optical flow
with the Lucas Kanade algorithm [26]. It generates a dense optical flow
field. Beside the two input frames, the parameter winSize determines
the size of the averaging window used for grouping pixels.

• The method CalcOpticalFlowHS computes the initial optical flow
for every pixel of the left view using the Horn and Schunck algorithm
as proposed in [18]. The algorithm returns a dense optical flow field.

• The method CalcOpticalFlowPyrLK computes the optical flow
between two frames for every pixel of the left view with an itera-
tive version of the Lucas-Kanade algorithm in pyramids [8]. The in-
put parameters for the method are winsizeWidth and winsizeHeight.
They determine the width and height of the averaging window used for
grouping pixels. The parameter levels specifies the maximal number
of pyramid levels. If the parameter is 0, pyramids are not used (single
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procedure ExtractSegment(SeedPoint,Segment)
begin

seedPointColor ← Color(SeedPoint);
Push(Points, SeedPoint);
while Points 6= ∅ do

StartPoint ← Pop(Points);
CPoint ← StartPoint;
CPointColor ← Color(CPoint);
while CPointColor = SeedPointColor do

x ← CPoint.x;
y ← CPoint.y;
if CPoint.x = StartPoint.x

CalcStartPoint(x − 1, y − 1,seedPointColor,Points);
CalcStartPoint(x, y − 1,seedPointColor,Points);
CalcStartPoint(x − 1, y + 1,seedPointColor,Points);
CalcStartPoint(x, y + 1,seedPointColor,Points);

end if

CalcStartPoint(x + 1, y − 1,seedPointColor,Points);
CalcStartPoint(x + 1, y + 1,seedPointColor,Points);
EndPoint = CPoint;
CPoint.x = CPoint.x + 1;
CPointColor = Color(CPoint);

end while

AddScanline(Segment,StartPoint,EndPoint);
end while

end

procedure CalcStartPoint(x,y,SeedColor,Points)
begin

CPoint.x ← x;
CPoint.y ← y;
CPointColor ← Color(CPoint);
while CPointColor = SeedColor do

StartPoint = CPoint;
CPoint.x = CPoint.x - 1;
CPointColor = Color(CPoint);

end while

Push(Points,StartPoint);
end

Figure 22: Extraction of segments in pseudocode.
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level), if 1, two levels are used, and so on. The parameters iterations
and epsilon define criteria for which the process of finding the flow
values is stopped.

• The method CalcOpticalFlowPyrGoodFeatLK computes the
optical flow between two frames for a set of feature points, with an it-
erative version of Lucas-Kanade optical flow algorithm in pyramids [8].
For the computation of the feature points, we use the OpenCV [1] func-
tion GoodFeaturesToTrack, which finds corners that have large eigen-
values in the image. The input parameters for the method are win-
sizeWidth and winsizeHeight, which determine the width and height
of the averaging window used for grouping pixels. The parameter
levels specifies the maximal pyramid level number. If the parame-
ter is set to 0, pyramids are not used (single level), if 1, two lev-
els are used, and so on. The parameters iterations and epsilon de-
fine criteria for which the process of finding the flow estimates is
stopped. The parameter qualLevel specifies the minimal accepted qual-
ity of feature points used for the flow computation. This is depending
on their eigenvalues (Points with minimal eigenvalue being less than
qualityLevel ·max(eigImage(x, y)) are rejected). The last parameter
minDist determines the minimum possible euclidean distance between
the feature points, which are used for optical flow computation.

• The method CalcOpticalFlowKLT computes the initial optical
flow with the Kanade-Lucas-Tomasi Feature Tracker [3]. We use the
implementation of Stan Birchfield for computing a sparse optical flow
field. The KLT algorithm can take advantage of using multiple frames
instead of just one image pair as input. It can track image points
through multiple frames. The input parameters for the method are
winsizeWidth and winsizeHeight, which determine the width and
height of the averaging window used for grouping pixels. The param-
eter affineConsistencyCheck triggers the affine consistency check, if it
is set to true. The parameter mindist specifies the minimum distance
between selected features, which are tracked. The value of minEigen-
value determines the smallest eigenvalue allowed for a feature point,
whereas nPyramidLevels specifies the number of pyramid levels being
used.

• The attribute OptflowX is a 32-bit floating-point (single-channel)
image of the same size as the input frames that holds the horizontal
component of the optical flow for each image point.

• The attribute OptflowY is a 32-bit floating-point (single-channel)
image of the same size as the input frames that holds the vertical
component of the optical flow for each image point.
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4.1.3 ModelEstimator

The model estimator computes the affine model for a segment or a layer
using the initial optical flow, which is computed by the class OpticalFlow.
Furthermore, the model estimator computes the interpolated model param-
eters according to section 3.6.1, when using multiple frames as input.

