
JEmblazoner: Konstruktion von Wappenbildern
aus textuellen Beschreibungen

JEmblazoner: Construction of Coats of Arms Images

from Textual Descriptions

Christian Breiteneder1, Horst Eidenberger1 and Manuel Wasinger2
Vienna University of Technology, Institute of Software Technology and Interactive Systems

Favoritenstrasse 9-11 – 188/2, A-1040 Vienna, Austria
Tel.: +43-1-58801-18802, Fax: +43-1-58801-18898

1E-mail: {eidenberger, breiteneder}@ims.tuwien.ac.at, Internet: http://www.ims.tuwien.ac.at/
2E-mail: a9402833@unet.univie.ac.at

Zusammenfassung: In diesem Beitrag wird die Softwarekomponente JEmblazoner beschrieben.
JEmblazoner ist eine Java-basierte Benutzerschnittstelle für die inhaltsorientierte Suche in
Datenbanken mit Wappenbildern. Mit JEmblazoner ist es möglich, aus textuellen Beschreibungen
(sogenannten Blazons) Wappenbilder abzuleiten, die dann für die inhaltsorientierte Suche
verwendet werden können. Unter inhaltsorientierter Suche (englisch: Content-based Image
Retrieval, CBIR) versteht man die automatische Suche in Bilddatenbanken anhand qualitativer
Bildmerkmale. Solche Bildmerkmale (englisch: Features) können sein: Farben, Farbverteilungen,
Muster, Umrisse, etc. Die Suche erfolgt zumeist indem der Benutzer ein oder mehrere
Beispielbilder angibt, für die er möglichst ähnliche Bilder in der Datenbank finden möchte. Da ein
solches Beispielbild nicht in allen Fällen verfügbar ist, stellen wir für den Anwendungsbereich der
Wappensuche mit JEmblazoner auch eine textorientierte Benutzerschnittstelle zur Verfügung. Der
Beitrag beschreibt den Aufbau und die Implementierung von JEmblazoner ergänzt durch eine
Reihe von Beispielen.

Abstract: This paper describes the free software component JEmblazoner. JEmblazoner is a
Java-based user interface for Content-based Image Retrieval (CBIR) in databases of coats of
arms images. JEmblazoner allows to create coats of arms images from textual descriptions (so-
called Blazons) that can be used as input for CBIR queries. In CBIR image databases are queried
by qualitative features without the assistance of human annotations. Such features can be color,
color distributions, textures, shapes, etc. Usually, the user issues a query by selecting example
images that look similar to those he wants to retrieve. Since in some situations suitable example
images may not be available, we provide a textual interface from which search images may be
generated. In this case JEmblazoner is – for the application domain of coats of arms – an
extension to perform content-based retrieval from textual input. The paper describes the design
and implementation of JEmblazoner as well as a number of rendered examples.

1. Introduction

The increasing number of digital libraries and repositories with visual content requires powerful
solutions for content-based image retrieval (CBIR). In most approaches image features are
extracted, stored in a database and compared with the features of a particular search image. The
result set of a query should only contain images that show a minimal difference in similarity to the
example image given (nearest neighbor searches). Research usually addresses topics such as
reduction of feature space dimensionality and multidimensional data structures and search
methods.

The approach presented in this paper addresses a problem that is very rarely attacked: Almost
all approaches assume that a search image is easily available which of course is not the case.

This paper presents an approach in which a search image can be generated from a textual
description and describes JEmblazoner, a text-based renderer for coats of arms images.
JEmblazoner can be used as a user interface for the Content-based Image Retrieval (CBIR)
system we developed for coats of arms (see [1]). The work summarized in this paper was
performed by Manuel Wasinger in preparation of his diploma thesis [8].

The remainder of this paper is organized as follows: Section 2 gives an overview over
background and related work, Section 3 discusses the blazoning process and the user interface
and Section 4 shows some examples. In Section 0 the software design of Jemblazoner is
described and Section 6 concludes the paper.

