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ABSTRACT 

The focus of this paper is on similarity modeling. In the first part we revisit underlying concepts of similarity modeling 
and sketch the currently most used VIR similarity model (Linear Weighted Merging, LWM). Motivated by its 
drawbacks we introduce a new general similarity model called Logical Retrieval (LR) that offers more flexibility than 
LWM. In the second part we integrate the Feature Contrast Model (FCM) in this environment, developed by 
psychologists to explain human peculiarities in similarity perception. FCM is integrated as a general method for 
distance measurement. The results show that FCM performs (in the LR context) better than metric-based distance 
measurement. Euclidean distance is used for comparison because it is used in many VIR systems and is based on the 
questionable metric axioms. FCM minimizes the number of clusters in distance space. Therefore it is the ideal distance 
measure for LR. FCM allows a number of different parameterizations. The tests reveal that in average a symmetric, 
non-subtractive configuration that emphasizes common properties of visual objects performs best. Its major drawback 
in comparison to Euclidean distance is its worse performance (in terms of query execution time). 

�����
��� Visual Information Retrieval, Content-based Image Retrieval, Content-based Video Retrieval, Visual 
Similarity Measurement, Similarity Modeling, Linear Weighted Merging, Logical Retrieval, Feature Contrast Model, 
Boolean Retrieval, Vector Space Model 

1 INTRODUCTION 

Content-based Image Retrieval (CBIR) and Content-based Video Retrieval (CBVR) are two research directions of 
Multimedia (or Media Processing) systems that have been very active in the last couple of years. There is a trend to 
unify concepts and methods from CBIR and CBVR under one umbrella and the MPEG-7 standard is a first step in this 
direction. In this paper we will refer to both CBIR and CBVR as Visual Information Retrieval4 (VIR). Essentially, VIR 
research has undergone three phases with different focus: (1) feature design and indexing methods, (2) user-interfaces 
and iterative refinement and (3) benchmarking (now). To overcome the big open problems of VIR19 we think it being 
necessary to emphasize careful feature and similarity modeling. 

The focus of this paper is on similarity modeling, which is probably the most neglected area of VIR research. First we 
sketch the currently most used VIR similarity model (Linear Weighted Merging, LWM) and point out its major 
weaknesses. Then we describe a new general similarity model called Logical Retrieval (LR) that offers more flexibility 
than LWM without suffering from its drawbacks. In the third step we integrate the Feature Contrast Model (FCM), 
developed by Tversky20 into this environment. The FCM is based on psychological observations of human similarity 
perception. We integrate it in LR as a general method for feature-based distance measurement. 

Utilizing FCM for VIR is not a new idea: it was first performed by Santini and Jain15, 16, who built a unified similarity 
theory integrating geometric and set theoretic approaches. The FCM defines a family of distance measures that are very 
attractive for VIR: It is possible to define asymmetric similarity (e.g. "how similar is image A to B?" instead of "how 
similar are A and B?") and the model is generally less restrictive than distance functions based on the metric axioms 
(e.g. Minkowski distances).  

The following Section 2 offers background information on similarity structures and distance measurement. Section 3 
reviews similarity modeling in VIR, the LWM approach and describes LR as a more flexible model than LWM. Section 
4 integrates the FCM in LR and investigates whether the integrated model still preserves the idea of Tversky’s FCM. In 
Section 5 the FCM is implemented in a prototype as a general-purpose distance measure and tested on image data. 
Performance results are analyzed in comparison to Euclidean distance as a standard VIR distance measure. 
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2 BACKGROUND 

Subsequently, we define the term similarity structure as the fundamental concept for distance respective similarity 
measurement. Subsection 2.2 sketches distance measurement based on the metric axioms as it is usually used in VIR 
systems. Finally, Subsection 2.3 briefly describes alternative axiomatic systems for similarity structures including the 
FCM. 
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Let � be an arbitrary set of objects. According to Sint17 a similarity structure (or: a similarity measure) for the elements 
�� of � is defined as a relation respective function over a set of pairs ��� of objects (represented as numerical feature 
vectors). The given measurements have to be somehow transformed into this relation. The list of possible similarity 
structures � over ��� includes17: 

- ��: � is an Euclidean distance over ���. This measure assumes that feature space has Euclidean geometry (fulfills 
the metric axioms, see below). 

- ��: � is a metric over ���. This measure makes no assumption on the geometric shape of feature space. �� is a 
generalization of ��. 

- ��: � is symmetric and rational over ���. 

- ��: � is a total or partial order of �. 

