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Abstract–This paper is an experimental study on the 

performance of the two major methods for macro-level 
similarity measurement: linear weighted merging and 
logical retrieval. Performance is measured as the average 
query execution time for a significant number of tests. The 
two models were implemented in the standard version (as 
they are applied in a number of prototypes) and in an 
optimized version. The results show, that optimized logical 
retrieval clearly outperforms optimized linear weighted 
merging. 
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I. INTRODUCTION 
Content-based retrieval of information from visual media 

(images and video; CBIR) has been an area of increasing 
interest and research in the past years ([6]). Up to now, one of 
the major problems of most CBIR approaches has been bad 
performance in terms of query execution time. Similarity 
measurement in CBIR systems is essentially based on distance 
measurement of feature vectors that have been previously 
extracted from visual media. Most used distance functions are 
L1 and L2 metrics, e.g. the city block distance and the 
Euclidean distance. These distance functions have a 
complexity of at least O(n)=n, n being the size of the feature 
vectors. Most query acceleration approaches follow one of 
three directions: 
1. Indexing of feature data. Indexing method include tree 

techniques (quadtree, R-tree, etc.) and gridfiles. They 
suffer from the drawback that most of them support only 
one inherent distance measure (mostly Euclidean distance) 
and therefore have to be implemented fore each group of 
features with common distance measure separately. 
Additionally, most of them become increasingly ineffective 
for high-dimensional data. 

2. Complexity reduction of feature vectors prior or after the 
feature extraction process. This includes coarse 
representation of features (reduced scales or number of 
histogram-bins, etc.) and redundancy reduction (e.g. factor 
analysis). 

3. Occlusion of media objects to minimize the number of 
distance comparisons. The most well-known approach 
from this area is using the triangle inequality (the fourth 

metric axiom) to exclude dominated media objects (see 
[1]). 
In the paper we investigate methods from the third area: 

occlusion of media objects that are based on the similarity 
models used in most CBIR systems. We will compare the 
performance of the linear weighted merging model (LWM) 
and the logical retrieval model (LR) in form of a simple and an 
optimized algorithm (see Section II for details on LWM and 
LR). The rest of the paper is organized as follows. Section II 
points out relevant related work, Section III describes the 
algorithms we used in our experiments, Section IV is a brief 
sketch on the test environment we used and Section V 
describes the experimental results. 

II. RELATED WORK 
Subsequently, we will outline the CBIR macro-level 

similarity measurement process and earlier work on CBIR 
query acceleration. In [3] we define macro-level similarity 
measurement as the process that extracts a result set for a 
query from a given distance space. Distance space is defined 
as the vector space that is derived from feature space by 
measuring the distance of media objects to given query 
examples with distance functions (micro-level similarity 
measurement). In feature space, media objects are represented 
as numerical feature vectors.  

The two most widely applied methods for macro-level 
similarity measurement are: (1) linear weighted merging 
(LWM) and (2) logical retrieval (LR). LWM is a two step 
process. In the first step, a position value is calculated for each 
media object (according to equation 1) and in the second, the 
media objects are ordered by this position value and the first n 
elements are selected as the result set.  
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In equation 1 di and wi are the distance value and weight 
for feature i (of F) and the given media object. This equation is 
a simplified version of the formula given in [6]. It is 
implemented by most CBIR prototypes (e.g. QBIC, [4]). In 
opposition to LWM, the result set size in LR is not constant 
and depends on the given media collection. In LR, each query 
is a logical expression of terms ci of the form given in equation 
2. The parameters ti1, ti2 are thresholds for the minimum 



respective maximum distance of a media object for a certain 
feature. A media object is added to the result set, if the query 
expression evaluates to true for its distance values. For 
example, this method is implemented in MARS ([5]). 
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In our earlier work, we implemented a simplified version 
of LR (called QueryModels), where conditions may only be 
and-connected. For this approach we implemented a heuristic 
optimization technique that tries to order the conditions of an 
expression in a way, that those conditions (distance functions) 
are evaluated first that cut off most non-similar media objects 
and/or use the fastest distance functions. Because of the and-
connection, consecutive conditions have to take only those 
media object into account that have not been cut off by prior 
conditions. This method lead to a reduction of the average 
query execution time of 66% (see [2] for details). 
Subsequently, we will introduce a simple optimization 
technique for LR expressions that contain the logical operators 
and, or and not.  