• The method CalcModel estimates the parameters of the affine mo-
tion for a set of segments or a set of layers, which are presented to the
method as parameters. The parameter eps is a threshold for the ro-
bust least squares method as described in section 3.6.1. If the euclidean
distance between a true (measured) data-point and the predicted data-
point is larger than eps, it is not used for the model computation.

• The method CalculateInterpolatedModels interpolates the mo-
tion parameters of the segments and layers, which belong to one spe-
cific view-pair. The interpolated affine motion parameters can be de-
rived from the motion parameters of the last view-pair.

4.1.4 LayerExtractor

This class is the implementation of the layer extraction step explained in
section 3.4. The class has two methods which are described in the following.

• The method Extract takes a setOfSegments as input. The affine
motions of these segments are used to generate initial layers. Then
the method GreedyGraphAlgorithm is invoked, which returns an as-
signment of segments to layers. New layers are generated by estimat-
ing the motion parameters over the layers’ new spatial extents. This
process is iterated as long as there is no layer which further decreases
the costs. Finally, very small layers as well as layers with a high pixel
dissimilarity are removed and the final setOfLayers is returned.

• The method GreedyGraphAlgorithm computes an optimal as-
signment of segments to layers by minimizing a cost function with the
expansion move algorithm. The function returns the optimal assign-
ment of segments to layers.

4.1.5 LayerAssigner

This class is the implementation of the layer assignment step as described in
section 3.5. This class provides methods for computing an optimal assign-
ment of segments and pixels to layers. Furthermore, it provides methods for
building a graph, which corresponds to a specific label configuration. The
methods are explained in the following.
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• The method Assign iterates the layer assignment step and the gen-
eration of new layers as long as the costs are decreasing. The genera-
tion of new layers is performed by computing the motion parameters
over the spatial extent of the layers that result from the layer assign-
ment step. The assignment of pixels and segments to layers is thereby
performed by the GreedyGraphAlgorithm method.

• The method GreedyGraphAlgorithm implements the greedy al-
gorithm as described in section 3.7.1. We start from the initial label
configuration and compute the α−expansion move of lowest costs for
every layer. If a move decreases the costs, we regard this as the new la-
bel configuration. We iterate this procedure until there is no layer that
can further decrease the costs. To compute the α − expansion move
generating the lowest costs, we build the graph for every layer by in-
voking the method BuildGraph. The move of lowest costs is estimated
by the method SolveGraph.

• The method BuildGraph builds the overall graph for an
α−expansion move. Therefore, we insert nodes into the graph, which
correspond to the pixels and segments whose labeling configuration
should be optimized by the move. We modularized the construction
of the graph in order to be able to add or remove terms of the cost
function easily. Therefore, this method invokes other methods, which
insert edges into the graph according to the terms of the cost function.

• The method InsertDataTerm inserts those edges into the graph
which implement the color consistency term. The edges are inserted
according to appendix A.

• The method InsertOcclusionTerm inserts those edges into the
graph which implement the occlusion term. The edges are inserted
according to appendix A.

• The method InsertMismatchTerm inserts those edges into the
graph which implement the view consistency term. Again, the edges
are inserted according to appendix A.

• The method InsertSegmentConsistencyTerm connects the seg-
ment to the pixel level, by adding edges to the graph which implement
the segment consistency term. The detailed construction of the graph
can be found in appendix A.

• The method InsertSegmentSmoothnessTerm inserts those edges
on the segment level which represent the smoothness term. The edges
are inserted according to appendix A.
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• The method SolveGraph computes the minimum cut in the graph
and returns its costs. The minimum cut in the graph is computed
by using the maximum flow algorithm described by Boykov and Kol-
mogorov [9].

4.1.6 VideoStream

This class takes the frames of a video sequence as input and stores them in
a vector. Since we also need a grayscale version of the frames, every frame
is converted to grayscale and stored in a second vector. Since this class
only implements methods for accessing the attributes of the class, only the
attributes of this class are explained in the following.

• The attribute Height stores the height of the input frames.

• The attribute Width stores the width of the input frames.

• The attribute VideoStreamColor is a vector which holds the col-
ored frames of the input video sequence.

• The attribute VideoStreamGrayscale is a vector which holds the
grayscale version of the frames of the input video sequence.

4.1.7 Model

The class Model is an abstract class from which we can derive specific mod-
els. Its methods are overwritten by the derived class.

4.1.8 AffineModel

This class is derived from the abstract class Model and holds the parameters
of the affine motion model. Furthermore, it provides methods for the com-
putation of the matching point in the other view according to equation (26).
The methods and attributes of this class are described in the following.