These four are the most common similarity structures but of course, many more do exist. This definition spans an 
umbrella over a wide range of similarity understandings (visual, mathematical, psychological, etc.). In this paper we 
will investigate another method: the generation of a dichotomy of similar and not similar objects with dynamic borders 
over �.  
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Usually, VIR similarity measurement follows the vector space model from information retrieval theory (e.g. in LWM, 
see Section 3.1). It is done by measuring the distances of feature vectors with distance functions and interpreting 
similarity as a point in an n-dimensional distance space. The vector space model is an applied similarity structure of 
type ��. That means, it strongly relies on metric-based distance measurement. For distance measurement in (feature) 
vector spaces a certain type of geometry has to be considered. In VIR the feature space is usually considered to be of 
Euclidean shape. That means, distance measures ��� fulfil four conditions (metric axioms)16: 

1. Constancy of self-similarity: 

 ( ) ( )
����
������ ,, =  (1) 

for the feature vectors ���and �� of two stimuli 	 and 
 (in VIR: media objects). Psychological experiments have show 
that self-similarity is not always the case for human similarity perception16. 

2. Minimality: 

  ( ) ( )
����
������ ,, ≥  (2) 

3. Symmetry: 

  ( ) ( )
����
������ ,, =  (3) 

Like for the constancy of self-similarity, psychological experiments have turned out that humans do not always have a 
symmetric similarity perception.  



4. Triangle inequality: 

  ( ) ( ) ( )
������
��������� ,,, ≥+  (4) 

Distance measures that fulfil the metric axioms are Minkowski distances, the Euclidean distance and the city block 
measure16. Experimental investigations during the last fifty years have turned out that metric axioms may be too 
restrictive for human similarity perception. The triangle inequality (in CBIR sometimes used for query acceleration) 
was even falsified16, 20. Newer theories as the ones sketched in the next subsection suggest a better representation of 
human similarity perception. 
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According to Santini and Jain, Monotone Proximity Structures (MPS, a system of three distance axioms) could be used 
to replace the metric axioms with a less rigid system16. As can be easily shown, MPS suffers from severe 
inconsistencies. One of the axioms is the dominance axiom: 

 ( ) ( ) ( ){ }
121121112211 ,,,max, ��������������� >  (5) 

Here, two stimuli 	 and 
 are compared by distance function ��� where 	 and 
 are represented by two-dimensional 
feature vectors ������� and �������. For example, if the two features are the following predicates: (1) “
 is a color image” 
and (2) “
 has landscape spatial layout” (where 
 is an arbitrary stimulus) then a greyscale landscape media object can 
be represented by ����, ���� and a color landscape media object can be represented by ���� and ����. For this 
example, the dominance axiom has to be written as: 

 ( ) ( ) ( ){ } ( ) ( ))1,1(),1,0()1,1(),1,0()1,1(),1,0(,)1,1(),1,0(max)1,1(),1,0( ����� >≡>  (6) 

Obviously, no distance function ��� exists for which equation 6 holds. 

In comparison to the metric axioms and MPS, FCM is not a geometric but set-theoretic approach20. Basically, the idea 
is measuring the similarity of two stimuli (represented by feature vectors 
 and �) with the formula in equation 7 (��� is 
a monotone increasing function and the non-negative parameters �, � determine, whether ��� is symmetric (���) or 
asymmetric (else) and subtractive (��� or ���) or non-subtractive (else)). 

 ( ) ( ) ( ) ( )
���
��
��
� −−−−∩= βα,  (7) 

The FCM is very successful in representing the properties of human similarity measurement because it allows to 
distinguish between symmetric and asymmetric similarity perception and accounts for non-constant self-similarity. On 
the other hand it does not allow measurement with constant self-similarity and can only be applied to qualitative feature 
vectors (predicates). The latter is because of the logical operators used in ���. 

To overcome the second drawback, Santini and Jain developed the Fuzzy FCM (FFCM) where the numerical elements 
of feature vectors are transformed to truth values and the logical operators (intersection and subtraction) are replaced by 
fuzzy equivalents15, 16. In addition, they developed a geometric equivalent for FFCM by replacing the fuzzy set 
operators by continuous functions. This formula somehow integrates geometric and set-theoretic similarity approaches. 
Santini and Jain16 present a solution for the problematic fact that in FFCM feature vector elements are considered to be 
independent, which is not the case in reality. Unfortunately, this approach has not been integrated with the continuous 
FFCM formula. Additionally, these approaches suffer from the drawback, that the major degree of freedom (the 
selection of the formula ���) had to be abandoned in favour of unification. ��� is always the fuzzy cardinality of the given 
truth values. 

