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Summary
Given two images recorded from slightly different perspectives, a shape-from-

stereo approach identifies corresponding points in both images that are projections
of the same point in the scene. In a standard stereo setup, such corresponding pixels
are known to lie on the same horizontal scanline, so that this correspondence prob-
lem is reduced to a one-dimensional search task. The offset between x-coordinates
in the left and right images is then referred to as disparity, and a pixel’s disparity
is inversely proportional to the pixel’s depth. However, assigning each point to its
correct disparity is a fundamental problem in computer vision. Although there is
a large body of literature, common stereo methods still show poor performance in
some image areas. Firstly, matching often fails in the absence of discriminative
image features that can be uniquely matched in the other view (untextured regions).
Secondly, some pixels’ matching points are occluded in the second image. Since oc-
clusions occur at disparity discontinuities, it is specifically challenging to precisely
outline object boundaries. A large number of stereo algorithms fail in this respect,
since the fact that there are occlusions is simply ignored.

In this thesis, we propose two novel stereo algorithms that tackle the inher-
ent problems in stereo matching by dividing the reference image into segments of
homogeneous colour. We assume that disparity inside such segments varies smo-
othly, while disparity discontinuities coincide with the segment borders. Both algo-
rithms make use of a layered representation and model the stereo task as a two step
problem. In the first (layer extraction) step, we answer the question: What are
the dominant disparity planes (which we refer to as layers) likely to occur in the
scene? These layers are extracted by clustering a set of initial disparity segments.
In the second (layer assignment) step, we then focus on the more difficult question:
Which part of the image is covered by which layer and where do occlusions occur?
For the first algorithm presented in this thesis, we develop a novel global cost func-
tion that measures the goodness of an assignment of segments to layers by image
warping. We show that image warping can as well be used to detect the occlusions
in both images. This cost function is then optimized by a greedy algorithm, which
is computationally efficient, but can get trapped in a local optimum. In order to
overcome this weakness, we present a second algorithm for the layer assignment
task that makes use of a recent robust optimization scheme, namely graph-cuts.
The novelty of this approach lies in that we show how segmentation-based stereo
matching can be formulated in a graph-cut approach with explicitly modelling oc-
clusions. Both methods are then extended to the closely related optical flow (or
motion) problem. As opposed to stereo, the displacement vector for this problem is
a two-dimensional one.

In the experimental results, we demonstrate that our methods produce good-
quality results, especially in regions of low texture and close to disparity/motion
boundaries. Moreover, our stereo algorithms show excellent results on the Middle-
bury stereo evaluation website.
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Kurzfassung
In einem Shape-from-Stereo-Ansatz werden zwei Bilder aus leicht unterschied-

lichen Perspektiven aufgenommen. Die Aufgabe eines Stereoalgorithmus ist es
dann, korrespondierende Pixel in beiden Bildern zu identifizieren, welche Projek-
tionen des gleichen Punktes in der Szene darstellen. In einem Standard-Stereo-
Setup ist es bekannt, dass korrespondierende Punkte auf derselben horizontalen
Scanlinie zu finden sind, sodass das Korrespondenzproblem auf eine eindimen-
sionale Suche beschränkt werden kann. Der Offset zwischen den X-Koordinaten
im linken und dem rechten Bild wird dann als Disparität bezeichnet, und diese
Disparität ist invers proportional zum Tiefenwert eines Punktes. Die Zuordnung
eines Pixels zu seiner korrekten Disparität stellt jedoch ein fundamentales Problem
des Maschinellen Sehens dar. Obwohl umfassende Literatur vorhanden ist, liefern
herkömmliche Methoden schlechte Ergebnisse in gewissen Bildbereichen. So versagt
der Korrespondenzfindungsprozess oft aufgrund des Nichtvorhandenseins von Bild-
merkmalen, die zum eindeutigen Auffinden der gesuchten Pixelkorrespondenz im
anderen Bild nötig wären (untexturierte Regionen). Darüber hinaus sind die Kor-
respondenzen mancher Pixel im anderen Bild verdeckt. Da Verdeckungen vor allem
in der Nähe von Disparitätsunstetigkeiten auftreten, ist es besonders schwierig Ob-
jektgrenzen präzise zu rekonstruieren. Eine große Anzahl von Stereoalgorithmen
scheitert in diesem Sinne, da sie die Tatsache, dass Verdeckungen vorhanden sind,
einfach ignorieren.

In dieser Arbeit präsentieren wir zwei neue Stereoalgorithmen, welche die inhä-
renten Schwierigkeiten in der Stereokorrespondenzbildung mittels einer Zerteilung
des Referenzbildes in Segmente gleichartiger Farbe bewältigen. Unsere Annahme
ist, dass die Disparität innerhalb eines derartigen Segmentes kontinuierlich vari-
iert, während Disparitätsunstetigkeiten mit den Segmentgrenzen zusammenfallen.
Beide Algorithmen repräsentieren die Disparitäten anhand von Layern und model-
lieren das Stereoproblem in zwei Schritten. Im ersten (Layer Extraction) Schritt
beantworten wir die Frage: Was sind jene ebenen Oberflächen (wir bezeichnen
diese als Layer), die in der Szene dominant vorhanden sind? Diese Layer werden
durch das Clustern anfänglicher Disparitätssegmente gefunden. Im zweiten (Layer
Assignment) Schritt beschäftigen wir uns mit der schwierigeren Frage: Welche
Teile des Bildes sollen welchem Layer zugeordnet werden und wo treten Verdeckun-
gen auf? Für den ersten Algorithmus dieser Arbeit entwickeln wir eine neuartige
Kostenfunktion, welche die Qualität einer Zuordnung von Segmenten zu Layern
mittels einer Bildwarpingoperation misst. Wir zeigen, dass diese Warpingopera-
tion auch dazu verwendet werden kann, um Verdeckungen in beiden Bildern zu
erkennen. Ein gieriger Algorithmus wird dann zur Optimierung dieser Kosten-
funktion verwendet. Dieser Optimierungsalgorithmus ist vom Rechenaufwand her
effizient, läuft jedoch Gefahr, in einem lokalen Optimum stecken zu bleiben. Um
diese Schwäche zu bewältigen, beschreiben wir einen zweiten Algorithmus zum
Lösen des Layer Assignment-Problems, welcher von einer kürzlich publizierten, ro-
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busten Optimierungstechnik Verwendung macht, nämlich Graph-Cuts. Die Neuheit
unseres Ansatzes liegt darin, dass wir zeigen, wie segmentierungsbasiertes Stereo
in einem Graph-Cut-Ansatz formuliert werden kann, sodass Verdeckungen explizit
modelliert werden. Beide Methoden werden dann auf das nahe verwandte Problem
der Berechnung des optischen Flusses (oder Bewegungsberechnung) erweitert. Im
Unterschied zu Stereo ist der Verschiebungsvektor in diesem Problem ein zweidi-
mensionaler.

In unseren Experimenten demonstrieren wir, dass unsere Methoden Resul-
tate von guter Qualität generieren, vor allem in Regionen mit schwacher Tex-
tur und nahe an Disparitäts-/Bewegungsunstetigkeiten. Darüber hinaus erzie-
len die vorgestellten Stereoalgorithmen exzellente Ergebnisse auf der Middlebury-
Stereoevaluierungswebseite.
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Chapter 1

Introduction

1.1 Stereo vision

The task of stereo vision is the computation of three-dimensional data from
two-dimensional input images. This is exactly what the human visual sys-
tem is doing when we perceive depth. Stereo vision therefore tries to imitate
the ability of the human brain to infer depth from a scene and consequently
uses the same principle. This principle is intuitively explained as follows.1

Apart from interpreting monocular depth cues, i.e. cues that are present
when only one eye is used, the human visual system relies on the fact that
our eyes capture two images of the world. Since these images are obtained
from slightly different perspectives, the position of a scene point in one view
is horizontally displaced in the other view. The amount of this displace-
ment allows reasoning about the point’s depth, as we illustrate in Figure
1.1. The length of the horizontal displacement vector is commonly referred
to as disparity, and a pixel’s disparity is inversely proportional to the pixel’s
distance from the cameras. Using this principle, the human brain converts
the disparity information into a three-dimensional impression of the world.
Although the process seems to be very simple and the stereo task is per-
manently solved by the human visual system without us even noticing the
effort, the same problem turns out to become very difficult when it needs to
be solved by a computer. The major challenge that one faces when using a
shape-from-stereo approach is that of solving the correspondence problem.
The correspondence problem denotes the task of automatically computing
the correct disparity value at each pixel. This is one of the oldest, but still
most challenging problems in low-level computer vision and represents the
topic of this thesis.

1We will give a more technical description at a later point in this thesis.

1
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Figure 1.1: Binocular depth perception. Two images are obtained from
different viewpoints. Due to the different perspectives, corresponding image
points are displaced in horizontal direction as indicated by the arrows. The
amount of displacement is inversely proportional to the depth of a point.

1.2 Contributions

The major goal of this thesis is to develop novel algorithms for the dense
correspondence problem that are specifically designed to generate accurate
results in image areas which are traditionally challenging in stereo match-
ing. These image areas are regions of low texture and close to disparity
discontinuities, where standard approaches often fail to compute the cor-
rect disparities due to the lack of discriminative image features, suboptimal
smoothness assumptions or improper treatment of occlusions. In this work,
the key step in overcoming these weaknesses of common methods is to divide
the reference image into segments of homogeneous colour. Based on the as-
sumption that disparity discontinuities go along with discontinuities in the
intensity image, the resulting segments then form our algorithms’ matching
primitives. Therefore, instead of assigning each individual pixel to a discrete
disparity value, we assign complete segments to continuous disparity mod-
els. The major advantages of this segmentation-based concept are twofold.
First, disparities inside a segment are constrained to follow the same dispar-
ity model. This allows the assignment of smooth disparity values in regions
of poor texture. Second, disparity discontinuities are enforced to coincide
with segment borders. This is advantageous, since we believe that disparity
boundaries can be more accurately identified by the use of monocular cues
than this would be possible using disparity only.
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In this thesis, we formulate segmentation-based stereo as a global cost
optimization problem. We therefore develop two novel cost functions that
measure the quality of an assignment of segments to disparity models. These
cost functions are then subject to minimization. One advantage of our cost
functions lies in that they explicitly model the occlusion problem in both
views. Occlusions denote pixels which are visible in only one of the input
images. These occlusions usually go along with discontinuities in depth,
and if ignored, they corrupt the matching results in areas close to object
boundaries. The capability of our algorithms to handle occlusions, together
with the segmentation information, leads to an improved performance in
regions close to disparity boundaries.

In our first approach, the cost function measures the quality of a disparity
solution using an image warping mechanism. The basic idea is to transform
the reference image into the geometry of the second view using the current
disparity assignments. If the disparity solution was the correct one, the re-
sulting warped image should show high similarity with the real second view.
One novelty (among others) of our method is that we do not only apply
image warping to measure the agreement of pixel values between the refer-
ence and the second views, but as well use the warping results to detect the
occlusions in both images simultaneously. The cost function is then opti-
mized by a greedy special purpose optimization scheme. We describe various
ways to speed up the optimization process so that the resulting algorithm is
computationally efficient.

The novelty of our second approach is that we show how to set up a cost
function for segmentation-based stereo with treatment of occlusions that can
be optimized via robust graph-cut-based optimization. Our idea is motivated
by the observation that occlusions cannot be dealt with when modelling the
stereo problem solely in the domain of segments. We therefore include two
levels into our problem formulation, one representing the extracted segments
and the other representing pixels. The link between these levels is then
built by the following constraint: “Each pixel inside a segment must be
assigned to the same disparity model as every other visible pixel of this
particular segment. The pixel might, however, also be declared as occluded.”
Identification of occluded pixels is then modelled by enforcing the uniqueness
of a match in both views. We prove that our cost function belongs to the
class of those cost functions that can be optimized via graph-cuts and show
how to construct the graph that is used in the optimization process.

The second problem that we address in this thesis is the optical flow or
motion problem. A moving scene is thereby recorded by a single camera,
and the task is to find a dense field of displacement vectors that transform
one frame into a subsequent one. In contrast to the stereo correspondence
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problem, such a displacement vector is, in general, a two-dimensional one.
Since this results in a larger search range, optical flow computation can be
regarded as a more difficult task than stereo. Nevertheless, due to the closely
related natures of these problems, the challenges remain the same. In this
thesis, we reformulate both of our algorithms in order to model the motion
problem. Moreover, for the graph-cut-based approach, we show how this
method is extended to compute the optical flow field considering more than
two input images. We demonstrate that both algorithms can as well be
applied to the task of motion segmentation.

1.3 Resulting publications

The work presented in this thesis has appeared in the following publications:

• M. Bleyer and M. Gelautz. A Layered Stereo Matching Algorithm Using
Image Segmentation and Global Visibility Constraints. ISPRS Journal
of Photogrammetry and Remote Sensing, 59(3):128–150, 2005.

• M. Bleyer and M. Gelautz. A Layered Stereo Algorithm Using Image
Segmentation and Global Visibility Constraints. IEEE International
Conference on Image Processing (ICIP), Singapore, pages 2997–3000,
2004. (oral presentation)

• M. Bleyer, M. Gelautz and C. Rhemann. Colour Segmentation-based
Computation of Dense Optical Flow with Application to Video Object
Segmentation. ÖGAI Journal (Special Issue on Multimedia Information
Retrieval), 24(1):11–15, 2005.

• M. Bleyer, M. Gelautz and C. Rhemann. Region-based Optical Flow
Estimation with Treatment of Occlusions. Joint Hungarian-Austrian
Conference on Image Processing and Pattern Recognition (HACIPPR),
Veszprem, Hungary, pages 235–242, 2005. (oral presentation)

• M. Bleyer and M. Gelautz. Graph-based Surface Reconstruction from
Stereo Pairs Using Image Segmentation. SPIE Symposium on Elec-
tronic Imaging 2005 (Videometrics VIII), volume 5665, San Jose, CA,
USA, pages 288–299, 2005. (oral presentation)

• C. Rhemann. Region-based Optical Flow Estimation with Treatment
of Occlusions. Master’s thesis, Vienna University of Technology, 2005.
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Details on the camera system used in recording the test images as well as
the application of the proposed algorithms to the task of automatic genera-
tion of artistic stereo paintings have been published in the following works:

• M. Bleyer and M. Gelautz. Video-based 3D Reconstruction of Mov-
ing Scenes Using Multiple Stationary Cameras. 27th Workshop of the
Austrian Association for Pattern Recognition (Vision in a Dynamic
World), Vienna, Austria, pages 181–187, 2003. (poster presentation)

• M. Gelautz, E. Stavrakis and M. Bleyer, Stereo-based Image and Video
Analysis for Multimedia Applications. XXth ISPRS Congress 2004,
Istanbul, Turkey, pages 998–1004, 2004. (oral presentation)

• E. Stavrakis, M. Bleyer, D. Markovic and M. Gelautz. Image-based
Stereoscopic Stylization. IEEE International Conference on Image Pro-
cessing (ICIP), volume 3, Genova, Italy, pages 5–8, 2005. (oral presen-
tation)

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the
principles of depth reconstruction from stereo images from a technical point
of view. We identify the matching task as the key step in stereo vision and
point out the factors that make this problem challenging. Chapter 3 then
reviews prior methods that compute dense correspondences from stereo and
motion pairs. We describe the Middlebury stereo vision benchmark that is
used in order to evaluate the performance of some of those algorithms on a
set of standard images. The concept of segmentation-based matching, which
builds the core for those algorithms presented in this thesis, is then introduced
in Chapter 4. We discuss advantages and disadvantages that go along with a
stereo method of this type. Chapter 5 presents the first novel algorithm for
the stereo problem. This method shows moderate computational demands,
but produces results of good quality. The algorithm uses a greedy search
strategy to optimize a global cost function. We then modify this technique in
order to compute the optical flow between two consecutive frames of a video
sequence in Chapter 6. The second novel algorithm of this thesis is then
described in Chapter 7. We show how to set up a cost function that models
segmentation-based matching with explicitly accounting for occlusions. The
cost function is designed to be optimizable via graph-cuts. This method is
then extended to motion computation in Chapter 8. Finally, we give our
conclusions in Chapter 9.



Chapter 2

Fundamentals of stereo vision

2.1 Stereo from a technical point of view

In the previous chapter, we have informally presented the concept of depth
reconstruction from two-dimensional images in order to provide an intuitive
understanding of “what is meant by disparity”. In the following, we will
focus on a more technical problem description.

2.1.1 Inferring depth from a two camera setup

Looking at the stereo problem from a technical point of view, we obtain the
configuration illustrated in Figure 2.1. There are two pinhole cameras with
Cl and Cr being their focal centers and L and R denoting the corresponding
image planes1. We assume that the camera system is fully calibrated, i.e. the
camera parameters as well as the positions and orientations of the cameras
are known2. Both cameras capture the scene point P . The projections of
P onto the left and right image planes pl and pr are given by the intersec-

tion of the lines
−→

ClP and
−→

CrP with the corresponding image planes. As a
consequence of the projection, the z-coordinate of P is lost in each image
and cannot be recovered when only a single camera is available. However,
if we know the two corresponding points pl and pr, we can reconstruct P ,

which lies at the intersection of the rays
−→

Clpl and
−→

Crpr. Unfortunately, these
correspondences are not known apriori, and this leads to the difficult part
of stereo reconstruction. The question that we have to answer is: Given the
projection pl of the scene point P onto the left image, where can we find

1We use capital letters to denote points in the world coordinate system (measured in
meters) and small letters for points in the image (measured in pixels).

2Camera calibration can be achieved using standard methods [91, 105].

6
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P

prpl

Cl Cr

L R

Figure 2.1: Two camera stereo setup.

pr, which is the projection of the same scene point P onto the right image
plane? This problem is known as the correspondence problem and represents
the key step in stereo vision.

2.1.2 Epipolar geometry and rectification

To simplify the search for correspondences, we can use the observation il-
lustrated in Figure 2.2a. Let us assume that we want to find the matching
point of pl in the right view. We can then observe that any scene point pro-

jecting to pl is constrained to lie on a line, which is the projection ray
−→

Clpl.
Consequently, each of those scene points must also lie on a line in the right

view. This line is given by the projection of the ray
−→

Clpl onto the second
image. We refer to this line as epipolar line of pl. It is interesting to note
that each epipolar line in the right image must pass through the point er.
This point is called epipole and lies at the intersection of the baseline, which
is the line connecting the focal centers Cl and Cr, with the right image plane
R. In other words, the epipole is the point where the left camera is seen
from the right camera. Since the stereo problem is symmetrical, the same
observations can be made when searching the matching point of pr in the left
view, as we show in the figure. Using the knowledge about epipolar lines, the
correspondence problem can be reduced to a one-dimensional search task.

A specifically interesting case arises if both image planes L and P lie in a
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Figure 2.2: Epipolar geometry. (a) Epipolar lines for cameras in general
positions and orientations. The matching point in one view must lie on the
corresponding epipolar line in the other view. (b) Epipolar lines after epipolar
rectification. Image planes lie in the same plane and x-axes are parallel to
the baseline. The matching point in one view lies on the same horizontal
scanline in the other image.
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common plane and their x-axes are parallel to the baseline, which is shown
in Figure 2.2b. In this configuration, the epipoles move to infinity and the
epipolar lines coincide with horizontal scanlines. The matching point of a
pixel in one view can then be found on the same scanline in the other view,
i.e. yl = yr where yl and yr refer to the y-coordinates of a scene point in the
left and right images, respectively. The horizontal offset between correspond-
ing pixels xl − xr is referred to as disparity. To take benefit of this simple
geometry, the images of two cameras in general positions can be reprojected
onto a plane that is parallel to the baseline. This process is known as rec-
tification or epipolar rectification. The rectification step involves resampling
of the image, and therefore some precision in the 3D-reconstruction is lost.
However, since it is more convenient to search for correspondences along hor-
izontal scanlines than to trace general epipolar lines, this transformation is
commonly applied. Throughout this thesis, we will assume that this simple
geometry is used whenever we deal with stereo pairs.

2.1.3 3D reconstruction via triangulation

Let us for now assume that the correspondence problem is solved. The
reconstruction of a point’s depth can then be accomplished via triangulation
as shown in Figure 2.3. We assume that the cameras are epipolar rectified
as described in Section 2.1.2. This means that the cameras are parallel to
each other and have identical focal lengths. The focal length f , i.e. the
distance between the camera’s focal point and its optical center, and the
baseline length B, i.e. the length of the line connecting the two focal points,
are known from the calibration procedure. From similar triangles we derive
that

X

Z
=

xl

f
and

X −B

Z
=

xr

f
(2.1)

and finally derive

Z =
B · f

xl − xr

=
B · f

d
(2.2)

with B and f being constant values and d denoting the disparity according
to our previous definition. From equation (2.2) we conclude that disparity is
inversely proportional to depth. A disparity map that records the disparity
for each image point is therefore sufficient for a complete three-dimensional
reconstruction of the scene. This relationship is also the reason why disparity
is commonly used synonymously with inverse depth.
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Figure 2.3: Reconstruction of the depth coordinate via triangulation.

2.2 The correspondence problem

In order to compute a three-dimensional scene reconstruction, we need to
identify points in both images that are projections of the same scene point.
What sounds easy in theory, turns out to be extremely difficult in practise.
A good indicator for the problem complexity is the huge amount of papers
that have been published on the correspondence problem ever since the early
days of computer vision. Although there has been steady progress, the stereo
problem still cannot be considered as being solved. We try to identify the
factors that make this task so challenging in the following.

2.2.1 Challenges

It is quite reasonable to assume that pixels originating from the same scene
point show constant intensity values in both images. This is referred to as the
assumption of photo consistency and builds the core of almost every match-
ing algorithm. Unfortunately, this assumption only holds true for Lambertian
surfaces, i.e. perfectly diffuse surfaces that reflect the same luminance regard-
less of the viewing angle. In practise, the assumption of Lambertian surfaces
is violated by specular reflections, whose positions and colours change sub-
stantially depending on the viewpoint. Furthermore, varying intensity values
for the same scene point can as well be the consequence of different sensor
characteristics of the two cameras. Image acquisition is also commonly af-
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fected by a certain amount of noise originating from the camera electronics.
However, photo consistency is probably the most effective assumption for
solving the correspondence problem. Deviations from photo consistency are
usually small enough to allow for the application of this constraint.

A second problem in stereo matching is identified as follows. Throughout
the process of establishing correspondences, one has to rely on the presence
of discriminative image features that can be uniquely matched in the other
view. Unfortunately, such features do not necessarily exist in every part of
the image. This is, for example, the case in untextured regions. Matching
in an untextured area becomes ambiguous, since there are many potential
matching points of very similar intensity patterns. When searching along
horizontal epipolar lines, this situation obviously does not improve if there
is continuous texture with only horizontal orientation. This phenomena is
known as the aperture problem. Another source of ambiguity arises from the
presence of a repetitive pattern (e.g. a wallpaper). Also, in this case, the
image feature is found multiple times in the second view.

A third and final complicating factor is that a matching point might not
even exist. The reason for this is that there are pixels that are only visible
in one image. We refer to such pixels as occluded, or more correctly, half-
occluded. The occlusion problem is illustrated in Figure 2.4. Since occlusions
often occur at depth discontinuities, it is specifically challenging to precisely
outline object boundaries, which is, nevertheless, often required for applica-
tions such as depth segmentation [61] or novel view generation [77, 109].

As becomes obvious from our problem analysis above, a strategy that
matches single pixels by simple comparison of intensity values along epipolar
lines would give very poor results. This indicates that the photo consistency
assumption and the epipolar constraint alone are not sufficient to solve the
problem. From a mathematical viewpoint, the stereo problem is known to
be ill-posed [72] in the sense of Hadamard [38]. That is, (1) a solution may
not exist (occlusions), (2) a solution may not be unique (untextured regions)
and (3) small variations in the input data show large effects on the solution
(noise). Consequently, additional assumptions are needed in order to make
the problem tractable.

2.2.2 Assumptions

In the following, we review assumptions that have been commonly used in
the literature to overcome the problem of ambiguity in stereo matching. The
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left camera right camera
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P2 P3

half-occluded half-occluded

Figure 2.4: The occlusion problem. While it is possible to reconstruct P1,
which can be seen from both views, P2 and P3 are occluded in one view and
can therefore not be matched. Oftentimes, occlusions are the consequence of
discontinuities in depth.
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epipolar constraint3 and the photo consistency assumption are not listed,
since they have been discussed earlier in this chapter.

Smoothness assumption

The smoothness assumption [62, 63] is motivated by the observation that
natural scenes consist of objects with smooth surfaces. This assumption
states that disparity varies smoothly almost everywhere (except at depth
boundaries). That means we can expect that our disparity map is piecewise
smooth. Smoothness is assumed by almost every correspondence algorithm,
either in an implicit or explicit way. Whether this assumption holds true
obviously depends on the scene content. While it is applicable on scenes
consisting of compact objects (e.g. a flat box in front of a flat background),
the assumption fails if there are thin fine-structured shapes (e.g. branches of
a tree, hairs).

