
A Framework for User Interface Design in
Visual Information Retrieval

Horst Eidenberger and Christian Breiteneder
Vienna University of Technology, Institute of Software Technology and Interactive Systems,

Favoritenstrasse 9-11 – 188/2, A-1040 Vienna, Austria

Abstract
This paper describes the user interface framework of the
VizIR project ([4]). VizIR is an open project to develop a
Java-based, extendible and well-documented asset
framework for visual information retrieval. The paper
includes a description of the visual components and their
class structure, the communication between panels and the
communication between visual components and query
engines. Visual components include media panels,
controls and renderer classes. Panels communicate
through media events. Communication of user interfaces
and query engines is based on the Multimedia Retrieval
Markup Language (MRML, [10]). MRML is an XML-
based language that was developed by the University of
Geneva. To be usable with our querying paradigm, we
extend MRML with additional elements. The paper
contains a short implementation section with details on the
Java components used, Java 3D graphics libraries
(GL4Java and Java3D) and Java XML parsing. Finally,
an appendix contains the MRML extension.

1. Introduction

In the past, the design of user interfaces of Visual
Information Retrieval systems (VIR) was – in comparison
to most other visual systems – quite simple. For Content-
based Image Retrieval (CBIR) the usual approach offered
a two-dimensional panel with a matrix of images (that were
shown as thumbnails) and a limited possibility to select
features and to add metadata (like weights, relevance
feedback, etc.). Content-based Video Retrieval Systems
(CBVR) focused on the problem of representing the
temporal dimension in the static context of a user-interface.
State-of-the-art solutions are Micons and Hierarchical
Video Browsers (see [6]).

In this paper we present the user interface part of the
VIR project VizIR. Goal of the project is the development
of an open and extendible framework for VIR research.
The basic structure of VizIR is laid down in [4]. See
Section 3 for a short project overview. VizIR is open
source and project participants of any kind are welcome.

Especially, we would like to invite interested researchers
to take part in the design and implementation process of
this truly open project.

Goal of VizIR is not the development of a monolithic
user interface but of a system-independent class framework
of user interface components (interaction panels, event
model, etc.). An important issue of VIR user interfaces is
the communication with query engines. This
communication should be standardized (in order to
combine arbitrary user interfaces and querying systems)
and be based on modern communication paradigms (XML,
etc.).

The rest of this paper is organized as follows. Section 2
gives an overview on relevant related work, Section 3
points out the major goals of the VizIR project, Section 4
is a description of the user interface framework in VizIR,
Section 5 discusses implementation issues and finally, in
Section 6 current and next issues in the context of the
paper are listed.

2. Related work

Subsequently, we will have a look at the user interfaces
of well-known VIR systems: first CBIR systems and then
CBVR systems. The focus in CBIR will be on classic
systems (including QBIC and Virage) and two promising
more recent approaches (El Niño and ImageGrouper). The
Section ends with a short description of an approach to
standardize the communication of VIR user interfaces and
query engines.

The user interfaces of classic CBIR systems are quite
simple. Most systems(QBIC [5], Virage [1], Photobook
[14], VisualSEEk [18]) use a single 2D panel of images for
query definition and result set display. Querying is done by
selecting one or more query examples, one (f. e. QBIC), a
few (f. e. MARS [13]) or all features (Virage) and – in the
latter two cases – weights for the importance of these
features. Iterative Refinement by Relevance Feedback can
usually be done by defining the importance of result set
elements textually and re-running the query. This paradigm
has several drawbacks: earlier result sets are thrown away,
selecting features and weights overtaxes the casual user

and after all, the static structure of this interface type is not
user-friendly and old-fashioned.

That’s why in the last years several groups have been
working on new user-centric interface approaches. Two of
the most interesting are El Niño ([16], [17]) and
ImageGrouper ([11]). To the authors knowledge, El Niño
is the first approach to define a query implicitly by the
distance relations of objects in a 3D panel. This query
definition process can be done intuitively and easily by
drag-and-drop. The most interesting innovations in
ImageGrouper are the usage of two panels for the active
and the last query and a history over all refinement steps in
a querying session. The central idea of ImageGrouper is
the definition of queries through three groups: positive

examples, negative examples and neutral examples.
ImageGrouper’s major drawback is that it has no standard
interface to query engines and is bound to an engine with
classic distance measurement and linear weighted merging.

