
Dynamically Shared Optical Tracking

Florian Ledermann, Gerhard Reitmayr and Dieter Schmalstieg
Vienna University of Technology

{ledermann| reitmayr| schmalstieg}@ims.tuwien.ac.at

Abstract

Optical Tracking using ARToolkit provides us with the
base technology for a wealth of Augmented Reality appli-
cations. However, marker-based optical tracking using a
single camera has some drawbacks. Markers must be fully
visible to the camera all the time to produce tracking out-
put – occlusion by other objects and limited camera field
of view constrain the area that can be effectively tracked by
ARToolkit. In our approach to improve tracking availabil-
ity, tracking data from multiple hosts is shared across the
network. Pairwise camera-to-camera relationships are es-
tablished automatically, as soon as any marker is seen by
two cameras, independent of the cameras’ placement (e.g.
cameras worn by a user or mounted at a ”hot spot” lo-
cation to improve tracking in that area). The setup is com-
pletely dynamic: both cameras can be continuously moving,
and there is no ”special marker” that must be seen by both
cameras – as soon as any one marker in the system is vis-
ible to both cameras, all missing tracking information can
be calculated from the data sent over the network. In this
paper, we describe such a configuration for multiple hosts
in detail, as well as special aspects such as automatically
selecting the best marker to use as a reference point, a de-
scription of the system’s data flow, scalability and accuracy
issues and future work such as automatic configuration of
the system.

1. Introduction

ARToolkit [1] is enabling its users to add three-
dimensional tracking capabilities to their applications. AR-
Toolkit uses square markers as shown in Fig. 1, carrying
a unique pattern to distinguish markers from each other.
These markers are observed by a single camera, and the
tracking software uses computer vision techniques to calcu-
late the markers position and orientation from the captured
image.

This kind of optical tracking provides us with the base
technology for a wealth of augmented reality applications,

without the need for buying expensive or complicated track-
ing hardware. Markers can be used as a tangible interface
to handle virtual artifacts or as user interface elements.

We are using ARToolkit to build a multi-user mobile
augmented reality system [4], providing tracking for indi-
vidual users by a head mounted camera. Although we are
using a wide-angle camera to perform the tracking, it is
sometimes impeded by the camera’s limited field of view
or obstacles that cover parts of the markers. These prob-
lems limit the area that can be efficiently tracked and con-
strain the user’s freedom of movement and the ability to use
markers as artifacts to handle virtual content.

Figure 1. Common occlusion situations.

To improve tracking while preserving the flexibility of
our system, which allows users to move around freely (even
outdoors) and spontanously join collaborative sessions with
other users, we developed an approach that uses, but is not
dependent on additional resources. Additional cameras can
cover a bigger part of the scene and contribute to the overall
tracking information. We did not want to rely on statically
mounted cameras but also use, for example, the camera of
another user who is passing by or talking to us. In other
words, the goal was to use a best-effort approach using all
tracking information that is available somewhere in the sys-
tem to complete missing local tracking information.

2. Occlusion

Tracking in ARToolkit is impeded whenever the marker
to be tracked is not fully and clearly visible within the cam-
era image. Fig. 1 shows some captured camera images

with common occlusion situations. Note that in some sit-
uations the user might not even realize that the marker is
not tracked, because human vision is much more power-
ful in completing missing information than computers cur-
rently are. Especially if no feedback of the tracking success
is given to the user, this can lead to annoying situations or
data loss (If the user thinks her actions are recorded, but
tracking is defunct).

Failed tracking can generally be explained with one of
three common reasons. For all of them, some improvements
have been proposed:

1. Bad lighting conditions

Optimal results require diffuse, bright white light with
constant intensity over the whole area where tracking
will be used. If there is not enough light, markers
will not be recognized by ARToolkit. If the light is
too bright or shines directly onto the marker, the black
parts of the marker will reflect light into the camera,
also preventing it from being recognized in the cap-
tured image.

Well-known solutions for this problem are to modify
the lighting in the room, or to use non-reflecting mate-
rials for the black parts of the markers to reduce reflec-
tion.