• The attribute ParamsX holds the parameters of the affine motion
in x-direction.

• The attribute ParamsY holds the parameters of the affine motion
in y-direction.

• The attribute ParamsXI holds the inverse parameters of the affine
motion in x-direction.

• The attribute ParamsYI holds the inverse parameters of the affine
motion in y-direction.
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• The method MatchingPoint takes the coordinates of a pixel as in-
put and computes its matching point according to equation (21). The
parameters of the affine motion are given by the attributes ParamsX
and ParamsY. The matching point is rounded to the nearest neighbor.

• The method InverseMatchingPoint is similar to the method
MatchingPoint, but uses the inverse parameters of the affine motion
(ParamsXI and ParamsYI ).

4.1.9 PixelData

This structure holds detailed information about a pixel, such as the layer
to which it is currently assigned. Since only methods that provide access to
the attributes of the structure are implemented, only the attributes of this
structure are described in the following.

• The attribute SegmentID is the ID of the segment to which the
pixel belongs.

• The attribute LayerID determines to which layer the pixel is as-
signed.

• The attribute Position represents the x- and y-coordinates of the
pixel.

4.1.10 SetOfPixelData

This class stores a set of PixelData-objects in a vector. The class provides
methods for adding and removing items to and from the vector.

• The attribute Pixels is a vector that holds the PixelData-objects.

4.1.11 Layer

The class Layer contains information about a layer as well as methods to
access this information. In the following, the attributes of the class are
explained.

• The attribute SegmentsOfLayer is a vector which stores pointers
to all segments assigned to this layer.

• The attribute Area specifies the spatial extent of a layer, which is
computed by summing up the areas of all segments to which the layer
is assigned.

• The attribute Valid determines if the layer encloses enough initial
correspondences to compute the motion (It has to enclose at least one
initial correspondence to be valid).

53



• The attribute OcclusionLabel determines if this layer is the occlu-
sion layer.

• The attribute Models is a vector that consists of pointers to the
models that define the motion of the layer. Since in every view-pair
the layer has different motion parameters, we create a model for each
view-pair.

4.1.12 SetOfLayers

This class stores a set of Layer -objects in a vector. The class provides
methods for adding and removing layers to and from the vector.

• The attribute Layers is a vector that holds the Layer -objects.

4.1.13 Scanline

This data structure holds information about a scanline.

• The attribute StartPoint defines the pixel coordinates at which the
scanline starts.

• The attribute EndPoint defines the pixel coordinates at which the
scanline ends.

4.1.14 Segment

This class contains information about a segment. A segment is generated
by the class Segmenter. A segment consists of at least one Scanline. The
attributes and methods of the class are listed below.

• The attribute Scanlines is a vector of scanlines that define the
spatial extent of the segment.

• The attribute AdjacentSegments stores pointers to neighboring
segments.

• The attribute Models is a vector that consists of pointers to the
models that define the motion of the segment. Since in every view-pair
the segment has different motion parameters, we create a model for
each view-pair.

• The attribute Area specifies the spatial extent of a segment.

• The attribute Valid determines if the segment encloses enough ini-
tial correspondences to compute its motion (It has to enclose at least
one initial correspondence to be valid).
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• The attribute LayerID defines the layer to which this segment is
assigned.

• The method CalculateMeanColor computes the mean color of the
segment as described in section 3.5.2.

4.1.15 SetOfSegments

This class stores a set of Segment-objects in a vector. The class provides
methods for adding and removing segments to and from the vector.

• The attribute Segments is a vector that holds the Segment-objects.

4.1.16 ViewPair

This class is the implementation of a view-pair, which consists two SetOf-
Pixels that define the left and the right view, respectively. The attributes
of the class are as follows.

• The attribute LeftView is a pointer to a SetOfPixels, which defines
the left view of the view-pair.

• The attribute RightView is a pointer to a SetOfPixels, which cor-
responds to the right view of the view-pair.

4.1.17 SetOfViewPairs

This class stores a set of ViewPair -objects in a vector. The class provides
methods for adding and removing view-pairs to and from the vector.

• The attribute ViewPairs is a vector that holds the ViewPair -
objects.

4.2 Parameters of the algorithm

The program is started from the command line by calling the program name
followed by its parameters. The parameters have to be separated by a blank.

opticalF low param1 value1 param2 value2 . . . paramn valuen

The input parameters of the program are listed below.

• -d sets the smoothness penalty for the layer extraction step.

• -oc sets the occlusion penalty for the layer assignment step.

• -m sets the mismatch penalty for the layer assignment step.
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• -s sets the smoothness penalty for the layer assignment step.

• -inputDir defines the directory of the input sequnce.

• -inputExt determines the file extension of the input sequence.

• -startFrame determines the reference frame of the input sequence.