Like El Niño, VizIR will contain 3D user interfaces for
query formulation. Using 3D information visualization
techniques instead of 2D methods has several advantages.
Generally, each 3D view is just a 2D projection ([19]). 3D
views take advantage of human spatial memory and allow
displaying more information without incurring additional
cognitive load because of pre-attentive processing of
perspective views. In general, they lead to better retrieval
results in user studies in sense of reaction time, number of
incorrect retrievals and failed trials ([15]). Additionally,

+getVisualComponent()
+getControlComponent()

«interface»
Visualizable

+getDocumentation()
+getTip()

«interface»
Transparent

+getPanel()

«interface»
UserInterfaceComponent

+extractFeature()
+calculateDistance()

Descriptor

JavaSDK Swing

+prepare()
+execute()

QueryEngine

JavaSDK Panel

MediaPanel

MetadataPanel FeedbackPanelLayerPanel

«interface»
VisualLayer

MediaRenderer

ImageRenderer XMLRenderer VideoRenderer

JavaMediaFrameworkJavaSDK:Java2D

Figure 1. Class diagram for the user-interface framework in VizIR.

they allow the rendering of more information items
because of scaling possibilities and a better global view.
Finally, there is experimental evidence that 3D displays
enhance subjects’ spatial performances ([19]). The major
open problem of 3D systems in this context is the
development of 3D user interaction techniques ([15], [9]).

Classic CBVR systems are OVID ([12]) and VQIS. The
most interesting point concerning the user interfaces of
CBVR systems is the handling of temporal media (video
and animations) in a static user interface. Generally, there
are three possible solutions: (1) integration of the full
video with player controls into the environment (CPU
power and network bandwidth consuming), (2) production
and usage of animated icons (CPU power consuming,
difficult) and (3) production of still images that represent
the video content. The third solution is the most widely
applied (in VIR). The simplest form of representation is an
image matrix of all keyframes in a video clip. Another
approach is the Micon, a pseudo-three-dimensional cube
that shows the first frame of a video clip as well as the first
line and the last column of all consecutive frames. Another
type is the Hierarchical Video Browser, a tree-structured
view of a video clip.

The interoperability of VIR user interfaces and
querying systems is a matter that is gaining more and more
attention. Interoperability should be achieved by

standardized interfaces. The most promising effort in this
direction is the Multimedia Retrieval Markup Language
(MRML, developed at the University of Geneva by the
group of Prof. Pun, see [10]). MRML is an XML-based
standard. It is implemented in the user interface Charmer
and the basis of the Benchathlon project (see [10] for
details)

We tried to incorporate the best ideas of the systems
above and MRML into our interface components. Before
we continue with the user interface framework, the next
section outlines the major goals of the VizIR project.

3. VizIR Project overview

The VizIR project aims at the following major goals:
First, implementation of a modern, open class framework
for content-based retrieval of visual information as basis
for further research on successful methods for automated
information extraction from images and video streams,
definition of similarity measures that can be applied to
approximate human similarity judgment and new, better
concepts for the user interface aspect of visual information
retrieval, particularly for human-machine-interaction for
query definition and refinement and video handling.

Second, implementation of a working prototype system
that is fully based on the visual part of the MPEG-7

B

C D E

F

A

Figure 2. Screenshot of user-interface prototype.

standard for multimedia content description. Obtaining this
goal requires the careful design of the database structure
and an extendible class framework as well as seeking for
suitable extensions and supplementations of the MPEG-7
standard by additional descriptors and descriptor schemes,
mathematical and logical fitting distance measures for all
descriptors (distance measures are not defined in the
standard) and defining an appropriate and flexible model
for similarity definition. MPEG-7 is not information
retrieval specific. One goal of this project is to apply the
definitions of the standard to visual information retrieval
problems.

Third, development of integrated, general-purpose user
interface components for visual information retrieval. Such
user interfaces have to include a great variety of different
properties: methods for query definition from examples or
sketches, similarity definition by positioning of visual
examples in 3D space, appropriate result display and
refinement techniques and cognitively easy handling of
visual content, especially video. The user interface part of
VizIR is central topic of this paper.

