
An Experimental Study on the Performance of
Visual Information Retrieval Similarity Models

Horst Eidenberger and Christian Breiteneder
Institute of Software Technology and Interactive Systems

Vienna University of Technology
Vienna, Austria

{eidenberger, breiteneder}@ims.tuwien.ac.at

Abstract–This paper is an experimental study on the

performance of the two major methods for macro-level
similarity measurement: linear weighted merging and
logical retrieval. Performance is measured as the average
query execution time for a significant number of tests. The
two models were implemented in the standard version (as
they are applied in a number of prototypes) and in an
optimized version. The results show, that optimized logical
retrieval clearly outperforms optimized linear weighted
merging.

Keywords–content-based image retrieval; content-based visual
retrieval; visual information retrieval; query optimization;
similarity measures; triangle inequality; experimental study

I. INTRODUCTION
Content-based retrieval of information from visual media

(images and video; CBIR) has been an area of increasing
interest and research in the past years ([6]). Up to now, one of
the major problems of most CBIR approaches has been bad
performance in terms of query execution time. Similarity
measurement in CBIR systems is essentially based on distance
measurement of feature vectors that have been previously
extracted from visual media. Most used distance functions are
L1 and L2 metrics, e.g. the city block distance and the
Euclidean distance. These distance functions have a
complexity of at least O(n)=n, n being the size of the feature
vectors. Most query acceleration approaches follow one of
three directions:
1. Indexing of feature data. Indexing method include tree

techniques (quadtree, R-tree, etc.) and gridfiles. They
suffer from the drawback that most of them support only
one inherent distance measure (mostly Euclidean distance)
and therefore have to be implemented fore each group of
features with common distance measure separately.
Additionally, most of them become increasingly ineffective
for high-dimensional data.

2. Complexity reduction of feature vectors prior or after the
feature extraction process. This includes coarse
representation of features (reduced scales or number of
histogram-bins, etc.) and redundancy reduction (e.g. factor
analysis).

3. Occlusion of media objects to minimize the number of
distance comparisons. The most well-known approach
from this area is using the triangle inequality (the fourth

metric axiom) to exclude dominated media objects (see
[1]).
In the paper we investigate methods from the third area:

occlusion of media objects that are based on the similarity
models used in most CBIR systems. We will compare the
performance of the linear weighted merging model (LWM)
and the logical retrieval model (LR) in form of a simple and an
optimized algorithm (see Section II for details on LWM and
LR). The rest of the paper is organized as follows. Section II
points out relevant related work, Section III describes the
algorithms we used in our experiments, Section IV is a brief
sketch on the test environment we used and Section V
describes the experimental results.

II. RELATED WORK
Subsequently, we will outline the CBIR macro-level

similarity measurement process and earlier work on CBIR
query acceleration. In [3] we define macro-level similarity
measurement as the process that extracts a result set for a
query from a given distance space. Distance space is defined
as the vector space that is derived from feature space by
measuring the distance of media objects to given query
examples with distance functions (micro-level similarity
measurement). In feature space, media objects are represented
as numerical feature vectors.

The two most widely applied methods for macro-level
similarity measurement are: (1) linear weighted merging
(LWM) and (2) logical retrieval (LR). LWM is a two step
process. In the first step, a position value is calculated for each
media object (according to equation 1) and in the second, the
media objects are ordered by this position value and the first n
elements are selected as the result set.

 ∑
=

=
F

i
iiObject dwvaluePosition

1

 (1) 

In equation 1 di and wi are the distance value and weight
for feature i (of F) and the given media object. This equation is
a simplified version of the formula given in [6]. It is
implemented by most CBIR prototypes (e.g. QBIC, [4]). In
opposition to LWM, the result set size in LR is not constant
and depends on the given media collection. In LR, each query
is a logical expression of terms ci of the form given in equation
2. The parameters ti1, ti2 are thresholds for the minimum

respective maximum distance of a media object for a certain
feature. A media object is added to the result set, if the query
expression evaluates to true for its distance values. For
example, this method is implemented in MARS ([5]).

 21 iii tdt ≤≤ (2 )

In our earlier work, we implemented a simplified version
of LR (called QueryModels), where conditions may only be
and-connected. For this approach we implemented a heuristic
optimization technique that tries to order the conditions of an
expression in a way, that those conditions (distance functions)
are evaluated first that cut off most non-similar media objects
and/or use the fastest distance functions. Because of the and-
connection, consecutive conditions have to take only those
media object into account that have not been cut off by prior
conditions. This method lead to a reduction of the average
query execution time of 66% (see [2] for details).
Subsequently, we will introduce a simple optimization
technique for LR expressions that contain the logical operators
and, or and not.

III. USED ALGORITHMS
We tested four different algorithms for macro-level

similarity measurement: (1) LWM with simple optimizations
(referred to as LWM), (2) LWM with triangle inequality
optimization (LWM+), (3) LR with no optimization (LR) and
(4) LR with a simple optimization technique (LR+). In the
tests we used no indexing or complexity reduction techniques,
because these methods are optimizations on the micro-level
and can be applied to any of the four algorithms. The test plan
was as follows:
1. Select query parameters (query example, features, weights,

result set size, etc.). The details concerning this step will be
described in Section IV.