• -endFrame determines the last frame of the input sequence.
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5 Experimental results

To evaluate the proposed algorithm, we applied our approach on three stan-
dard motion sequences, mobile & calendar, flower-garden and tennis. Fur-
thermore, we present results for one self-recorded video sequence. Since no
ground truth is available for these test sequences, we are limited to qualita-
tive analysis of the results.

5.1 Optical flow estimation

At first, we applied our algorithm on the mobile & calendar sequence. We
show some frames of this sequence in figure 23. In this sequence the train
is moving to the left. The train pushes a ball, which results in a rotational
motion of it. Furthermore, the calendar is moving down, while the camera
pans to the left. We used five consecutive frames as input for our algorithm.
The result of the layer extraction step is visualized in figure 24a, where in-
valid layers (i.e. that are removed in the layer extraction step) are colored
black. The layer extractor could not recover the complex boundary at the
front of the ball, which is assigned to a wrong layer. However, the effect
of ignoring occlusions is less visible at this sequence, since the motion and
therefore also the occluded regions between frames are relatively small. We
present the final results of our algorithm in figure 24b. The boundaries of
the train are extracted well in most areas. Furthermore, occluded regions
are assigned to the right layers. The layer configuration on the pixel level
and the occluded pixels (colored red) are visualized for every view-pair in
figure 24c. It seems that most of the occluded pixels are correctly identi-
fied in each view. Some visible pixels are erroneously declared as occluded,
which is due to the outlier removal property of the view consistency term.

To visualize the flow field we plot the absolute x- and y-components of
the flow vectors. The flow field is scaled by a factor of 32 and is visualized in
figure 25a and 25b. The motion boundaries as well as the motion in regions
of low texture seem to be correctly estimated. The two-dimensional flow
vectors for some pixels are shown in figure 25c. We also visualize the flow
field on the pixel level for every view-pair in figure 25d and 25e.

As a second test sequence we present the flower-garden sequence. We
used four consecutive frames as input for our algorithm, which are shown
in figure 26. In this sequence the objects are static and the camera pans
approximately horizontally to the left. We present the result of the layer
extraction step in figure 27a. The layer extractor could not recover the cor-
rect border in occluded regions at the left side of the tree trunk, which are
assigned to a wrong layer. We present the final results of our algorithm in fig-
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Figure 23: Frames 9-13 (from top-left to bottom-right) of the mobile &
calendar sequence.

ure 27b. The boundaries of the tree trunk are extracted better compared to
the results of the layer extractor. However, some pixels at the border of the
tree trunk are still assigned to a wrong layer, which is a result of poor color
segmentation. Nevertheless, most occluded pixels were correctly detected in
each view. The layer assignment on the pixel level is visualized in figure 27c.

The x- and y-components of the computed flow field are visualized in
figure 28a and 28b. The motion in regions of low texture seems to be cor-
rectly estimated, but the motion boundaries could not be extracted well in
most areas, which is basically caused by a poor color segmentation. The
two-dimensional flow vectors for some pixels are shown in figure 28c. The
flow field on the pixel level for every view-pair is visualized in figure 28d and
28e.

We further evaluated our algorithm on the tennis sequence. We used
two frames as input for our algorithm, which are presented in figure 29. In
this sequence the arm and the paddle are moving up, which results in an
upward motion of the ball. We present the result of the layer extraction
step in figure 30a. The layer extractor recovered the correct border of all
scene objects. The final results of our algorithm, which are shown in figure
27b, are almost the same. The layer configuration on the pixel level and the
occluded pixels are shown for every view-pair in figure 27c. It seems that
most of the occluded pixels are correctly identified in each view. Most parts
of the ball are erroneously declared as occluded, which is due to the high
motion blur on the ball.
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(a) (b)

(c)

Figure 24: Resulting layer configurations for the mobile & calendar se-
quence. (a) Result of the layer extraction step. (b) Final layer configuration.
(c) Final layer configuration on the pixel level (occluded pixels are colored
red).
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(a) (b)

(c)

(d) (e)

Figure 25: Computed optical flow for the mobile & calendar sequence. (a)
The x-component of the flow field. (b) The y-component of the flow field.
(c) Flow vectors (White regions indicate no motion). (d) The x-component
of the optical flow on the pixel level. Left: Frame 9. Right: Frames 10-13
(top to bottom). (e) The y-component of the optical flow on the pixel level.
Left: Frame 9. Right: Frames 10-13 (top to bottom).
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Figure 26: Frames 2-5 (top-left to bottom-right) of the flower-garden se-
quence.

The x- and y-components of the flow field are visualized in figure 31a and
31b. The motion in all regions seems to be correctly estimated. The two-
dimensional flow vectors for some pixels are shown in figure 31c. The flow
flow field on the pixel level for both views is visualized in figure 31d and 31e.