Finally, support of methods for distributed querying,
storage and replication of visual information and features
and methods for query acceleration. The importance of
these issues becomes apparent from the large amount of
data that has to be handled in such a system and the
computational power that is necessary for querying by –
often quite complex – distance functions. Methods for
distributed querying, storage and replication include the
replication of feature information, client-server
architectures and remote method invocation in the
querying and indexing modules as well as compression of
video representations for the transport over low bandwidth
networks. Methods for query acceleration include indexing
schemes, mathematical methods for complexity reduction

of distance functions and generation of querying heuristics
([3]).

To achieve these goals state-of-the-art software
development is necessary. VizIR software development is
based on reverse engineering and the Rational Unified
Process. The output of VizIR will be available to the
public. The overall goal of VizIR is providing the research
community with a flexible tool for experiments. In the next
section the user interface concept of VizIR will be
explained in detail.

4. User interface design

In the first part of this section the class framework and
the event model of the user interface components are
explained (including a screenshot) and in the second part
communication and querying issues are tackled.

4.1. User interface framework

Figure 1 shows the static structure of the VizIR user
interface framework. The central element is the interface
UserInterfaceComponent that is inherited by all classes
that have a visual panel. These are MediaPanel (the
mother class of all panels that deal with media objects),
QueryEngine (the mother class of all querying engines, the
panel contains all elements that are necessary for query
formulation), Descriptor (mother class of all implemented
features, the panel contains a toolbox for sketch drawing
for this feature), MetadataPanel and LayerPanel (a layer
manager for multi-layer image sketching like in
Photoshop). VizIR is based on Java and the VizIR user
interface components are based on Swing.
UserInterfaceComponent inherits methods from the
interfaces Visualizable (methods for receiving a visual

+addPanelListener()
+removePanelListener()

«interface»
UserInterfaceComponent

MediaPanel

-eventType

MediaPanelEvent
<<object>>

MediaPanel-1
<<object>>

MediaPanel-2
receivethrow

instatiate instantiate

ConvenienceListener
use use

Figure 3. Event model for panel communication.

panel and a visual control component like in the Java
Media Framework), Transparent (methods for receiving
visual documentation and help in the user interface) and
VisualLayer (defines the structure of a layer of the
sketching panel, basically a Java Image type).

MediaRenderer is a special type of MediaPanel for
visual rendering of media objects. So far, we have
implemented three renderer for images (JPG, PNG, GIF,
etc., based on Java2D), videos (generates Micons – see
Section 2 – for arbitrary video formats: MPG, AVI, MOV,
etc., based on the Java Media Framework [8]) and XML.
XMLRenderer can render any XML-file that can be
displayed in a web browser (see [7] for technical details).
The most important media panel is our 2.5D media panel.
For an example see element A of the screenshot in Figure
2. This panel can be used for example selection, browsing,
query formulation and result display. The rendered
equivalents of media objects are displayed as images, that
are parallel to the image plane. It is possible to navigate in
two dimensions (left-right, forward-back) and to zoom.
Groups of objects can be selected, moved and associated
with metadata (through communication with a
MetadataPanel). The angle of the image plane and the X-
Y-plane can be varied between 0° and 90°. The panel has a
visual control component (element C of the screenshot).
The upper part of this panel is initialized with all
dimensions of the media space that should be displayed (in
the VIR context: all implemented features). The view

changes whenever new dimensions are chosen for the X-
or Y-axis.

We are implementing two querying paradigms: query
by example (QBE) and query by sketch (QBS) because
these are the most intuitive ones. QBE follows our Click-
and-Refine approach (C&R, see [2]): in the first step the
user selects groups of media objects from the ‘example
selection’ panel, initiates a query and refines the result in
the ‘refinement’ panel (another 2.5D media panel) by the
adoption of cluster borders (see [2] and Subsection 4.2 for
details on the querying concept). Sketches for QBS can be
drawn in the ‘sketch drawing’ panel. This panel contains
layers of type VisualLayer that are managed by the
LayerManager (element E of the screenshot) and allow
drawing with the tools provided by the descriptor objects.
These tools are collected in the ‘sketching tools’ panel
(element B). The ‘last result set’ panel contains the media
objects of the last result set (similarity values are
associated as metadata). It is just a special 2.5D example
panel with a image-plane X-Y-plane angle of 0°. The same
is true for the ‘example groups’ panel that lists all query
examples partitioned in three groups: positive, negative
and neutral examples. The lower left part of the query
engine control panel (element C) is a selection list for the
current active grouping tool (relevant for the ‘example
selection panel’) and the lower right part contains the
querying button. The ‘description’ panel (element D)
contains the information of the methods from the