III. USED ALGORITHMS 
We tested four different algorithms for macro-level 

similarity measurement: (1) LWM with simple optimizations 
(referred to as LWM), (2) LWM with triangle inequality 
optimization (LWM+), (3) LR with no optimization (LR) and 
(4) LR with a simple optimization technique (LR+). In the 
tests we used no indexing or complexity reduction techniques, 
because these methods are optimizations on the micro-level 
and can be applied to any of the four algorithms. The test plan 
was as follows: 
1. Select query parameters (query example, features, weights, 

result set size, etc.). The details concerning this step will be 
described in Section IV. 

2. Calculate the result sets for LMW and LWM+. 
3. Derive an LR expression from the LWM result set that 

represents exactly the same result set as the LWM 
algorithm. 

4. Calculate the result sets for LR and LR+.  
The used LWM algorithm has the following form (pseudo-

code): 

FOR EACH mo { 
   pv:= 0; 
   FOR EACH feature { 
      dist:= CALC DISTANCE FROM qe TO mo; 
      pv:= pv + dist*weight(feature); 
      IF pv > distanceSum(n) THEN { 
         GOTO break; 
      } 
   } 
   ADD pv to distanceSum; 
break: 
} 
rs:= FIRST n ELEMENTS BY distanceSum; 

In this algorithm, qe is the query example, mo is a media 
object, pv is the (partial) position value of mo and 
distanceSum is a vector of media object position values 
(always sorted in ascending order). This algorithm differs from 
the standard LWM in one point: whenever the partially 
calculated position value exceeds the position value of the n-th 
element (result set border), the calculation for this media 
object is aborted and calculation continues with the next media 
object.  

 The LWM+ algorithm uses the triangle inequality 
technique (TRIQ) for query optimization. The TRIQ is an 
occlusion technique that can only be applied on distance 
functions that fulfill the metric axioms (see [1] for details on 
TRIQ). We use two distance measures that are both metric: 
city block distance and Euclidean distance. Based on [1] we 
use equation 3 (joint cutoff criterion) to occlude media objects. 
In this equation, r is a reference object, q is the query example, 
x is an arbitrary media object and mind is the distance value of 
the n-th element in the result set. All d(x,r) values can be 
calculated before the querying process. 
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Because we are using multiple features and want to retrieve 
more than one media object, we use an adapted version of 
TRIQ. The final LWM+ algorithm looks as follows: 
FOR EACH mo { 
   pv:= 0; 
   FOR EACH feature { 
      IF |refDist(mo)-refDist(qe)| * 
         weight(feature) >  
         (distanceSum(n)-pv) THEN { 
         GOTO break; 
      } 
      dist:= CALC DISTANCE FROM qe TO mo; 
      pv:= pv + dist*weight(feature); 
      IF pv > distanceSum(n) THEN { 
         GOTO break; 
      } 
   } 
   ADD pv to distanceSum; 
break: 
} 
rs:= FIRST n ELEMENTS BY distanceSum; 

The similarity measurement for a media object is 
terminated as soon as it becomes clear that the position value 
will exceed the position value of the n-th element in 
distanceSum. Using the TRIQ, this can be done prior to the 
distance calculation. 
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Figure 1. LR conditions and possible locations of media objects Pi. 



In our earlier work we have shown that LR is a more 
flexible model for macro-level similarity measurement than 
LWM. It is possible to derive an LR expression for arbitrary 
LWM result sets with the following algorithm: 
expression:=(); 
FOR i:=n to 1 DO { 
   FOR j:=i-1 to 1 DO { 
      IF distVector(i) NOT EXCEEDS  
         distVector(j) THEN { 
         GOTO break; 
      } 
      IF distVector(i) EXCEEDS  
         distVector(j) THEN { 
         DEL distVector(j) FROM expression; 
      } 
   } 
   ADD distVector(i) TO expression; 
break: 
} 

Here, expression is a vector of all conditions and 
distVector(i) is the distance vector for media object i. The idea 
of the algorithm is to take each LWM result set element i, 
check, if it is included in the expression derived so far and – if 
not – add i or-connected to expression. Each added distance 
vector defines an f-dimensional and-connected cube (f 
features, a cube consists of one LR condition for each feature) 
where the distance values are the tf2 thresholds of LR 
conditions (see Section II) and the tf1 are all 0. Figure 1 shows 
an example for two features: (c11,c12) and (c21,c22) are cubes of 
conditions and the result set consists of {P4, P7, P8}. 
Additionally, the LWM to LR conversion algorithm checks, if 
new conditions dominate existing ones and – if yes –  
eliminates the dominated ones. LR querying based on the 
derived expression is done with the following algorithm:  
FOR EACH mo { 
   distVector:=(); 
   FOR EACH feature { 
      dist:= CALC DISTANCE FROM qe TO mo; 
      ADD dist to distVector; 