Finally, we applied our algorithm on a self recorded video sequence,
which will be denoted as train sequence and was recorded using an un-
calibrated Dragonfly IEEE-1394 color camera as provided by Point Gray
Research. In this sequence, a train is moving from right to left in front of
a static background. As input for our algorithm we used three consecu-
tive frames, which are shown in figure 32. Figure 33a shows the result of
the layer extraction step. The computed layers cannot describe the complex
boundary of the train. Furthermore, wrong layers assignments are generated
in occluded regions (e.g. at the front of the train). In figure 33b the final
layer configuration is visualized. The boundaries of the train are extracted
well, except for the shadow on the trail between the wagons. The shadow is
wrongly assigned to the train due to the high color similarity between the
wheels of the train and the shadow. The layer configuration on the pixel
level and the occluded pixels (colored red) are visualized for every view-pair
in figure 33c. It seems that most of the occluded pixels are correctly identi-
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(a) (b)

(c)

Figure 27: Resulting layer configurations for the flower-garden sequence.
(a) Result of the layer extraction step. (b) Final layer configuration. (c)
Final layer configuration on the pixel level (occluded pixels are colored red).
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(a) (b)

(c)

(d) (e)

Figure 28: Computed optical flow for the flower-garden sequence. (a) The
x-component of the flow field. (b) The y-component of the flow field. (c)
2-D flow vectors (White regions indicate no motion). (d) The x-component
of the optical flow on the pixel level. Left: Frame 2. Right: Frames 3-5
(top to bottom). (e) The y-component of the optical flow on the pixel level.
Left: Frame 2. Right: Frames 3-5 (top to bottom).
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Figure 29: Frames 11 and 14 of the tennis sequence.

(a) (b)

(c)

Figure 30: Resulting layer configurations for the tennis sequence. (a) Result
of the layer extraction step. (b) Final layer configuration. (c) Final layer
configuration on the pixel level (occluded pixels are colored red).
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(a) (b)

(c)

(d)

(e)

Figure 31: Computed optical flow for the tennis sequence. (a) The x-
component of the flow field. (b) The y-component of the flow field. (c)
2-D flow vectors (White regions indicate no motion). (d) The x-component
of the optical flow on the pixel level between frame 11 and 14. (e) The
y-component of the optical flow on the pixel level between frames 11 and
14.
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Figure 32: Frames 1-3 (left to right) of the self-recorded train sequence.

fied in each view, except some outliers.

The x-component of the flow field of the final layer configuration is visu-
alized in figure 34a. The y-component of the motion is not visualized, since
in this scene there is almost no motion in y-direction. The motion seems
to be correctly estimated in all parts of the image, except those areas that
are erroneously assigned to the layer of the train. The two-dimensional flow
vectors of the final layers are shown in figure 34b. Furthermore, we present
the optical flow on the pixel level for each view-pair in figure 34c.

5.2 Application to motion segmentation

To demonstrate the robustness of our algorithm, we used it to obtain a
motion segmentation of the mobile & calendar and the self-recorded train
sequences. The segmentation results for the mobile & calendar sequence
were generated using five consecutive frames as input, whereas for the train
sequence we used three consecutive frames. To achieve constant segmen-
tation results for every frame, we use the resulting layers of the currently
processed frame as initial layers for the next frame. The segmentation re-
sults for every fifth frame of the mobile & calendar sequence are presented in
figure 35. Although motion segmentation is not the primary goal of our al-
gorithm, the computed layers for each frame seem to correspond well to the
objects in the scene. The motion segmentation results for the self-recorded
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(a) (b)

(c)

Figure 33: Resulting layer configurations for the self-recorded train se-
quence. (a) Result of the layer extraction step. (b) Final layer configuration.
(c) Final layer configuration on the pixel level (occluded pixels are colored
red).
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(a)

(b)

(c)

Figure 34: Computed optical flow for the self-recorded train sequence. (a)
The x-component of the flow field. The y-component of the flow field is not
visualized, since the train moves only in x-direction. (b) 2-D flow vectors
(White regions indicate no motion). (c) The x-component of the optical flow
on the pixel level. Left: Frame 1. Right: Frames 2-3 (top to bottom).
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train sequence are shown in figure 36. The constant results (i.e. the fine
structures of the train are recovered in every frame) for every frame of the
sequence emphasizes the robustness of the algorithm.