Uniqueness assumption

The uniqueness assumption [62, 63] states that a pixel of one view corre-
sponds to at most one pixel of the other view. This constraint is often used to
identify occlusions by enforcing one-to-one correspondences for visible pixels
across images (e.g. [50, 108]). The uniqueness assumption is valid for scenes
composed of opaque surfaces, but is broken if there are transparencies. An
often used example is an image of a fish in a transparent fish bowl. In this
example, a single pixel is the projection of both the fish and the bowl. Conse-
quently, the same pixel has two different depth values. Another aspect that
has been overlooked until recently is that for horizontally slanted surfaces
the uniqueness assumption is violated as well [69]. Let us consider a slanted
plane recorded with two cameras. The projections of such a plane will, due
to the slant, show different widths in the two images. As a consequence of
this different sampling, there are points in one view that correspond to more
than actually one pixel of the other view.

Ordering assumption

The ordering assumption [103] states that the order in which points occur
is preserved in both images. More precisly, let pl be a point of the left view
that corresponds to pr of the right image. Moreover, another point ql of the
left image corresponds to qr of the second view. The ordering assumption

3In contrast to the other assumptions, the epipolar constraint will indeed always hold
true unless the calibration data is erroneous.
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r

Figure 2.5: Violation of the ordering constraint at thin foreground objects.
While pl is left to ql in the left view, pr is right to qr in the right image.

then states: If pl is to the left of ql then also pr has to be to the left of
qr. The advantage of using the ordering assumption is that its application
allows for the explicit detection of occlusions. This will become obvious in
our discussion of dynamic programming-based stereo algorithms (for which
the ordering constraint builds the basis) in Section 3.1.4. The limitation of
the ordering assumption is that it indeed does not always hold true. It is
known to fail for scenes containing thin foreground objects as we show in
Figure 2.5.

Disparity gradient limit

The disparity gradient limit is interesting in the sense that it originates from
psychological studies [21]. These studies have provided evidence that the
human visual system fails to fuse two nearby dots of a stereogram if the
points’ disparities vary by a sufficiently large value. The disparity gradient
is measured in the cyclopean view. This is the virtual view that lies exactly
in the middle of the two real views. The disparity gradient of two points
is then defined as the ratio of their disparity difference and their spatial
separation in the cyclopean view. It has been shown in those studies that
the human visual system fails in stereo fusion if the disparity gradient exceeds
a value of one. For a stereo algorithm, this means that two points cannot be
accepted simultaneously if their disparity gradient is above this limit. Since
the disparity gradient limit arises from studies on the human visual system,
it is not clear whether it can be used for general camera setups that are very
different from the geometry of the human eyes.



CHAPTER 2. FUNDAMENTALS OF STEREO VISION 15

2.3 Summary

In this chapter, the basics of stereo vision have been presented. Focusing on
a technical problem description, we have introduced the epipolar geometry of
two calibrated cameras and presented a transformation that aligns epipolar
lines with the horizontal scanlines of the images. While the discussion of the
matching problem has been postponed, we have established the relationship
between a point’s disparity and depth. The second part of this chapter has
then been exclusively devoted to the stereo correspondence problem. We have
pointed out the complicating factors in stereo matching, which are roughly
summarized as: image noise, untextured regions and the occlusion problem.
Since the epipolar constraint combined with the assumption of photo consis-
tency have been found to be insufficient to solve the problem, we have finally
reviewed the most frequently used assumptions in stereo matching.



Chapter 3

Solving the correspondence
problem

3.1 Prior work on stereo

There is a considerable amount of literature on the stereo correspondence
problem and giving an all-embracing review is hardly possible. We therefore
focus our summary on a few techniques that we consider as important. An
extensive review on recent stereo algorithms that produce a dense disparity
field is given by Scharstein and Szeliski [78]. The authors identify four steps
that are usually performed by a stereo method. These are: (1) matching
cost computation, (2) cost aggregation, (3) optimization and (4) disparity
refinement. The four steps build the basis for their taxonomy. In our analysis,
we focus on the optimization component and divide algorithms between local

and global methods with the major difference between these two approaches
being the way how the smoothness assumption is employed.

Local methods assume that small image patches show similar intensity
patterns across views. They typically operate on windows that are shifted on
the corresponding scanline in the second view to find the point of maximum
correspondence. Since pixels inside the search window are assumed to have
constant disparities, those methods apply an implicit smoothness assump-
tion. However, the final disparity assignment is obtained by selecting the
point of highest matching score (winner-takes-all principle). This strategy
is purely local in the sense that a pixel’s matching score is not influenced
by the disparity assignments of neighbouring pixels. In contrast to local ap-
proaches, global methods explicitly model the smoothness assumption. The
correspondence problem is stated in terms of a cost function, which is sub-
ject to minimization. Although global approaches have shown to give the

16
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strongest results at the current state-of-the-art [78], the optimization step
usually involves a high computational effort. Real-time implementations us-
ing nowadays hardware are therefore mostly only possible for local methods1.

3.1.1 Window-based correlation

Window-based (or local) approaches are popular in stereo vision for their
simplicity and high efficiency. Since matching single pixels based on the
winner-takes-all principle is very prone to matching ambiguities, those meth-
ods choose small image areas as their matching primitives instead. For this
reason, those approaches are often also referred to as area-based methods.
Window-based correlation exploits the concept of a support region. That is,
each pixel receives support from its surrounding points. It is assumed that
points inside this support region are likely to have the same disparity and
can therefore help to resolve matching ambiguities. Usually, rectangular or
square windows centered on the point for which a correspondence needs to
be established implement this concept.

The first step of a window-based approach is the computation of match-
ing scores, which represent the likelihood that two points correspond to
each other. Using a predefined search range, the search window is there-
fore horizontally displaced in the second view for each allowed disparity.
More precisely, the matching score for a pixel (x, y) at disparity d is de-
rived by comparing the intensity values of the window centered at (x, y)
of the first view against the window centered at the position (x + d, y)
of the second image. Commonly used matching measures include sum-
of-absolute-differences (SAD), sum-of-squared-differences (SSD), normalized
cross-correlation (NCC), as well as the sampling insensitive measurement of
Birchfield and Tomasi [9]. The three-dimensional structure that is obtained
by determining the matching score for each pixel (x, y) at each disparity d

is commonly referred to as disparity space image (DSI) [15, 78]. In a naive
implementation, the efficiency of calculating the DSI depends on the chosen
window size, which is computationally expensive. However, for rectangular
search windows of fixed size, a “sliding window” technique, as described by
Faugeras et al. [29] and Mühlmann et al. [67], can be employed to make
the complexity linear with respect to the number of pixels and disparities.
This gives rise to real-time implementations such as the two most popular
commercial stereo systems of SRI [53] and Point Grey Research [2].

Once the matching costs are determined, the matching point is derived

1An exception to this are some global techniques that use dynamic programming for
the optimization of the objective function.
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Figure 3.1: Systematic error of window-based methods near depth disconti-
nuities.

based on the winner-takes-all principle. That is, the point of highest match-
ing score is selected from the DSI2. Unfortunately, it is not guaranteed that
the matching costs exhibit a clear and sharp extremum at the correct dispar-
ity. This is the case in untextured regions or in the presence of a repetitive
pattern. Multiple disparities then show very similar matching values and im-
age noise will strongly influence the selection of the final disparity. To avoid
this problem, the search window has to be large enough to capture sufficient
intensity variation.

A problem that arises when using image patches as matching primitives
is that the implicit assumption of constant disparity within a search window
is not guaranteed to hold true. Looking at this assumption in more detail, it
will indeed only hold true if the scene is entirely composed of planes fronto-
parallel to the camera. Using this strategy for matching slanted surfaces
leads to undesired effects due to perspective distortions. Even more severe,
the assumption of constant disparity is systematically broken at depth dis-
continuities where the search window captures pixels of completely different
disparities. Matching in those regions becomes ambiguous. In Figure 3.1, we
try to match a background point whose search window partially overlaps a
depth discontinuity. The correct solution would be to match the window at
the disparity of the background. However, the intensity patterns at this po-
sition are quite different, whereas the similar patterns at the disparity of the
foreground indicate a good match. In general, the decision which disparity
is chosen at a depth discontinuity depends on the texture of the fore- and
background as well as on the intensity pattern of the occluded region. Since

2Window-based cost aggregation can as well be combined with different optimisation
strategies. This is preferable over point-wise matching if there is a high noise level.
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in natural images, the background often continues similarly (as is the case
in Figure 3.1) the point is matched at the disparity of the foreground. The
resulting elongation of foreground objects in the disparity map is commonly
referred to as the foreground fattening effect. Problems associated with the
implicit smoothness assumption obviously become more severe with larger
window sizes, since the chances of capturing pixels of different disparities are
increased.

Generally, the choice of an appropriate window size is a crucial decision.
Small windows do not capture enough intensity variation to give correct re-
sults in less-textured regions, whereas large windows tend to blur the depth
boundaries and do not capture well small details and thin objects. This
motivates the use of adaptive windows that vary the shapes and sizes of
support windows [15, 33, 39, 46, 47, 88, 93, 102]. Kanade and Okutomi [46]
iteratively change the size and position of a rectangular window based on
the local variation of the intensity and current disparity estimates. Their
method requires an initial disparity map to start from. Fusiello et al. [33]
anchor nine equally sized windows at different positions. They assume that
at least at one of those positions the window does not overlap a depth dis-
continuity. Consequently, the matching score is chosen to be the minimum
of the matching costs of all nine windows. Using a similar idea, Hirschmüller
et al. [39] divide the search window into a set of subwindows. The subset
of those windows that show the highest correlation values is used for the
matching cost computation. Finally, Veksler [93] estimates an arbitrarily
sized and shaped window at each pixel by optimizing over a large class of
compact windows.

However, in practise, even adaptive windows only partially represent a
remedy to the above illustrated problems. Feature-based methods therefore
estimate correspondences only for points that can be matched unambiguously
(e.g. [60, 76, 92]). This results in a sparse disparity map (as opposed to a
dense one that gives a correspondence at each point). A commonly applied
method to filter out unreliable correspondences in window-based correlation
is to enforce the uniqueness of matches across views. Let us assume that
the point pr of the right view was computed to be the matching point of a
pixel pl. This match is then valid only if pl also gives the highest matching
score when searching for the matching point of pr in the left view. In other
words, the matched point in the right image has to point back to the pixel in
the left view. This check is often referred to as cross-validation or left-right
consistency checking. As Fua [32] points out, cross-validation is known to
fail if the areas to be correlated have little texture or in the presence of an
occlusion.
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3.1.2 Progressive approaches

Progressive methods [55, 86, 97, 106] aim at resolving the problem of ambi-
guity in stereo matching by first establishing correspondences between points
that can be matched unambiguously. These “reliable” points are then used
to disambiguate subsequent matches by imposing constraints on them. This
strategy originates from the least commitment principle used in Artificial In-
telligence [106]. The principle states that unreliable decisions should be post-
poned until enough contextual information is gathered. However, although
using disparity information from surrounding pixels, progressive approaches
still belong to the class of local methods, since they do not explicitly optimize
a cost function.

Zhang and Shan [106] measure the reliability of a point based on its local
variation of intensity. Moreover, they require that for a reliable point the
matching scores show a strong unique peak at a particular disparity. To
resolve ambiguity for subsequent matches, Zhang and Shan then use the
disparity gradient limit. Szeliski and Scharstein [86] present a progressive
method that applies cross validation to filter out unreliable points. Once a
set of reliable points is known, they rule out potential subsequent matches
using the uniqueness constraint. Furthermore, the search window size is
iteratively increased to reduce matching ambiguity.

The major advantage of progressive approaches lies in their computa-
tional efficiency, since they avoid computational expensive global optimiza-
tion. On the other hand, they cannot recover from early wrong decisions,
which corrupt subsequent matches. Recently, Wei and Quan [97] proposed
to overcome this problem by matching segments that are derived from colour
segmentation. They argue that since regions contain richer information than
individual pixels, the likelihood of early wrong matches is reduced.

3.1.3 Cooperative approaches

Cooperative approaches [62, 63, 64, 104, 108] explicitly model the assump-
tions of smoothness and uniqueness that cooperatively solve the stereo prob-
lem. Those methods operate directly on the DSI whose matching scores are
iteratively updated exploiting the two assumptions.

In the first step, cooperative approaches calculate initial DSI values that
are derived from a local method (window-based correlation). Those initial
matching scores are then refined by an iterative update function that ap-
plies two basic concepts. Firstly, the smoothness assumption is exploited
by the use of support regions. In contrast to window-based correlation,
these support regions do not operate on the image space, but on the space
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Figure 3.2: The concept of an inhibition area in the DSI. Assuming the
validity of the uniqueness constraint, an established match (x, y, d) inhibits
all other matches at the lines of sight of both cameras.

of correspondences, i.e. on the DSI. While Marr and Poggio [62, 63] em-
ploy two-dimensional support regions, Zitnick and Kanade [108] make use of
three-dimensional ones in order to overcome perspective distortions caused
by slanted surfaces. The matching values within a support region are then
aggregated (e.g. by computing the average). This serves to propagate dis-
parities having a high matching score.

Secondly, the uniqueness assumption is applied by using the concept of
an inhibition area, which we illustrate in Figure 3.2. This concept is imple-
mented by increasing the matching score of the strongest match, while the
scores of all other potential matches on the corresponding lines of sight are
reduced. A function that exploits the above ideas is used to simultaneously
update all matching scores in the DSI. This process is then iterated until
convergence. Upon convergence, the matching scores of each pixel in the left
image are supposed to exhibit a strong unique peak at the correct disparity.
In the final step, a pixel is therefore assigned to the disparity of maximum
matching score. Since for occluded pixels no correct matching point exists,
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they show low matching values at each allowed disparity. Occluded pixels
can therefore be identified by comparing a pixel’s highest matching score
against a predefined threshold.

Cooperative approaches lie in the middle between local and global meth-
ods. On the one hand, they show global behaviour by propagating good
disparities to ambiguous regions. On the other hand, they do not explicitly
state a cost function that is subject to minimization. In practise, coop-
erative methods have shown to give strong results in various publications
[104, 108]. Limitations include the higher computational effort compared
to local methods. Furthermore, depth boundaries tend to be blurred, since
rectangular support regions are employed. Zhang and Kambhamettu [104]
try to overcome this problem by using image segmentation to estimate an
appropriate support window. Cooperative stereo also depends on good ini-
tialization. While many incorrect matches may have large initial matching
values, correct matches must have high initial matching scores [108].

3.1.4 Dynamic programming

Global approaches based on dynamic programming [10, 15, 25, 34, 70] match
two horizontal scanlines individually, assuming the validity of the ordering
constraint.3 Their principle is illustrated in Figure 3.3. The figure shows two
scanlines of the left and right images along with their colour values. Each
cell in the two-dimensional array corresponds to a potential match of two
pixels. A lot of those matches are prohibited, since they would result in
a negative disparity or exceed a predefined limit on the maximum allowed
disparity (set to 10 in the figure). Those matches are coloured grey. Each cell
holds its associated matching costs. The illustrated array of cells therefore
represents a shifted version of a DSI slice at a particular y-coordinate. The
task of a stereo method based on dynamic programming is now to compute
the minimum cost path that connects the two opposite corners Cs and Ce of
the array.

As a consequence of the ordering assumption, there are only three di-
rections in which a path is allowed to continue, i.e. diagonally, horizontally
and vertically. A cell that is joint with its predecessor by a diagonal move
represents a match at the same disparity with its predecessor. The costs of
including a diagonal move into the path are then given by the corresponding
matching costs. On the other hand, if a cell is connected with its predecessor
by a horizontal or vertical move, this represents an occlusion. In this case,

3An implementation of a dynamic programming-based algorithm can also be found in
Intel’s Open Source Computer Vision Library [1].
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Figure 3.3: Stereo based on dynamic programming. The minimum cost
path through a DSI slice is computed. Pixels that are declared as occluded
(according to the computed path) are marked in both scanlines.

more than one pixel of one view projects to a single pixel of the other view.
The costs for including such an occlusion move are given by a predefined
constant value that serves to penalize occlusions.

The path that yields the global optimum of costs is efficiently computed
using dynamic programming. The basic idea of dynamic programming is: If
P is the optimal path between the starting cell Cs and the ending cell Ce

then any subpath P ′ from Cs to an intermediate cell Ci ∈ P must as well
be the one of lowest costs. This idea is used to recursively compute optimal
subpaths to each cell in the array. Knowing the diagonal, horizontal and
vertical neighbours’ costs, the optimal predecessor of a cell is calculated as
the one whose costs plus the costs of the move joining these two cells are
lowest. Each cell then records these costs as well as a link to its optimal
predecessor. Once this computation is done for each cell, the final path is
recovered by tracing back the stored links starting from the ending cell Ce

and leading to the starting cell Cs. The final path represents the best set of
matches that fulfil the ordering assumption.

Advantages of stereo algorithms based on dynamic programming include
their capability to explicitly identify occlusions in both views and their low
computational costs. Some implementations even allow for the computation
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of dense disparity maps close to real-time [31, 36]. On the other hand, op-
timization via dynamic programming only works for one-dimensional cost
functions, since pairs of scanlines have to be matched individually, one after
the other4. Smoothness is therefore enforced within, but not across scan-
lines. As a consequence, the computed disparity maps suffer from horizontal
streaks, which is especially true in regions of low texture. To eliminate hor-
izontal streaks, a post-processing step can optionally be carried out [10].
This might, however, destroy correctly determined disparity values. A sec-
ond problem of stereo via dynamic programming is the dependency on the
validity of the ordering constraint. Since this assumption does not hold for
thin foreground objects (see Section 2.2.2), disparity computation fails in
those areas.

3.1.5 Graph-cut-based approaches

Graph-cut-based methods were originally introduced to overcome the weak-
ness of dynamic programming, which lies in its one-dimensional smoothness
term. To enforce two-dimensional smoothness, those approaches convert the
stereo correspondence task into a maximum flow/minimum cut problem. The
maximum flow problem is explained as follows. Let us consider a weighted
directed graph G such as that of Figure 3.4. The graph contains two special
vertices, called the source src and the sink snk. Directed edges of this graph
are interpreted as water pipes and the edge weights represent the capacities
of pipes that limit the amount of water that can flow through them. The
maximum flow problem then refers to the question: Given that the source
src pumps water into the network G, what is the maximum flow of water
that can reach the sink snk? We show a maximum flow solution for the
specified graph by plotting the flow value at each edge (pipe) in Figure 3.4.
It is well known that computing the maximum flow is equivalent to solving
the minimum cut problem. Formally expressed, a cut denotes a partition of
the vertices in G into two disjoint sets SRC and SNK with src ∈ SRC and
snk ∈ SNK. The costs of the cut are thereby defined as the summed-up
capacities of those edges that go from SRC to SNK, and the minimum cut is
the one of minimum costs. According to the theorem of Ford and Fulkerson
[30], the maximum flow in the network is equal to the costs of the minimum
cut. Once the maximum flow was computed, a minimum cut consists of a
set of edges whose maximum capacities were reached in the maximum flow
solution (Figure 3.4). Roughly spoken, the minimum cut problem is: What

4Recently, Veksler [95] has shown how to approximate the behaviour of a two-
dimensional cost function by applying dynamic programming on a tree structure.
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Figure 3.4: Duality of maximum flow and minimum cut. The maximum
flow saturates a set of edges that build a minimum cut on the graph. The
maximum flow value is equal to the costs of the minimum cut.

is the bottleneck in the network that limits the water flow? The maximum
flow/minimum cut problem has been extensively studied in combinatorial op-
timization literature [16], and a variety of algorithms that compute optimal
solutions in polynomial time exist.

To establish the connection between a minimum cut in a graph and the
stereo correspondence problem, let us consider a simple example. In this
example, the disparity of minimum costs for a single pixel p1 is derived by
computing the minimum cut in a special purpose graph. Given a disparity
range from zero to three, we construct the graph illustrated in Figure 3.5a.
Edges to one of the terminal nodes src and snk are given infinite weights,
while edges between non-terminal nodes are weighted by the corresponding
pixel dissimilarity at a particular disparity d. The thickness of the edges is
thereby proportional to the computed dissimilarity in the figure. It is quite
obvious that the minimum cut will identify the edge at disparity one as being
the bottleneck in the illustrated graph. Moreover, it is possible to construct
a graph so that the locally best disparity assignments for all pixels of the
reference image are computed simultaneously by the minimum cut. We show
such a construction for six pixels p1−p6 of a scanline in Figure 3.5b. In fact,
what we present here is just a parallel implementation of the winner-takes-all
principle. That is, each pixel’s disparity is selected based purely on the data
and independent of neighbouring pixels’ disparity assignments. However, we
can include edges that model interactions between neighbouring pixels as
shown in Figure 3.5c. In addition to the “disparity edges” (vertical ones),
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Figure 3.5: Graph-cuts in stereo vision. (a) A single pixel’s disparity of low-
est costs is computed by the minimum cut (red dotted line) in the illustrated
graph. (b) The locally best disparities for multiple pixels are derived simul-
taneously. (c) Smoothness edges are inserted into the graph of (b) to bias
the minimum cut towards smooth disparity solutions.
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the graph now also contains a set of “smoothness edges” (horizontal ones) of
a constant user-defined weight λ. The basic idea is that if the disparities d1

and d2 of neighbouring points change by d1−d2 pixels, the minimum cut must
include |d1−d2| smoothness edges. Since the smoothness edges contribute to
the overall cut costs, a minimum cut will more likely be one that results in a
smooth disparity reconstruction (such as the cut in Figure 3.5c). Note that,
as opposed to the two-dimensional graph of the figure, the structure of the
graph is in general a three-dimensional one. Smoothness edges do not only
link pixels within the same horizontal scanline, but also neighbouring pixels
of different scanlines. Graph-cut-based approaches are therefore capable of
minimizing cost functions that involve a two-dimensional smoothness term.

The concept of computing a global optimal solution for the stereo prob-
lem with a single minimum cut in a special purpose graph was originally
introduced by Roy and Cox [75]. In their work, they construct a graph that
is very similar to the one that we illustrated in Figure 3.5c. Roy and Cox
regard their algorithm as an extension of dynamic programming without ex-
plicitly stating a cost function. However, taking a closer look at the graph of
Figure 3.5c, we can identify the cost function that is optimized by the mini-
mum cut as being the sum of a data and a smoothness term. The data term
sums up the pixel dissimilarities over all pixels at their current disparities,
while the smoothness term imposes a penalty for neighbouring pixels of dif-
ferent disparity values. More precisely, for two neighbouring pixels assigned
to disparities d1 and d2, the smoothness penalty is computed by |d1 − d2| · λ
with λ being a user-defined value. This smoothness term is a convex function
of the size of the jump in disparity. For cost functions involving a convex
smoothness term, Ishikawa [42, 43] proves that a global minimum of costs is
indeed reachable via graph-cuts in polynomial time. Exact optimization of
such cost functions is the concept behind the graph-cut-based stereo methods
of Ishikawa and Geiger [44] and Buehler et al. [20]. Although global min-
imal solutions are of theoretical interest, convex smoothness terms do not
represent an optimal choice for the stereo problem. The costs of two small
jumps in disparity are not higher than that of one large jump. The effect of
this is that disparity values which lie inbetween the disparities of fore- and
background are computed in the proximity of depth discontinuities. Depth
boundaries therefore tend to be blurred.

To avoid the problem of overpenalizing large jumps in disparity, it is
preferable to use a non-convex smoothness function. In its simplest form,
such a function imposes a constant penalty λ whenever two neighbouring
pixels show different disparities and returns 0 otherwise. This particular
smoothness function is commonly referred to as the Potts model [73]. Since
the smoothness penalty is given independently of the size of the disparity dis-
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(a) (b)

Figure 3.6: The α-expansion move (after [52]). (a) Original label configura-
tion. (b) α-expansion of the white label. The assignments of some pixels are
changed to the white label, while the other pixels keep their old labels.

continuity, it is clear that two small disparity jumps now generate larger costs
than a single large one. Therefore, non-convex functions are better suited
to correctly reconstruct depth discontinuities. However, even the simplest
discontinuity preserving smoothness function, i.e. the Potts model, results in
a problem formulation whose optimization is proven to be NP-complete [52].
However, Boykov et al. [17] show that a strong local optimum, which is guar-
anteed to lie within a known factor of the real optimum, can be calculated for
non-convex smoothness terms by iterative application of their α-expansion
move.

The α-expansion framework will be described very roughly in the follow-
ing. More details are found in Chapter 7 where we present a stereo algorithm
that uses the α-expansion algorithm for optimization of a global cost func-
tion. An α-expansion move basically changes the disparity assignments of a
subset of pixels to the disparity α and leaves the other pixels assigned to their
old disparities. Formally expressed, let f be the current configuration that
labels each pixel of the reference image by a disparity value. The configura-
tion f ′ is within one α-expansion move from f if for each pixel p, f ′(p) = α

or f ′(p) = f(p). We give an example of an α-expansion move in Figure 3.6.
The optimal α-expansion move is the one that results in the largest improve-
ment of costs. It is derived by computing the minimum cut on a weighted
graph. Since the α-expansion move changes a large number of labels simulta-
neously, its application allows to compute a strong local minimum. Boykov
et al. embed the α-expansion move into a greedy algorithm. Starting from
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an arbitrary configuration, the algorithm computes the optimal α-expansion
move for each allowed disparity in fixed or random order. If a move decreases
the costs then this is the new label configuration. This procedure is iterated
until there is no disparity that further decreases the costs by application of
the α-expansion move.