Maybe because of these problems, it seems that using FCM for VIR is not further investigated. For example, in 
Smeulders et al18 it is not mentioned any more. We think this being regrettable, because the ideas of FCM are valuable 
for VIR distance measurement. In Section 4 we describe a new approach to incorporate FCM in a process-oriented 
environment for similarity measurement (LR). Next, we design a general model for the representation of human 



similarity perception. 

3 SIMILARITY MODELING 

In philosophy, similarity defines the relation between an object and its representation (Plato’s ’image’). In VIR the 
philosophical similarity problem is usually subsumed under the term sensory gap18. Essentially, this term describes the 
loss of information in the (repeated) photographing process. This problem is accepted and not treated in VIR. Computer 
vision people are plowing this field and often, their plow is a 3D model (e.g. an active contour based on a deformable 
template, etc.). 

Quite differently, ’similarity’ in VIR is the relation of two images (stimuli). These may, but need not be representations 
of two objects (scenes, etc.). Thus, the VIR similarity problem is modeling the ���� similarity perception, humans have 
developed since they are able to use sticks for drawing in the dust. This problem has been investigated mostly by 
psychologists (perception theory, Gestalt theory). Researchers in other areas of work use the term ’similarity’ as well but 
– as pointed out above – mean something different than (human perception of) visual similarity (e.g. mechanics: 
similarity of machines), have a more strict similarity concept (e.g. mathematics: similarity of triangles) or investigate 
the similarity of abstract representations of objects or images (e.g. physics: similarity in thermo-dynamics, medicine: 
homeopathy theory). Somehow logical, the most similar meaning of 'similarity' is used in biology for categorization of 
species. In this section we examine the standard VIR similarity model and develop a new one (Subsection 3.2) that is 
more suitable for human similarity perception. 
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The usual approach for VIR similarity measurement is called Linear Weighted Merging (LWM) and has the following 
form18 (generalized): 

  ( )
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������� is the average dissimilarity of stimulus 	 related to the used set of features � and the query examples in set �. 
The �� are the weights for the features, ��	
 is a binary matrix of size ������� that contains a '1' for each combination of 
feature and query example that is used in the query. ���� can be any linear or exponential transformation of the distance 
values �����	��� ��	
� for feature �, stimulus 	 and query example �. Typical (accepted) transformations are identity and 
negative exponential transformation18: 

  ( ) �

�
��� −=  (9) 

This numerator is standardized by the denominator: the number of dimensions of distance space. Because the 
denominator represents a linear transformation it is often omitted. In this case we do not call ���� a similarity but a 
position value, because the ���� for all objects A are a partial order over the given object collection. Like the distance 
functions, ���� is a similarity structure (in this case of type ��, see Subsection 2.1). Usually, the most similar objects 
have the smallest position values. If the second transformation (equation 9) is used, the most similar stimuli have the 
highest position values. The linear weighted merging formula implies that all distance measures are standardized to the 
same interval (usually [0,1]). Ideally, they should have the same distribution as well. The weights are usually provided 
by the user and usually sum up to 1. 

The LWM formula does not measure the distance of an object to the origin of distance space! It is just a linear 
combination of distance values. One argument against this formula is that most features are (of course) not linearly 
related. The fundamental law of Gestalt Theory is a generalization of this fact: the whole is more than its elements. In 
the formula above, the maximum of derivable information is always the sum of the elements. 



One could argue, that for testing it is sufficient to know the ground truth for the query examples and use this formula to 
find a lower bound for the quality of a retrieval method. The ground truth according to one element is the number of 
similar elements in a collection. For obvious reasons this is not true. LWM just generates a partial order over all 
elements of a collection. To be usable for retrieval the user has to specify a number � for the number of similar 
elements in the result set. Knowing the ground truth   (for the given examples) per se influences the selection of �. If 
  is selected greater than � the recall improves and if   equals � the precision improves. Additionally, it is not clear, 
how the ground truth can be found for tests, where using multiple example objects is necessary. Finally, knowing the 
ground truth and using LWM is not enough to judge the quality of a method (e.g. for feature extraction). In this case it 
would be necessary to know the distribution of objects in distance space as well.  

The next argument follows a similar direction. Usually, iterative refinement by relevance feedback is used to reduce the 
semantic gap18. Consequently, in the past a lot of research effort has been invested into relevance feedback algorithms. 
Such algorithms can only be successful if the similarity model of the underlying query engine is flexible enough to 
represent the user’s intention. For example, we use two features �� and �� and assume a media collection with ten 
elements. The distribution of the elements in distance space is shown in Figure 1. The query example(s) define(s) the 
origin. The ground truth of this collection is that 5 elements are similar (shown as !) and the 5 other are not (depicted as 
�).  