Using the results of the motion segmentation, we extracted the video-
objects of the mobile & calendar sequence. The video sequence with the
extracted objects is shown in figure 37. To give an application example, we
created a new sequence by inserting the extracted ball into the mobile &
calendar sequence. In this new sequence, the ball bounces from the other
scene objects (i.e. the train and the original ball). The first frames of this
new sequence are presented in figure 38.
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Figure 35: The segmentation results for every 5-th frame of the mobile &
calendar sequence. Left: The original frames where the yellow lines denote
the borders of the computed layers. Middle: The x-component of the corre-
sponding motion. Right: The y-component of the corresponding motion.
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Figure 36: The segmentation results for the first five frames of the self-
recorded train sequence. Left: The original frames where the yellow lines
denote the borders of the computed layers. Right: The x-component of the
corresponding motion.
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Figure 37: Video objects of the mobile & calendar sequence. The video
sequence is presented with the extracted video objects (i.e. the background,
ball, calendar and the train respectively).

Figure 38: Manipulation of the mobile & calendar sequence. The extracted
ball was inserted into the original sequence. The ball bounces on the com-
puted borders of the train. The frames are sorted from left-top to right-
bottom.
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6 Conclusion

In this work, we presented a new algorithm for computing a dense optical
flow field between two or more images of a video sequence. The algorithm
uses color segmentation to improve the quality of flow estimates in untex-
tured regions and for the accurate detection of motion boundaries. The
motion inside each segment is described by the affine motion model. The
model parameters are initialized by a set of correspondences that are com-
puted by a conventional optical flow algorithm. We extract layers from the
motion segments, which are dominant affine motions likely to occur in the
scene. Every pixel and segment are then assigned to exactly one layer or
declared as occluded. A global cost function measures the optimality of
an assignment. The cost function is defined on the pixel level, as well as
on the segment level. On the pixel level, a data term measures the data
similarity based on the current flow field. Furthermore, occluded pixels are
detected symmetrically. The segment level is connected to the pixel level in
a way that the segmentation information is propagated to the pixel level. If
multiple frames are used as input, the segment level propagates information
between view-pairs. Furthermore, a smoothness term is defined on the seg-
ment level. The cost function is optimized by a graph-based technique.

We demonstrated the performance of the proposed algorithm for three
standard test sequences as well as for one self-recorded sequence. We achieve
good results, especially in regions of low texture as well as in regions close
to motion boundaries. Furthermore, we demonstrated the robustness of our
algorithm by using it to perform motion segmentation on the test sequences.

Nevertheless, the performance of the algorithm could be improved. Pri-
marily, this is due to the affine motion model that cannot describe scenes
of complex motions (e.g. perspective motion), especially when the motion
between the frames is large. Furthermore, if the result of the color segmenta-
tion is poor (i.e. one segment overlaps a motion boundary), the performance
of the algorithm decreases. In future work, the proposed algorithm could be
extended by using a more sophisticated motion model (e.g. spline model).
The algorithm could also be improved by defining criteria for splitting seg-
ments that overlap motion discontinuities.
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Appendix

A Graph construction

In the following, we show that the cost function defined in section 3.5.2 can
be represented by a set of functions of binary variables that fulfill condition
(37). Furthermore, we describe the construction of the overall graph. The
functions of binary variables and their corresponding graphs, which are used
in the construction, are illustrated in figure 39. The graph constructions are
similar to the ones presented by Kolmogorov and Zahib [24].

To give an example of how to prove the correctness of such a construction,
let us consider construction (b4) of figure 39, since this is the most complex
one. In this construction, the function Ci,j(xi, xj) returns 0 for the case of
xi = 1 and xj = 1 and a non-negative constant c in all other settings for xi

and xj . Condition (37) is fulfilled, since

Ci,j(0, 0) + Ci,j(1, 1) = c + 0 ≤ c + c = Ci,j(0, 1) + Ci,j(1, 0). (38)

In figure 40 we show that the costs for any cut on construction (b4)
are equal to the costs of the corresponding binary labeling which is de-
fined by Ci,j(xi, xj). In the first case, xi and xj are set to 0 and therefore
Ci,j(0, 0) = c. According to equation (35) this labeling configuration corre-
sponds to a cut with vi ∈ SRC and vj ∈ SRC. In this configuration one
edge (vj , snk) with the weight c connects SRC to SNK. Since the costs
that are generated by a configuration correspond to the sum of all weights
of those edges that go from SRC to SNK, costs of c are produced. In the
next case (figure 40b) xi = 0, xj = 1 and Ci,j(0, 1) = c. This corresponds
to the cut vi ∈ SRC and vj ∈ SNK. Again exactly one edge (vi, vj) with
weight c leads from SRC to SNK and therefore produces costs of c. In the
third case (figure 40c), the labeling xi = 1 and xj = 0 with Ci,j(1, 0) = c
corresponds to the cut vi ∈ SNK and vj ∈ SRC. The edge (vj , snk) that
goes from SRC to SNK produces costs of c. In the last case (figure 40d), xi

and xj are set to 1 and Ci,j(1, 1) = 0. Since there is no edge that points from
SRC to SNK in this configuration, no costs are produced. The correctness
of the remaining configurations of figure 39 can be shown analogously.