Initialized. Ready for
query definition

Load media objects
and configuration

Defined. Ready for
querying

Active. Ready for
refinement

Manipulate
example panel

Start querying
(send MRML script,
receive distance space layout
and result set)

Manipulate
example panel

Manipulate
example panel

when:
substantial changes occur or
activate button is pressed

Figure 4. State-transition-diagram of querying process.

Transparent interface for the active user interface element.
The VizIR user interface class structure follows the

paradigm that all components (methods, panels, etc.) are
defined, where they are used. Thus, each query engine has
a visual panel for query formulation and each descriptor
has a panel with tools for sketching (f. e. line drawing tools
for a edge layout descriptor). To guarantee the
transparency of VizIR we defined in [4], each visual
component has to implement the Transparent interface
with documentation and tips. The panels of the framework
can be integrated into any visual Java container and can be
organized arbitrarily. The layout in the screenshot in
Figure 2 is just an example.

Arbitrary combination is guaranteed by the
communication mechanism of the framework. It follows
the Delegation-Event-Model and is conceptually shown in
Figure 3. Each object of class MediaPanel (MediaPanel-1
and MediaPanel-2) can communicate with any other
MediaPanel through MediaPanelEvent objects. Thus, all
media panels have to implement listener classes that are
defined in UserInterfaceComponent and flag the media
panel events they throw. For easier user interface building
the framework contains convenience classes with listener
functions for standard communication operations (f. e.
communication of query control panel and 2.5D example
panel when the example group selection is changed, etc.).

To conclude this sketch of the user interface classes,
Figure 4 shows a State-Transition-Diagram of the
underlying querying process. First the user interface

components are initialized with media objects and query
parameters (element F of Figure 2 shows a progress bar
panel for media loading). Then the user can define a first
query by selecting example media objects. This brings the
user interface in the defined state. Executing the query
brings the user interface in the active state where
refinement can be started or a new query can be defined. In
active state the query is re-executed whenever the user
presses the ‘activate’ button or the query engine control
component detects substantial changes in the query
definition. The next Subsection is dedicated to the
querying and communication process.

4.2. Querying & communication interface

Query engines in VizIR can be arbitrary. We are
implementing a query engine that is based on our Query
Model concept (QM, see [2], [3]). The communication of
user interfaces and query engines is standardized and
based on MRML (see Section 2).

Each framework component that uses MRML for
communication, uses instances of the classes
MRMLReader and MRMLWriter (see Figure 5). These
classes are derived from ReadConfig (XML parser class)
and WriteConfig (XML writer class). Communication
classes for new XML languages can be implemented in the
same way. To be able to perform QM queries with MRML
we had to extend its Document-Type-Definition (see
Appendix for DTD code). We have defined elements for
context-free media and media group definition, descriptor

+getPanel()

«interface»
UserInterfaceComponent

+prepare()
+execute()

QueryEngine

ReadConfig

MRMLReader

«interface»
JavaSDK:Serializable

LookmarkReader

WriteConfig

MRMLWriterLookmarkWriter

JavaSDK:XML

1

0..1
1

0..1

Figure 5. Class diagram for MRML communication in VizIR.

definition and query definition. The following example
illustrates how these extensions can be used:

<logicalQuery>
 <clusterDefinition>
 <clusterRestriction>
 <clusterDimension
 lowerBound=”0.0”
 upperBound=”0.5”>
 <mediaGroup id=”qe1”
 type=”positive”>
 <mediaObject
 dataLocation=”img1.gif”
 iconLocation=”thumb1.gif”/>
 </mediaGroup>
 <descriptor name=”ColorHist”/>
 </clusterDimension>
 </clusterRestriction>
 </clusterDefinition>
</logicalQuery>

This construct defines a query (on the collection
defined elsewhere in the MRML script) with a single
feature. A color histogram is used to find all media objects
that have a distance to the query example ‘img1.gif’
(represented by the icon ‘thumb1.gif’) that is smaller than
‘0.5’. If we would like to retrieve all objects that fulfil this
condition and a second one, we would put the second
clusterRestriction in the same clusterDefinition. If we
would like to retrieve all that fulfil the first or the second
one, we would put the second one in a new
clusterDefinition. These constructs are very flexible and
can be used in various ways. They should not only support
our QM concept but – according to its published querying
paradigm – the one used in MARS as well ([13]).