If we use the formula above, we have two parameters that can be manipulated during relevance feedback: the query 
examples and the weight vector. Anyway, in distance space the result space is always the simplest simplex (a triangle in 
2D, a tetrahedron in 3D, etc.), defined by the weights. Thus in the situation above it is impossible to retrieve all similar 
elements without retrieving the non similar as well. This allows two possible conclusions: (1) the situation above can 
never occur. Human similarity judgment can never result in such a ground truth with this element distribution or (2) the 
LWM formula is – as a similarity model – not suitable for VIR. We tend to the second explanation. In the next 
subsection we will introduce a more flexible model. 
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McLuhan writes that images are just illusions while only film (or video) is able to transport visual content 
appropriately12. His statement covers the simple observation that nothing exists without time and that "�#�� #��$��
%��$&�. We think that there is deep truth in this statement and derive that similarity measurement based on visual 
information should not be static but a dynamic process – as it is for human beings.  

Logical Retrieval (LR) is based on observation of human behavior. When people are arguing their visual similarity 
perception they do not do this by making general comments but by pointing out certain aspects and details and stressing 
their remarkable analogy. These aspects are the features in the querying process. This view of similarity is very old. It 
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Figure 1: Similarity definition in distance space by LWM. The selected subspace is always of triangular shape. Its size depends the 
result set size and the elements in the queried collection. The slope of the border is determined by the weights. Thus it is impossible 

to sort out all irrelevant elements in iterative refinement. 



was introduced by Aristotle, who saw similarity, when two objects had most or the most important properties, in which 
they could differ, in common3. Derived from this, similarity can be formally defined as the correspondence of objective 
measurable elements of complex objects or of their physical neighborhood3. For example, imagine cartoon figures. The 
perceived similarity of cartoon figures with real persons comes from extracting and imitating their major features 
(physique, motion, etc.). 

The idea behind LR is simple. It should be a vehicle (model) that allows the selection of every possible combination of 
elements from a given collection. Thus it does not make any assumption, gives the user full control over the retrieval 
process and supports every thinkable similarity perception. The standard argument against this technique is: how should 
the average user be able to handle such a system? To the authors’ belief (and experiences) this argument makes little 
sense at this point, because this is just a user-interface problem, while we are searching for a suitable model for 
similarity definition. We think that persisting on a very limited model that is easy to handle does not make much sense, 
if the overall problem of VIR are recall and precision rates of less than 40%. 

We define LR similarity measurement as a two-step process8. In the first step (micro-level) feature vectors are mapped 
to points in distance space. Distance space is defined as the vector space that is derived by measuring the distance of 
media objects to given query examples with distance functions (micro-level similarity measurement). It has one 
dimension for each unique combination of distance measure and reference stimulus. In the second step (macro-level) 
the user defines his similarity perception as a logical expression. The logical expression consists of conditions '�

j of the 
form given in equation 10. The parameter "� is a threshold for the maximum distance of a media object for distance 
space dimension �
.  

 �� "� ≤  (10) 

A media object is added to the result set, if the query expression evaluates to "��� for its distance values. This 
expression is then refined in an iterative process. We have developed GUI methods where the user need not define the 
expression directly but implicitly by selecting and moving media objects in a 3D user interface5. The set of similar 
objects in the example above (see Figure 1 in Subsection 3.1) could be described by the following expression (see 
Figure 2): 

  ( ) ( )1
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Figure 2: Similarity definition in distance space with logical expressions. The LR approach is a suitable similarity model because it 

allows every combination of elements. Thus it can represent each possible similarity perception. 



The example makes clear that LR expressions can describe each possible selection in distance space and therefore 
represent each type of similarity perception. LR is not a new invention. The idea is partially based on logical 
expressions as in Boolean Retrieval, although it has nothing to do with the Boolean Retrieval method in information 
retrieval. It is the integration of logical expressions with vector spaces, optimized for visual similarity perception. Our 
approach to Logical Retrieval is a generalization of our earlier Query Model concept1. In addition, we are aware of a 
second approach that results in a similar concept from a different starting point13. Next we will investigate the structure 
of LR expressions in VIR. 

Every query expression can be defined in disjunctive normal form ()*-connected terms as in the example above). In 
this style each 	�+-connected term of an expression describes a n-dimensional cube of elements and should contain at 
most one condition for each dimension of distance space. Each such n-dimensional cube can be interpreted as a cluster 
(these clusters correspond to the Query Models we introduced in earlier publications1). The Logical Retrieval process is 
essentially describing clusters of similar elements. According to information retrieval theory, such clusters exist for 
each collection of elements with reasonable size.  