2. Calculate the result sets for LMW and LWM+.
3. Derive an LR expression from the LWM result set that

represents exactly the same result set as the LWM
algorithm.

4. Calculate the result sets for LR and LR+.
The used LWM algorithm has the following form (pseudo-

code):

FOR EACH mo {
 pv:= 0;
 FOR EACH feature {
 dist:= CALC DISTANCE FROM qe TO mo;
 pv:= pv + dist*weight(feature);
 IF pv > distanceSum(n) THEN {
 GOTO break;
 }
 }
 ADD pv to distanceSum;
break:
}
rs:= FIRST n ELEMENTS BY distanceSum;

In this algorithm, qe is the query example, mo is a media
object, pv is the (partial) position value of mo and
distanceSum is a vector of media object position values
(always sorted in ascending order). This algorithm differs from
the standard LWM in one point: whenever the partially
calculated position value exceeds the position value of the n-th
element (result set border), the calculation for this media
object is aborted and calculation continues with the next media
object.

 The LWM+ algorithm uses the triangle inequality
technique (TRIQ) for query optimization. The TRIQ is an
occlusion technique that can only be applied on distance
functions that fulfill the metric axioms (see [1] for details on
TRIQ). We use two distance measures that are both metric:
city block distance and Euclidean distance. Based on [1] we
use equation 3 (joint cutoff criterion) to occlude media objects.
In this equation, r is a reference object, q is the query example,
x is an arbitrary media object and mind is the distance value of
the n-th element in the result set. All d(x,r) values can be
calculated before the querying process.

 () () drqdrxd min,, >− (3 )

Because we are using multiple features and want to retrieve
more than one media object, we use an adapted version of
TRIQ. The final LWM+ algorithm looks as follows:
FOR EACH mo {
 pv:= 0;
 FOR EACH feature {
 IF |refDist(mo)-refDist(qe)| *
 weight(feature) >
 (distanceSum(n)-pv) THEN {
 GOTO break;
 }
 dist:= CALC DISTANCE FROM qe TO mo;
 pv:= pv + dist*weight(feature);
 IF pv > distanceSum(n) THEN {
 GOTO break;
 }
 }
 ADD pv to distanceSum;
break:
}
rs:= FIRST n ELEMENTS BY distanceSum;

The similarity measurement for a media object is
terminated as soon as it becomes clear that the position value
will exceed the position value of the n-th element in
distanceSum. Using the TRIQ, this can be done prior to the
distance calculation.

P7
P8 P9

P4

P1 P2 P3

P5 P6

d(f1)

d(f2)

c1 2

c2 2

c1 1 c2 1
Figure 1. LR conditions and possible locations of media objects Pi.

In our earlier work we have shown that LR is a more
flexible model for macro-level similarity measurement than
LWM. It is possible to derive an LR expression for arbitrary
LWM result sets with the following algorithm:
expression:=();
FOR i:=n to 1 DO {
 FOR j:=i-1 to 1 DO {
 IF distVector(i) NOT EXCEEDS
 distVector(j) THEN {
 GOTO break;
 }
 IF distVector(i) EXCEEDS
 distVector(j) THEN {
 DEL distVector(j) FROM expression;
 }
 }
 ADD distVector(i) TO expression;
break:
}

Here, expression is a vector of all conditions and
distVector(i) is the distance vector for media object i. The idea
of the algorithm is to take each LWM result set element i,
check, if it is included in the expression derived so far and – if
not – add i or-connected to expression. Each added distance
vector defines an f-dimensional and-connected cube (f
features, a cube consists of one LR condition for each feature)
where the distance values are the tf2 thresholds of LR
conditions (see Section II) and the tf1 are all 0. Figure 1 shows
an example for two features: (c11,c12) and (c21,c22) are cubes of
conditions and the result set consists of {P4, P7, P8}.
Additionally, the LWM to LR conversion algorithm checks, if
new conditions dominate existing ones and – if yes –
eliminates the dominated ones. LR querying based on the
derived expression is done with the following algorithm:
FOR EACH mo {
 distVector:=();
 FOR EACH feature {
 dist:= CALC DISTANCE FROM qe TO mo;
 ADD dist to distVector;

 }
 FOR EACH condition {
 IF distVector EXCEEDS expression THEN {
 GOTO break;
 }
 }
 ADD mo TO rs;
break:
}

The optimized LR+ algorithm uses the same algorithm but
adds an additional and-connected cube of conditions to
expression. This cube consists of one condition for each
feature, where tf2 is the maximum value of all threshold values
for this feature in expression and tf1 is always 0. For the
example in Figure 1 the cube of conditions (c21,c12) is added.
Thus the media objects P1, P2, P3, P6 and P9 can be occluded
very fast. The next section describes the test environment and
test data for these algorithms.