   } 
   FOR EACH condition { 
      IF distVector EXCEEDS expression THEN { 
         GOTO break; 
      } 
   } 
   ADD mo TO rs; 
break: 
} 

The optimized LR+ algorithm uses the same algorithm but 
adds an additional and-connected cube of conditions to 
expression. This cube consists of one condition for each 
feature, where tf2 is the maximum value of all threshold values 
for this feature in expression and tf1 is always 0. For the 
example in Figure 1 the cube of conditions (c21,c12) is added. 
Thus the media objects P1, P2, P3, P6 and P9 can be occluded 
very fast. The next section describes the test environment and 
test data for these algorithms. 

IV. TEST ENVIRONMENT 
The querying algorithms were implemented in Perl and 

evaluated on a DOS computer. Perl was chosen, because it 
allows rapid prototyping and effective statistical analysis. DOS 
was chosen, because querying performance was tested by the 
average query execution time and therefore using a single user, 
single task operating system was the proper choice. 

We did about 50000 tests on one to ten features (equally 
distributed) and up to 10000 artificial feature vectors with 
length between one and 32 elements (equally distributed). The 
artificial feature vectors were normalized to [0,1] and 
consisted of equally distributed (45%), normally distributed 
(50%) and negative exponentially distributed (5%) columns of 
random numbers. The reference values for LWM+ were 
calculated prior to the tests. Two distance functions were used: 
city block distance and Euclidean distance. Each artificial 
feature was bound to one distance function (equally 
distributed).  
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Figure 2. Results for varying number of queried features. The triangles show the average performance of LR, the diamonds stand for the LR+ performance and 
the gray squares and the diamonds within them depict the performance of LWM resp. LWM+. The lines above and below the icons show the standard deviations.



Each query was done with one random selected query 
example and random selected weights. The result set size was 
fixed to 32 elements for all tests. The next section describes 
the results for our experiments.  

V. EXPERIMENTS AND RESULTS 
First we tested the four algorithms performance for a 

varying number of features. We did 40000 queries on one to 
ten features. Figure 2 shows the results. The triangles show the 
average performance of LR, the diamonds stand for the LR+ 
performance and the gray squares and the diamonds within 
them depict the performance of LWM respective LWM+. All 
performance values are relative to LWM. The lines above and 
below the icons show the standard deviations relative to the 
average values. 

This test revealed that using the TRIQ has hardly any 
effect on query execution time (smaller than 1%). 
Additionally, it showed that the performance of LWM is 
always better than LR and that LR has a very small standard 
deviation. Using the simple optimization in LR+ reduces the 
query execution time to about 50% of LWM. Because this is a 
heuristic approach, the standard deviation of LR+ is bigger 
than of LWM. The better performance of LR+ seems to be 
independent from the number of queried features. 

In the second experiment, we tested the algorithms 
behavior for a varying relation of result set size and queried 
collection size. This is interesting because at least the 
performance of LR+ could be dependent on this relation. We 
did 7200 queries with a varying number of features and 
relations from 1:1 to 1:256. Figure 3 shows the results. This 
time, LWM and LWM+ were omitted. Still, the performance 
values are relative to LWM (100%). This test showed that only 
for relations of result set size to queried collection size of 
bigger than 1:4, the performance of LR+ is worse than LWM 
(above 100%). For relations lower than 1:4 LR+ outperforms 
LWM and reaches an average query execution time of about 
50% at a relation of 1:256. In this test, the standard deviation 
for LR was significantly worse than in the first test. This is 

because queries on varying numbers of features were mixed. 
The overall performance of the tested algorithms (compared to 
LWM, 100%) is: LWM+:  99.9%, LR: 172% and LR+: 55%.  

VI. CONCLUSION 
In this paper we compared the query execution 

performance of two methods for macro-level similarity 
measurement: linear weighted merging (LWM) and logical 
retrieval (LR). We implemented each algorithm in a standard 
and an optimized version. Additionally, we implemented a 
conversion algorithm that generates LR expressions from 
LWM result sets. About 50000 tests were performed. 

The major result of this study is, that optimized LR clearly 
outperforms LWM in terms of query execution time. In our 
earlier work we showed that this is true for the quality of 
retrieval results as well. Thus, there is – from our point of view 
– no reason to use LWM in CBIR systems any longer. 
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Figure 3. Results for varying size of result set. The grey triangles show the average performance of LR and the black squares depict the LR+ performance.  