The α-expansion framework is successfully applied on different problem
formulations. Kolmogorov and Zabih [50] identify occlusions by enforcing the
uniqueness constraint. Since the Potts model aims at generating piecewise
constant disparities, the reconstruction of slanted surfaces is not optimal.
Birchfield and Tomasi [11] therefore represent the scene by a set of planar
layers, so that each pixel is assigned to a plane model instead of a discrete dis-
parity value. Lin and Tomasi [57] extend this approach to handle occlusions
in a symmetrical way. Furthermore, they apply a spline model to describe
surfaces’ disparities. Kolmogorov and Zabih [51] use the α-expansion algo-
rithm to approximate the minimum of a cost function for multi-camera scene
reconstruction. They explicitly account for occlusions. Recently, Hong and
Chen [40] and Deng et al. [27] combined image segmentation with graph-cut-
based optimization.

At the current state-of-the-art in stereo matching, global approaches using
optimization via graph-cuts or belief propagation [84, 85] give the strongest
experimental results. Belief propagation thereby represents an optimization
scheme that can be used as an alternative to the α-expansion algorithm in
order to approximately minimize global cost functions of the discussed type.
We refer the reader to the paper of Tappen and Freeman [90] who compare
graph-cuts against belief propagation. They approximate the solution to the
same Markov Random Field using both methods. They conclude that graph-
cuts produce solutions of lower costs, while belief propagation is potentially
faster. However, from a computational viewpoint, both methods are quite
efficient for what they do, but not yet suited for real time applications.

3.2 Evaluation of stereo methods

The absence of ground truth data often represents a limiting factor in com-
puter vision. Fortunately, for the stereo correspondence problem, there exist
ground truth disparities for a number of test image pairs of real scenes. Over
the last couple of years, the Middlebury stereo vision benchmark of Schar-
stein and Szeliski [78] has become a commonly agreed way to measure the
performance of a stereo algorithm. To evaluate a method, the authors pro-
vide a set of four test pairs along with the corresponding ground truth. These
data sets are shown in Figure 3.7. Researchers who want to participate in the
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test are asked to run their stereo algorithms on these image pairs using con-
stant parameter settings. The resulting disparity maps are then compared
against the corresponding ground truth.

For quantitative evaluation, Scharstein and Szeliski measure the percent-
age of wrong pixels, i.e. pixels whose absolute disparity error is larger than
one. Error percentages are computed in three different image regions. First,
they determine the percentage of wrong pixels over the complete image (all).
Then they estimate the percentages of bad pixels in untextured regions
(untex.) and regions close to disparity discontinuities (disc.), since those
image areas are specifically challenging in stereo computation. In all three
cases, only unoccluded pixels are considered. This is due to the reason that
most stereo methods are not able to produce meaningful depth estimates for
points affected by occlusion. The evaluated stereo algorithms are then ranked
according to these error metrics. Table 3.1 shows the online version of the
Middlebury stereo benchmark5 at the time of writing this thesis. Methods
are listed in descending order of their overall performance. To allow for a
comparison between algorithms of different categories (according to our tax-
onomy of Section 3.1), we as well tabulate the optimization schemes applied
by the approaches. These are: winner-takes-all (WTA), progressive optimiza-
tion (PG), cooperative stereo (CO), dynamic programming (DP), graph-cuts
(GC), belief propagation (BP) and others (O) for approaches that do not fit
into any of those categories.

To demonstrate the characteristics of individual techniques, we pick out
some results for the Tsukuba test set. As a representative of window-based
matching using winner-takes-all optimization, we choose the fast correlation
method of Mühlmann et al. [67] and show the computed disparity map in
Figure 3.8a. Artefacts caused by untextured regions are clearly visible (e.g.
right upper corner of the image). Moreover, depth discontinuities are poorly
captured due to the edge fattening effect of window-based techniques. The
results of the cooperative approach of Zitnick and Kanade [108] (Figure 3.8b)
appear much smoother, but still suffer from imprecisely reconstructed depth
boundaries, since rectangular support windows are used. This problem is
overcome by the dynamic programming algorithm implemented by Schar-
stein and Szeliski [78] that uses pixels as matching primitives. However, as
seen from Figure 3.8c, the scanline streaking effect represents a severe limi-
tation, which is also visible in the bad quantitative results of this technique.
In Figure 3.8d, we present the results of the graph-cut approach of Roy
and Cox [75] that optimizes a two-dimensional smoothness term. Since this
smoothness term is a convex function, the technique generates wrong “inbe-

5http://www.middlebury.edu/stereo/
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Tsukuba left image Tsukuba right image Ground truth

Sawtooth left image Sawtooth right image Ground-truth

Venus left image Venus right image Ground truth

Map left image Map right image Ground truth

Figure 3.7: The Middlebury data sets with ground truth used in the study
of Scharstein and Szeliski [78]. Disparities are encoded with bright pixels
representing large disparity values and dark pixels corresponding to low ones.
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Algorithm - Tsukuba Sawtooth Venus Map

Optimization all untex. disc. all untex. disc. all untex. disc. all disc.

Sym.BP+occl. [84] BP 0.972 0.283 5.452 0.191 0.001 2.091 0.164 0.023 2.775 0.161 2.201

Patch-based [27] GC 0.881 0.191 4.951 0.295 0.001 3.235 0.092 0.023 1.502 0.308 4.0810

Segm.-based GC [40] GC 1.235 0.295 6.945 0.306 0.001 3.246 0.081 0.011 1.391 1.4927 15.431

Graph+segm. GC 1.398 0.283 7.177 0.254 0.001 2.563 0.113 0.022 2.043 2.3531 20.835

Segm.+glob.vis. O 1.306 0.488 7.50100.202 0.001 2.302 0.797 0.8110 6.37121.6329 16.033

Belief prop. [85] BP 1.153 0.427 6.313 0.9813 0.3020 4.83111.0010 0.769 9.13180.8422 5.2714

Layered [57] GC 1.5812 1.0615 8.82130.347 0.001 3.357 1.5218 2.9628 2.624 0.3713 5.2413

2-pass DP [49] DP 1.5311 0.6611 8.25120.619 0.029 5.25120.948 0.9511 5.72110.7020 9.3221

Region-Progress. [36] PG 1.449 0.559 8.18110.243 0.001 2.644 0.999 1.3715 6.40131.4928 17.134

GC+occl. [50] GC 1.194 0.232 6.714 0.7312 0.1112 5.71151.6421 2.7526 5.419 0.6118 6.0516

MultiCam GC [51] GC 1.8516 1.9421 6.996 0.6211 0.001 6.86171.2115 1.9618 5.71100.3110 4.3412

Improved Coop. [64] CO 1.6713 0.7712 9.67171.2118 0.1715 6.90191.0411 1.0712 13.6240.296 3.657

Adapt. weights [102] WTA1.5110 0.6510 7.248 1.1416 0.2718 5.48131.1412 0.618 4.496 1.4726 13.529

Symbiotic [37] O 2.8721 1.7120 11.9191.0414 0.1313 7.32210.515 0.235 7.88150.5016 6.5418

Disc. pres. [3] O 1.7815 1.2217 9.71181.1717 0.0811 5.55141.6120 2.2521 9.06170.3211 3.336

Var. win. [94] WTA2.3519 1.6519 12.1211.2819 0.2317 7.09201.2316 1.1613 13.3220.244 2.984

GC α-β-swap [78] GC 1.9418 1.0916 9.49161.3020 0.0610 6.34161.7924 2.6125 6.91140.319 3.888

Reliability-DP [36] DP 1.367 0.8113 7.359 1.0915 0.4422 4.139 2.3526 2.3723 13.5230.5517 6.1417

Multiw. cut [11] GC 8.0835 6.5331 25.3360.6110 0.4624 4.60100.536 0.316 8.06160.265 3.275

GC α-expansion [17] GC 1.8617 1.0014 9.35140.428 0.1414 3.768 1.6923 2.3022 5.408 2.3933 9.3522

Tree DP [95] DP 1.7714 0.386 9.48151.4423 0.8427 6.87181.2114 1.4116 5.047 1.4525 13.028

4-State DP [26] DP 4.7029 3.6826 21.0321.4322 0.1715 13.9291.1813 0.597 17.9270.307 4.2311

Comp. win. [93] WTA3.3624 3.5424 12.9241.6126 0.4523 7.87221.6722 2.1819 13.2210.3312 3.949

Realtime [39] WTA4.2528 4.4729 15.0281.3221 0.3521 9.21231.5319 1.8017 12.3190.8121 11.326

Cooperative [108] CO 3.4925 3.6525 14.7262.0327 2.2931 13.4282.5729 3.5229 26.3350.223 2.372

Relax+occl. [18] O 6.3333 6.6332 22.9331.5125 0.2919 15.0341.4417 1.2414 19.1300.4314 5.9915

Bay. diff. [78] O 6.4934 11.637 12.2221.4524 0.7225 9.29244.0031 7.2133 18.3290.202 2.493

Stoch. diff. [54] O 3.9526 4.0828 15.4302.4531 0.9028 10.5252.4527 2.4124 21.8321.3124 7.7920

Genetic [35] O 2.9622 2.6623 14.9272.2129 2.7633 13.9302.4928 2.8927 23.0331.0423 10.925

SSD+MF [78] WTA5.2332 3.8027 24.6352.2128 0.7226 13.9313.7430 6.8232 12.9200.6619 9.3522

Pix-to-pix [10] DP 5.1231 7.0635 14.6252.3130 1.7929 14.9336.3034 11.336 14.5250.5015 6.8319

Max flow [75] GC 2.9823 2.0022 15.1293.4732 3.0034 14.1322.1625 2.2420 21.7313.1334 15.932

Scanl. opt. [78] O 5.0830 6.7833 11.9204.0633 2.6432 11.9269.4437 14.537 18.2281.8430 10.224

Dyn. prog. [78] DP 4.1227 4.6330 12.3234.8436 3.7136 13.22710.138 15.038 17.1263.3335 14.030

Realtime DP [31] DP 2.8520 1.3318 15.6316.2538 3.9837 25.1366.4235 8.1434 25.3346.4537 25.136

MMHM [67] WTA9.7637 13.838 24.3344.7635 1.8730 22.4356.4836 10.335 31.2368.4238 12.627

Shao [80] O 9.6736 7.0434 35.6374.2534 3.1935 30.1386.0133 6.7031 43.9382.3632 33.038

Max. surf. [83] DP 11.138 10.736 41.9385.5137 5.5638 27.3374.3632 4.7830 41.1374.1736 27.837

Table 3.1: The Middlebury stereo test bed [78]. The algorithms are listed
roughly in order of their overall performance. Large numbers give the per-
centage of wrong pixels, while small numbers indicate the rank. Graph+segm.

and Segm.+glob.vis. are those methods presented in this thesis.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Results of different methods for the Tsukuba data set. (a)
Window-based correlation [67]. (b) Cooperative approach [108]. (c) Dynamic
programming [78]. (d) Maximum flow formulation [75]. (e) α-expansion al-
gorithm [17]. (f) Graph-cuts with occlusions [50].
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tween disparities” in the proximity of disparity borders (e.g. contour of the
lamp). This can also be seen in the large error percentages in regions close
to depth discontinuities (see Table 3.1). The situation is improved in Figure
3.8e. This figure shows the disparity map computed by the α-expansion algo-
rithm of Boykov et al. [17] that optimizes a non-convex smoothness function.
However, occlusions are not dealt with, and, therefore, pixels of occluded
areas are assigned to more or less random disparity values. In contrast to
this, Kolmogorov and Zabih [50] explicitly identify occlusions in their graph-
cut-based algorithm. Occluded areas are then filled in with disparities from
surrounding regions in a postprocessing step. The resulting disparity map is
shown in Figure 3.8f.

3.3 Prior work on motion

Although the major focus of this thesis lies on the stereo correspondence
problem, we will show how to extend our stereo algorithms to the task of
optical flow (or motion) computation in later chapters of this work. For
completeness, we give a brief overview on the motion correspondence problem
and on standard methods used to solve this task in the following.

In the case of motion analysis, a single camera records subsequent frames
of a moving scene. In this setup, the motion correspondence problem can
roughly be stated as: “What went where?” In a more formal problem descrip-
tion, we define the task of a motion algorithm as the automatic reconstruction
of a dense field of displacement vectors that transform one image into the
next image of a sequence [41]. This array of vectors is commonly referred
to as optical flow, and as opposed to stereo, such vectors are, in general,
two-dimensional. Accurate estimation of the optical flow field plays a key-
role in various computer vision applications, including motion detection and
segmentation, frame interpolation, three-dimensional scene reconstruction,
robot navigation, video shot detection, mosaicking and video compression.

From its definition, optical flow is computed as the displacement of bright-
ness patterns over time. As a consequence, the optical flow field does not
necessarily correspond to the real motion within the sequence. An often used
example in this context is that of a rotating sphere of uniform colour [12].
Although there is motion on the sphere, its projections onto the images of
a video sequence show constant brightness patterns. This results in zero
optical flow. What is therefore computed by an optical flow algorithm rep-
resents the apparent motion. However, natural scenes usually have enough
structure, so that the optical flow field represents a good approximation of
the real displacements.
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From a computational point of view, the optical flow problem can be re-
garded as more difficult than stereo. Note that the larger search range (due
to the two-dimensional displacement vector) does not only lead to a higher
computational effort, but also increases the chances of finding an incorrect
match. However, due to the closely related nature of the two problems, the
methods used to solve the motion correspondence problem show high simi-
larity with those algorithms applied in stereo computation. For example, the
concept of window-based matching, which we have discussed in the context
of stereo in Section 3.1.1, is widely adopted in optical flow computation as
well (e.g., [5, 45, 58]). In principle, every motion algorithm can be used to
compute the disparities of a stereo pair (while not every stereo method can
be extended to compute motion). In the following, we give a review of differ-
ential approaches, which represent the most popular way to tackle the optical
flow problem. We then focus on parametric motion algorithms and motion
segmentation methods that are most closely related to the algorithms of this
thesis. Our review is not intended to be exhaustive, and for a more elaborate
summary, the reader is referred to several review papers [7, 65, 66, 82]. Note,
however, that it is difficult to give a quantitative comparison of optical flow
methods, since ground truth data for real image sequences is normally not
available.

3.3.1 Differential approaches

The basic assumption of differential approaches is that the intensity value
of a pixel is approximately constant under motion. Let I(x, y, t) denote
the continuous intensity function of a point with x and y being its spatial
coordinates and t being the time. The assumption of constant intensity can
then be expressed by I(x, y, t) = I(x + u, y + v, t + 1) with (u, v) being the
pixel’s displacement at time t + 1. The vector (u, v) therefore represents the
optical flow at image point (x, y). After expansion in a Taylor series6 we
derive: Ix · u + Iy · v + It = 0 where Ix, Iy, It denote the partial derivatives.
This equation is known as the optical flow constraint equation [41].

The optical flow constraint equation is underdetermined, since it has two
unknowns: u and v. This issue is commonly referred to as aperture problem.
As a consequence of the aperture problem, it is, in general, only possible
to compute the flow vector that is normal to the image edges. In order to
overcome this problem, an additional constraint is required. This constraint
is usually formed by the smoothness assumption. Similar to our catego-
rization of stereo algorithms in Section 3.1, differential optical flow methods

6Details are given in [7].
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are divided between local and global approaches7 based on the way how this
smoothness constraint is employed.

Local approaches [8, 59] assume that the flow vectors are constant within
a support window of user-defined size. For example, the Lucas-Kanade algo-
rithm [59] combines the optical flow constraint equations of points within the
support region. The method then computes the flow vector of a pixel using
least squared error regression. However, the problem of this methodology is
that in untextured image areas the window does not capture feature points
that would help to resolve matching ambiguities. Moreover, choosing the
optimal window size represents a crucial decision (see Section 3.1.1).

As opposed to local techniques, global approaches explicitly state the
smoothness assumption in terms of a global energy functional. Methods of
this category include the well-known approach of Horn and Schunck [41]
as well as various other approaches that optimize a discontinuity preserving
smoothness term [13, 68, 74, 98]. Although global approaches show results
of good quality, they pose complex optimization problems. Moreover, they
are relatively sensitive to image noise [7], which is the reason why the input
images are commonly preprocessed by a smoothing filter.

The major disadvantage of differential approaches lies in that they do,
in general, not model the occlusion problem. Most global differential ap-
proaches enforce that every point is assigned to an optical flow vector. As a
consequence, those methods cannot express the fact that a point’s matching
pixel does not exist (which would be required for occlusion handling).

3.3.2 Parametric methods and motion segmentation

Instead of assigning each pixel to a fixed-valued flow vector, parametric meth-
ods use models to describe the image motion. (An example of such a para-
metric model is the affine one.) Motion models enforce strong constraints on
the motion present in the scene [14], and if the correct models are available,
this results in a more accurate reconstruction of optical flow. The advantage
of parametric techniques lies in that they can robustly describe large image
areas by a single set of parameters. This is also the reason why there is a
strong interrelationship between parametric approaches and motion segmen-
tation algorithms.

Motion segmentation algorithms segment an image based on the optical
flow information. Their basic assumption is that image regions which can
be well represented by the same set of motion parameters originate from a

7Bruhn et al. [19] have recently presented a hybrid method that combines both strate-
gies.
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single moving object. The success of a motion segmentation algorithm there-
fore clearly depends on the quality of motion estimates. On the other hand,
optical flow computation can be significantly improved, if an accurate seg-
mentation of the image into regions of homogenous motion is available. As a
consequence, it makes sense to compute optical flow and motion segmenta-
tion simultaneously [11, 22, 28]. Moreover, parametric optical flow techniques
(such as those presented in this thesis) often generate motion segmentation
as a by-product and vice versa. In the following, we focus on algorithms that
we see as closest related to our work.

Black and Jepson [14] propose a parametric optical flow algorithm that
divides the reference image into regions of homogenous colour. They compute
an initial dense optical flow field and estimate a variable order parametric
model for each individual colour segment using the initial flow estimates. To
determine the number of each model’s parameters (two, six or eight), the
authors warp the segment to the second view and measure the registration
error. In a subsequent step, each model is refined by applying standard area-
based regression techniques. Note that each colour segment is described by its
own parametric model. No attempt is taken to represent several segments
by a single motion model, which might, however, increase the algorithms
robustness, especially in low-textured image areas.

Wang and Adelson [96] popularized the concept of a layered represen-
tation in order to perform motion segmentation. The authors uniformly
distribute a large number of seed blocks over the image. An affine motion
model for each block is then fitted to a precomputed optical flow field. To
extract those motion models that describe the different motions in the scene
(these are called layers), the authors use a k-means clustering algorithm.
Once the layers are known, each block is assigned to the layer model that
shows the highest agreement with the initial motion estimates and a new
image partition is computed. The algorithm is then iterated until conver-
gence. In a similar spirit, Ke and Kanade [48] use a clustering approach for
layer extraction. They compute an affine model for each segment that is de-
rived by colour segmentation. Layers are then identified by mean-shift-based
clustering in a low-dimensional linear subspace. However, the drawback of
both methods is that they solely rely on the precomputed optical flow field
(which is, more than likely, corrupted by erroneous matching results). More
specifically, those methods do not impose spatial smoothness assumptions,
and therefore the segmentation results contain isolated image regions. In
an attempt to overcome this problem, Altunbasak et al. [4] present a colour
segmentation-based algorithm that uses k-means clustering. This approach
is similar to that of Wang and Adelson [96]. The authors, however, include
an additional spatial smoothness constraint into the clustering process.
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In the context of motion segmentation via global cost minimization, Ayer
and Sawhney [6] employ the minimum description length (MDL) encoding
principle in order to derive the smallest set of layers necessary to describe the
image motion. They formulate statistical cost functions for the layer extrac-
tion and assignment tasks that are optimized by an expectation maximization
algorithm. Several other techniques that use probabilistic cost formulations
include [71, 89, 107]. Willis et al. [99] present a graph-cut-based approach
to achieve a dense and piecewise smooth assignment of pixels to layers. Al-
though the authors use their algorithm on image pairs of large inter-frame
motion, they do not explicitly model the occlusion problem in the assignment
step. In contrast to this, Xiao and Sha [101] show how to embed occlusion
detection into a graph-cut-based method in a very recent work. In their pa-
per, they claim to be the first ones to deal with the explicit identification of
occluded pixels for the motion segmentation task.

3.4 Summary

In this chapter, we have presented prior work on the stereo correspondence
problem. Although there are potentially many ways to build a taxonomy
of stereo methods, we have decided to focus on the optimization component
and divided algorithms into local and global approaches.

Starting with the local methods, we have presented the principle of win-
dow-based correlation. We have pointed out the problem of finding the cor-
rect search window sizes and shapes, which represents a trade-off between
obtaining good disparities in low textured regions versus precisely outlining
depth boundaries. We have then continued our review with progressive ap-
proaches. Those methods estimate a set of reliable points, which are then
used to rule out potential subsequent matches. Between local and global
methods, we have identified cooperative approaches that iteratively refine
matching scores using the smoothness and uniqueness constraints.

As a first truly global technique, we have then presented dynamic pro-
gramming. The principle of dynamic programming is to compute a lowest
cost path in a DSI slice relying on the validity of the ordering constraint. Al-
though dynamic programming is computationally efficient, it cannot be ap-
plied to optimize an objective function involving a two-dimensional smooth-
ness term. In contrast to this, graph-cut-based approaches represent an effec-
tive mean to optimize cost functions of this type. While for convex smooth-
ness functions even a global optimum of costs is reachable, it has turned out
that those formulations are not well suited for the stereo problem. We have
therefore presented the α-expansion algorithm that effectively computes a
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local optimum of objective functions with non-convex smoothness terms.
To evaluate the performance of the different approaches, we have de-

scribed the Middlebury stereo benchmark. Furthermore, we have presented
some example results to show the characteristics of individual methods.

Since parts of this thesis will deal with the optical flow problem, we have
then given a short introduction to this problem and summarized standard
approaches that compute a dense optical flow field. The most popular algo-
rithms in this respect are differential approaches. These methods make use of
the optical flow constraint equation. Since this equation is underdetermined,
the smoothness assumption is commonly added as an additional constraint.
Based on the way how this assumption is applied, differential optical flow
methods are divided between local and global ones. We have then focused
on parametric optical flow and motion segmentation algorithms in order to
provide an overview of methods that we consider as closest related to those
motion algorithms presented in this thesis.



Chapter 4

Segmentation-based matching

4.1 Basic concept

As pointed out in the previous chapters, binocular depth computation is
known to be difficult in some image regions (poor texture, occlusions, etc.).
However, besides binocular cues (disparity), we can gain additional informa-
tion from depth features that are present when only one image is available.
This is backed by the fact that the human visual system is very skilled in
the interpretation of such monocular cues. For example, when looking at
the image in Figure 4.1a, the human observer can effortlessly get an impres-
sion of the scene’s depth without having the second view at hand. An often
employed monocular cue in computational stereo is based on the observa-
tion that discontinuities in depth commonly go along with discontinuities in
the intensity image. Often, this observation is used to align disparity dis-
continuities with intensity edges (e.g., [10, 15, 56]). However, it also builds
the foundation for segmentation-based methods that have recently gained
attention for their strong experimental results.

Segmentation-based approaches divide one or sometimes both images into
non-overlapping regions of homogeneous colour. Instead of computing a dis-
parity for each individual pixel, those techniques assign a single disparity
value (or model) to a complete segment. Therefore, those methods implic-
itly apply two basic assumptions: Firstly, inside a segment of homogeneous
colour the disparity values are expected to follow some particular smooth
disparity model (constant disparity, planar model, etc.). This is justified by
the observation that pixels inside the same colour region most likely originate
from the same object in the scene. Since, in general, real world objects are
made up of smooth surfaces, also the disparity values inside the region are
expected to vary smoothly. Secondly, disparity discontinuities are assumed

40
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(a) (b) (c)

Figure 4.1: The segmentation assumption. (a) Left view of the Tsukuba
image pair. (b) Result of a colour segmentation. Segment borders are shown.
(c) Depth discontinuities computed from the ground truth.

to coincide with the boundaries of those colour regions. This assumption ob-
viously reflects the above observation that depth discontinuities are located
at intensity edges. Both assumptions usually hold true for images of natural
scenes. To provide the reader with an idea of what such a segmentation may
look like, we present the result of an off-the-self segmentation algorithm on
the Tsukuba reference image in Figure 4.1b. In addition, we show the depth
discontinuities computed from the ground truth image in Figure 4.1c in order
to allow for an easier comparison against the extracted segment borders.

For the sake of clarity, throughout this thesis, a segment denotes an image
region of homogeneous colour that was derived by colour segmentation. In
principle, however, one could as well use different segmentation strategies
(e.g., texture segmentation). The important point is that the computed
segments do not overlap a disparity discontinuity.

4.2 Advantages and disadvantages

Recently, region-based algorithms have become popular in the stereo commu-
nity. Although quite different from each other, all methods of this category
take benefit of the segmentation information to increase their robustness in
traditionally challenging areas in stereo computation. This is well reflected
by the good experimental results of those techniques. For example, all of
the five best ranked algorithms in the Middlebury database [78] (see Table
3.1) apply colour segmentation. We identify the advantages of region-based
stereo as follows:

1. The probably most obvious advantage is that region-based stereo tech-
niques constrain the disparity inside a region to follow a single disparity
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model. In other words, smoothness within a segment is explicitly en-
forced. This is advantageous, since it allows the assignment of smooth
disparity values in regions of poor texture.

2. Often, disparity boundaries can be more accurately identified by the
use of monocular cues (such as the partition of the reference image
into regions of homogeneous colour) than this would be possible using
disparity only. We point out that a lot of stereo algorithms implicitly
or explicitly aim at the reconstruction of simple object shapes. More
precisely, they bias towards minimizing the length of object borders.
Consequently, this decreases their performance in the presence of more
complex outlines. Segmentation can represent a remedy to this prob-
lem.