IV. TEST ENVIRONMENT
The querying algorithms were implemented in Perl and

evaluated on a DOS computer. Perl was chosen, because it
allows rapid prototyping and effective statistical analysis. DOS
was chosen, because querying performance was tested by the
average query execution time and therefore using a single user,
single task operating system was the proper choice.

We did about 50000 tests on one to ten features (equally
distributed) and up to 10000 artificial feature vectors with
length between one and 32 elements (equally distributed). The
artificial feature vectors were normalized to [0,1] and
consisted of equally distributed (45%), normally distributed
(50%) and negative exponentially distributed (5%) columns of
random numbers. The reference values for LWM+ were
calculated prior to the tests. Two distance functions were used:
city block distance and Euclidean distance. Each artificial
feature was bound to one distance function (equally
distributed).

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

1 2 3 4 5 6 7 8 9 10

Figure 2. Results for varying number of queried features. The triangles show the average performance of LR, the diamonds stand for the LR+ performance and
the gray squares and the diamonds within them depict the performance of LWM resp. LWM+. The lines above and below the icons show the standard deviations.

Each query was done with one random selected query
example and random selected weights. The result set size was
fixed to 32 elements for all tests. The next section describes
the results for our experiments.

V. EXPERIMENTS AND RESULTS
First we tested the four algorithms performance for a

varying number of features. We did 40000 queries on one to
ten features. Figure 2 shows the results. The triangles show the
average performance of LR, the diamonds stand for the LR+
performance and the gray squares and the diamonds within
them depict the performance of LWM respective LWM+. All
performance values are relative to LWM. The lines above and
below the icons show the standard deviations relative to the
average values.

This test revealed that using the TRIQ has hardly any
effect on query execution time (smaller than 1%).
Additionally, it showed that the performance of LWM is
always better than LR and that LR has a very small standard
deviation. Using the simple optimization in LR+ reduces the
query execution time to about 50% of LWM. Because this is a
heuristic approach, the standard deviation of LR+ is bigger
than of LWM. The better performance of LR+ seems to be
independent from the number of queried features.

In the second experiment, we tested the algorithms
behavior for a varying relation of result set size and queried
collection size. This is interesting because at least the
performance of LR+ could be dependent on this relation. We
did 7200 queries with a varying number of features and
relations from 1:1 to 1:256. Figure 3 shows the results. This
time, LWM and LWM+ were omitted. Still, the performance
values are relative to LWM (100%). This test showed that only
for relations of result set size to queried collection size of
bigger than 1:4, the performance of LR+ is worse than LWM
(above 100%). For relations lower than 1:4 LR+ outperforms
LWM and reaches an average query execution time of about
50% at a relation of 1:256. In this test, the standard deviation
for LR was significantly worse than in the first test. This is

because queries on varying numbers of features were mixed.
The overall performance of the tested algorithms (compared to
LWM, 100%) is: LWM+: 99.9%, LR: 172% and LR+: 55%.

VI. CONCLUSION
In this paper we compared the query execution

performance of two methods for macro-level similarity
measurement: linear weighted merging (LWM) and logical
retrieval (LR). We implemented each algorithm in a standard
and an optimized version. Additionally, we implemented a
conversion algorithm that generates LR expressions from
LWM result sets. About 50000 tests were performed.

The major result of this study is, that optimized LR clearly
outperforms LWM in terms of query execution time. In our
earlier work we showed that this is true for the quality of
retrieval results as well. Thus, there is – from our point of view
– no reason to use LWM in CBIR systems any longer.

VII. REFERENCES
[1] J. Barros, J. French, and W. Martin, "Using the triangle inequality to

reduce the number of comparisons required for similarity based
retrieval," Proc. SPIE Conf. on Storage and Retrieval for Image and
Video Databases, San Jose CA, USA, pp. 392-403, 1996.

[2] C. Breiteneder, and H. Eidenberger, “Performance-optimized feature
ordering for content-based image retrieval,” Proc. European Signal
Processing Conference, Tampere, Finland, 2000.

[3] H. Eidenberger, and C. Breiteneder, "Macro-level similarity
measurement in VizIR," Proc. IEEE Multimedia Conf. & Expo,
Lausanne, Switzerland, 2002.

[4] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M.
Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker,
“Query by image and video content: the QBIC system,” IEEE
Computer, vol. 28, no. 9, pp. 23-32, 1995.

[5] M. Ortega, R. Yong, K. Chakrabarti, K. Porkaew, S. Mehrotra, and T.S.
Huang, “Supporting ranked boolean similarity queries in MARS,” IEEE
Transactions on Knowledge and Data Engineering, vol. 10, no. 6, pp.
905-925, November 1998.

[6] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-based image retrieval at the end of the early years,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 12, pp. 1349-1380, December 2000.

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256

Figure 3. Results for varying size of result set. The grey triangles show the average performance of LR and the black squares depict the LR+ performance.