If we interpret LR as disjunctive concatenating of cluster expressions we can do the following simplifications:  

1. The �), can be integrated into the cluster terms. Instead of �),�'�
j we can write: 

  ( ) �

�����

�

� '"�"�'�), ≡>≡≤¬≡  (12) 

2. Two disjunctive conditions on a distance space dimension � in a single cluster term can be integrated into a single 
expression and written as follows: 

  �

���������

�

�

�

� '"�""�"�'' ,≡≤<≡>∧≤=∧  (13) 

We call�'�	

x a cluster restriction. Each 	�+-connected expression of cluster restrictions describes an either finite (one 

cluster restriction for each dimension of distance space) or (ideally) infinite cluster (less cluster restrictions than 
dimensions).  

Next we will point out the major advantages and drawbacks of LR. In opposition to the arguments above, LR has a very 
positive consequence for user-interface design in VIR. It is intuitive and easy to visualize. Queries are usually 
represented by selecting example elements. In LR this selection can be made by dragging rectangles around two-
dimensional views of examples in feature space or distance space. Views can be created by selecting arbitrary features 
for the X- and Y-axis. Obviously, these rectangles can be directly transformed into an LR expression. Iterative 
refinement can be performed in the same way. Abstract annotations like ’very similar’ are not needed5. 

By now, it is accepted that iterative refinement based on LWM is limited. It leads to improvements in recall and 

Iteration

Recall,
Precision

0 1 2 3 4 5 6 7
 

Figure 3: Typical development of recall and precision in iterative refinement by relevance feedback11. We propose that – at least 
partially – this characteristic comes from the user’s limited influence on the LWM querying process. 

 



precision in the first four to five cycles11. Then the quality of the results begins to decrease. Figure 3 describes the 
typical development of recall and precision over multiple refinement iterations. We think that that the reason for this is 
the limited influence of the user in a querying process based on LWM. Four to five cycles is exactly the time it takes to 
adjust the weights for a few features to the optimum values. In LR iterative refinement means finding additional clusters 
and optimizing their borders. This should at least stretch the typical refinement curve and lead to a higher quality peak 
in the refinement process. 

In addition, LR has a nice side-effect on query execution time. Within each 	�+-connected cluster, the result set of a 
query is independent from the order of the cluster restrictions. An algorithm that sorts the conditions in a way that those, 
which sort out most elements and/or use the fastest distance functions, are used first in the querying process, would lead 
to significant query acceleration. We have presented the design and implementation of such an algorithm7. It reduces 
the average query execution time in our test environment by 66% (in comparison to a QBIC system9, 10 with the same 
feature classes and distance functions). 

4 INTEGRATION OF THE FEATURE CONTRAST MODEL 

In the LR model, we would like to incorporate the ideas of the FCM: asymmetry and non-constant self-similarity. Even 
though the standard FCM works on binary predicates that are related to the conditions from above (equation 10), we 
think that that the distinction between symmetric and asymmetric queries belongs to the micro-level and therefore FCM 
should be incorporated as a (general-purpose) distance measure. To do this, we are not going to interpret numeric 
feature vector elements fuzzy or probabilistic, because we cannot give good reasons for such an interpretation. Instead, 
we use the following substitute for continuous data: the similarity function ��� is defined as in equation 7 and the set 
operators are replaced by suitable continuous functions. The intersection operator is replaced by one of the two 
following functions: 
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#�� is the maximum distance of feature vector elements �� and �� and �� approaches �. �$"��� emphasizes common 
properties of 
 and � while �$"��� emphasizes their differences. In the tests in section 5 we will try to find out which 
formula performs better for continuous data. For the subtraction operator we use the function from equation 16: 

 ( ) ( )


 ≤−−−
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),sub( 2ε

 (16) 

This model should preserve the idea of the FCM. The intersection operator selects properties that are present in both 
stimuli to a similar extent and the subtraction operator selects properties that are present just in 
. For ��� we suggest to 
use formula 17. The definition of ��� is not part of Tversky’s FCM model. Therefore we do not include it in the 
continuous model either. 
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" is the determining parameter of ���. -���"� returns the value of t: the constant’s value if t is a constant (e.g. -���.��.) or 
the variable’s value if " is a variable (-������. if ��.). Thus, if "��, ��� is the cardinality of relevant properties 
(equivalent to FCM). If "���, ��� measures the mean of the difference of all relevant properties of two stimuli (either both 
present or only one present).  