Because the VizIR framework is based on Java and the
JavaSDK it is possible to integrate the user interface
components into any container (frame, applet, etc.), to do
distributed querying (with CORBA, RMI, etc.) and
querying in the background (in a separate thread). The next
Section points out relevant implementation issues.

5. Implementation

VizIR is based on Java and media handling is based on
the Java Media Framework ([8]). The 2.5D panel is based
on Gl4Java ([7]) instead of Java3D for the following
reasons: (1) Gl4Java is based on OpenGL and much faster
than Java3D, (2) event handling is easier and bug-free, (3)
it is easier to install (e.g. less dependent on the graphics
hardware than Java3D) and (4) has less bugs than Java3D.

XML reader and writer classes are based on the Java
XML classes. We use the JDOM parser for XML writing
(because it allows the construction of an object tree in
memory and does the serialization automatically) and SAX
for XML parsing (because it is more flexible and faster
than JDOM).

A special problem of VIR user interfaces is the
transportation of media object to the client computer. We
do media loading in the background through an RTP
stream. The Java Media Framework contains a convenient
RTP-based streaming component. The user interface is
usable as soon as at least a certain quantity of the media
objects has arrived at the client side. This is optimized by
sending a subset of representative media objects through
the stream first.

6. Current and future work

Currently we are working on the first release of the user
interface framework. This first release will also include a
video renderer and a webpage renderer for thumbnail
creation. Next we will work on other methods for video
representation. We will follow two approaches. First, we
will implement a renderer that produces animated icons of
selected keyframes of a video. The keyframes will indicate
scene changes. The second approach originates in 2D
animation. Short sequences of keyframes will be overlaid
with an alpha-channel and thus integrated into a video
thumbnail. Another idea we will follow in the future is the
implicit definition of features from the selection of media
elements or media element regions and expert knowledge.
In the past we have been working on a similar idea that
resulted in the system presented in [2].

7. Conclusion

This paper describes the user interface framework of the
Visual Information Retrieval project VizIR. The
framework consists of a class hierarchy of user interface
panels with event communication, communication and
configuration methods based on XML and an extension of
the Multimedia Retrieval Markup Language (MRML).
VizIR and the VizIR user interface framework are open,
extendible and free. A first release of the user interface
part should be available in autumn 2002. Interested
researchers and software developers are invited to join the
VizIR project. Finally, we would like to thank Geert
Fiedler, Markus Raab and Herwig Steininger for their
contribution to the user interface framework.

8. References

[1] Bach, J., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B.,
Humphrey, R., Jain, R., Shu, C.: The Virage image search
engine: An open framework for image management. Proc. of
SPIE Storage and Retrieval for Image and Video Databases,
San Jose (1996) 76-87

[2] Breiteneder, C., Eidenberger, H.: Automatic Query
Generation for Content-based Image Retrieval. Proc. of
IEEE Multimedia Conference, New York (2000) 705-708

[3] Breiteneder, C., Eidenberger, H.: Performance-optimized

feature ordering for Content-based Image Retrieval. e-Proc.
European Signal Processing Conference, Tampere (2000)

[4] Eidenberger, H., Breiteneder, C.: A Framework for Visual
Information Retrieval. Proc. Visual Information Systems
Conf., Springer LNCS 2314, HSinChu (2002) 105-116

[5] Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang,
Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D.,
Steele, D., Yanker, P.: Query by Image and Video Content:
The QBIC System. IEEE Computer 28/9 (1995) 23-31

[6] Furht, B., Smoliar, S.W., Zhang, H.: Video and Image
Processing in Multimedia Systems. 2nd edn. Kluwer, Boston
(1996)