2. The marker is not fully visible in the camera image

The marker must face the camera, be fully within the
cameras field of view and not occluded by obstacles
or other markers. If only one corner ot the marker is
occluded or outside the FOV of the camera, it will not
be recognized at all.

Chances of full visibility can be improved by using
several markers fixed to a rigid object. The offsets
between the markers must be well-known, and there
must be some component in the application that calcu-
lates the final position of the object from the last valid
tracking input(s). In our application, we use this ap-
proach to track objects that can be rotated freely by the
user, for example a pen (Fig. 2)

3. The marker is too small or too far away

If a markers image does not cover enough pixels in the
camera image, the tracking results will be inaccurate
or the marker will not be recognized at all.

A solution is to use markers of appropriate size. In
our setup, we achieved acceptable results with three
different marker sizes (measure given is the side of the
black square):

• 50mm Personal space (0.2m - 0.6m) Markers that
are only used near the camera of one person.

Figure 2. Multiple markers attached to a tablet
and a pen, which can be rotated freely.

• 90mm Artifact space (0.4m - 2m) Markers that
are used to handle virtual artifacts and to pass
them to other users.

• 180mm Environment space (1m - 5m) Mark-
ers that are part of the environment (attached to
walls, viewed from a distance)

While tracking can be further improved in static setups
by mounting the camera in an optimal position (e.g. over-
head), this approach was not feasible for building our mo-
bile augmented reality kit – the kit worn by the user is self-
contained and cannot rely on laboratory conditions with
good lighting and a fixed camera. However,additionalcam-
eras can be used to complete missing tracking information.

3. Static multi-camera tracking

Using more than one camera to contribute to the tracking
information on a single host requires a far more complex in-
frastructure than the single-camera solution. Either multiple
cameras have to be attached to a single computer, requiring
non-standard driver software and modifications to the track-
ing software, or each camera is connected to a seperate host,
which shares the tracking data over a network with other
hosts participating in the system.

In both cases, the tracking information has to be trans-
formed from each cameras local coordinate system to a
common reference coordinate system. If the cameras are
mounted in fixed, well-known positions, it is easy to add a
fixed offset (which can be measured by hand) to the track-
ing results of one camera to transform the results into the
coordinate system of the second camera, or use offsets for
both cameras to transform the data into an arbitrary world
coordinate system.

If the offset between the two cameras is not known, or
cannot be measured accurately (for example, because one
camera moves with the user), one could use an additional
”reference marker” to track the positions of both cameras
in relation to the reference point, and then calculate the re-
lation of the cameras to each other out of that information.
A further improvement would be to use several such mark-
ers mounted in well-known positions (for example, on the
walls of a room), to allow the positions of the cameras to be
tracked [7].

The benefit of multi-camera tracking is that different re-
gions can be covered by the tracking system (which in-
creases the effective field of view), or the same region can
be covered from different angles, which helps in case of oc-
clusion and reflection problems.

4. Dynamically shared multi-camera tracking

Although, in our mobile application, we cannot rely on
additional tracking equipment to improve the accuracy and
field of view of our ARToolkit tracking system, we still
want to use the information provided by additional cam-
eras, whereever available. To meet our need of users mov-
ing around freely, joining and leaving collaborative sessions
with other users spontaneously, we needed a more flexible
approach than described above.

In our approach, tracking data of each host is shared
across the network with all hosts participating in the system.
Pairwise camera-to-camera relationships are established au-
tomatically, as soon as any marker is seen by the two cam-
eras in question – no matter if the second camera is carried
by another user or just mounted at a ”hot spot” location to
improve tracking in that area.

The dynamically calculated offset between the two cam-
eras is then used to transform all tracking events coming
from the network to the hosts own local coordinate system.
Note that this is done on both hosts symmetrically, so as
soon as there is one marker that can be seen from both cam-
eras, both hosts can calculate tracking information for all
markers that are known to them. Both hosts end up with
positions for all markers (even those that they cannot see,
but are tracked by the other host) in their local coordinate
system.

In this section, for simplicity, we will illustrate the prin-
ciples of our shared tracking system for a two host setup.
Extending the system on multiple hosts will be discussed in
section 4.5.