Two problems are connected to this approach: how to choose �� and ��, and how to set the parameters � and � that 
determine, if the FCM is symmetric or asymmetric. We suggest to base the selection of �� and �� on statistical analysis 
of the given feature data (with �i//#��!) and to implement the setting of � and � by a switch in the user interface that 
allow the specification of symmetric (�����) and asymmetric queries as well as subtractive (��� or ���) and non-
subtractive queries. Below, in Section 5 we will show how this continuous FCM model was implemented in a 
prototype.  

Next we investigate the behaviour of the continuous FCM for binary predicates. Ideally, the continuous FCM should 
produce the same results for binary predicates as the original FCM. The following tables show all possible relations for 
two predicate vectors 
����� and ������. The intersection (�$"��) should be ’1’ only if predicate � is present both in 
 and 
�. The subtraction (��0) should be ’1’ if a predicate is present just in 
. 

��� ��� �$"��� 12
max ε≤

+
− ��

��
� �$"���� 11 max εε <−∧≤−

���
��� � �$"����

1 1 1 �1��2��3.���/����444�"���� 1 ��1�����/����444�"������1��/���444�"���� 1 
1 0 0 �1��2��3.���5�/����444������� 0 ��1�����/����444������� 0 
0 1 0 �1��2��3.���5�/����444������� 0 ��1�����/����444������� 0 
0 0 0 �1��2��3.���/����444������� 0 ��1�����/����444�"������1����/���444������� 0 

Table 1. Evaluation of intersection operator for binary predicates. 

��� ��� ��0� ( )
2max ε≤−−

��
�� � ��

�� − �

1 1 0 �1��1�����< �2 ... ������ 0 
1 0 1 �1��1�����< �2 ... "���� 1 
0 1 0 �1��1���.�< �2 ... ������ 0 
0 0 0 �1��1�����< �2 ... ������ 0 

Table 2. Evaluation of subtraction operator for binary predicates. 

For binary predicates #����. If we set �i/��5 and���/� the tables show that all suggested operators perform as desired. 
That means, if the continuous operators are fed with binary predicates the behaviour of the model is exactly the same as 
for Tversky’s model. This is independent from the selection of ���. In the next section we will investigate if the operators 
are suitable for practical use in VIR systems.  

5 TESTS AND RESULTS 

Goal of the tests is to measure the performance of the continuous FCM as a &�$����16��6!��� distance measure in 
comparison to another standard distance measure: the Euclidean distance. The principal superiority of the LR approach 
over LWM has already been shown in other publications1, 8, 13. We have implemented the FCM models from section 4 in 
a Perl prototype. Perl was chosen because it offers powerful data processing capabilities and allows rapid prototyping. 
Additionally, by now powerful image analysis libraries exist for Perl. 

The selection of the test procedure was problematic. Normally, new VIR methods are tested by selecting a large image 
library (e.g. the Corel-library), defining a ground truth based on semantic image properties (e.g. images of flowers, 
images of cars) and evaluating the new method by a reasonably large number of queries with the recall and precision 
measures18. The general problem with this procedure is the following: based on the LR model as a flexible similarity 
measurement process it is always possible to maximize recall and precision at the same time. Additionally, here we 
want to measure the performance of FCM as a distance measure on the micro-level. If the performance was weak, the 
overall system performance in terms of recall and precision could still be good because of LR’s flexibility. Especially, 
the characteristic advantages of FCM cannot be measured with such a procedure. 

Because of these considerations we gave up the idea of an evaluation based on recall and precision and developed the 
following test pattern. We compare the cluster structure of the distance spaces created on the micro-level by the used 
distance measures. A cluster is defined as a group of objects that belong to the same semantic group as the query 
example (defined by the ground truth). In detail we are doing the following (in a reasonable number of repetitions). 



Based on a given set of feature vectors and a randomly selected query example we generate two distance spaces: one 
with FCM and the other with Euclidean distance. In these spaces we identify all clusters of objects that belong to the 
group of the query example and calculate the average group size and the group size variance. Average and variance of 
the group size are meaningful measures for the quality of a distance function in LR, because a good distance measure 
should generate as large as possible (and therefore as less as possible) clusters that can then be easily tracked on the 
macro-level. The major problem of this approach is the identification of clusters in an n-dimensional distance space 
(derived from n features). This is non-trivial but can be avoided by taking all features together and measuring the 
distance as a ��!��. The generated distance space is then one-dimensional and the test for the general-purpose distance 
measures is even harder (especially for the FCM) because they have to integrate arbitrarily related features. 