3. The robustness in areas affected by occlusion is improved. In theory,
matching might even succeed for a segment that is partially occluded,
since it is still possible to match the segment’s non-occluded pixels.
However, this does not mean that occlusions can be ignored, as we will
explain in more detail in the next section. Note that since a single
disparity model is assigned to the complete segment, also those parts
that are affected by occlusion are automatically filled in with some
“meaningful” disparity.

4. The number of segments is usually significantly smaller than the num-
ber of pixels. This gives rise to potentially much faster stereo algo-
rithms.

Nevertheless, using the segmentation assumption obviously also involves
some disadvantages:

1. The most severe problem associated with region-based approaches is
that the segmentation assumption is, in general, not guaranteed to
hold true. More precisely, the success of such methods depends on
the ability of the segmentation algorithm to accurately delineate the
objects outlines. It is therefore safer to apply oversegmentation.

2. The disparity model can be inappropriate to represent the “real” dis-
parity of a segment. This is, of course, rather a problem of using a
model and not specifically bound to the segmentation aspect. How-
ever, choosing an appropriate model is a difficult task by itself. While
simple models may oversimplify the real disparity, complex models may
overfit the data and show undesired effects due to image noise.
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Figure 4.2: The occlusion problem in segmentation-based matching. Expla-
nation is given in the text.

3. Modelling the stereo problem on the segment level exclusively is insuf-
ficient to handle occlusions. We will give more insights on this problem
in the next section.

4.3 The role of occlusions

Treatment of occlusions is probably the most difficult part in stereo matching
(which is also the reason why algorithms often ignore their existence). In
region-based matching, a method that does not handle occlusions at all might
indeed be partially successful on simple image pairs with only very small
occlusions (see previous section). However, artefacts at depth boundaries
will clearly become more pronounced with increasing size of occluded areas.
We try to give an explanation for this in the following.

Let us consider the two views of a stereo pair illustrated in Figure 4.2a.
The images show two segments S1 and S2 in the left image as well as the cor-
responding segments S ′

1 and S ′2 in the right view. The segment S2 is slightly
displaced in the right image as indicated by the arrows. As a consequence of
the displaced foreground object, there occur occlusions in both frames, which
we colour red in Figure 4.2b. Note that S1 and S ′1 are partially affected by
occlusions. If we now match the complete segment S1 of the left image in
the right view using its correct disparity (zero in this case), this results in
high matching costs in exactly those occluded regions. We mark those areas
by diagonal hatches in the left view of Figure 4.2c. Since the stereo problem
is symmetric, the same effect occurs if we match the complete segment S ′

1
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in the left view at disparity zero. We therefore also mark regions of high
matching costs in the right view by diagonal hatches. Consequently, it is
quite likely that S1 and S ′1 get erroneously assigned to a wrong disparity
model that shows lower matching costs. Ignoring occlusions therefore does
not only result in an incomplete problem formulation, but does as well show
negative effects on the algorithm’s results.

Unfortunately, occlusions cannot be dealt with in the domain of segments.
For an explanation, let us again consider segment S1 from Figure 4.2. When
modelling the problem on the segment level only, we can simply state that
the disparity of segment S1 is zero. However, this is insufficient, since this
would as well mean that the occluded parts of S1 correctly match the second
view at disparity zero. Therefore, the correct statement must be: S1 has
disparity zero (segment level), but contains a set of occluded pixels O1 (pixel
level). Consequently, occlusion detection requires the involvement of the
pixel domain, which is also the basic idea behind the algorithm of Chapter
7.

4.4 Related segmentation-based algorithms

In this section, we give a brief overview on stereo techniques that employ
image segmentation. Those methods that we see as closest related to the
algorithms proposed in this thesis are discussed in more detail and differences
to our techniques are pointed out.

Obviously, our algorithms are related to all those stereo methods that ap-
ply the segmentation assumption and some of which have already been men-
tioned in Chapter 3. In general, the principles of those techniques are quite
different from each other, but they all share the advantages (and disadvan-
tages) outlined in Section 4.2. From a viewpoint of the applied optimization
scheme, the segmentation constraint is used in conjunction with progressive
approaches [97], cooperative stereo [104], belief propagation [84], graph-cuts
[27, 40] and special purpose optimization [88, 109]. Zitnick et al. [109] pro-
pose a region-based correspondence method for the task of novel viewpoint
generation. The requirements for such an algorithm are clearly different,
since the goal is not the computation of a disparity map that is as close as
possible to the ground truth data, but the estimation of novel views that look
natural. Zitnick et al. use colour segmentation to derive accurately outlined
depth boundaries, which is of specific importance for this application. In a
very recent work, Sun et al. [84] formulate the segmentation assumption as a
soft constraint. More precisely, the authors bias the computed disparity so-
lution towards consistency with the results of colour segmentation, but allow
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deviations to increase the robustness against violations of the segmentation
constraint.

We as well consider the algorithms of Birchfield and Tomasi [11] and Lin
and Tomasi [57] as being similar to our methods in the sense that they for-
mulate the correspondence problem in two steps. First, they estimate a set
of layer models that correspond to different depth surfaces occurring in the
scene. In the second step, they then assign each pixel to exactly one of those
layers. Both algorithms are often also categorized as being segmentation-
based, since the layer assignment step divides the image into regions of ho-
mogeneous disparity. However, they do not apply colour segmentation.

The closest related work to the algorithm presented in Chapter 5 is that of
Tao and Sawhney [87]. The authors propose a region-based stereo algorithm
that uses image warping to measure the quality of a disparity map. Each
segment’s disparity is modelled by a planar equation. Plane models are then
propagated among neighbouring segments in order to generate a warped view
that is as similar as possible to the real second view. In our work, we share
the ideas of image warping for measuring the quality of a depth solution and
hypothesizing depth from neighbouring segments. Most obvious differences
in comparison to our method include our layered representation as well as our
cost function that accounts for occlusions and aims at computing a smooth
disparity map.

Among prior work, the closest related to the approach of Chapter 7 is the
stereo method presented by Hong and Chen [40]. Similar to our technique,
they combine region-based matching with graph-based optimization. They
heuristically identify occlusions in a preprocessing step, which then allows
them to optimize a very simple energy function. However, the results of
their algorithm obviously depend on the success of this preprocessing step
and it is not clear how well an apriori identification of occlusions can work,
especially in the presence of large motion. In contrast to this, our cost func-
tion “knows” about the existence of occlusions. Disparities and occlusions
are computed simultaneously, which we believe results in a more accurate
reconstruction of both. Recently, our idea of developing a cost function that
operates on a segment and a pixel level was extended by Deng et al. [27].
In contrast to our work, they segment both images, which allows them to
split a segment into patches that are potentially occluded. The cost function
no longer operates on a segment and a pixel level, but on a segment and a
patch level. However, although their algorithm is faster than ours, it is not
clear whether segmenting both images leads to a higher dependency on the
segmentation assumption.
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4.5 Summary

In this chapter, we have introduced the segmentation assumption, which
builds the core for those algorithms presented in the subsequent chapters.
Segmentation-based stereo relies on monocular cues that are present when
only one image is observed. Approaches of this category divide the image
into a set of homogeneously coloured regions. Within those regions, the
disparity is expected to vary smoothly, while depth discontinuities are as-
sumed to coincide with the regions’ boundaries. Both assumptions are quite
reasonable for natural images. We have described the advantages and dis-
advantages of using a segmentation-based approach. Major advantages are
roughly summarized as: the handling of poorly textured areas, the accurate
reconstruction of depth discontinuities and the increased robustness in areas
close to occlusions. However, we have also pointed out that since this is the
nature of an assumption, the segmentation constraint is not guaranteed to
hold true. We have then focused on the role of occlusions in region-based
matching. Although segmentation-based approaches are, in general, more
robust against occlusions, it is, nevertheless, essential to take occlusions into
account. Finally, we have presented region-based stereo algorithms that we
consider as closest related to the proposed algorithms of this thesis.



Chapter 5

A greedy method using image
warping

5.1 Introduction

This chapter describes the first segmentation-based stereo algorithm that is
presented in this thesis. The algorithm was developed to overcome the in-
herent problems in stereo matching, which are: (1) untextured region, (2)
the accurate reconstruction of disparity discontinuities and (3) the proper
treatment of occlusions in both views. While the first two problems are, to a
large extent, tackled due to the segmentation-based nature of the algorithm,
occlusions are detected and handled by a novel mechanism that relies on im-
age warping. Although image warping for stereo computation was originally
proposed by Tao and Sawhney [87], they did not use it for treatment of oc-
clusions. In this work, we choose a planar model to represent each segment’s
disparity. This model seems to be rather simple, but it works well enough
in our experiments, even for more complex surfaces. The algorithm basically
consists of two major steps. The first (layer extraction) step refers to the
question: What are the dominant depth planes that occur in the scene? We
try to give an answer by clustering a set of initial disparity segments. The
second question (layer assignment step) then is: Which part of the image
is covered by which dominant depth plane and where do occlusions occur?
To find an answer to this problem, we formulate a global cost function that
evaluates a disparity solution by image warping and detects occlusions simul-
taneously. A local minimum of costs is estimated by a greedy search strategy.
The major argument for using this algorithm is that it has moderate compu-
tational demands (when using the optimization scheme from appendix A.1),
but produces results of good quality.
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two epipolar
rectified images

colour segmentation
of the reference image

calculate initial disparity map via
window-based method

create initial plane representation
via robust plane fitting

layer extraction

create plane models for extracted
layers via robust plane fitting

layer assignment

final disparity map

(Section 5.2)
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Figure 5.1: Overview of the algorithm.

The overall algorithm can be divided into several steps that are summa-
rized in Figure 5.1. Input to our matching algorithm are two stereo images
in epipolar geometry. The first processing step is the segmentation of the
reference image into regions of homogeneous colour, as described in Section
5.2. Since discontinuities in the disparity map are usually reflected by dis-
continuities in the colour information, the borders of the segmented regions
can be considered as a set of candidates for the boundaries of the dispar-
ity layers that we aim to compute. We calculate an initial disparity map
using a window-based correlation technique. This process is explained in
more detail in Section 5.3. In the next step, we create an initial plane repre-
sentation for each extracted segment by robust fitting of a planar surface to
the correlation-based disparity values inside each individual segment (Section
5.4).

The computed segments along with their plane description are the start-
ing point for an iterative procedure in which segments are assigned to layers,
which are groups of segments that can be approximated by one and the same
planar equation. The iterative assignment starts with a layer extraction
module (see Figure 5.1) based on mean-shift clustering, which we describe
in Section 5.5. The advantage of the layered approach is illustrated in Fig-
ure 5.2. The planar models computed by fitting a plane to the disparity
values derived from the initial disparity map are not very robust in small
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Figure 5.2: Robustness of the layered representation. The less robust plane
approximation of the individual segments illustrated in (a) is substituted by
the more robust layer representation achieved by clustering as shown in (b).

segments as a consequence of the small spatial extent over which the plane
was calculated. This is sketched in Figure 5.2a. A robust planar description
of each layer is derived by fitting a plane over the larger region formed by all
segments belonging to that particular layer, as shown in Figure 5.2b.

The last block in the iteration loop from Figure 5.1 is the layer assign-
ment module, which we explain in Section 5.6. During this step, we try
to improve the current solution based on a cost function that measures the
quality of the current layer assignment. Based on the observation that erro-
neous assignments of segments to layers tend to arise more frequently along
the layer borders rather than in their central regions, we test for each border
segment whether a possible assignment to another layer might produce lower
costs (i.e., a better solution). Based on the outcome of this hypothesis test-
ing, new layers are formed by the layer extraction module during the next
iteration step. The algorithm terminates if the costs could not be improved
for a fixed number of iterations.
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For the sake of clarity, we summarize the basic terms we use throughout
this chapter. Segments are regions of homogeneous colour that are computed
during the initial colour segmentation step. Layers are groups of segments
(and therefore usually larger than individual segments) that can be approx-
imated by one and the same planar equation. The layer extraction module
computes new layers using mean-shift clustering. During the first iteration
step, the individual segments are input to the clustering algorithm. In sub-
sequent iteration steps, the clustering algorithm seeks to merge previously
defined layers, which may have been modified in the layer assignment mod-
ule, into larger layers. The layer assignment module tries to improve the
current solution by assigning border segments to other neighbouring layers.
During the iteration loop, the generated solution of lowest costs is recorded
and returned as the final output of the algorithm.

5.2 Colour segmentation

We assume that for regions of homogeneous colour the disparity varies smo-
othly and depth discontinuities coincide with the boundaries of those regions.
This segmentation assumption has been discussed in more detail in Chapter
4. It is incorporated into our approach by applying colour segmentation to
the reference image and by using a planar model to represent the disparity
inside the derived segments. In general, an oversegmentation of the image is
preferable to ensure that this assumption is met. In principle, any algorithm
that divides the reference image into regions of homogeneous colour can be
used for the proposed stereo algorithm. Our current implementation uses a
mean-shift-based segmentation algorithm that incorporates edge information
as proposed by Christoudias et al. [23]. The resulting colour segmentation for
a well-known stereo pair from the University of Tsukuba is shown in Figure
5.3. Pixels belonging to the same segment are assigned the same colour. To
derive the desired plane models, we first compute an initial disparity map
and use the computed disparity values to fit the plane for each segment.

5.3 Initial disparity map

We compute an initial disparity map using a local window-based method
that exploits the results of the image segmentation and operates on different
window sizes. We benefit from the image segmentation by exploiting the
assumption of smoothly varying disparities inside a segment as introduced
previously. Operating on different window sizes allows us to combine the
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(a) (b)

Figure 5.3: Colour segmentation. (a) Left image. (b) Computed colour
segmentation.

advantages of both small and large windows. The decision of which window
size to use for which region is driven by the data.

Initially, we start with a small 3×3 window. The window centered on
a pixel in the left image is shifted along the corresponding scanline in the
right view to find the displacement of minimum dissimilarity. To measure the
dissimilarity of two pixels, we compute the summed absolute differences of
their RGB-values. We compute the disparity space image (DSI - see Section
3.1.1) using an efficient incremental approach described by Mühlmann et al.
[67]. The disparity of a pixel dx,y at coordinates (x, y) is then derived from
the DSI by using

dx,y = argmin
Dmin≤d≤Dmax

DSI(x, y, d) (5.1)

with Dmin and Dmax denoting the minimum and maximum allowed disparity.
This local optimization strategy is not able to produce correct disparity es-
timates in untextured or occluded regions. We filter out unreliable pixels by
applying left-right consistency checking. An established match is only valid,
if the matched point in the right image points back to the pixel in the left
view. This check eliminates pixels of low texture or affected by occlusion (see
Section 3.1.1). We further reject points with insufficient support by removing
connected regions of equal disparity smaller than a predefined threshold.

We then reduce the search scope for each segment depending on a mea-
surement of the segment’s confidence. A similar approach was taken by
Zhang and Kambhamettu [104]. We follow their idea to measure the reli-
ability of a segment’s disparity information by the density of valid points.
Segments having a ratio of valid points larger than 50% are labelled as being
reliable. We search the points with minimum disparity dmini

and maximum
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disparity dmaxi
inside the ith reliable segment

dmini
= min

(x,y)∈Vi

dx,y dmaxi
= max

(x,y)∈Vi

dx,y (5.2)

with Vi being the set of all valid points of the corresponding segment. We
then compute the best correlation score for all unassigned pixels in a reduced
search range

dx,y = argmin
dmini

−ttolerance≤d≤dmaxi
+ttolerance

DSI(x, y, d) ∀(x, y) ∈ Ui (5.3)

with Ui denoting the set of the ith reliable segment’s unassigned points and
ttolerance representing a small value for tolerance. In our implementation,
the threshold ttolerance is set to the fixed value of one pixel. The reduction
in search range helps to capture points with little texture information, for
which the correct match was overwhelmed by noise due to the larger search
scope [104]. Furthermore, it allows to propagate reliable disparity informa-
tion inside the segment. This procedure directly reflects the assumption of
smoothly varying disparity inside segments. We further apply a left-right
consistency check using the reduced search range and remove points with
insufficient support.

More matches are then gathered by increasing the window size leaving the
already found valid points unchanged. First, we use the full search range for
segments with density of valid points < 50%. We then determine again the
reliability of each segment. For all reliable segments, we reduce the search
scope. Finally, the window size is further increased and the process is re-
peated. Since we are starting with a small 3×3 window, our approach is able
to capture thin structures and generates a detailed disparity map. Disparity
information for less-textured regions is then obtained by the use of larger
windows. We therefore combine advantages of both strategies. Figure 5.4
shows a block diagram of the described algorithm. The initial disparity map
calculated for the Tsukuba image pair using a 3×3, 5×5 and 7×7 window is
presented in Figure 5.5. Higher disparity values are encoded by bright val-
ues. Black points represent invalid pixels for which no disparity information
is estimated. The calculated initial disparity map serves to obtain the planar
model of a segment and does not represent the final result of our algorithm.

5.4 Planar model fitting

Once we have calculated the initial disparity map, we use it to derive the
planar model of each segment. We represent a segment’s disparity by a
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calculate disparity value for each pixelinvalid

label pixels passing left-right consistency check as valid

initial disparity map

Figure 5.4: Block diagram of the algorithm creating the initial disparity map.

(a) (b)

Figure 5.5: Initial disparity map. (a) Ground truth provided with image
pair. (b) Computed initial disparity map. Invalid points are coloured black.
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function
d(x, y) = ax + by + c (5.4)

with x and y being image coordinates and a, b and c being the plane param-
eters. To derive a segment’s plane parameters, we apply least squares error
fitting to all valid points inside the segment. The least squared error solution
is then given by solving
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with m being the number of valid points inside the segment, xi and yi be-
ing the coordinates of the ith valid point and di its corresponding disparity
value. Unfortunately, the method of least squared errors is sensitive to out-
liers. Although we already try to remove outliers in the computation of the
initial disparity map, there may still be erroneous points due to edge fat-
tening, repetitive patterns or noisy image data. Figure 5.6 illustrates the
implemented plane fitting algorithm that is robust to outliers. To derive a
segment’s planar description, we fit a plane to all valid points of the initial
disparity map inside the segment. This is shown in Figure 5.6a. Not every
image coordinate is represented by a point in disparity space because of in-
valid points in the initial disparity map. There are three valid points of high
disparity representing outliers that attract the computed plane. To eliminate
outliers, we search all valid points of the segment that have a distance to the
computed plane that is larger than the predefined threshold toutlier and re-
ject them as shown in Figure 5.6b. Formally expressed, the new set of valid
points V ′ is derived by

V ′ = {(xi, yi) ∈ V |di − (axi + byi + c) ≤ toutlier} (5.6)

with V being the set of all valid points inside the segment and toutlier being
a threshold that is set to the constant value of one pixel for all our compu-
tations. A new plane is then fitted to the points in V ′ using equation (5.5).
This process is then iterated until

(a′ − a)2 + (b′ − b)2 + (c′ − c)2 ≤ tconvergence (5.7)

with a′, b′ and c′ being the parameters of the new plane, a, b and c being
the parameters of the plane that was derived in the previous iteration and
tconvergence being a very small value (typically 10−6). Figure 5.6c illustrates
the plane derived after removal of three outliers.
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Figure 5.6: Robust plane fitting. (a) Initial computed plane. (b) Removal of
outliers. (c) Final plane.

5.5 Layer extraction

One single surface that contains texture is usually divided into several seg-
ments by applying colour segmentation. However, for segments of the same
surface the planar models should be very similar, as long as the surface can
be well approximated as a plane. Following this idea, we define a measure-
ment for the dissimilarity of two disparity planes and use this measurement
in a clustering method to identify segments belonging to the same surface.

We exploit a distance measurement originally introduced by Tao et al.
[88]. The similarity of two disparity segments is measured by calculating the
intersection point of the normal vector on the first segment’s plane, origi-
nating from that segment’s center of gravity, with the disparity plane of the
second segment. We then compute the length of the vector from the first
segment’s center of gravity to the point of intersection, which is denoted by
dis1. For symmetry, we also compute dis2, which is the distance between the
second segment’s center and the first segment’s disparity plane. The term
dis1 + dis2 then describes the amount of dissimilarity between two planes.
We illustrate this process in Figure 5.7 for the two-dimensional case. We
believe that this measurement is specifically well suited to the task of clus-
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Figure 5.7: Measuring the dissimilarity of two disparity planes.

tering disparity planes, since it incorporates spatial information as well as
the plane parameters.

We project each segment into a five-dimensional feature space, consist-
ing of the three plane parameters and two spatial parameters represented by
the x and y components of the center of gravity. We do not project the z

component, since it can be deduced from the other five parameters. We em-
ploy the mean-shift algorithm [24], which we modify to embed the described
plane dissimilarity measurement, to extract clusters in this feature space. A
specific advantage of the mean-shift algorithm is that the number of clusters
does not need to be known beforehand. To apply the mean-shift to a data
point yk at iteration k, we determine its neighbourhood N(yk) by

N(yk) = {x ∈ DP | dis(x, yk) ≤ r} (5.8)

with DP being the set of all data points, dis denoting the plane dissimilarity
function and r being the radius of the mean-shift. We then compute the
mean value of all data points inside the neighbourhood. Since data points
represent segments covering areas of different sizes, the reference image is
not uniformly sampled. A layer containing a rich amount of texture and
therefore a large number of segments will be represented by more region
samples than a layer representing large homogeneously coloured regions. The
layer of homogeneous colour may not have enough samples to form a dense
cluster in feature space. We overcome this problem by weighting each data
point according to the area of the segment it describes. We then derive the
location of the shifted data point yk+1 by computing the weighted mean value

yk+1 =
∑

x∈N(yk)

ax

A
x (5.9)
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with ax being the number of pixels inside the segment described by the
data point x and A being the summed up areas of all segments inside the
neighbourhood N(yk). The mean-shift is then iteratively applied until the
magnitude of the shift becomes smaller than the threshold tconvergence set to
a very small number (typically 10−6). The data point is thereby shifted to a
local density maximum. This procedure is applied for each data point.

In the fusion step, we then investigate the points of convergence to derive
the points building a cluster. Points having a distance smaller than a thresh-
old, set to r

2
in our implementation, are merged to form a single cluster. The

distance is again computed by using the plane dissimilarity measurement
defined above.

Members of the same cluster build a layer. For deriving a layer’s plane
equation, we use the initial disparity map. Robust plane fitting is applied to
the valid points of all segments belonging to the layer.

Note that for the methods presented in this thesis, it is important that
the layer extraction step identifies the complete set of disparity layers present
in the scene. If the layer extraction procedure fails to capture a layer, those
segments belonging to this particular disparity layer will be assigned to a
wrong disparity model. It is therefore safer to generate a larger set of lay-
ers, since wrong disparity layers will most likely be eliminated in the layer
assignment step of the algorithm anyway.

5.6 Layer assignment

We try to improve the current solution by optimizing the assignment of
segments to layers. A cost function that uses image warping is designed
to measure the quality of the current assignment. We describe an efficient
hypothesis testing framework in order to optimize the specified cost function.

5.6.1 Cost function

We measure the quality of a disparity map by warping the reference view ac-
cording to the current disparity map. The basic idea behind this procedure
is that if the disparity map was correct, the warped image should be very
similar to the real image from this viewpoint. We implemented a warping
procedure based on a Z-buffer to explicitly model visibility. To obtain the
second view, we warp each segment according to its current disparity plane.
A naive approach would reconstruct the second view by projecting each in-
dividual pixel of the reference image into the second view using its disparity
value. Consequently, pinholes would occur in the warped image for areas
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Figure 5.8: Warping a segment to the second view according to its disparity
plane.

that are undersampled in the reference image. Therefore, a more elaborate
strategy is used. A segment is represented by the set of all its horizontal
scanline runs. A segment’s scanline runs are derived by tracing each hori-
zontal scanline from left to right. Whenever the left border of the segment is
encountered, the corresponding coordinates are stored as the starting point
of a run. Whenever the segment’s right border is hit, the corresponding co-
ordinates are stored as the ending point of the run. The warped view of a
segment is generated by transforming all its scanline runs. Therefore, the
coordinates of the starting and ending point in the warped view are com-
puted using the segment’s planar model. For all points between the warped
starting and ending point, we compute the exact coordinates in the refer-
ence image according to the segment’s disparity plane. The colour values for
those pixels are then derived by linear interpolation of the colour values of
the pixels left and right to the exact position in the reference view. This
process is illustrated in Figure 5.8.

We reconstruct the second view by warping all segments of the reference
view. In this procedure, pixels from the second view may receive a contri-
bution from more than a single segment. For those pixels, we have to make
a decision concerning visibility. We use a Z-buffer representing the second
view, which naturally enforces visibility. Each Z-buffer cell corresponds to a
single pixel of the right view. If a Z-buffer cell contains more than one pixel,
only the pixel with the highest disparity is visible, since it is the one closest
to the camera. The others are therefore occluded in the second view. Fur-
thermore, we are also able to detect pixels occluded in the reference image,
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Figure 5.9: The warping operation. (a) Segments and corresponding dispar-
ity in the reference view. (b) Segments warped to the second view according
to their disparity planes.

since they correspond to empty Z-buffer cells. We illustrate this in Figure
5.9.