[7] GL4Java (Jausoft) Website.
http://www.jausoft.com/products/gl4java/

[8] Java Media API Website.
http://java.sun.com/products/java-media/

[9] Keim, D.A., Visual exploration of large data sets.
Communications of the ACM 44/8 (2001) 38-44

[10] Multimedia Retrieval Markup Language Website.
http://www.mrml.net

[11] Nakazato, M., Manola, L., Huang, T.S.: ImageGrouper:
Search, Annotate and Organize Images by Groups. Proc. of
Visual Information Systems Conference, Springer LNCS
2314, HSinChu (2002) 129-142

[12] Oomoto, E., Tanaka, K.: OVID: design and implementation
of a video-object database system. IEEE Transactions on
Knowledge and Data Engineering 5/4 (1993) 629-643

[13] Ortega, M., Yong, R., Chakrabarti, K., Porkaew, K.,
Mehrotra, S., Huang, T.S.: Supporting Ranked Boolean
Similarity Queries in MARS, IEEE Transactions on
Knowledge and Data Engineering, 10/6 (1998) 905-925

[14] Pentland, A., Picard, R.W., Sclaroff, S.: Photobook:
Content-Based Manipulation of Image Databases. SPIE
Storage and Retrieval Image and Video Databases II, San
Jose (1994) 34-47

[15] Robertson, G., Czerwinski, M., Larson, K., Data Mountain:
Using Spatial Memory for Document Management. Proc.
ACM Symposium on User Interface Software and
Technology, San Francisco (1997) 153-162

[16] Santini, S., Jain, R.: Beyond Query By Example. Proc. ACM
Multimedia Conf., Bristol (1998) 345-350

[17] Santini, S., Jain, R.: Integrated browsing and querying for
image databases. IEEE Multimedia 7/3 (2000) 26-39

[18] Smith, J. R., Chang, S.: VisualSEEk: a fully automated
content-based image query system. Proc. ACM Multimedia
Conf., Boston (1996) 87-98

[19] Tavanti M., Lind M., 2D vs. 3D, implications on spatial
memory. Proc. IEEE Symposium on Information
Visualization, San Diego (2001) 139-145

9. Appendix

This appendix contains the Document Type Definition
(DTD) for the essential part of our MRML extension. The
extension includes elements for context-free media and
media group definition, descriptor definition and query
definition according to our querying paradigm. It is based
on the MRML definition presented in [10]. See Subsection
4.2 for details. The tags below can be easily integrated into

MRML by adding logicalQuery and mediaGroup as sub-
tags of the mrml tag.

9.1. Media and media group definiton

In MRML media objects can be context-sensitively
defined as user-relevance-elements (for querying) or as
query-result-elements. For initialization we add a tag for
general media definition:

<!ELEMENT mediaObject (descriptor*)>
<!ATTLIST mediaObject
 dataLocation CDATA #REQUIRED
 iconLocation CDATA #REQUIRED>

As far as we understand, the collection-construct of
MRML can not be used for the definition of media groups
(for querying, etc.). We define the following element for
this purpose:

<!ELEMENT mediaGroup (mediaObject+)>
<!ATTLIST mediaGroup
 id CDATA #REQUIRED
 type (positive|negative|neutral|
 init|other) ‘positive’>

The first three types define querying groups and the
fourth is for initialization.

9.2. Descriptor definition

MRML uses the algorithm-construct for the definition
of features. For extended use we define arbitrary
descriptors as follows:

<!ELEMENT descriptor EMPTY>
<!ATTLIST descriptor
 name CDATA #REQUIRED
 value CDATA
 distanceValue CDATA>

distanceValue is a special field that is only used when
media objects are grouped to describe the layout in
distance space (related to the query examples) instead of
feature space.

9.3. Logical Retrieval query definition

According to our Query Model approach, a query can
be defined with these elements (see 4.2 for an example):

<!ELEMENT logicalQuery
 (clusterDefinition+)>
<!ELEMENT clusterDefinition
 (clusterRestriction+)>
<!ELEMENT clusterRestriction
 (clusterDimension+)>
<!ELEMENT clusterDimension
 (mediaGroup,descriptor>
<!ATTLIST clusterDimension
 lowerBound CDATA #REQUIRED
 upperBound CDATA #REQUIRED>