For the tests we use a collection of 444 images of coats of arms. The images are synthetic (painted, not scanned or 
photographed) and have been described in earlier publications1, 2. Like Santini and Jain15 we think that computer-based 
similarity assessment should be pre-attentive and therefore VIR benchmarks should be based on pre-attentive similarity 
judgement as well. This can be achieved by using media collections with �0�"��%" content for evaluation. Unfortunately, 
we are not aware of any visual media collection with really abstract content. Therefore we think that using the coats of 
arms library instead is a good compromise, because coats of arms carry no inherent visual meaning. Even though the 
elements of arms have precisely defined semantics the visual image itself has no meaning at all (except some ordinaries 
like horses, crowns, etc.). To select query examples and identify clusters we need a ground truth. Based on the visual 
impression we built a pre-attentive ground truth of four groups of images with similar colors, layouts and textures. The 
group size varies from 18 to 24 images. Finally, for the distance calculation we need feature vectors. We use the 
features from our coats of arms CBIR system1, 2. These include color histograms (global and localized) and other color 
features, object features (contours, etc.), image symmetry features and application-specific features (coats of arms 
segmentation, etc.). Each of the 444 images is represented by a feature vector with 58 elements. 

Testing FCM as a general-purpose distance measure we want to clarify the following question: are the characteristics of 
the FCM as a tailor-made similarity measure still relevant in the LR model? Our hypothesis is: yes. We try to answer 
this question with three tests: (1) Performance comparison of FCM with the �$"��� intersection operator to FCM with the 
�$"��� operator, (2) comparison of symmetric FCM without consideration of features that are only present in one 
stimulus (�����, non-subtractive) to asymmetric and/or subtractive FCM, and (3) comparison of the best FCM model 
to the Euclidean distance. To optimize FCM the optimal values for the parameters ", �, �, �� and �� have to be found. In 
summary we run 217000 queries: 1000 on Euclidean distance (no parameters), 72000 on FCM with �$"��� (6 
parameters) and 144000 on FCM with �$"��� (4 parameters, ��� with "�� was not evaluated, see below). 

The comparison of �$"��� and �$"��� lead to very clear results. FCM with �$"��� (emphasizes common features) was in 
every single test better than FCM with �$"��� (emphasizes differences) with equal parameters. While the average 
number of clusters for FCM with �$"��� is most times less than 9 elements it is nearly always higher than 9 for FCM 
with �$"��� intersection operator. That means, in average the objects of the query examples group fall in more than 9 
clusters in distance space. Consequently, �$"��� was not considered in the rest of the evaluation. Next we tried to 

 
Figure 4: Average cluster size (bars, left Y-axis) and cluster pollution (rhombs, right Y-axis, in percent of correct cluster members) 

for the symmetric non-subtractive FCM (��� ��) depending on �� (X-axis). 

 



optimize the parameter " of FCM and found out the following: "��� clearly outperforms "��. That means, function ��� 
with continuous predicate interpretation is always better than ��� with binary interpretation (and FCM with equal 
parameters). Thus "�� was not considered in the further tests as well. 

To find out whether symmetric non-subtractive FCM is better than asymmetric and/or subtractive FCM we optimized 
the parameters for each of the four possible combinations. This revealed that in average symmetric non-subtractive 
FCM performs best. Figure 4 shows the results for �����. The bars show the average number of clusters in distance 
space depending on �� while the rhombs show a new phenomenon that we call cluster pollution. First, we concentrate 
on the average number of clusters. We can see that it decreases with decreasing �� from 6 (about constant for �� ����7) 
to about 2 (��������). This is because if �� is set smaller, less predicates are used to judge the similarity of objects. From 
the small number of clusters we can conclude that FCM has an inherent ’intelligence’ to select the ��&�" properties and 
using lower epsilons results in a better cluster structure. 

Cluster pollution means that in a cluster of adjacent objects from the queried group, false objects exist that have ���%"�� 
the same distance value as one of the cluster members but do not belong to the clustered group (according to the ground 
truth). Such false objects cannot be identified with LR expressions and therefore have to be treated as cluster members. 
Generally, it should be very unlikely that two objects come out at exactly the same point in distance space but because 
of the nature of FCM (only some predicates are used, controlled by ��) this can happen. In Figure 4 we see that cluster 
pollution decreases with increasing �� from 140% to 100%. That means for �������8 each cluster contains about the 
same number of correct and false members. Of course, to a large degree this can be explained by the one-dimensional 
distance space. If distance space had more dimensions the clusters would be less polluted. Still, cluster pollution is a 
consequence of using FCM. Clusters in an Euclidean distance space are not polluted (see below). The results in Figure 4 
may suggest that a lower number of clusters (gained by lowering ��) corresponds with higher cluster pollution. For 
clarification we calculated the correlation of average cluster size and cluster pollution. Figure 5 shows the results. There 
is no significant correlation between the cluster size and cluster pollution. The correlation coefficient is lower than 82%. 