We will now use the observations made above to formulate a cost function
which is designed to measure the quality of a derived disparity map. The
first term of the cost function is based on the idea that a good disparity
map should produce a warped view with a high similarity to the real second
image. Translated to our cost function, we calculate the colour dissimilarity
between the warped and real views for all pixels visible in the warped image.
According to the literature, we refer to this term as data term that is defined
by

Tdata =
∑

p∈V is

dis(W (p), R(p)) (5.10)

with W (p) denoting the pixel p in the warped image and R(p) being the
pixel p in the real second view. The set of visible pixels V is is defined by the
union of all pixels that have the highest disparity in their individual Z-buffer
cells. Formally, the set V is is computed by

V is = {∪x,y p ∈ Zx,y | ∀q ∈ Zx,y : d(p) > d(q) ∨ p = q} (5.11)
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with Zx,y denoting the set of all pixels inside the Z-buffer cell at image coordi-
nates x and y and d(p) being the disparity of pixel p. The colour dissimilarity
function dis(pi, pj) is defined as the summed up absolute differences of RGB
values of pixels pi and pj. We write

dis(pi, pj) = |r(pi)− r(pj)|+ |g(pi)− g(pj)|+ |b(pi)− b(pj)| (5.12)

with r(p) being the red, g(p) being the green and b(p) being the blue colour
components of pixel p.

The second term of the cost function accounts for occlusions. It is neces-
sary for our cost function to penalize occlusions, since otherwise declaring all
pixels as occluded would form a trivial optimum. We therefore introduce an
occlusion term that penalizes occlusions in the left and right images. This
term is defined by

Tocclusion = (|OccR|+ |OccL|) · λocc (5.13)

with OccR being pixels that are occluded in the right view, OccL denoting
occlusions in the left image and λocc being a constant penalty for occlusion.
The set OccR is defined by the union of all pixels that are occluded by a pixel
of higher disparity in their individual Z-buffer cells. This set is computed by

OccR = {∪x,y p ∈ Zx,y | ∃q ∈ Zx,y : d(p) < d(q)} . (5.14)

The set of occlusions in the left image OccL is then defined by the union of
all empty Z-buffer cells given by

OccL = {∪x,y Zx,y | Zx,y = ∅} . (5.15)

The last term of the cost function motivates smoothness across segments.
We introduce a discontinuity penalty that is applied when two neighbouring
pixels (in 4-connectivity) are assigned to different layers in the reference
image. We define this term by

Tsmoothness =
∑

(pi,pj)∈N

{

λdisc : layerid(pi) 6= layerid(pj)
0 : otherwise

(5.16)

with layerid(p) being a function that returns the id of the disparity layer to
which the segment containing pixel p is assigned and λdisc being a constant
penalty for discontinuity. The set N defined for the left image IL denotes
pairs of pixels (pi, pj) with pi, pj ∈ IL and i < j that are neighbours in
4-connectivity.

Putting this together we finally obtain the cost function

C = Tdata + Tocclusion + Tsmoothness (5.17)

measuring the quality of a disparity map. We are therefore searching an
assignment of layers to segments that minimizes C.
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5.6.2 Optimization

Unfortunately, finding the assignment that minimizes C is non-trivial. Given
S segments and L distinct layers there are SL different possible assignments.
The large solution space indicates the complexity of the problem. Moreover,
finding the layer assignment with minimum value for C is shown to be NP-
complete and therefore not solvable by a complete algorithm in finite time.
In our approach, we employ an efficient greedy search strategy to find a local
optimal solution. This search strategy is similar to that used by Tao and
Sawhney [87], although they do not optimize an explicit cost function, but
always take the local optimal decision that minimizes colour dissimilarity
between the real and warped views until convergence.

The basic idea behind the algorithm is to propagate correct disparity in-
formation from neighbouring segments. Segments can be assigned to planes
giving poor disparity estimates, since a segment can be affected by occlu-
sion or may not have enough texture information to allow correct disparity
estimation. Nevertheless, the chances for a neighbouring segment to be as-
signed to the correct disparity model are high, since usually disparity varies
smoothly, except at depth boundaries. We exploit this idea in a hypothe-
sis testing framework. For a segment, we hypothesize that its current layer
assignment is wrong and a layer of a neighbouring segment better describes
the segment. To test this hypothesis, we replace the plane model of the cur-
rent segment by the neighbouring layer’s plane equation. We then warp the
reference image to the second view according to the current layer assignment
and evaluate the cost function. If the costs are improved, the hypothesis is
accepted and rejected otherwise. For a segment, we test the hypotheses of
all neighbouring layers as shown in Figure 5.10. In this figure the segment S1

has five neighbouring segments assigned to layers 1, 2 and 3, which we refer
to as the neighbouring layers of S1. We avoid testing layer 1 on S1, since this
is the current assignment. The layer hypotheses of layers 2 and 3 need to be
checked. Although there may be a large number of neighbouring segments,
the layer neighbourhood is usually very small. Consequently, the number of
layer hypotheses that need to be checked is small. If a segment is surrounded
only by segments assigned to the same layer as the segment, which is usually
the case for the majority of segments, no tests need to be applied at all.
These observations represent major arguments for the algorithm’s efficiency.

We embed the ideas of hypothesizing neighbouring layers into a greedy al-
gorithm as follows. In the initial solution, we use the layer assignment derived
from the layer extraction step. For each segment, we test the neighbouring
layer hypotheses as described above. In the testing phase, the assignment of
all other segments remains fixed. If there are layers generating smaller costs
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Figure 5.10: Hypothesis testing.

than the current solution, we record the one giving the largest improvement.
Otherwise, the current assignment was found to be the best, and we record
this assignment. After all segments have been tested, every segment gets
assigned to its recorded layer. This process is then iterated and terminates if
there has not been an improvement of costs for a fixed number of iterations.
The generated solution with lowest costs is returned. Keeping the segments
fixed during the hypothesis testing stage and updating them after all seg-
ments have been checked makes the algorithm independent of the order of
applied operations. The greedy nature of the algorithm is reflected by al-
ways picking the layer hypothesis that locally gives the highest improvement
of costs. An aspect concerning the computational efficiency of the proposed
algorithm is that we only need to test segments if their neighbourhood has
changed in the previous iteration. Otherwise, we would unnecessarily repeat
the tests from the previous iteration without getting new results. Further-
more, since only small parts of the warped view are changed in the hypothesis
testing, it would not be efficient to always warp the whole image. We there-
fore employ an incremental image warping procedure described in appendix
A.1. The block diagram of the greedy algorithm is shown in Figure 5.11.

5.7 Experimental results

To test the performance of our method, we use the test bed proposed by
Scharstein and Szeliski [78], which has already been discussed in Section 3.2
of this thesis. We therefore applied the algorithm on the four image pairs
from the Middlebury Stereo Vision website (see Figure 3.7) and submitted the
results to the online version of the test bed. All disparity maps were thereby
created using constant parameter settings. The derived disparities are then
compared against the ground truth data by computing the percentage of
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Figure 5.11: Block diagram of the greedy algorithm.

unoccluded pixels whose absolute disparity error is greater than one. At
the time of publication of the corresponding journal paper, our method was
ranked as having the second best overall performance among 30 different
stereo algorithms tabulated. For a more recent ranking, the reader is referred
to Table 3.1, where the proposed method is denoted as “Segm.+glob.vis.”. In
the following, we show and discuss in more detail the results obtained for two
of the four test sets. For the examples shown in this section, disparity maps
are created using individual parameter values. We discuss the sensitivity of
results to different settings of the parameters in appendix A.2. For additional
results as well as for results achieved with constant parameter values, the
reader is referred to the Middlebury Stereo Vision website1. Furthermore,
we present disparity maps for a more complex scene that was taken from [79]
and for a self-recorded stereo pair.

The first image pair we ran our algorithm on is the “head and lamp”

1http://www.middlebury.edu/stereo/
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Figure 5.12: Results for the Tsukuba test set. (a) Left image. (b) Right
image. (c) Ground truth provided with image pair in the geometry of the
left image. The presented disparity maps are scaled by a factor of 16 for visu-
alization. (d) Computed layers. (e) Computed disparity map. (f) Absolute
errors scaled by a factor of 64.

data set of the University of Tsukuba, which became a standard test set
for the stereo community. The image pair is presented in Figures 5.12a and
5.12b. It shows a rather complex scene containing untextured regions (e.g.,
table) and thin objects (e.g., lamp arm), which make it hard for a stereo
algorithm to capture the correct disparity information. The hand-labelled
ground truth for the left image is shown in Figure 5.12c. The presented
disparity maps are scaled by a factor of 16 for visualization, i.e. a disparity
value of one pixel is mapped to the gray value 16. We present the layers
that were computed by our algorithm in Figure 5.12d. Pixels belonging to
the same layer are assigned to the same colour in the figure. Our algorithm
divides the reference image into six layers. Although we do not aim for a
semantic segmentation, the derived layers correspond well to objects of the
real world (head, lamp, camera, table, leg of the table, and background).
The computed disparity map is then presented in Figure 5.12e. We used
the following parameter settings: r = 0.8, λocc = 20.0 and λdisc = 20.0.
To visualize the quality of the derived disparity map we compare it against
the ground truth in Figure 5.12f. We thereby show the absolute error with
darker pixels representing higher deviations from the ground truth. White
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Figure 5.13: Quantitative results for the Tsukuba test set. The percentage
of wrong pixels for different disparity error thresholds is presented for two
error metrics. (a) Only unoccluded pixels are considered. (b) All pixels are
considered.

pixels indicate a perfect correspondence between the computed disparity map
and the ground truth. We applied a scaling factor of 64 to the computed
errors and inverted the image for better visibility. Apart from some errors
occurring at depth borders, which are mainly caused by colour segments
that overlap depth boundaries, small errors appear on the head where the
planar representation oversimplifies the real surface. To get a more accurate
result for this region of the image, it would be advantageous to set the mean-
shift radius r to a lower value. The head would then be reconstructed by
a larger number of layers. However, this would also lead to a less robust
reconstruction of the background, which would then be represented by more
than one layer.

In Figure 5.13, we compare the computed disparity map against the re-
sults generated by some of the best-performing stereo algorithms tabulated
on the Middlebury Stereo Vision website. For comparison, we use two differ-
ent error metrics. The first one computes the percentage of wrong unoccluded
pixels exceeding a specified disparity error threshold. This corresponds to the
metric used in [78] when the threshold is set to one. For the second error
metric, we do not exclude occluded pixels from the evaluation and compute
the percentage of all erroneous pixels. For both error measurements, we
only consider pixels for which ground truth is available and plot the result-
ing error percentages for different settings of the maximum allowed disparity
error. For comparison, we choose six different stereo algorithms as represen-
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tatives of several different matching strategies. The disparity maps generated
by these algorithms are obtained from the Middlebury Stereo Vision website.
Apart from the proposed algorithm, which is referred to as “Segm.+glob.vis.”
in the figure, we present results from two layered methods (Birchfield and
Tomasi (1999a) [11], Lin and Tomasi (2003) [57]), the graph-based method
described by Kolmogorov and Zabih (2002) [50], the belief propagation algo-
rithm of Sun et al. (2003) [85], the dynamic programming-based algorithm of
Birchfield and Tomasi (1999b) [10] and an implementation of sum-of-squared-
differences (SSD) by Scharstein and Szeliski [78] that uses shiftable windows.
Concerning the first error metric, which is used in Figure 5.13a, it is evident
that our method is able to compete with the best performing algorithms
with only the graph-based approach of Kolmogorov and Zabih [50] and the
belief propagation algorithm of Sun et al. [85] giving better results. In Fig-
ure 5.13b, we present the results using the second error metric that includes
occluded pixels. For this error measurement, our method outperforms the
others, which proves its capability to generate meaningful results in occluded
regions and precisely locate depth boundaries.

As a second test set we present the Venus image pair shown in Figure
5.14a and Figure 5.14b. The corresponding ground truth in the geometry
of the left image is presented in Figure 5.14c. The Venus data set consists
only of planar surfaces. Although the scene structure is quite simple, there
are large untextured regions that make the reconstruction difficult. Our
algorithm extracts four layers as shown in Figure 5.14d. The corresponding
disparity map is then presented in Figure 5.14e. The parameters were set
to the following values: r = 0.6, λocc = 15.0 and λdisc = 30.0. Since the
newspaper at the right of the image consists of two planes that are joined
by a crease edge, the algorithm oversimplifies this surface. Nevertheless,
the resulting disparity error shown in Figure 5.14f is negligibly small. Our
algorithm almost perfectly reconstructs the scene with the disparity planes
correctly outlined. The quantitative results in Figure 5.15 show that for
this pair our method clearly outperforms the other algorithms for both error
metrics.

We further evaluated the proposed algorithm on a more complex scene
using the Teddy test set taken from Scharstein and Szeliski [79]. A large
disparity range, more complex scene geometry and textureless areas make
the image pair challenging for stereo algorithms. Scharstein and Szeliski are
planning to add this test set to their benchmark, since they argue that current
test images are getting too simple to discriminate among the best-performing
stereo algorithms. The Teddy test set is shown in Figure 5.16a and Figure
5.16b. The scene consists of a large number of surfaces for which some can be
well approximated as a plane (background, floor, roof and walls of the house),



CHAPTER 5. A GREEDY METHOD USING IMAGE WARPING 67

(a) (b) (c)

(d) (e) (f)

Figure 5.14: Results for the Venus test set. (a) Left image. (b) Right image.
(c) Ground truth provided with image pair in the geometry of the left image.
The disparity maps are scaled by a factor of 8. (d) Computed layers. (e)
Computed disparity map. (f) Absolute errors scaled by a factor of 32.
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Figure 5.15: Quantitative results for the Venus test set. The percentage
of wrong pixels for different disparity error thresholds is presented for two
error metrics. (a) Only unoccluded pixels are considered. (b) All pixels are
considered.
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Figure 5.16: Results for the Teddy test set. (a) Left image. (b) Right
image. (c) Ground truth provided with image pair. The disparity maps are
scaled by a factor of 4. (d) Computed layers. (e) Computed disparity map.
(f) Absolute errors scaled by a factor of 16. (g) Reconstructed view of the
Teddy test set.
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Test set Tsukuba Venus Teddy
Mean signed error (pixels) -0.04 0.05 0.04
Root mean-square error (pixels) 0.73 0.31 1.07
Maximum error (pixels) 9.13 6.75 19.00

Table 5.1: Error statistics computed from comparison against the ground
truth.

whereas others have a more complex surface structure (teddies, plants). The
ground truth for the left image of the Teddy scene is presented in Figure
5.16c. Pixels for which the method of Scharstein and Szeliski [79] fails to
produce the ground truth are coloured black. In the final configuration of
the algorithm, the scene is represented by a set of 77 planes which we show in
Figure 5.16d. Surfaces that can be well approximated as a plane are thereby
represented by a single or a small number of layers resulting in a robust
reconstruction. However, for more complex shapes like the green teddy the
surface is reconstructed by a larger number of layers providing a detailed
description of the corresponding surface structure. The computed disparity
map is then presented in Figure 5.16e. We used the following parameter
settings: r = 0.6, λocc = 20.0 and λdisc = 2.5. To illustrate the quality
of the derived matching results, we compare it against the ground truth in
Figure 5.16f. The percentage of pixels exceeding a disparity error of one
including occluded regions is 6.55. If occluded regions are not considered, we
get an error of 5.00%. 19.54% of pixels in occluded regions exceed the error
threshold of one. Since we do not have the results for the other methods
that we used for comparison for the previous two test sets, we present a
reconstructed view of the scene in Figure 5.16g to give a further impression
of the accuracy and detail of the computed disparity information.

In addition, we computed an error statistic for the three discussed image
pairs for which ground truth is available. As opposed to the errors shown in
Figure 5.13 and Figure 5.15, the error values listed in Table 5.1 also include
errors smaller than one pixel.

Finally, we applied our method to a stereo pair that we recorded using
two Dragonfly IEEE-1394 colour cameras as provided by Point Grey Re-
search. We calibrated the cameras using the method described in [105] and
transformed the images into epipolar geometry. The recorded stereo pair
presented in Figure 5.17a and 5.17b shows a person crouching in front of a
wall. The scene contains untextured regions like sections of the white wall
and the floor, and complex surface structure in the form of the person. We
present the disparity map that was computed using the parameter settings
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Figure 5.17: Results for a self-recorded stereo pair. (a) Left image. (b) Right
image. (c) Computed layers. (d) Computed disparity map in the geometry
of the left image scaled by a factor of 4. (e) Reconstructed view.
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r = 0.75, λocc = 30.0 and λdisc = 10.0 in Figure 5.17d. Visual inspection of
the disparity map indicates that the complex shape of the person’s outline
is correctly recovered. Furthermore, the algorithm seems to capture rela-
tively well the person’s disparity, which is better visible in the reconstructed
view we present in 5.17e. The background is represented to a large extent
by a single layer containing the left part of the white wall and most of the
area covered by the wallpaper, which results in a robust reconstruction de-
spite the poor texture of the white wall. In addition, regions belonging to the
large occlusion left to the person’s outline are correctly assigned to this back-
ground layer. A less accurate reconstruction is obtained for the floor, which
we found was not only caused by its poor texture, but also by reflections of
the wallpaper pattern on this surface.

We implemented the proposed method in C++ and ran our algorithm
on an Intel Pentium 4 2.0 GHz computer. For the 384×288 pixel Tsukuba
and the 434×383 pixel Venus test set, the algorithm needed approximately
20 seconds until termination. For the 450×375 pixel Teddy and the 640×480
pixel self-recorded image pairs, the computational effort increased to 100
and 180 seconds, respectively. The longer running times are not only caused
by the larger image sizes, but also by the more complex scene structures
that require more layers to represent the scene. Therefore, the number of
hypothesis tests that need to be performed is increased.

5.8 Summary

In this chapter, we have proposed a new stereo matching method that takes
advantage of colour segmentation and uses planar layers to describe the scene.
The algorithm is able to generate correct disparity information in untextured
areas and regions close to depth boundaries, which is a challenging task in
stereo matching. Our method alternates between a layer extraction and an
assignment step. Layers are extracted by a robust mean-shift-based cluster-
ing algorithm. The clustering method takes advantage of a plane dissimilarity
measurement that incorporates spatial information as well as plane parame-
ters. The planar model of each layer is then computed based on the layer’s
spatial extent. The assignment of segments to layers is made in a hypothesis
testing framework. Disparity information is thereby propagated across seg-
ments. Hypotheses are accepted if they improve a global cost function. For
evaluating the costs of an assignment, the reference image is warped to the
second view according to the disparity map. The cost function evaluates the
pixel dissimilarity between the real and warped images and penalizes occlu-
sions in both views and discontinuities between segments. Layer extraction



CHAPTER 5. A GREEDY METHOD USING IMAGE WARPING 72

and assignment are then iterated to find the generated disparity map with
lowest costs.

We have demonstrated the performance of the proposed algorithm using
the test bed of Scharstein and Szeliski [78]. Qualitative and quantitative
evaluation proved the good quality of the achieved matching results. At
the time of publication of the corresponding journal paper, the proposed
method achieved second place out of 30 different stereo algorithms in the
online evaluation on the Middlebury Stereo Vision website and is currently
ranked on the fifth position of approximately 40 contributions (see Table
3.1). We found that the proposed technique can provide occluded regions
with more accurate disparity estimates than a set of Middlebury reference
algorithms that we used for comparison. Furthermore, we applied our method
to a more complex image pair taken from [79] and to self-recorded data. In the
absence of reference data, we presented 3D visualizations of the reconstructed
scene to demonstrate the good quality of the computed disparity layers.



Chapter 6

Extending the greedy method
to motion

6.1 Introduction

The good performance of the stereo algorithm described in the previous chap-
ter encouraged us to extend our method to motion computation. In contrast
to the stereo problem, an optical flow algorithm must not rely on the validity
of the epipolar constraint, but also account for motion in y-direction. Since
this eliminates one of the most powerful constraints, the optical flow problem
can be considered as more difficult than stereo. However, the complicating
factors remain the same and are roughly summarized as: (1) the treatment
of untextured regions and (2) the accurate reconstruction of flow values close
to motion boundaries (as a consequence of the occlusion problem). Those
common problems of stereo and motion give good indication that our stereo
algorithm could also be well-suited for the optical flow problem.

The presented motion algorithm is an extension of the stereo method
proposed in Chapter 5. We minimize unnecessary overlaps with the previous
chapter by focusing on a description of the modifications that are applied
in order to eliminate the epipolar constraint. To identify those steps that
need to be adapted, the algorithmic framework is illustrated in Figure 6.1.
Input to our algorithm are two consecutive views of a video sequence. This
means that, in contrast to the stereo algorithm, the epipolar assumption is,
in general, not valid for those image pairs. In the first step, colour segmen-
tation is applied to the reference image. To describe the motion inside the
segment, the affine motion model is chosen. The model of each segment is
then initialized from a set of sparse initial correspondences. Affine motion,
the segmentation assumption in the context of two-dimensional motion as
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Figure 6.1: Algorithmic outline.

well as the computation of initial correspondences and motion models are
described in Section 6.2. Those models that represent the dominant image
motion are then extracted in the layer assignment step by clustering of the
initial motion models. The clustering step is almost identical to that pre-
sented in Section 5.5 of the previous chapter, but requires a measurement for
the dissimilarity of two affine motion segments, which is given in Section 6.3.
In the next step, the model of each layer is refined based on its spatial extent.
Finally, each segment is assigned to a single dominant motion model in the
layer assignment step of the algorithm. Modifications that are carried out
in this step include a new strategy for warping an individual segment, as is
explained in Section 6.4.1. Moreover, since Z-buffering cannot be applied for
the presented motion method, Section 6.4.2 describes a modified cost func-
tion. However, the strategy used for optimization of this novel cost function
is still that of Section 5.6.2 from the previous chapter. Analogously to the
stereo method, our optical flow technique iterates the layer extraction and
assignment steps until the costs could not be improved for a fixed number of
iterations and returns the solution of lowest costs.

6.2 Colour segmentation and affine model

The method proposed in this chapter applies colour segmentation to the ref-
erence image. Translated to motion, the two assumptions that go along with
the segmentation are: Firstly, it is assumed that all pixels inside a region of
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(a) (b)

Figure 6.2: Colour segmentation. (a) Reference image. (b) Segmented image.
Pixels of the same colour belong to the same segment.

homogeneous colour follow the same motion model. Secondly, motion dis-
continuities are expected to coincide with the boundaries of segments. In
Figure 6.2, we present an example of such a segmentation for the reference
frame of a motion pair. This motion pair will later be used in the experimen-
tal results. The segmentation results are thereby derived by applying the
algorithm of Christoudias et al. [23]. The optical flow inside each segment is
then modelled by affine motion, which is

Vx(x, y) = ax0 + axxx + axyy

Vy(x, y) = ay0 + ayxx + ayyy
(6.1)

with Vx and Vy being the x- and y-components of the flow vector at image
coordinates x and y and the a’s denoting the six parameters of the model.
The affine model represents a natural extension to the planar disparity model
of Chapter 5 (equation (5.4)) in the presence of two-dimensional motion. It
models transformations such as translation, scaling, rotation and shear.

To compute a sparse set of correspondences, we apply the KLT feature
tracker [81]. Each segment’s affine parameters are then derived by least
squared error fitting to all correspondences found inside this segment. We
employ the algorithm of Section 5.4 in order to reduce the sensitivity to
outliers.

6.3 Layer extraction

Once the initial affine models are known, we aim at identifying those mod-
els that represent the dominant motions occurring in the sequence. This is
accomplished by clustering of motion segments using the mean-shift-based
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algorithm of Section 5.5. However, since we no longer cluster disparity seg-
ments, but segments that undergo two-dimensional motion, there is the need
to develop a new measurement for computing the dissimilarity of two mo-
tion segments that are both described by the affine model. Taking a closer
look at the definition of the affine model in equation (6.1), it is clear that
the model is the composite of two planar equations, i.e. one for the transfor-
mation of the x- and the other for the transformation of the y-coordinate.
To determine the dissimilarity of two motion segments, we can therefore use
our plane dissimilarity measurement from Section 5.5. More precisely, we
compute the dissimilarity of the two planes used for the transformation of
the x-coordinate as well as the dissimilarity of the planes that implement
the transformation of the y-coordinate. Our motion segment dissimilarity
measurement is then defined as the sum of both values.

6.4 Layer assignment

The task of this step is to assign each segment of the reference view to one
of the extracted layers. The goodness of such an assignment is computed
by evaluation of a global cost function. To calculate the costs, we warp
the reference view to the second view using the segments’ current motion
assignments. Major differences to the layer assignment step of Chapter 5
are twofold. Firstly, we develop a warping technique that does not generate
pinholes when using the affine motion model. Secondly, we modify our cost
function in order to model the optical flow problem. For computing a local
optimum of costs, we apply the algorithm of Section 5.6.2.

6.4.1 Segment warping

In order to generate the warped view, we have to transform each individual
segment to the second image according to its current motion model. However,
the scanline-based warping approach of Section 5.6 cannot be applied to the
case of affine motion. The reason for this is that pixels of the same horizon-
tal scanline in the reference image will have multiple different y-coordinates
in the warped second view. The scanline-based technique would therefore
generate pinholes in the warped image. To overcome this problem, we de-
veloped the simple strategy illustrated in Figure 6.3. In the first step, we
compute the bounding rectangle, which encloses the segment that we wish
to warp. The bounding rectangle is then transformed to the second view by
warping its corner points R1–R4 using the segment’s affine motion model.
The warped bounding rectangle is then defined by the pixels R′

1–R
′
4. The
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Figure 6.3: Warping a segment to the second view according to its affine
motion model.

idea behind this is that the warped rectangle must as well enclose the warped
segment S ′ when using the affine motion model. For each point P ′ inside this
rectangle, we then compute its matching point P in the reference view using
the segment’s inverse motion model. In the next step, we check if P is inside
the segment S of the reference view. If this is not the case, then P ′ does
not belong to the warped segment S ′ either. Otherwise, we estimate a colour
value from the horizontal and vertical neighbours of P by linear interpolation
and store this value in a buffer B for the pixel P ′ of the second view.