2. Background

In this section we give a short introduction to heraldry and blazonry as well as CBIR – the intended
major application domain for JEmblazoner.

Basically, heraldry is a set of rules for the creation and description of coats of arms (see [6]).
These rules define the colors that may be used (so-called tinctures and furs, essentially white,
black, yellow, red, blue, green and purple), the allowed shapes of shields and layouts of fields
(often divided by so-called ordinaries and sub-ordinaries) and the types and shapes of icons (so-
called charges, e.g. lions, crowns, etc.). Additional rules define the texture substitutes of tinctures
in seal prints. Blazonry is a standardized language with a very strict grammar and therefore ideal
for textual input in JEmblazoner.

As pointed out above, JEmblazoner is intended to be used for CBIR. CBIR approaches try to
retrieve those images from a database that are semantically similar to a given query image.
Usually, queries are defined by selecting one or a group of example images. CBIR uses feature
extraction functions to extract (visual) properties from images. These properties are stored in
numerical feature vectors (so-called Descriptors). Feature extraction functions can be split into
methods for color extraction (color histogram, dominant color), texture extraction (statistical and
structural methods), shape recognition (e.g. faces, sketches, etc.) and other, probably more
domain-dependent image properties. During a query, the feature vectors of images in the
database are compared to the feature vectors of the given example image(s). Widely applied
distance functions are the city block distance and the Euclidean distance. Figure 1 depicts the
principal architecture of a CBIR system. See [2] and [7] for more information on content-based
image retrieval.

Feature
extraction

Feature
extraction

Feature/Image
Database

Feature
comparison

Browsing &
feedback

Interactive query
formulation

Output

Retrieval Module

Input Module

Query Module

User

Figure 1. General architecture of a CBIR system.

In earlier work, we have implemented a CBIR system for the retrieval of coats of arms images. It
should help heraldry experts in their daily work (this profession still exists, for example in the
Austrian National Library). The system is based on the standard CBIR system QBIC developed by
IBM [4]. For coats of arms retrieval QBIC was extended by tailor-made methods for visual feature
extraction from images and similarity measurement. See [1] for more information. Unfortunately,
the QBIC user interface supports just Query by Example (QbE) as the only querying paradigm. In
QbE a query is defined by selecting one or a group of images that look similar to the images the
user is interested in. Other querying paradigms, e.g. Query by Sketch and Query by Text are not
supported. To overcome this limitation for the application domain of coats of arms we developed
the Query by Text user interface JEmblazoner. As pointed out above, JEmblazoner uses Blazons
to create example images that are used for the actual querying process.

3. Blazoning and the User Interface

Before we actually start discussing the user interface of Jemblazoner we define four terms that are
used in heraldry and seem to be important in the context of this paper: blazonry, blazon, blazoning
and emblazon. The name of the language heralds used in the middle ages to describe the arms of
knights in tournaments is Blazonry (see [5] and Section 2 for details). Blazon as noun represents
words that are used to describe coats of arms. The verb to blazon stands for the process of
describing a coat of arms, whereas emblazon refers to the image (coat of arms) that is specified
by a blazon (hence the name of the software tool).

A standardized form of blazonry began to develop in the 13th century. Prior to this, blazons
were simple descriptions of armory with few details. The main reason for the standardization of
blazon was to make the heralds' task easier. In many ways blazonry is like a foreign language: it
has vocabulary and grammar, both of which contribute to the meaning of a blazon. We simplified
this language in order to be able to process blazons automatically and to generate the according
emblazons.

The front-end of the program (see Figure 2) is supplied both as a stand alone application and as
an applet runnable in a Java enabled browser. The user interface is of very simple structure. It
provides a text field for the input of the text to be emblazoned and a few controls for user defined
parameters. There are two radio buttons for the choice of creating a coloured blazon or a blazon of
black and white using the system of hatching by Silvester Petra Sancta. In addition the user has
also the choice whether he wants to use antialiasing. This creates a smoother image using more
colours with the one small disadvantage that the image can be saved only in JPEG format.

Figure 2. User interface of JEmblazoner (stand alone application).