In the following, we represent each term of the cost function by using
the constructions presented in figure 39.
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Figure 39: Functions of binary variables and their corresponding graphs used
in the construction. (a1-a3) Functions in the form of Ci(xi) that only depend
on one binary variable xi. (b1-b4) Functions in the form of Ci,j(xi,j) that
depend on the binary variables xi and xj . The constant c is non-negative.
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Figure 40: The costs producted by different cuts in the graph of construction
(b4) of figure 39. The red lines illustrate the cut in the graph. Dashed black
edges generate costs. (a) Ci,j(0, 0) = c. (b) Ci,j(0, 1) = c. (c) Ci,j(1, 0) = c.
(d) Ci,j(1, 1) = 0.
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A.1 Color consistency term

The color consistency term, which we defined in equation (28), generates
costs that correspond to the pixel dissimilarity for every pixel p which
is not occluded (f(p) 6= 0) and produces costs of 0 for occluded pixels
(f(p) = 0). Let us suppose that a pixel p remains assigned to its old
label in f́ (xp = 0). The costs generated by the color consistency term
are then computed by Cp(0) = dissimilarity(p, m[f(p)](p)), if p was not
assigned to the occlusion label in f (f(p) 6= 0) and Cp(0) = 0 otherwise.
Similary, the costs for assigning a pixel p to the label α in f́ (xp = 1) are
Cp(1) = dissimilarity(p, m[α](p)) if α 6= 0 and Cp(0) = 0 otherwise. The
function Cp(xp) at each pixel p of both views is implemented by construc-
tion (a3).

A.2 Occlusion term

The occlusion term defined in equation (29) imposes a penalty λocc for each
occluded pixel p. Let us suppose that a pixel p remains assigned to its old
label in f́ (xp = 0). The costs generated by the occlusion consistency term
are then computed by Cp(0) = λocc, if p was assigned to the occlusion label
in f (f(p) = 0) and Cp(0) = 0 otherwise. The costs for assigning a pixel
p to the label α in f́ (xp = 1) are Cp(1) = λocc if α = 0 and Cp(0) = 0
otherwise. The function Cp(xp) at each pixel p of both views is implemented
by construction (a3).

A.3 View consistency term

The view consistency term defined in equation (30) gives the non-negative
penalty λmismatch to every non-occluded pixel p whose matching point q in
the other view carries a different label (f(p) 6= 0 ∧ f(p) 6= f(m[f(p)](p))).

First, let us assume that p = α in f and α is not the occlusion label
(α 6= 0). Therefore, the matching point q is independent from the setting of
xp. If also f(q) = α then no setting of xp and xq produces costs, since no
view inconsistencies are generated. In the other case, where f(q) 6= α, q has
to be assigned to α in f́ (xq = 1), since any other configuration would result
in a view inconsistent labeling and therefore produces costs of λmismatch. In
this case, we derive Cq(xq) defined by Cq(0) = λmismatch and Cq(1) = 0.
Accordingly, construction (a1) is used.

In the following, let us suppose that p is not assigned to α in f (f(p) 6= α).
Therefore, the matching point q is generally different, since it depends on
the setting of the binary variable xp. As a consequence we have to apply a
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construction for xp = 0 and one for xp = 1, respectively.

Let us now consider xp = 1 (f́(p) = α), since this is the simpler case. If α

corresponds to the occlusion label (α = 0), p is occluded in f́ and therefore
no costs are generated.

In the second case, where α 6= 0, the matching point q = m[α](p)
can be computed. In the case that f(q) = α, q will be assigned to α
for any setting of xq. Therefore, only view consistent results, and there-
fore no costs, are generated. Otherwise, if f(q) 6= α and q remains as-
signed to its old label in f́ (xq = 0), a view inconsistent labeling is pro-
duced. Therefore, we have to impose the mismatch penalty λmismatch in
this case. This defines the function Cp,q(xp, xq) with Cp,q(1, 0) = λmismatch

and Cp,q(0, 0) = Cp,q(0, 1) = Cp,q(1, 1) = 0. Accordingly, we use construc-
tion (b1).

Let us now regard the case where xp = 0 (f(p) = f́(p)). If f(p) = 0,

the pixel p is occluded in f́ and therefore no costs are generated. In the
other case, where f(p) 6= 0, the matching point q = m[f(p)](p) becomes
defined. If f(p) = f(q), assigning q to α in f́ (xq = 1) would result in
an inconsistent labeling and therefore has to be penalized by λmismatch.
In this case, we derive Cp,q(xp, xq) defined by Cp,q(0, 1) = λmismatch and
Cp,q(0, 0) = Cp,q(1, 0) = Cp,q(0, 0) = 0. Accordingly, we apply construction
(b2).