6.4.2 Cost function

Analogously to the previous chapter, detection of occlusions and reasoning
about visibility has to be performed in the warping process. We illustrate
this in Figure 6.4. We show the reference view that is divided into three
segments in Figure 6.4a. The estimated motion for two segments is zero,
while the third segment undergoes a translational motion as indicated by
the arrows. In Figure 6.4b the reference image is then warped according to
the estimated motion field. Hatched areas in the image represent regions
that are affected by occlusion. Equivalently to the stereo warping process,
there are two cases where occlusions are detected. The first and simpler case
arises for pixels in the warped image that do not receive contribution from
any pixel, which occurs at the horizontally hatched area of Figure 6.4b. This
corresponds to an occlusion in the reference view. In the second case, a single
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(a) (b)

Figure 6.4: Detection of occlusions by image warping. (a) Reference view.
(b) Warped view. Hatched areas represent occluded regions.

pixel of the warped view gets contribution from more than one pixel of the
reference view, which is illustrated by the vertically hatched areas of Figure
6.4b. Since we assume surfaces to be opaque, only one of those pixels can
be visible. Consequently, the other pixels are occluded in the second view.
Unfortunately, and this is the main difference to the method of Chapter 5, for
a motion algorithm the reasoning about the pixels’ visibility is not obvious.
The reason for this is that there is, in general, no relationship between a
pixel’s motion vector and its depth in the scene. Therefore, Z-buffering does
not work. However, it is quite reasonable to assume that the visible point
has a very similar colour value to the pixel at the same coordinates in the
real second view. Consequently, we decided to declare the point of lowest
pixel dissimilarity as being visible, while the other pixels are marked as being
occluded.

To account for this different visibility reasoning, a reformulation of the
cost function given in equation (5.17) is required. We avoid unnecessary
redundancy by stating only those terms that are modified. This involves
the data term defined in equation (5.10), which is computed over the set of
visible pixels V is. In the case of motion, we determine V is by

V is = {∪x,y p ∈ Bx,y | ∀q ∈ Bx,y : dis(W (p), R(p)) < dis(W (q), R(q))∨p = q}
(6.2)

with dis being the function from equation (5.12) that calculates the pixel dis-
similarity and W and R being the warped and real second views, respectively.
We write Bx,y to denote the buffer cell at coordinates (x, y). The second term



CHAPTER 6. EXTENDING THE GREEDY METHOD TO MOTION 79

that we need to consider is the occlusion term stated in equation (5.13). The
occlusion term is defined over the set of occluded pixels in the second view
OccR and in the reference image OccL. In the case of motion, we define OccR

by

OccR = {∪x,y p ∈ Bx,y | ∃q ∈ Bx,y : dis(W (p), R(p)) > dis(W (q), R(q))} .

(6.3)
For completeness, we as well present the definition of the set OccL:

OccL = {∪x,y Bx,y | Bx,y = ∅} . (6.4)

6.5 Experimental results

We demonstrate the performance of the proposed algorithm using the frames
50 and 54 of the Mobile & Calendar sequence1 that are shown in Figure 6.5a
and 6.5b, respectively. In this sequence, the camera pans to the left, while
there are moving objects (calendar, train and ball) in the scene. Since no
ground truth is available, we have to focus on a qualitative discussion of the
results. Figure 6.5c presents the final layer assignment. Although motion
segmentation is not the primary goal of this work, the computed layers seem
to correspond well to scene objects. To visualize the flow field, we plot the
absolute x- and y-components of the flow vectors scaled by a factor of 32 in
Figures 6.5d and 6.5e. Motion boundaries appear to be correctly captured,
while also the image motion in untextured regions seems to be accurately
identified (e.g., lower part of calendar). Finally, we show the two-dimensional
flow vectors for some pixels of the reference frame in Figure 6.5f. For the
352 × 240 pixel input images, our current C++ implementation needed 47
seconds on an Intel Pentium 4 2.0 GHz computer to generate the results.

As a second test pair, we used the frames 11 and 14 of the Tennis se-
quence2 that are shown in Figures 6.6a and 6.6b. There are two moving
objects in the scene, which are the arm and the ball. While the arm under-
goes a relatively small motion, there is large motion on the ball. Since the
x-components of the flow vectors are almost zero, we decided to show the
warped view in Figure 6.6c instead. This image is generated by warping the
reference view according to the computed flow vectors and should be com-
pared against the real second view presented in Figure 6.6b. Regions that

1There is very little motion between the frames 50 and 51. For the task of motion
segmentation, this motion is not enough to capture the different layers present in the
scene. This is why we select frames 50 and 54.

2We select frames 11 and 14, since we want to test our algorithm on an image pair that
contains large motion.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Results for the Mobile & Calendar sequence. (a) Frame 50. (b)
Frame 54. (c) Final layer assignments. (d) Absolute x-components. (e)
Absolute y-components. (f) Flow vectors.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Results for the Tennis sequence. (a) Frame 11. (b) Frame 14.
(c) Warped image. (d) Final layer assignments. (e) Absolute y-components.
(f) Flow vectors.
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were identified as being occluded in the reference view are coloured black. We
then present the final layer assignment in Figure 6.6d. The arm is thereby
represented by five different layers, which is most likely for the reason that
only a single affine motion model can hardly capture the real motion of the
arm. The y-components of the flow vectors scaled by a factor of 16 are then
shown in Figure 6.6e. The motion boundaries seem to be correctly identi-
fied and also the large motion of the ball seems to be captured. Finally, we
present the corresponding flow vectors in Figure 6.6f. 99 seconds were needed
to generate the results for the 352× 240 pixel images.

6.6 Summary

In this chapter, we have extended the stereo method of Chapter 5 to the
optical flow problem. Optical flow computation suffers from the same prob-
lems as stereo matching, which has been the major motivation to test our
segmentation-based stereo algorithm on this problem. We have described the
modifications necessary to adapt our method to the motion correspondence
problem. This includes a model that can describe two-dimensional motion,
for which we have chosen the affine model. Furthermore, we have presented
a way how to modify the layer extraction and assignment steps in order to
model the optical flow task. A major problem is that the Z-buffer mechanism
of the stereo technique cannot be applied in the case of motion. We have
therefore chosen to base our reasoning about a pixel’s visibility on its colour
similarity to the real second view. Experimental results have demonstrated
the good performance of the algorithm, especially in usually difficult regions,
such as areas of poor texture or close to motion boundaries.



Chapter 7

A graph-cut formulation

7.1 Introduction

In Chapter 5, we have formulated stereo as a two step problem. First, a set
of disparity layers, which correspond to dominant depth planes occurring in
the scene, is extracted. Second, each region of an image is then assigned to
exactly one of those disparity layers. The second of these steps can thereby
be regarded as the more challenging one, since it requires to tackle all those
points that make stereo matching difficult (textureless areas, occlusion prob-
lem, etc.). In the previous chapters, we have modelled this layer assignment
problem as a cost minimization task. One problem related with this method-
ology is that having a cost function that well models a problem is not suffi-
cient, if one is not able to effectively optimize it. Unfortunately, this holds
partially true for the previously proposed approach. Upon bad initialization,
the greedy algorithm that is employed for optimization can get stuck in a
“weak” optimum due to its local nature, and there is no guarantee on how
far such a local optimum is away from the global one. In this chapter, we aim
to overcome this problem by employing a robust global optimization scheme
to the layer assignment task, namely graph-cuts. A drawback of that ap-
proach, however, is the computational lower efficiency. As will be explained
later in this chapter, optimization via graph-cuts works only for a restricted
type of cost functions, and when developing a cost function one has to ensure
that it belongs to this class. This is why we cannot directly use graph-cuts
to optimize the cost function of Chapter 5, but have to design a new one.
Throughout this chapter, we assume that the layer extraction task is already
solved so that the disparity layers are known. A disparity layer is still de-
scribed by a planar equation. Nevertheless, our approach can, in theory, be
used in conjunction with any smooth surface model.

83
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The goal of this chapter is to develop a cost function for the layer as-
signment problem that takes benefit of the segmentation information and
can then be optimized via graph-cuts. The major motivation for using the
segmentation information is that graph-based approaches often optimize en-
ergy functions whose smoothness terms bias towards the reconstruction of
simple object shapes, i.e. they aim at minimizing border lengths. We over-
come this undesired property by enforcing disparity discontinuities to coin-
cide with segment borders. Special care is taken on the accurate treatment
of occlusions. This, together with the segmentation information, leads to an
improved performance in regions close to depth boundaries. Using a region-
based approach, we take benefit of increased robustness in regions of poor
texture as well as of the capability to hypothesize flow values for occluded ar-
eas, which in our problem formulation is even possible if the whole segment is
occluded. The major novelty of our approach lies in the way how occlusions
are dealt with. In order to correctly handle occlusions, we introduce a cost
function that is defined on two levels, one corresponding to pixels and the
other to segments. We describe the basic idea behind this in the following.

7.2 Problem formulation

7.2.1 Basic idea

The cost function that we will develop in the following builds upon the ob-
servations of Section 4.3 where we have discussed the role of occlusions in
region-based matching. To explain our approach, let us again consider the
example that we have used in this previous discussion. Figure 7.1a illustrates
two segments with the foreground segment S2 being slightly displaced in the
right view. Moreover, we show the resulting occluded areas of both frames
marked by red colour in Figure 7.1b. Let us then consider Figure 7.1c to
explain how we can model this example in the proposed cost function.

We thereby start by taking a closer look at the segment level shown at
the top of the illustration. The segment level corresponds to all those regions
extracted by colour segmentation in the reference (left) view, which are the
segments S1 and S2 in our example. Note that the matching primitives on this
level are complete segments. Each of them gets assigned to a specific disparity
model (or in our terminology, disparity layer). So a typical statement on the
segment level would, for example, be: There is zero disparity on segment
S1. However, as we know from our previous discussion, in the domain of
segments it is not possible to express the fact that a segment is partially
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Figure 7.1: Basic idea behind the proposed cost function. Explanation is
given in the text.
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occluded1. Nevertheless, this is required in our example in order to correctly
model the occluded parts of segment S1.

In the proposed approach, we overcome the problem of partially occluded
segments by including the set of all pixels of the reference view into our cost
function. This is illustrated by the middle layer of Figure 7.1c. Therefore, in
addition to all segments, we as well assign every pixel of the reference image
to a disparity layer. In our formulation, there is a dependency between the
disparity layer assignments of segments and pixels of the reference view. This
link is built by the segmentation assumption. Recall that the assumption
states that all pixels inside a segment follow the same disparity model. Our
formulation implements this segmentation constraint by enforcing that every
(visible) pixel is assigned to the same disparity layer as the segment to which
it belongs. However, and this is the important point, a pixel is also allowed
to be occluded. Figure 7.1c shows that by inclusion of the middle layer
representing the pixels of the left image we are now able to correctly model
the partial occlusion to the left of segment S2 in the reference view. The
dashed lines between segment and pixel levels shall thereby indicate that the
segmentation assumption is enforced on the pixel level.

Nevertheless, at this point, we still have not modelled the complete infor-
mation that is present in the input image pair, since occlusions in the second
view have not been considered so far. To account for those occluded regions,
we as well include every pixel of the right image into our problem formulation.
This is represented by the bottom layer of Figure 7.1c. The disparity layer
assignments of pixels in the left image thereby depend on the assignments of
points in the right view and vice versa. Our basic consistency constraint is
that a (visible) pixel and its matching point in the other image must both
have identical disparity layer assignments. As seen from Figure 7.1c, we are
now able to model the occlusions to the right of segment S2 in the second
view. The arrows between middle and bottom layers illustrate the consis-
tency constraint that operates between the left and right views. Modelling
the pixels of both images in our cost function allows us to treat occlusions
symmetrically. Moreover, it serves to model the uniqueness constraint, as we
will describe later in this chapter.

7.2.2 Notations

In the following, we define some notations that are required in order to set
up our cost function. We thereby regard the task of assigning pixels and

1Indeed, one could only state that a segment is occluded as a whole. However, occluded
regions will almost never coincide with regions extracted by colour segmentation.
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segments to disparity layers as a labelling problem. The labels 1, 2, . . . , N
correspond to the N disparity layers that have been computed in the layer
extraction step. Moreover, a dedicated label 0 denotes pixels and segments
that are occluded and therefore not assigned to any of those disparity layers.
A labelling function f(·) is then defined for both, pixels and segments.

Let p = (x, y, v) be a pixel defined by its image coordinates x and y as
well as its view v ∈ {LEFT, RIGHT}. The set I = ILEFT ∪IRIGHT denotes
the union of all pixels from both views, with ILEFT being the left image and
IRIGHT being the right image. The labelling function f(p) on the pixel level
then projects each pixel p ∈ I to exactly one label k:

∀p ∈ I : f(p) = f(x, y, v) = k, k ∈ {0, 1, 2, . . . , N} . (7.1)

Moreover, let S be the set of segments extracted in the left view. Analo-
gously, the labelling function f(s) on the segment level projects each segment
s ∈ S to exactly one label k:

∀s ∈ S : f(s) = k, k ∈ {0, 1, 2, . . . , N} . (7.2)

Labelling a pixel by a label k 6= 0 defines the corresponding point in the
other view. The matching point m[k](p) of pixel p = (x, y, v) assigned to
label k is obtained by computing the disparity according to equation (5.4)
at the point (x, y, v) using the plane model of the kth disparity layer and
adding it to x. Formally expressed,

m[k](p) = m[k](x, y, v) = (x + d[k](x, y, v), y,¬v) (7.3)

with d[k](x, y, v) being the disparity at point (x, y, v) according to the plane
model of the kth disparity layer and ¬LEFT = RIGHT and vice versa.
The plane parameters used for computation of d[k](x, y, v) depend on the
view v. A transformation from LEFT to RIGHT is done using the origi-
nal plane parameters, which results in negative disparity values, whereas a
transformation in the opposite direction is accomplished using the parame-
ters of the “inverse” plane, which gives positive disparity values. To derive
whole-numbered image coordinates, we round the computed disparity to the
closest neighbour.

7.2.3 Cost function

Using the notation introduced above we design a cost function C(f), which
measures the optimality of a label configuration f . We therefore define a
set of terms that incorporate our basic ideas. Some of these terms operate
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Figure 7.2: Terms of the cost function C(f) and their scope.

directly on the pixel level or on the segment level, while others propagate
disparity layer assignments between the different layers of Figure 7.1c. We
give an overview of those terms and their scope in Figure 7.2. The overall cost
function C(f), which is subject to minimization, is then built by summation
of these terms:

C(f) = Tdata(f)+Tocclusion(f)+Tsegmentation(f)+Tmismatch(f)+Tsmoothness(f).
(7.4)

The individual terms of C(f) are described one after the other in the follow-
ing.

Data term

The first term Tdata measures the agreement of f with the input data by
exploiting the photo consistency constraint. Thus, we assume that pixels of
the left and right images that are the projections of the same scene point show
similar colour values. We incorporate this assumption on the pixel level by
measuring the pixel dissimilarity at each visible point of both images. More
precisely, we compute the dissimilarity between a pixel p and its matching
point m[f(p)](p) in the other view according to p’s current disparity layer
assignment f(p). Formally, the data term Tdata is defined by

Tdata(f) =
∑

p∈I

{

dis(p,m[f(p)](p)) : f(p) 6= 0
0 : otherwise

(7.5)

with dis(pi, pj) being a function that computes the colour dissimilarity of
two pixels pi and pj. In our current implementation, we use the pixel dis-
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similarity measurement of Birchfield and Tomasi [9]. This measurement has
the advantage of being less sensitive to image sampling. Since it has been
originally proposed to compute the dissimilarity of grey value pixels only, we
have applied a simple modification in order to make the measurement work
on RGB values as well.

Occlusion term

The occlusion term of our cost function serves to penalize occluded pixels
in both input views. This penalty is necessary, since otherwise declaring all
pixels as occluded would result in a trivial minimum of C(f). We therefore
define the occlusion term Tocclusion by

Tocclusion(f) =
∑

p∈I

{

λocc : f(p) = 0
0 : otherwise

(7.6)

with λocc denoting a constant user-set parameter.

Segmentation term

The segmentation term propagates disparity layer assignments between the
segments and the pixels of the reference view. It enforces the assumption of
smoothly varying disparity inside a segment on the pixel level. We embed
this assumption by imposing a penalty set to infinity for every visible pixel
of the left image that carries a different disparity layer assignment than its
corresponding segment. Formally, we define the segmentation term Tsegment

by

Tsegment(f) =
∑

p∈ILEFT

{

∞ : f(p) 6= 0 ∧ f(p) 6= f(seg(p))
0 : otherwise

(7.7)

with seg(p) being a function that returns the segment to which the pixel p

belongs. The consequence of the segmentation term is the following. Let us
consider two pixels of the same segment. Both pixels are visible, i.e. they
do not carry the occlusion label. If one pixel is now assigned to the same
disparity layer as its corresponding segment, then also the other pixel must
be assigned to exactly this particular disparity layer. Otherwise, the segmen-
tation term generates infinite costs and such a configuration will therefore
not be produced in the optimization part of the algorithm. Consequently,
it is not possible that two pixels of the same segment are assigned to two
different disparity layers. This is obviously equivalent to the statement that
all non-occluded pixels inside a segment are modelled by the same disparity
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layer, which is exactly what our segmentation assumption requires. This is
why the term introduced above enforces the segmentation constraint on the
pixel level. However, note that occluded pixels are not affected by the seg-
mentation term. Therefore, a pixel of the reference view can always carry
the occlusion label independently of its segment’s disparity layer assignment.

View consistency term

The view consistency term propagates disparity layer assignments from the
reference image to the second view and vice versa. It motivates consistent
disparity layer assignments across views, meaning that if a pixel in one image
is assigned to a particular disparity layer, also its matching point in the other
image should be assigned to exactly this disparity layer. We call assignments
that violate this constraint view inconsistent. Such view inconsistent assign-
ments are penalized by adding a constant value to the solution’s costs. We
define the view consistency term Tmismatch by

Tmismatch(f) =
∑

p∈I

{

λmismatch : f(p) 6= 0 ∧ f(p) 6= f(m[f(p)](p))
0 : otherwise

(7.8)
with λmismatch being a user-defined penalty. This term is as well used in the
work of Lin and Tomasi [57]. Ideally, view consistency should be enforced
by penalizing inconsistent solutions with infinite costs. This is, however, not
possible in our formulation for reasons related to the optimization part of
the algorithm. More precisely, view inconsistent solutions are generated in
intermediate steps of the optimization method.

Smoothness term

The last term of our cost function is the smoothness term. Note that smooth-
ness is, to some extent, already enforced due to the region-based nature of
the proposed algorithm. However, we apply a strong oversegmentation and
therefore image areas that can be well modelled by the same disparity layer
will, in general, be represented by more than one segment. Consequently, it
makes sense to incorporate an explicit smoothness term into our cost func-
tion in order to propagate disparity layer assignments across neighbouring
segments. Our cost function implements the smoothness assumption on the
segment level by penalizing neighbouring segments that are assigned to differ-
ent disparity layers. Formally, the smoothness term Tsmoothness is computed
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by

Tsmoothness(f) =
∑

(si,sj)∈NB

{

λdisc · bl(si, sj) · cs(si, sj) : f(si) 6= f(sj)
0 : otherwise

(7.9)
with λdisc being a user-set constant penalty for discontinuity and NB be-
ing the set of all neighbouring segments. The function bl(si, sj) computes
the border length by counting the number of neighbouring pixels (pi, pj) in
4-connectivity with pi belonging to segment si and pj to segment sj. The
second function cs(si, sj) measures the colour similarity of segments si and
sj. The basic idea behind weighting the smoothness penalty by the func-
tion cs(·, ·) is that we consider two segments showing similar colour as more
likely to originate from the same real-world surface than two segments of
completely different colour. As an example, consider an image background of
relatively homogeneous colour that is divided into several segments by colour
segmentation. In our implementation, we define the function cs(si, sj) by

cs(si, sj) = (1−
min(|meancolour(si)−meancolour(sj)|, 255)

255
) · 0.5 + 0.5

(7.10)
with meancolour(s) being the componentwise summed up RGB values of
pixels inside segment s divided by the segment’s number of pixels. The
absolute difference of the two RGB values is computed by summing up the
absolute differences of each component, which gives a maximum value of
3 · 255 using an 8-bit coding for each colour channel. For identical mean
colour values, the colour similarity function returns a value of 1, whereas
for colour differences larger or equal to 255, it gives a value of 0.5. The
costs of assigning two neighbouring segments of similar colour to different
disparity layers are therefore higher than separating two segments of low
colour similarity.

The reasons why the smoothness term operates on the segment level in-
stead of being defined on both views in the domain of pixels are twofold.
Firstly, defining the term on the pixel level would mean that smoothness is
as well enforced for pixels which carry the occlusion label. However, while the
smoothness assumption, in general, holds true for visible compact shapes, it is
not valid for occluded areas that are usually long and thin. Secondly, defining
the smoothness term on the segment level allows to propagate “meaningful”
disparity layers to segments that are completely occluded, i.e. segments that
do not contain a single visible pixel on the pixel level.
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7.2.4 Modelling the uniqueness assumption

The uniqueness assumption is known to be powerful in the identification of
occlusions. Recall from Section 2.2.2 that this constraint states that a pixel
of one view matches at most a single pixel in the other image. Incorporation
of the uniqueness assumption into our approach is relatively simple, since
it just requires careful setting of two parameters of the cost function, as we
describe in the following.

Let us first construct an example where the uniqueness constraint can help
us to detect an occluded pixel. We illustrate such a case in Figure 7.3a. The
illustration shows two pixels p1 and p2 assigned to different disparity layers l1
and l2, respectively. According to their current disparity layer assignments,
both pixels project to the same matching point p′2. Therefore, if we assume
that the uniqueness constraint is valid, p1 and p2 cannot be visible at the
same time. Obviously, our cost function penalizes configurations such as
the one of the illustration. More precisely, since p1 and p2 originate from
different surfaces (i.e. they are modelled by different disparity layers), only
one of them can have a view consistent disparity layer assignment with its
matching point p′2. This is the pixel p2 in our example, and the costs for
assigning p2 are solely that produced by the data term of equation (7.5)
(see also Figure 7.3a). In contrast to this, the costs for the assignment of
p1 are not only those given from the data term, but as well those of the
view consistency term of equation (7.8), which adds λmismatch to the overall
costs (see again Figure 7.3a). The basic idea now is to not only penalize
configurations that violate the uniqueness constraint, but rather to avoid
them completely. Our simple solution to this is to set the occlusion penalty
λocc given by the occlusion term of equation (7.6) to a lower value than that
of the mismatch penalty λmismatch.

2 By doing so, we guarantee that the
costs for declaring a pixel as occluded are always lower than the costs for
assigning it to a view inconsistent disparity layer. Referring again to Figure
7.3a, in the best case, the view inconsistent assignment of p1 generates costs
of λmismatch (if there is a perfect agreement in colour values between p1 and
p′2 so that the pixel dissimilarity is zero). However, the costs for assigning p1

to the occlusion label are λocc with λocc < λmismatch and therefore this is the
configuration that will be produced by the optimization algorithm.

In our discussion of the uniqueness assumption in Section 2.2.2, we have
pointed out that this constraint does not hold true for slanted surfaces. Due
to different sampling in the two input images, there are pixels of the same
surface that correctly match more than one point of the other view. Appli-
cation of the uniqueness constraint for the reconstruction of slanted surfaces

2In our experiments, we use λocc := λmismatch − 1.
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Figure 7.3: Modelling the uniqueness assumption. (a) Two pixels assigned
to different disparity layers match the same pixel in the other view. (b) Two
pixels assigned to the same disparity layer match the same pixel in the other
view. More details are found in the text.

can therefore lead to suboptimal results [69]. In Figure 7.3b, we illustrate
two pixels p1 and p2 that are both assigned to disparity layer l1, which means
that they lie on the same surface. Due to some slant on their surface, both
pixels have the same matching point p′2 in the other view. For this reason,
this configuration clearly violates the uniqueness constraint. However, both
disparity layer assignments (i.e. that of p1 as well as that of p2) are view con-
sistent with the assignment of the matching point p′2, since all of the three
pixels are assigned to disparity layer l1. Therefore, our cost function does not
penalize this configuration by the view consistency term (see Figure 7.3b).
So what we actually implement is not strictly the uniqueness constraint, but
rather some improved form of it that can also handle slanted surfaces.
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7.3 Optimization

7.3.1 α-expansion algorithm

To approximate a labelling f of minimum costs C(f), we use the α-expansion
framework of Boykov et al. [17]. This framework represents an efficient opti-
mization strategy for various labelling problems in computer vision and has
been briefly discussed in Section 3.1.5 in the context of stereo. The main
idea behind the optimization scheme is the following. Exact minimization of
cost functions such as the one that we aim to optimize is known to be NP-
complete. It is therefore almost surely not possible to compute the global
optimum in polynomial time. However, for a specific type of cost functions
that is characterized by Kolmogorov and Zabih [52], it is possible to de-
termine the global optimal solution for a subproblem via a single cut in a
graph. Roughly described, this subproblem is: Given some label configura-
tion f , what is the label configuration f ′ of lowest costs that differs from f in
the sense that a subset of labels are changed to the label α? In other words,
the subproblem is to find the optimal expansion of the label α. Iteratively
solving this subproblem by expanding each label efficiently approximates the
global optimum of costs for the overall problem. We go into more detail on
this in the following.