Pressing the “Emblazon...” button or using the return key starts the process of emblazoning. After
the analysis of the textual input the blazon is drawn and a new window opened that contains the
resulting image (emblazon) and possible warnings or error messages (see Figure 3). The menu of
this window offers the possibilities of printing or saving the created blazon. Printing is done by the
printing system of the operating system. Available image formats to save the blazons are JPEG
and GIF.

Figure 3. JEmblazoner’s user interface containing the result of a user request.

A major advantage of JEmblazoner is the fact that there is no limitation to charges and patterns
explicitly provided by the program. JEmblazoner is able to use any images that are supplied by the
user in certain program directories and that meet some requirements in size and colour.

4. Some Examples

The following examples show different coats of arms illustrating the possibilities of blazoning. All
images were created with JEmblazoner. The example in Figure 4 shows the coat of arms for the
Blazon “Per fess Or and Gules in chief a Mullet on the second” in color and as seal print. “Per
fess” defines the layout, “Or” (yellow) and “Gules” (red) are tinctures, a “Mullet” is a star and “in
chief of the second” defines the position of this star.

Figure 4. Coat of arms for the Blazon „Per fess Or and Gules in chief a Mullet of the second” in color and as seal print.

In addition to using specific layout information (as for example, “per fess”) it is also possible to
make use of patterns for the design of the blazon. Figure 5 shows the blazon “Lozengy Azure and
Argent three roses proper.” where “lozengy” is the pattern used for the shield.

Figure 5. Coat of arms for the Blazon „Lozengy Azure and Argent three roses proper” in colour and as a seal print.

There are two more points worthy to mention in this example. One is that JEmblazoner does not
only support explicit colour but also understands heraldic terms like “proper” or “counterchanged”.
The other point is that Jemblazoner also takes notice of default positions for charges. The
example only says “three roses”. As there is no information about positioning the roses they are
supposed to be in their default position which for three charges is “two and one”.

A coat of arms that is made up of two shields is shown in Figure 6. “Impaled fesswise enhanced
1st Or two bars Sable 2nd gules a pall Sable a lion statant Or langued Gules.” blazons a coats of
arms consisting of two shields put together horizontally (“fesswise”) where the dividing line is
somewhat above the middle as the blazon says “enhanced”. Each shield is blazoned
separately.The upper shield is of simple yellow (Or) containing two bars in black (Sable). On the
second shield the black ordinary “pall” is drawn upon a red (Gules) ground. In addition there is a
yellow lion with a red tongue (“langued Gules”) standing on all four of his paws (“statant”).

Figure 6. Coat of arms for the Blazon “Impaled fesswise enhanced 1st Or two bars Sable 2nd gules a pall Sable a lion

statant Or langued Gules.” in colour and as a seal print.

5. Software Design

Figure 7 describes the essential elements of the software design of JEmblazoner. The main class
JEmblazoner draws the graphical user interface and manages user interaction. BlazonFrame is
the main class for text analysis and the rendering process. It uses an instance of TinctureManager
and Tincture objects for color management. Tinctures are derived from class Color. Rendered
coats of arms images can be stored as JPEGs with SaveJPG.

+main()

JEmblazoner

-blazonText
-result

BlazonFrame

+greyscale()

TinctureManager

+analyzeShield()

-isChief
-resultingImage

Shield

+save()

SaveJPG

+analyzeField()
+drawField()

Fields

+analyzeOrdinaries()
+draw()

Ordinaries

+analyzeSubordinaries()
+draw()

Subordinaries

-usedTinctures
Tincture

Color

+analyzeBlazonText()
+process()

EmblazonerOverlay

+identifyCharges()

ChargeHandler

+loadImage()
-chargeImage

Charges

Figure 7. JEmblazoner class diagram.

Each element of a shield can easily be interpreted as a layer of the image. The implementation
of JEmblazoner makes use of this fact. Blazons can either be a representation of one single shield
or may be a combination of two or more shields. Each of these shields can again be divided into
various forms of fields which again may contain ordinaries, subordinaries or charges.