The results for asymmetric and/or subtractive FCM can be seen in Figure 6. In this case, either �, � or both are greater 0 
and therefore the results depend on �� and ��. The left diagrams show the average number of clusters. Black areas 
(combinations of �� and ��) mark results of average 2 clusters (1,5-2,5 clusters of correct objects in distance space), dark 
grey results of average 3 clusters (2,5-3,5), and so on. The right diagrams show the average cluster pollution. Black 
areas have a cluster pollution of average 135%, dark grey of 130%, et cetera. The first row of diagrams shows the 
results for FCM with ��� and � ��. In this case all features are taken into account that exist in both objects or only in 
the query example. The second row of diagrams shows the results for FCM with ��� and � ��. These two FCM 
configurations are asymmetric and subtractive. The third row of diagrams shows the results for FCM with ��� and 
���. This configuration is symmetric and subtractive. We have only investigated these cases but not linear 
combinations between them, because these configurations are extreme cases and the results of intrapolated 

 
Figure 5: Correlation of average cluster size (X-axis) and average cluster pollution (Y-axis) for symmetric non-subtractive FCM.  

The correlation is not significant (81,9%). 

 



configurations would be just intrapolations of the extreme results. 

From the diagrams we can induce the following observations: the FCM with ��� is in the average better than the FCM 
with ���. That means, using the information of features that are only present in the compared object � does not 
improve the results. For visual information this is intuitive: non-similar objects can have a vast number of different 
features. Using them in a query is misleading and can hardly be supported by arguments. Additionally, we can see from 
the first row of images that for very low epsilons there is an area with a lower cluster pollution. This supports our 
argumentation that bigger clusters are not just a trade-off for higher cluster pollution. 

In comparison to Euclidean distance (applied to the same test data) we see that FCM performs much better. Euclidean 
distance generates clusters of about two members. That means in average the queried image collection in distance space 
falls in 10 clusters. This is much worse than for FCM (2-8 clusters). On the other hand, Euclidean distance has two 
advantages: the resulting clusters have no pollution (because all features of an object are taken into account for distance 
measurement) and Euclidean distance is faster than FCM. The relationship in query execution time for the same test 
data on the same system is about 3:1. That means an FCM query takes about 3 times as long as an Euclidean query. 

6 CONCLUSION 

This paper reviewed similarity models for Visual Information Retrieval (VIR) and introduced the Feature Contrast 
Model (FCM) for VIR distance measurement. In the first part underlying concepts of similarity modeling were revisited 
and the standard VIR model was sketched. Motivated by the drawbacks of this model the more flexible Logical 
Retrieval model (LR) was introduced. According to this model, distance measurement is reduced from the central 
element of similarity measurement to a less important role. It should help to organize similar objects in distance space 
in a way that they are easy to find in an iterative querying process. In the second part the FCM, developed by 

  

  

  
Figure 6: Cluster size (left column) and cluster pollution (right column) depending on �� (X-axis) and �� (Y-axis).  

First row: ���, � ��, second row: ���, � ��, third row: ���, � ��.  

 



psychologists to explain human peculiarities in similarity perception, was integrated in LR as a general-purpose 
distance measure. To do that a continuous model of FCM was developed. This model was tested on an abstract image 
library with a pre-attentive ground truth to judge its performance and find out the optimal parameterization. 

The results show that FCM performs (in the LR context) better than Euclidean distance. Euclidean distance was used 
for comparison because it is used in many VIR systems and is based on the (questionable) metric axioms. FCM 
minimizes the number of clusters in distance space. Therefore it is the ideal distance measure for LR. FCM allows a 
number of different parameterizations. The tests revealed that in the average a symmetric, non-subtractive configuration 
that emphasizes common properties of visual objects performs best. Its major drawback in comparison to Euclidean 
distance is its worse performance (in terms of query execution time).  

In future work we will try to improve the performance of FCM. Additionally, we will develop heuristics for FCM 
configuration for various kinds of feature data (setting ��, ��� and �). To do this, we will integrate FCM in the VIR 
project VizIR. VizIR aims at developing an open framework for VIR6. Interested researchers are invited to contact the 
authors for more information.  
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