Translated to our problem formulation, an α-expansion move changes the
assignment of a subset of pixels and segments to the label α and leaves the
other pixels and segments assigned to their old labels. Formally expressed, let
f be the current label configuration of pixels and segments. The configuration
f ′ is within one α-expansion move from f , if for each pixel p, f ′(p) = f(p)
or f ′(p) = α and for each segment s, f ′(s) = f(s) or f ′(s) = α. We give
an example of an α-expansion move on the segment level in Figure 7.4. The
problem of finding the move of lowest costs within one α-expansion from f

for our cost function is then solved to optimality by computing the cut in a
special purpose graph.

We embed the α-expansion move into a greedy algorithm, which is the
one proposed by Boykov et al. [17]. An initial label configuration is gener-
ated by assigning all pixels and segments to the occlusion label. Note that
the α-expansion algorithm is robust enough to produce strong results even if
the initial configuration is far away from the global optimum. Starting from
this configuration, the algorithm computes the cheapest α-expansion move
for each disparity layer in fixed or random order. In addition to the extracted
layers, we also test a special disparity layer that carries the occlusion label.
If a move decreases the costs, then this is the new label configuration. This
procedure is then iterated until there is no disparity layer that further de-



CHAPTER 7. A GRAPH-CUT FORMULATION 95

disparity layer 1
disparity layer 2
disparity layer 3

(a) (b)

Figure 7.4: α-expansion on the segment level. (a) The image is divided into a
set of segments. Each segment is assigned to one of three disparity layers. (b)
α-expansion of disparity layer 1. Some segments change their assignments to
disparity layer 1, while the others keep their original assignments.

creases the costs by application of the α-expansion, which is usually the case
after very few iterations. We present a block diagram of the greedy algorithm
in Figure 7.5.

7.3.2 Optimal α-expansion move via graph-cuts

The problem of finding the optimal α-expansion move for our cost function
among all possible α-expansion moves is solved by computing the minimum
cut in a special purpose graph. Let G be a weighted directed graph with two
special vertices, which are the source src and the sink snk. From Section
3.1.5 we recall that a cut divides the vertices of G into two disjoint sets SRC

and SNK so that src ∈ SRC and snk ∈ SNK. The sum of all edges that
go from SRC to SNK defines the costs of the cut and the minimum cut is
the one that exhibits lowest costs.

To find the optimal α-expansion move for our cost function, we construct
the following graph. Each segment as well as each pixel are represented by
exactly one vertex vi. Additionally, the graph contains the two dedicated
vertices src and snk. Edges between vertices represent terms of the cost
function. The resulting graph is illustrated in Figure 7.6.

The basic idea behind the construction of this graph is that there is a one-
to-one correspondence between cuts in our graph and label configurations f ′

within one α-expansion from the current assignment f . Since an α-expansion
move can be regarded as binary labelling, we can represent each pixel and
segment by a binary variable xi with xi = 0 if the old label is kept, f ′(·) =
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Figure 7.5: Block diagram of the greedy algorithm that employs the α-
expansion move.
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Figure 7.6: Layout of the graph. Not all edges are shown for legibility. Each
of the illustrated vertices is connected to the source src and sink snk vertices.
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f(·), and xi = 1 if the new label is taken, f ′(·) = α. Analogously, a cut in
the graph represents a binary partition of vertices into the source set SRC

and the sink set SNK. We define the correspondence between a vertex vi

after computation of the cut and the binary labelling xi by

xi =

{

0 : vi ∈ SRC

1 : vi ∈ SNK.
(7.11)

Therefore, each cut in the graph uniquely defines the new label configuration
f ′ and vice versa. Edges in the graph are inserted in a way that the costs of
each cut in the graph are equal to the costs of the resulting label configuration
f ′. Since the computed cut is the one of minimum costs, also the resulting
configuration f ′ has minimum costs within one α-expansion move from f .

Kolmogorov and Zabih [52] characterize the class of cost functions that
can be minimized by graph-cuts. According to their results, cost functions
of n binary variables in the form of

C(x1, · · · , xn) =
∑

i

C i(xi) +
∑

i<j

C i,j(xi, xj)

can be optimized by graph-cuts if and only if

C i,j(0, 0) + C i,j(1, 1) ≤ C i,j(0, 1) + C i,j(1, 0). (7.12)

This defines the condition that we have to check for each individual term
of our cost function in order to prove that it belongs to this class. We
then adjust the weights of graph edges in a way that the resulting graph
represents our cost function. This is done using the construction rules given
by Kolmogorov and Zabih [52]. Since this construction is fairly complex, we
have decided to postpone its discussion to the appendix B.1. The minimum
cut in this graph is computed by applying the maximum flow algorithm
of Boykov and Kolmogorov [16]. This maximum flow method is specifically
optimized for high computational performance on graphs arising in computer
vision.

7.4 Experimental results

To test our new layer assignment step, we first run the layer extraction step
of Chapter 5 on the input image pair. Knowing the disparity layers, we
then invoke the proposed layer assignment procedure. Upon convergence
of the α-expansion algorithm, we refit each disparity layer that is present
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in the generated solution over its new spatial extent. We again run the α-
expansion algorithm in order to check whether any of those new disparity
layer models can produce a solution of lower cost. If this is the case, the
procedure is iterated. Otherwise, the algorithm returns the current disparity
layer assignment as final output.

To evaluate the proposed algorithm, we again use the Middlebury test bed
provided by Scharstein and Szeliski [78] that has been described in Section
3.2 of this thesis. We therefore generated results for all of the four test im-
age pairs used in the benchmark. The algorithm’s parameters were thereby
kept constant. At the time of publication of the corresponding conference
paper, the proposed method was ranked on second place3 on the Middlebury
Stereo Vision website.4 The graph-cut method shows slightly better overall
performance than the stereo algorithm of Chapter 5. This can also be seen
from Table 3.1 that shows a more recent ranking in which our method takes
the fourth place among current submissions. In the following, we show re-
sults for the Tsukuba and Venus test sets that are used in the Middlebury
benchmark. Furthermore, we present results for the more complex Teddy
and Cones stereo images that were taken from Scharstein and Szeliski [79].
Finally, we show results for a self-recorded test set.

As a first image pair we present the Teddy test set shown in Figures 7.7a
and 7.7b. The corresponding ground truth is presented in Figure 7.7c. The
Teddy image pair is challenging for stereo algorithms, since it has a complex
scene structure, a large disparity range (0 · · · 64 pixels) and untextured, as
well as large occluded regions. We show the disparity estimates on the pixel
level for the left and right images in Figures 7.7d and 7.7e. It can be seen
that most occluded pixels (coloured blue in the colour version and black in
the grey-level version of this thesis) are correctly identified in both images,
although some visible pixels erroneously carry the occlusion label. This hap-
pens for pixels whose pixel dissimilarity is larger than λocc. Figures 7.7g and
7.7h show the corresponding layer assignments on the pixel level. As a con-
sequence of the view consistency term, the assignments are consistent across
views. The disparity map on the segment level, which also represents the
final output of our algorithm, is presented in Figure 7.7f.

On the segment level, surfaces are represented by their planar model and
therefore by a continuous-valued function, yielding subpixel-precision. Fur-
thermore, occluded regions are filled in by meaningful disparity values as a
consequence of the segmentation information and the smoothness term of the

3This conference paper has appeared after publication of the algorithm described in
Chapter 5.

4http://www.middlebury.edu/stereo/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 7.7: Results for the Teddy test set. (a,b) Left and right images.
(c) Ground truth provided with image pair. (d,e) Disparity assignments for
pixels of the left and right views. Pixels assigned to the occlusion label
are coloured blue. (f) Disparity assignments for segments of the left view.
(g,h) Disparity layer assignments for pixels of the left and right views. (i)
Disparity layer assignments for segments of the left view. (j) Comparison of
the disparity map (f) against the ground truth (c). (k) Reconstructed view.
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cost function. The disparity layer assignments of segments are then presented
in Figure 7.7i. These assignments are consistent with the assignments on the
pixel level as a consequence of the segmentation term. We compare the com-
puted disparity map against the ground truth in Figure 7.7j. We therefore
plot pixels that have a disparity error larger than one pixel. Erroneous pixels
in visible regions are coloured black and wrong pixels in occluded regions
are assigned to grey. From this comparison against the ground truth it can
be seen that our algorithm performs specifically well in the reconstruction
of disparity discontinuities. This can be attributed to the incorporation of
colour segmentation into our approach as well as to the accurate treatment of
occlusions in both views. For quantitative evaluation, we compute two error
percentages. First, we calculate the percentage of pixels exceeding an error
threshold of one when considering unoccluded pixels only, which is also the
error metric used in the Middlebury benchmark. Using this measurement,
the error percentage is 4.77%. Second, we compute the error percentage for
all pixels including occluded ones. The percentage of wrong pixels according
to this metric is 6.77%. To give a further impression of the accuracy and
detail of the computed disparities, we show a 3d-reconstruction in Figure
7.7k.

As a second test image pair, we use the well-known Tsukuba set. The
results for this image pair are shown in Figure 7.8. Wrong disparity assign-
ments for this image pair are mainly caused by segments that overlap a depth
discontinuity (e.g. the tripod). Moreover, representing the head by two pla-
nar disparity layers oversimplifies the real surface. However, this could easily
be improved by the use of a more sophisticated disparity model. The error
percentage computed over all unoccluded pixels is 1.63%, while the percentage
of all wrong pixels including occluded ones is 1.99%.

In Figure 7.9 we present additional results for standard test sets as well
as for a self-recorded one. The corresponding right images and ground truth
data for the standard images can be found on the Middlebury Stereo Vi-
sion website. The Venus test set along with computed results is presented
in Figures 7.9(a1-a3). The algorithm correctly finds all five planes of which
the scene consists. We point out that the newspaper at the right of Figure
7.9(a1) consists of two planes that are joined by a crease edge, which is also
accurately reconstructed by the algorithm. The more complex Cones image
pair and corresponding results are then shown in Figures 7.9(b1-b3). Wrong
disparity values are mostly obtained in occluded regions. However, the scene
is reconstructed quite accurately by a large number of disparity layers. Fi-
nally, we show a self-recorded stereo pair and the computed disparity map
in Figures 7.9(c1-c3). The background of the scene is represented to a large
extent by a single layer, whereas the disparity of the teddy, which has a more
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Figure 7.8: Results for the Tsukuba test set. (a,b) Left and right images.
(c) Ground truth provided with image pair. (d,e) Disparity assignments for
pixels of the left and right views. Pixels assigned to the occlusion label
are coloured blue. (f) Disparity assignments for segments of the left view.
(g,h) Disparity layer assignments for pixels of the left and right views. (i)
Disparity layer assignments for segments of the left view. (j) Comparison of
the disparity map (f) against the ground truth (c). (k) Reconstructed view.
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(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 7.9: Results on standard and self-recorded image pairs. (a1) Left
image of the Venus test set. (a2) Disparity layers. (a3) Disparity map. (b1)
Left image of the Cones test set. (b2) Disparity layers. (b3) Disparity map.
(c1) Left image of a self-recorded image set. (c2) Right image. (c3) Disparity
map.
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complex structure, is well reconstructed using more disparity layers. Fur-
thermore, the algorithm was able to capture the thin structures represented
by the legs of the table.

7.5 Summary

In this chapter, we have described a new method to solve the layer assign-
ment problem. We have formulated this problem as a cost minimization task.
Therefore, a global cost function has been designed that can be optimized
via graph-cuts. Since partial occlusions of segments cannot be dealt with in
the domain of segments, we have also included the pixel level into our cost
function. We have modelled the segmentation assumption on the pixel level
by enforcing that all pixels inside the same segment follow the same disparity
model. However, to express the fact that there are occlusions, a pixel can
as well be assigned to a special occlusion label. Moreover, we have included
pixels of the second view into our cost function to allow for a symmetrical
treatment of occlusions. We have shown how our cost function models the
uniqueness constraint or, as we have seen later, some improved form of it. To
approximate the global optimum of costs, we have used robust graph-cut op-
timization. Results obtained for the Middlebury test set and a self-recorded
image pair have shown the good performance of the proposed method. Our
algorithm performs specifically well in the accurate reconstruction of dispar-
ity boundaries.



Chapter 8

A graph-cut formulation for
motion

8.1 Introduction

This chapter describes how the cost function of the previous chapter is em-
bedded into an algorithm that computes the optical flow between two or more
images. In contrast to the preceding chapter, we do not only focus on the
layer assignment step, but also reinvestigate the layer extraction problem.

We translate the layer extraction task to the following question: Given a
set of initial motion models, what are those models that represent the dom-
inant image motion? Our idea is to as well formulate this task in terms of a
global cost function, whose optimization can be effectively accomplished via
graph-based optimization. This cost function can be regarded as a simplified
version of that used in the previous chapter. Minimization of costs is compu-
tationally more efficient for this function, which is, however, at the price of
ignoring occlusions. Occlusions are then dealt with in the layer assignment
phase of the algorithm.

In the layer assignment step, we focus on extending the cost function of
the preceding chapter to take more than two images as input. This makes
sense from a practical point of view. When processing an image sequence, it is
more than likely that one does not only have two images at hand, but rather a
larger number of frames. Since the occluded regions are, in general, different
in each of these frames, this allows us to gather additional information from
non-occluded image parts.

In the end of this chapter, we show a concrete application example of our
optical flow algorithm, namely motion segmentation. We thereby divide a
complete image sequence into a set of homogeneously moving objects. Ex-

104
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traction of moving objects from an image sequence is of specific importance
in the context of new coding schemes such as MPEG-4 that encode a scene
as the composition of multiple video objects, each, for example, compressed
with different parameters.

8.2 A novel layer extraction step

In a first step, we proceed as in Chapter 6. That is, we apply colour segmen-
tation to the reference image by using the algorithm of Christoudias et al.
[23] (Figure 8.1b). We then compute a set of sparse correspondences with
the KLT-tracker [81] and fit each segment to these correspondences using the
method of Section 5.4. Our motion model is again the affine one, which is
defined by

Vx(x, y) = ax0 + axxx + axyy

Vy(x, y) = ay0 + ayxx + ayyy
(8.1)

with Vx and Vy being the x- and y-components of the flow vector.
In order to extract a small set of layers out of these initial motion seg-

ments, we have to answer the following question: How many layers are present
in the sequence and what are their motion parameters? Since an object that
undergoes homogeneous motion will in general not be identified as a single
colour segment, it is clear that layers do not coincide with segments. This is
especially true in strongly textured regions and when applying oversegmen-
tation. Considering our initial motion models as potential layer candidates,
a simple strategy is to locally select the motion model that gives the high-
est matching score for each segment. A motion model that was selected for
at least one segment can then be declared as being a layer. Obviously, the
resulting number of extracted layers would clearly exceed the correct num-
ber. However, we propose to use a very similar strategy that exploits the
smoothness constraint in addition.

Initially, the set of layers L is built by all motion models found in the
previous step.1 To extract a small set of layers out of L, we design a cost
function that is defined in the domain of segments only. This function is
denoted by C ′(·) in order not to be confused with the cost function C(·) of
the previous chapter. The cost function C ′(f) measures the quality of an
assignment f of segments to motion layers and is in the form of

C ′(f) = T ′
data(f) + T ′

smooth(f). (8.2)

1For efficiency, when building L, a motion model is only included, if the set does not
already contain a very similar one.
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The data term T ′
data calculates how well f agrees with the input images and

is defined by

T ′
data(f) =

∑

s∈S

∑

p∈s

dis(p,m[f(s)](p)) (8.3)

with S being the set of all segments of the reference view and f(s) being the
index of the layer to which segment s is assigned. We write m[k](p) to denote
the matching point of a pixel p in the other view according to the kth motion
layer. More precisely, m[k](p) is derived by computing the displacement vec-
tor at p using the affine parameters of the layer at index k (equation (8.1))
and adding it to the coordinates of p. The function dis(·, ·) computes the
dissimilarity of two pixels, which is the sum-of-absolute-differences of RGB
values in our implementation. The second term T ′

smooth of the energy func-
tion measures to which extent the current assignment f is spatially smooth.
T ′

smooth is defined by

T ′
smooth(f) =

∑

(si,sj)∈NB

{

λdisc · bl(si, sj) : f(si) 6= f(sj)
0 : otherwise

(8.4)

with NB being all pairs of neighbouring segments, bl(·, ·) computing the
border length between such and λdisc being a constant user-defined penalty.

We approximate the minimum of the energy function in equation (8.2)
using the α-expansion algorithm of Boykov et al. [17]. Starting from an arbi-
trary configuration f , we iteratively change this configuration by computing
the optimal α-expansion move for each layer until convergence. The graph
built for calculating the optimal α-expansion consists of nodes that corre-
spond to segments. Since the number of segments is significantly lower than
the number of pixels, minimization of equation (8.2) via graph-cuts is very
efficient.

Those layers that are not present in the newly computed configuration f ∗

are removed from the set of layers L, which drastically decreases the number
of layers. However, it is quite likely that the correct layer was not contained
in our initial set, due to the small spatial extent over which the motion
parameters were initially computed. We therefore refit the layers over their
new spatial extents according to the assignment of segments to layers in f ∗ to
derive a set of refined layers L′. We then update L by L := L∪L′. Starting
from the configuration f ∗, we apply the α-expansion algorithm using our
refined layer set L to obtain the new configuration f ∗∗. We again remove
those layers from L that do not occur in f ∗∗. If the costs of f ∗∗ are not
lower than those of f ∗, L represents our final set of layers. Otherwise, this
procedure is iterated.
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(a) (b) (c)

Figure 8.1: Colour segmentation and layer extraction. (a) Original image.
(b) Result of the colour segmentation step. Segment borders are shown. (c)
Result of the layer extraction step. Pixels of the same colour belong to the
same layer.

We show results of the layer extraction step in Figure 8.1c. Since the
proposed algorithm operates on the segment level only, it is not capable
of handling occlusions. It therefore produces artefacts in regions close to
motion boundaries. Although there are only small occluded areas in the
sequence shown in Figure 8.1 such artefacts are visible in the proximity of
the rotating ball.2 However, this strategy works well enough to deliver the
dominant image motion and it is computationally efficient. Moreover, those
wrong assignments can partially be identified, since they usually show large
pixel dissimilarity and are relatively small. We therefore remove such layers
to speed up the computationally more expensive assignment step.

8.3 Layer assignment with multiple input im-

ages

Knowing the set of layers, the task of the assignment step is to estimate
which parts of the images are covered by which layers as well as to iden-
tify occlusions. For this step, we make use of our cost function C(f) from
equation (7.4) of the previous chapter. Integration of C(f) into our mo-
tion algorithm is straightforward with the only difference being that a pixel’s
matching point is differently computed by using the affine motion instead of
the planar model.

The cost function C(f) has been originally designed to be used with only
two input images. However, often frames in between these two images are
available as well and can be used to improve the matching results. Let I1

2We will present an example where this effect is more severe in the experimental results.
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Figure 8.2: Conceptual view of the cost function C(f) when using more than
two input images.

and In be the first and last views of a short video clip of n frames. For
computing the optical flow between I1 and In, we do not only match I1

against In, but also match I1 against any intermediate view Ik with 1 <

k < n. The basic idea behind this is that a pixel of the reference frame I1,
which is occluded when matching I1 and In, might be visible (and therefore
matchable) when computing the correspondences between I1 and Ik. This
concept was originally used by Xiao and Shah [101, 100].

To implement this idea, we split up a video sequence of n images into
n− 1 view pairs. Each view pair thereby consists of the reference frame I1,
on which we apply colour segmentation, and a second image Ik 6= I1, i.e. we
derive the view pairs I1−I2, I1−I3,· · · , I1−In. From the layer extraction step,
we have the dominant motion models of the view pair I1− In. For simplicity,
we assume that within a very short image sequence the motion is linear, so
that the motion models for the other view pairs can be linearly interpolated
from those. To propagate the layer assignments of the individual view pairs
between each other, we connect the reference frame I1 of each view pair to
the segment level using the term Tsegment (Figure 8.2). From its definition in
equation (7.7), Tsegment enforces a pixel of the reference view to have the same
layer assignment as its corresponding segment, unless the pixel is occluded.
Since the reference frames of all view pairs are now connected to the segment
level, a pixel p of I1 in view pair V P that is assigned to layer l has to
be assigned to l in any other view pair V P ′ or carry the occlusion label.
Otherwise, the segmentation term generates infinite costs. This constraint
is what Xiao and Shah refer to as the General Occlusion Constraint [100],
which is integrated into our energy function without any additional effort.

Approximation of the minimum of C(f) is accomplished using the α-
expansion algorithm as explained in Section 7.3. After the layer assignment
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step the algorithm terminates and delivers the computed assignments of seg-
ments to motion layers as an output.

8.4 Experimental results

We have tested our algorithm on two standard data sets (Figure 8.3 and
Figure 8.4) as well as on a self-recorded one (Figure 8.5). Since ground truth
data is not available for any of those sequences, our analysis is limited to a
qualitative evaluation of the results. The algorithm uses three user-defined
parameters, which are λocc, λmismatch and λdisc. Throughout our test runs,
we set λocc := λmismatch− 1. The effect of this is that every view inconsistent
pixel is labelled as being occluded on the pixel level so that the uniqueness
constraint is enforced (see Section 7.2.4). The remaining two parameters
were optimized for good performance. Nevertheless, as a consequence of the
robust optimization scheme, the sensitivity of the algorithm against variation
of parameter settings is not very high.

As a first test sequence, we have picked five frames from the Mobile &
Calendar sequence that is often used in the evaluation of optical flow and
motion segmentation algorithms. Three of those images are shown in Figure
8.3a. Within this short sequence, there is translational motion on the train
and the poster, while rotational motion originates from the ball that is pushed
by the train. Moreover, the camera zooms out of the scene and pans to
the left. To present the computed flow values on the segment level, we
plot their absolute x- and y-components scaled by a factor of 32 in Figure
8.3b. The final assignment of segments to layers, which can be interpreted
as a motion segmentation of the sequence, is then shown in Figure 8.3c.
We draw the flow vectors for some pixels in Figure 8.3d. To allow for an
easier interpretation of this result, we also outline the layer boundaries. We
superimpose the layer borders on the reference image in Figure 8.3e to show
their agreement with actual object boundaries. The object outlines seem to
be well preserved. Finally, we present the results on the pixel level in Figure
8.3f with occlusions marked in red colour. Although occluded pixels seem to
be correctly identified, some non-occluded pixels are as well assigned to the
occlusion label. This happens for pixels whose dissimilarity is larger than
λocc. The overall time needed to compute the results using five input frames
of 352×240 pixels was approximately 10 minutes on an Intel Pentium 4 2.0
GHz computer with 30 seconds spent on the layer extraction and most of the
remaining time used for the assignment step.

The next test set that we applied our algorithm on is the Tennis sequence
shown in Figure 8.4a. There are two moving objects in the scene, which are
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(a)

(b) (c)

(d) (e)

Frames 1-2 Frames 1-3 Frames 1-4 Frames 1-5
(f)

Figure 8.3: Results for the Mobile & Calendar sequence. (a) Frames 1,
3 and 5 of five input frames. (b) Absolute x- and y-components of the
computed flow vectors. (c) Assignment of segments to layers. (d) Flow
vectors with layer boundaries outlined. (e) Layer boundaries coloured in
red (see electronic version) superimposed on input frame 1. (f) Absolute
x-components of the flow vectors on the pixel level. The top row shows the
reference view (frame 1), while the match images (frames 2 – 5) are presented
at the bottom. Pixels carrying the occlusion label are coloured in red.
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(a)

(b) (c)

(d)

Figure 8.4: Results for the Tennis sequence. (a) The two input frames.
(b) Assignments of segments to layers. (c) Absolute y-components of the
computed flow vectors on the segment level. (d) Absolute y-components on
the pixel level. Red pixels denote detected occlusions.
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the arm and the ball. While the arm undergoes a relatively small motion,
there is large motion on the ball. Moreover, the ball is affected by motion
blur. We use only two input images, since the motion of this ball is not
linear. The computed layer assignments are shown in Figure 8.4b. Figure
8.4c then shows the y-components on the segment level on which occlusions
are automatically filled in. The values are scaled by a factor of 16. Finally,
we present the y-components of the flow vectors on the pixel level in Figure
8.4d to show that the large occluded areas are correctly detected. The algo-
rithm needed 4 minutes to generate these results with the image sizes being
352×240 pixels.

In addition to the standard test sets, we tested the proposed method on a
self-recorded sequence. As input for our algorithm, we used three consecutive
frames of which two are shown in Figure 8.5a. In this sequence, a train is
moving from right to left in front of a static background. Although the mo-
tion is relatively simple, the scene contains complex motion boundaries (e.g.
the link connecting the wagons) and relatively large occluded areas. These
occlusions are the reason why the layer extraction step delivers poor results
in the proximity of the motion discontinuities as shown in Figure 8.5b. In
contrast to this, the assignment step that explicitly models occlusions seems
to be able to outline the motion boundaries correctly, which we demonstrate
in Figure 8.5c. Due to the lens distortion of the camera used in recording
this sequence, the motion of the train cannot be described by a single affine
motion model. The train is therefore modelled by two different layers. We
then present the x-components of the flow vectors scaled by a factor of 16 in
Figure 8.5d and show the layer borders superimposed on the reference frame
in 8.5e. Given the three images of 546×318 pixels as input, the algorithm
terminated after 6 minutes.