Emblazoner is the main class of the rendering process. Each subclass – Shield for shield
drawing, Fields for field layout, Ordinaries and Subordinaries for rendering of ordinaries resp. sub-
ordinaries and ChargeHandler for the management of charges – is responsible for text parsing of
its relevant Blazon elements. The ChargeHandler uses instances of Charges for charge loading
and rendering. Instances of Overlay are used to manage some special forms of charge layers.
Each shield object implements an analyze() method for text analysis and several draw() methods
for rendering. The TinctureManager is responsible for color-to-greyscale conversions. The final
coats of arms image is stored as a resource of BlazonFrame. This framework can be extended by
additional classes for tinctures and charges.

Figure 8. Sequence diagram of the emblazoning process.

Figure 8 visualizes the more or less sequential progress of the creation of a blazon in an UML
sequence diagram. As shown on the left side the general composition of the blazon is set by class
Emblazoner. Each single shield that has to be placed upon the blazon is represented by an
instance of class Shield which is responsible for the creation of a single shield’s image which
finally is returned to Emblazoner. After all shields have been calculated and a possibly existing
overlaid charge has been drawn Emblazoner arranges the single images, thus creating the final

image of the desired blazon.
As said above Shield creates the desired image by creating instances of classes that are

responsible for different elements. At first, the base of the blazon is drawn by Fields. Secondly,
ordinaries are placed on this base by Ordinaries which is followed by the creation of the
subordinaries. Finally ChargeHandler calculates the positions and layout of possible charges and
again places them upon the image.

JEmblazoner was developed in Java, image operations were implemented with the optional
Graphic Layers Framework (GLF) package from SUN. The user interface can be used as a plug-in
to our CBIR system for coats of arms.

6. Conclusion

JEmblazoner is a text-based renderer for coats of arms images. It was implemented as a plug-in
for a coats of arms CBIR system but may be used as a stand-alone tool for other applications as
well. In the future, the system will probably be re-implemented based on our Visual Information
Retrieval Framework VizIR. The VizIR project aims at the following major goals:
� Implementation of a modern, open class framework for content-based retrieval of visual

information as basis for further research on successful methods for automated information
extraction, definition of similarity measures and new, better concepts for the user interface
aspect of visual information retrieval.

� Implementation of a working prototype system that is fully based on the visual part of the
MPEG-7 standard.

� Development of integrated, general-purpose user interfaces for visual information retrieval.
� Support of methods for distributed querying, storage and replication of visual information and

features and methods for query acceleration.
More information on the VizIR project can be found in [3]. Interested research groups are invited to
contact the authors and to participate in the design and implementation of the open VizIR project.

7. References

[1] Breiteneder, C. and Eidenberger, H. A Retrieval System for Coats of Arms, in Proceedings of

the International Symposium on Multimedia Application and Distance Education (Baden-
Baden Germany, 1999).

[2] Del Bimbo, A. Visual Information Retrieval. Morgan Kaufmann Publishers, San Francisco CA,
1999.

[3] Eidenberger, H., and Breiteneder, C. A Framework for Visual Information Retrieval, in
Proceedings Visual Information Systems Conference (HSinChu Taiwan, March 2002), LNCS,
Springer Verlag, 105-116.

[4] Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner,
J., Lee, D., Petkovic, D., Steele, D., and Yanker, P. Query by Image and Video Content: The
QBIC System. IEEE Computer, 28/9 (1995), 23-31.

[5] Grammar of Blazonry. http://www.sca.org/heraldry/laurel/bruce.html
[6] Introduction to Heraldry. http://www.sca.org.au/lochac/scribes/hrld_int.html
[7] Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., and Jain, R. Content-Based Image

Retrieval at the End of the Early Years. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22/12 (December 2000), 1349-1380.

[8] Wasinger, M. Jemblazoner – eine Java-Applikation zur Generierung von Wappenbildern,
Institut für Softwaretechnik und Interaktive Systeme, Technische Universität Wien,
Diplomarbeit, Wien 2001.