In the other case, where f(p) 6= f(q), assigning q to its old label in f́
(xq = 0) would result in a view inconsistent labeling. Furthermore, chang-
ing q to α does not produce a view consistent labeling either, since we know
that f(p) 6= α. Therefore, every setting of xq generates costs of λmismatch.
As a consequence, we derive the function Cp(xp) with Cp(0) = λmismatch

and Cp(1) = 0, which is implemented by construction (a1).

A.4 Segment consistency term

The segment consistency term defined in equation (31) imposes an infinite
penalty for all non-occluded pixels p (f(p) 6= 0) from the left view, which are
labeled different than the segment s to which they belong (f(p) 6= f(s)). In
the following, we can rely on the validity of the segment consistency term in
the old configuration f , since the initial configuration does not contain any
inconsistencies and no configuration which violates this term is produced
during the optimization process.

In the first case, let us suppose that the pixel p is not occluded in f
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(f(p) 6= 0) and α 6= 0. Due to the validity of the segment consistency term,
the label of pixel p is equal to the label of the segment s to which it belongs
in f (f(p) = f(s)). The case of α = f(p) is trivial, since no setting of xp and
xp produces costs. Otherwise, if α 6= f(p), the pixel p as well as the segment

s have to remain assigned to the old label in f́ (xp = xs = 0), or both have to

change their label to α in (f́) (xp = xs = 1), so that the segment consistency
term is not violated. Therefore, in this case, Cp,s(0, 0) = Cp,s(1, 1) = 0 and
Cp,s(0, 1) = Cp,s(1, 0) = ∞. Accordingly, construction (b3) is applied.

Let us now suppose that f(p) 6= 0 and α = 0. In this configuration,
the pixel p is allowed to change its label to α (xp = 1), while the segment

s to which it belongs remains assigned to its old label in f́ (xs = 0). Fur-
thermore, we allow configurations where p as well as s keep their labels
(xp = xs = 0) or change them to α in f́ (xp = xs = 1). In the case that s
changes its label to α (xs = 1), also p has to to be assigned to α, since the
segment consistency term would be violated, if p keeps its label (xp = 0).
Therefore, Cp,s(0, 0) = Cp,s(1, 0) = Cp,s(1, 1) = 0 and Cp,s(0, 1) = ∞. This
construction is implemented by (b2). The case of f(p) = 0 and α 6= 0 is
constructed analogously by disallowing p to change its label to α (xp = 1),
while s remains assigned to its old label (xs = 0), which is implemented by
construction (b1). Finally, we have to regard the trivial case of f(p) = 0
and α = 0, where all settings of xp and xs are valid.

A.5 Smoothness term

The smoothness term defined in equation (32) gives a non-negative penalty
λsmooth to neighboring segments s and t that are assigned to different la-
bels (f(s) 6= f(t)). The penalty λsmooth depends on the border length and
the color similarity between s and t and is computed according to equation
(32). In the construction of the smoothness term we have to analyse a set
of different cases, which are explained in the following.

In the trivial case of f(s) = f(t) = α, no costs are generated by any
setting of xs and xt. In the case where f(s) = α, but f(t) 6= α, we have
to penalize the configuration where t keeps its old label in f́ (xt = 0) by
λsmooth. In this case, we derive the function Ct(xt) with Ct(0) = λsmooth

and Ct(1) = 0, which is implemented by construction (a1). The symmetri-
cal case where f(s) 6= α and f(t) = α can be derived in the same way.

In the following, let us suppose that f(s) 6= α and f(t) 6= α. In the case
that both segments are assigned to the same label in f (f(s) = f(t)), both
segments have to remain assigned to their label (xs = xt = 0) or both change
their assignment to α (xs = xt = 1). For any other combination of xs and xt
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we impose the penalty λsmooth. Therefore, we derive the function Cs,t(xs, xt)
with Cs,t(0, 0) = Cs,t(1, 1) = 0 and Cs,t(1, 0) = Cs,t(0, 1) = λsmooth, which
is implemented by construction (b3). In the other case, where f(s) 6= f(t),
both segments s and t have to change their label to α in f́ (xs = xt = 1) in or-
der to have the same assignment. This is defined by the function Cs,t(xs, xt)
with Cs,t(1, 1) = 0 and Cs,t(0, 0) = Cs,t(1, 0) = Cs,t(0, 1) = λsmooth. This
case can be implemented by construction (b4).
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