Finally, we used our algorithm to segment a complete video sequence into
homogeneously moving objects. In the first step, we pick the frames 1–5 of
the Mobile & Calendar sequence to compute the results that were shown in
Figure 8.3. The final assignment of segments to layers thereby represents our
motion segmentation result for frame 1. The layers that are present in the
final solution then build the input for computing the segmentation of frame
2. More precisely, when segmenting frame 2 using the images 2–6, we do not
invoke the layer extraction step, but directly assign the layers derived from
the segmentation of frame 1. Since the layers’ motion models will change over
time, we refit each layer to correspondences derived from the KLT-tracker
after each assignment step and then pass these layers to segment the next
frame of the sequence. We show the computed segmentation results for each
fifth frame of the Mobile & Calendar sequence in Figure 8.6. The algorithm’s
parameters were kept constant throughout the computation.



CHAPTER 8. A GRAPH-CUT FORMULATION FOR MOTION 113

(a) (b)

(c) (d) (e)

Figure 8.5: Results for a self-recorded sequence. (a) Frames 1 and 3 of three
input frames. (b) Results of the layer extraction step. (c) Assignments of
segments to layers. (d) Absolute x-components of flow vectors. (e) Layer
boundaries superimposed on view 1.

The results of this motion segmentation are useful in the following sense.
By segmentation of a single frame based on motion, we can identify those re-
gions of the image that move homogeneously. Since a region of homogeneous
motion usually originates from a single real-world object in motion, this often
represents a semantic segmentation (e.g. the motion layer representing the
ball in Figure 8.6). Moreover, by passing the layers as input for the segmen-
tation of the subsequent frame, we can track this semantic object throughout
the video sequence. Our algorithm can therefore be used to automatically
extract a set of so-called video objects from an image sequence. We show
the video objects extracted from the Mobile & Calendar sequence in Figure
8.7. As an application example, we use these video objects to manipulate
the Mobile & Calendar sequence. This is shown in Figure 8.8. In this video,
we reinsert the extracted video object representing the ball into the scene us-
ing different motion parameters. The ball thereby bounces against the video
object that corresponds to the train.

8.5 Summary

In this chapter, we have applied our graph-cut formulation to the task of
motion computation. First, we have presented a novel layer extraction step.
To extract a small set of layers, we have minimized a simple cost function that
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Frame 1 Frame 6 Frame 11

Frame 16 Frame 21 Frame 26

Frame 31 Frame 36 Frame 41

Figure 8.6: Motion segmentation.
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Background Calendar Train Ball

Figure 8.7: Automatically extracted video objects in frames 1, 11 and 21.

Figure 8.8: Video object insertion. The order of the presented images is from
top left to bottom right.
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models the optical flow problem on the segment level only. The advantage of
this cost function is that its optimization via graph-cuts is computationally
very efficient. We can therefore check for a large number of different motion
models whether they represent a layer. However, the cost function does
not account for occlusions. To overcome this problem, we have used the
cost function of the previous chapter in the layer assignment step of our
approach. This cost function handles occlusions by incorporation of the
pixel level and its integration into our motion algorithm is straightforward.
When dealing with video sequences, one usually has more than two frames
available. We have therefore described how our cost function is extended to
operate on multiple input images. This is advantageous, since the occlusions
between different image pairs are different. Minimization of the resulting
cost function has then been accomplished using the α-expansion algorithm.
In the experimental results, we have not only applied our algorithm to the
task of optical flow computation, but also used it for motion segmentation.
We have demonstrated that our method is capable of successfully dividing a
complete sequence of images into different video objects.



Chapter 9

Conclusions

9.1 Summary

This thesis has focused on the dense correspondence problem occurring in
the field of low-level computer vision. We have described two novel methods
that tackle the problem using a segmentation-based approach. Our basic as-
sumptions are that disparity varies smoothly inside a region of homogeneous
colour, while disparity discontinuities are located at the borders of those re-
gions. The purpose of applying this segmentation assumption is to improve
the performance of our algorithms in untextured regions and in the proximity
of disparity boundaries.

We have presented two novel segmentation-based stereo methods of which
both make use of a layered representation. The dominant disparity planes,
which we refer to as layers, have been determined by mean-shift-based clus-
tering. For optimal assignment of each segment of the reference view to
exactly one of the extracted disparity layers and to detect occlusions, we
have then set up a global cost function.

In our first method, this cost function uses image warping to compute the
quality of an assignment of segments to disparity layers. The warped refer-
ence image is thereby compared against the real second view by computing
the pixel dissimilarities. Moreover, occlusions are detected in the warping
process, and reasoning about a pixel’s visibility is accomplished using a Z-
buffer. Since the resulting cost function is known to be NP-complete, exact
minimization of costs is not possible. We have therefore employed an efficient
greedy search strategy in order to determine a local optimum. We have fur-
ther shown that the algorithm can be extended to optical flow computation.
The major difference lies in that the visibility reasoning has to be modified.

In our second approach, we have constructed a cost function in a way
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that it can be optimized via graph-cuts. This cost function operates on two
levels. While the first level corresponds to the segments of the reference view,
the second level represents the pixels of this image. This two-level represen-
tation is motivated by the fact that partial occlusions of segments cannot
be expressed when modelling the problem on the segment level only. For a
symmetrical treatment of occlusions, we have as well included all pixels of
the second view into our problem formulation. Occlusions in both images
are then detected by enforcing the uniqueness constraint. In order to ap-
proximate the global optimum of costs, we have employed the α-expansion
framework. In a further step, we have applied this cost function to the optical
flow problem. While this extension is straightforward, we have shown how
the cost function can be used to compute the image motion by taking more
than two views as an input. Moreover, we have introduced a new layer extrac-
tion procedure. The resulting algorithm has proven to be robust enough to
divide a complete video sequence into homogeneously moving video objects.

In our experiments, we have demonstrated that our methods are capable
of computing good results on standard images as well as on self-recorded
ones. We have evaluated our stereo methods using the Middlebury data
set for which ground truth is available. Our stereo algorithms are ranked
among the top five of approximately 40 contributions in this benchmark.
The methods show particularly good results in regions of poor texture and
are capable of precisely outlining disparity and motion discontinuities.

9.2 Open topics and future research

Although the algorithms presented in this thesis have shown strong results,
there are some open topics that we are planning to address in future research:

• The segmentation assumption is not guaranteed to hold true. This is
probably the most severe limitation of our approaches, and our cur-
rent remedy to this is to apply a strong oversegmentation. However,
since this does not completely overcome this problem, our algorithms
could, for example, take benefit from an operation that allows splitting
segments. It would as well be interesting to develop a special purpose
colour segmentation method that avoids (as far as possible) producing
segments which overlap a depth discontinuity.

• The disparity model might be too simple to represent the actual surface.
In our current implementation, we assume that surfaces are planar. If
this is not the case, our algorithms tend to oversimplify the real shapes.
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However, both algorithms can be modified to use a more elaborate sur-
face model (e.g., a spline model). Especially for the second algorithm,
this modification is straightforward.

• Image noise and other deviations from Lambertian surfaces have not
been modelled in our methods. We leave this for further work.

• The algorithms’ parameters are chosen empirically. In a more advanced
implementation, parameter estimation could be automated (e.g., based
on the expected level of image noise or disparity variation).

• Stereo and optical flow computation are considered as separate prob-
lems. In further research, we are planning to set up a stereo system that
also exploits temporal relationships. This should improve the quality
of stereo as well as of motion estimates.

Nevertheless, we have shown that colour segmentation combined with
accurate treatment of occlusions can aid in the computation of dense stereo
and motion estimates.



Appendix A

Supplements to the greedy
method

A.1 Incremental image warping

From a computational point of view, warping the complete reference image
according to the current layer assignment is a costly operation. Fortunately,
this operation, which is called the base warp, only needs to be performed once
for the initial solution. In the hypothesis testing phase usually only small
parts of the warped image are changed. We therefore employ an incremental
warping procedure that builds upon the base warp and only warps those
segments to the second view that have a new assignment. In this process,
we also incrementally calculate the costs of the formed solutions. For the
implementation of the described hypothesis testing algorithm, we require
two efficient basic operations. One operation serves to add a segment to the
Z-buffer and the other is used to delete a segment from the Z-buffer. For
each applied operation, we determine the resulting change of costs allowing
an incremental computation of the current solution’s costs.

To insert a segment into the Z-buffer, we apply the segment warping
procedure described in Section 5.6.1. The coordinates in the second view
and the colour values of the image points are retrieved and added to their
corresponding Z-buffer cells. To calculate the change of costs in each indi-
vidual Z-buffer cell occupied by the segment, we distinguish between three
cases, as illustrated in Figure A.1. In the first case, a new entry is added to
an empty cell. In the second case, the new entry is occluded by a pixel of
the same cell having higher disparity, and in the third case, the new pixel
occludes the pixel that was visible before insertion. Separating these three
cases, the change of costs δadd(p) implicated by adding pixel p to a Z-buffer
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Figure A.1: Incremental computation of the costs in the Z-buffer. The inser-
tion of Segment A implicates 3 different cases.

cell is computed by

δadd(p) =







dis(p)− λocc : case 1
λocc : case 2

dis(p)− dis(pvis) + λocc : case 3
(A.1)

with dis(p) being the colour dissimilarity of the pixel p in the real and in
the warped view, λocc denoting the occlusion penalty and pvis being the pixel
that was visible before the insertion of p. The change of costs ∆add intro-
duced by adding the segment to the Z-buffer is then computed by summing
up the individual changes of costs over all cells occupied by the segment.
Additionally, the discontinuity penalty λdisc is added for each pixel on the
segment’s border to a segment of a different layer assignment in the reference
image. Since deleting a segment obviously represents the inverse operation,
the change of costs ∆del for deletion of a segment can be deduced analogously.

In hypothesis testing we first delete the current segment from the Z-buffer
to test neighbouring layers’ plane models. We record the resulting change of
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costs ∆del. We then replace the segment’s planar model by the plane of a
neighbouring layer and add it to the Z-buffer. The computed change of costs
∆add is stored. We then use the delete function to remove the segment again.
We test the hypotheses of all other neighbouring layers. Finally, we restore
the Z-buffer to its original state by adding the segment using its old planar
description. If there are neighbouring layers for which

∆del + ∆add < 0 (A.2)

we found assignments for this segment that give locally lower costs than the
current one. In this case, we record the assignment that gave the minimum
value for this term. After all segments have been tested, we replace the old
assignment by the recorded one. This update also needs to be applied to the
Z-buffer using the described delete and insert functions. In each iteration
of the algorithm, usually only a fraction of segments will be assigned to a
new layer. Especially, when the algorithm converges to a local optimum, the
number of updated segments will be very small. The use of the incremen-
tal delete and add functions for the update procedure therefore provides a
significant gain of efficiency over the computational expensive operation of a
base warp.

A.2 Sensitivity of results to variations in pa-

rameter values

As for every global stereo matching method, the setting of parameters plays
an important role. There are three parameters the user can tune to influence
the algorithm’s results: the mean-shift radius r, the occlusion penalty λocc

and the discontinuity penalty λdisc. All other parameters and thresholds are
set to constant values, which are given in the main text of the paper.

We take a closer look at the effects of varying the parameters using the
Teddy test set shown in Figure 5.16a and Figure 5.16b. We have chosen the
Teddy test set, since it has the most complex scene structure of the presented
stereo pairs and thus presents the most challenging reconstruction task of the
selected stereo pairs. The disparity map shown in Figure 5.16e was generated
using the following parameter values: r = 0.6, λocc = 20.0 and λdisc = 2.5.
For studying the role of a specific parameter, we generate results by varying
its setting. The two other parameters are thereby kept fixed and set to the
values given above. Each result is then compared against the ground truth
by computing the percentage of all pixels having a disparity error larger
than one. The resulting plots are shown in Figure A.2 and are interpreted
as follows.
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Figure A.2: Percentage of all wrong pixels for varying parameter values. (a)
Different settings for the mean-shift radius r (λocc = 20.0, λdisc = 2.5). (b)
Different settings for the occlusion penalty λocc (r = 0.6, λdisc = 2.5). (c)
Different settings for the discontinuity penalty λdisc (r = 0.6, λocc = 20.0).
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The mean-shift radius r, whose plot is shown in Figure A.2a, controls the
number of layers that are found in the layer extraction step of the algorithm.
If r is set to low values, the number of extracted clusters and therefore layers
will be high. In this case, the layers will not be very robust as a consequence
of the small spatial extent over which their plane parameters were computed.
On the other hand, setting the mean-shift radius to a high value causes two
different surfaces to be represented by the same layer, which is not desirable
either. For the Teddy test set, values in the range of [0.5, · · · , 0.6] represent
a good trade-off between these two competing effects, as can be seen in the
plot.

The plot for different settings of the occlusion penalty λocc is shown in
Figure A.2b. If λocc is given a very low value, the algorithm tries to propagate
planes that create occlusions in the warped view, which in general results in
bad solutions. For λocc = 10, we receive 38.1% of wrong pixels on the Teddy
test set. On the other hand, overpenalizing occlusions usually decreases the
performance in segments close to depth boundaries, since the algorithm then
tries to generate continuous disparity transitions instead of modelling jumps
in disparity that go along with occlusions. In this example, however, the
results are not very sensitive to the occlusion penalty as long as it is not too
low.

Finally, we show the plot for different settings of the discontinuity penalty
λdisc in Figure A.2c. The plotted results show a minimum value at λdisc = 2.5
and relatively small variations over the rest of the displayed parameter range.
A slight increase of the error rate with larger values of λdisc can be attributed
to the large number of layers that is needed to accurately represent the scene.
As a consequence, the boundary lengths between different layers are relatively
large (e.g., the boundaries between the different plants in Figure 5.16), which
is penalized by λdisc. Assigning large values to the discontinuity penalty
λdisc therefore decreases the performance. Nevertheless, λdisc significantly
contributes to the reconstruction of scenes consisting of large planar surfaces
as the Venus test set shown in Figure 5.14a and Figure 5.14b.
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Supplements to the graph-cut
method

B.1 Graph construction

In the following, we show that our cost function is representable by a set of
functions of binary variables that fulfil condition (7.12) and build the overall
graph. The functions that will be used in the construction as well as the
corresponding graphs that implement those functions are presented in Figure
B.1. The graph constructions are with small deviations those presented by
Kolmogorov and Zabih [52].

Let us, for example, consider construction (b4) of Figure B.1. In con-
struction (b4), the function C i,j(xi, xj) returns the non-negative constant c

for all settings of xi and xj, except for xi = 1 and xj = 1 for which it returns
0. C i,j(xi, xj) obviously fulfils condition (7.12), since c is non-negative and
therefore

C i,j(0, 0) + C i,j(1, 1) = c + 0 ≤ c + c = C i,j(0, 1) + C i,j(1, 0). (B.1)

In Figure B.2 we show that for any cut in the graph of construction (b4), the
costs of this cut are equal to the costs of the corresponding binary labelling
as specified by the function C i,j(xi, xj). In the first case (Figure B.2a), we
examine the labelling xi = 0 and xj = 0 with C i,j(0, 0) = c. According to
equation (7.11), this labelling corresponds to the cut vi ∈ SRC and vj ∈
SRC. In this configuration, there is exactly one edge in the graph that
goes from SRC to SNK, namely the edge (vj, snk). The costs of the cut
are therefore equal to the weight on the edge (vj, snk), which is c. In the
second case (Figure B.2b), the labelling xi = 0 and xj = 1 with C i,j(0, 1) = c

corresponds to the cut vi ∈ SRC and vj ∈ SNK. In this configuration, the
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Figure B.1: Functions of binary variables and corresponding graphs used in
the construction. Constructions (a1-a3) Functions in the form of C i(xi) that
only depend on one binary variable xi. Constructions (b1-b4) Functions in
the form of C i,j(xi, xj) that depend on two binary variables xi and xj. The
constant c is non-negative.
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Figure B.2: Costs produced by different cuts in graph of construction (b4) of
Figure B.1. Dashed edges generate costs. (a) C i,j(0, 0) = c. (b) C i,j(0, 1) = c.
(c) C i,j(1, 0) = c. (d) C i,j(1, 1) = 0.

edge (vi, vj) that goes from SRC to SNK produces costs of c. In the third
case (Figure B.2c), the binary labelling is given by xi = 1 and xj = 0 with
C i,j(1, 0) = c so that the graph is cut by vi ∈ SNK and vj ∈ SRC. The
only edge that goes from SRC to SNK is (vj, snk) and therefore the cut
generates costs of c. Finally, in the last case (Figure B.2d), we consider the
labelling xi = 1 and xj = 1 with C i,j(1, 1) = 0, which corresponds to the cut
vi ∈ SNK and vj ∈ SNK. In this configuration, there is no edge that goes
from SRC to SNK and therefore the costs of the cut are 0. The correctness
of the other constructions of Figure B.2 can be shown analogously.

In the following, we use the constructions of Figure B.1 to represent the
individual term of our cost function.

Data and occlusion terms

For each pixel p of both views, the data term defined in equation (7.5) mea-
sures the pixel dissimilarity, if p is not occluded (f(p) 6= 0). Otherwise, if p

carries the occlusion label (f(p) = 0), the occlusion term of equation (7.6)
generates costs of λocc. Let us suppose that a pixel p remains assigned to
its old label in f ′ (xp = 0). The costs defined by the data and occlusion
terms are then computed by Cp(0) = dis(p,m[f(p)](p)) for f(p) 6= 0 and
Cp(0) = λocc for f(p) = 0. Analogously, the costs for assigning the pixel p to
the label α in f ′ (xp = 1) are derived by Cp(1) = dis(p,m[α](p)) for α 6= 0
and Cp(1) = λocc for α = 0. To implement the function Cp(xp) at each pixel
p of both views, we apply construction (a3).
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Segmentation term

The segmentation term defined in equation (7.7) penalizes each non-occluded
pixel p (f(p) 6= 0) of the left view by an infinite penalty, if it carries a
different label than the segment s to which it belongs (f(p) 6= f(s)). In
the following, we analyse the cases that can arise in the construction of the
segmentation term at each pixel p of the left view. We can thereby rely on the
fact that our current label configuration fulfils the segmentation constraint,
since segmentation inconsistent assignments are not contained in the initial
configuration nor created in the optimization process.

Let us suppose that f(p) 6= 0 and α 6= 0. Due to the validity of the
segmentation constraint, we then know that the pixel p and the segment s

both carry the same label in f . The case of f(p) = α is trivial, since for
any combination of xp and xs no costs are generated. Let us consider the
case of f(p) 6= α. A configuration f ′ within one α-expansion from f that
fulfils the segmentation constraint is then derived if either p as well as s

keep their old labels in f ′ (xp = xs = 0) or both change their labels to α

in f ′ (xp = xs = 1). Therefore, in this case, Cp,s(0, 0) = Cp,s(1, 1) = 0 and
Cp,s(0, 1) = Cp,s(1, 0) = ∞, which is implemented by construction (b3).

Let us now consider the case of f(p) 6= 0 and α = 0. In this configuration,
the pixel p is allowed to change its label to the occlusion label in f ′ (xp = 1),
while the segment s keeps its original label in f ′ (xs = 0). Furthermore,
we allow that p and s both keep their old labels (xp = xs = 0) or both
change their assignments to the occlusion label (xp = xs = 1). However,
p must not remain assigned to its old label (xp = 0), if the assignment
of s is changed to the occlusion label (xs = 1), since this would violate
the segmentation constraint. We therefore derive the function Cp,s(xp, xs)
defined by Cp,s(0, 1) = ∞ and Cp,s(0, 0) = Cp,s(1, 0) = Cp,s(1, 1) = 0 and
apply construction (b2). The case of f(p) = 0 and α 6= 0 is constructed
analogously by disallowing p to change its label to α (xp = 1), while s

keeps its original label (xs = 0), which is implemented by construction (b1).
Finally, the case of f(p) = 0 and α = 0 is trivial, since any setting of xp and
xs is allowed.

View consistency term

The view consistency term defined in equation (7.8) imposes the non-negative
constant mismatch penalty λmismatch for each visible pixel p (f(p) 6= 0) that
is view inconsistent so that f(p) 6= f(m[f(p)](p)). In the construction of
the view consistency term at each pixel p of both views, we analyse a set of
different cases separately.
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Let us suppose that the pixel’s p old assignment is equal to α (f(p) = α)
and α is not the occlusion label (α 6= 0). The matching point q = m[α](p)
is therefore the same for both settings of the binary variable xp. If also
f(q) = α, any setting of xp and xq results in a view consistent labelling
and does not produce costs. Otherwise, if f(q) 6= α, assigning q to its old
label in f ′ (xq = 0) needs to be penalized by λmismatch. We then derive
the function Cp,q(xp, xq) defined by Cp,q(0, 0) = Cp,q(1, 0) = λmismatch and
Cp,q(0, 1) = Cp,q(1, 1) = 0. Since the penalty is given independently of xp,
this is the same as the function Cq(xq) with Cq(0) = λmismatch and Cq(1) = 0.
Accordingly, we use construction (a1) to build the graph.

In the following, let us consider that the pixel’s p old assignment is not
equal to α (f(p) 6= α). As a consequence, the pixel’s p matching point q is
in general different depending on the setting of xp.

1 We will therefore apply
two constructions on the pixel p, one for xp = 0 and the other one for xp = 1.

Let us start by assuming that xp = 1 (f ′(p) = α), since this is the simpler
one of the two constructions. If α = 0, the pixel p is then occluded in
f ′, which does not generate any costs. Otherwise, if α 6= 0, the matching
point q = m[α](p) becomes defined. Let us suppose that f(q) = α. As a
consequence, for any setting of xq the matching point q will be assigned to
the label α. The labellings of p and q are therefore view consistent and no
costs are produced. Otherwise, if f(q) 6= α, assigning q to its old label in f ′

(xq = 0) results in a view inconsistent labelling. In this case, we derive the
function Cp,q(xp, xq) with Cp,q(1, 0) = λmismatch and Cp,q(0, 0) = Cp,q(0, 1) =
Cp,q(1, 1) = 0. Accordingly, construction (b1) is used.

Let us now suppose that xp = 0 (f ′(p) = f(p)). If f(p) = 0, the pixel
p is occluded in f ′ and no costs are produced. Otherwise, if f(p) 6= 0, the
matching point q is computed by q = m[f(p)](p). If f(p) = f(q), assign-
ing q to its old label in f ′ (xq = 0), results in a view consistent labelling.
Furthermore, we know that f(p) 6= α, since we filtered out the other case
before. If therefore q changes its label to α in f ′ (xq = 1), the configuration
becomes view inconsistent. In this case, we derive Cp,q(xp, xq) defined by
Cp,q(0, 1) = λmismatch and Cp,q(0, 0) = Cp,q(1, 0) = Cp,q(1, 1) = 0, which is
implemented by construction (b2). Otherwise, if f(p) 6= f(q), assigning q

to its old label in f ′ (xq = 0), results in a view inconsistent labelling. In
addition, we know that f(p) 6= α, so that changing the label of q to α in f ′

(xq = 1) does not produce a consistent labelling either. Since in this case the
costs of λmismatch are given for any setting of xq, we derive Cp(xp) defined by
Cp(0) = λmismatch and Cp(1) = 0. Accordingly, we apply construction (a1).

1However, the following construction also works, if the matching point q is the same
for both settings of xp (m[f(p)](p) = m[α](p)).
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Smoothness term

The smoothness term imposes a non-negative penalty for each pair of neigh-
bouring segments (s, t) of the left view, if segment s is assigned to a different
label than segment t (f(s) 6= f(t)). The weighted penalty is computed ac-
cording to equation (7.9) and referred to by λsmooth in the following.

We start our construction with the trivial case of f(s) = f(t) = α, which
does not generate costs for any setting of xs and xt. Let us now assume
that f(s) = α, but f(t) 6= α. In this case, if t keeps its old label in f ′

(xt = 0), the penalty λsmooth is imposed. This defines the function C t(xt)
with Ct(0) = λsmooth and Ct(1) = 0, which is implemented according to
construction (a1). The case of f(s) 6= α and f(t) = α is derived analogously.

In the following, let us assume that f(s) 6= α and f(t) 6= α. We
then have to analyse two cases separately. In the first case, we examine
the configuration f(s) = f(t). The segments s and t will then be as-
signed to the same label in f ′, only if either both keep their original la-
bels (xs = xt = 0) or both change their labels to α (xs = xt = 1). We
therefore derive the function Cs,t(xs, xt) with Cs,t(0, 0) = Cs,t(1, 1) = 0
and Cs,t(0, 1) = Cs,t(1, 0) = λsmooth, which is implemented by construction
(b3). In the second case, if f(s) 6= f(t), the segments s and t both have
to change their labels to α in f ′ (xs = xt = 1) in order to have the same
assignment. This defines the function Cs,t(xs, xt) with Cs,t(1, 1) = 0 and
Cs,t(0, 0) = Cs,t(0, 1) = Cs,t(1, 0) = λsmooth. Accordingly, construction (b4)
is applied.
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