Fig. 3 gives a schematic overview of such a shared track-
ing session between two users. As soon as both users can
see marker 1, both of them have local tracking data and re-
mote tracking data for that marker available. Both hosts can
then calculate the relative position of the other camera, and
transform the remote tracking data accordingly. For exam-

ple, host 1 has no local tracking data for marker 2 (because
it is hidden behind another object), but it can still calculate
its position from the relationship of the two cameras plus
the tracking information sent from host 2.

Figure 3. Schematic view of our shared track-
ing setup: The two hosts exchange their
tracking data over the network.

4.1. Calculating the offset

Let us assume the situation in Fig. 3, with 2 hosts and two
markers, one of which cannot be tracked directly by host 1.
Let A1 be the transformation matrix of marker A as tracked
by host 1, andA2 andB2 the transformation matrices of
the two markers as tracked by host 2. We want to find a
transformation matrixX21 that transforms any event from
a marker M in the coordinate system of host 2 (denoted as
M2) into the coordinate system of host 1 (denoted asM1),
so that

M2 ·X21 = M1

To get this transformation matrix, host 1 calculates

X12 = A−1
1 ·A2

from his local information and the data received from
host 2 and takes the inverse

X21 = X−1
12

With this matrix, all events sent from host 2 can be trans-
formed into the coordinate system of host 1. For example,
the position of marker B can be calculated as

B1 = B2 ·X21

4.2. OpenTracker

For processing tracking data, we use our software frame-
work OpenTracker [2, 3]. OpenTracker processes data from

various tracking sources (each ARToolkit marker acts as
a seperate tracking source) through a graph of filters, fi-
nally sending the processed tracking data to the application
or over the network to other hosts. The whole processing
graph can be described in an XML configuration file, al-
lowing quick reconfiguration of the tracking sub-system.
Tracking sources (i.e. ARToolkit markers) appear as leaf
nodes in the processing hierarchy described by the configu-
ration file.

Tracking data in OpenTracker is modeled as a stream
of events, originating at the tracking source and running
through the filter graph, finally being sent to one or more
sinks. Filters can modify or block events according to their
configuration. Each event has fields for position, orienta-
tion, timestamp and confidence value, among others. Ta-
ble 1 gives an overview of OpenTracker filters that are used
in our setup.

To illustrate the operation of OpenTracker, Fig. 4 shows
a simple configuration: Two ARToolkit Markers are defined
to act as event sources. The tracked positions of the two
markers are routed directly to the application (Symbolized
by the ”ApplicationSink” nodes at the bottom). In addi-
tion, a DynamicTransform node calculates the difference
between the two positions, and sends the result to the ap-
plication via a third sink.

Figure 4. A Simple OpenTracker configura-
tion: Two ARToolkit markers act as event
sources, they are transformed and routed to
the application.

4.3. Sharing tracking data

For sharing tracking data over the local network, we use
UDP multicast, broadcasting the events on a port that is
well-known to other hosts participating in the setup. This
functionality is provided by OpenTrackers NetworkSink
and NetworkSource nodes. Each host sends out the raw
(untransformed) tracking data of all markers that it recog-
nizes in its camera image. In addition, it listens to incoming
tracking data of all other hosts on the network.

If a host has local tracking data for a marker available,
and receives remote tracking data for the same marker, it
can calculate the camera-to-camera relationship to the for-
eign host. We use a timeout of 200 milliseconds (roughly
half the frame-rate of our ARToolkit setup) to detect if at
any given moment there is local and remote tracking data
available.

Fig. 5 shows the data-flow diagram for a shared tracking
session between two hosts, using one marker, which acts as
reference marker.1 As can be seen clearly, the setup on both
hosts is exactly symmetrical. Each host has an ARToolkit
source, that fires events as soon as the marker can be seen
by its camera. This event is sent to the other host via the
network.

Figure 5. Shared tracking for one marker and
two users.

If one host has local tracking information and remote
tracking information available, the transformation matrix

1Of course, shared tracking only makes sense if at least two markers are
used. For illustration purposes we show only the data flow of one marker in
the figure, a complete configuration for three markers is shown in figure 6.

Node name Description Transformation

Transform Transfroms the input with a given transformation matrix. O = I · T
EventInvertTransform Calculates the inverse of the input. O = I−1

EventDynamicTransform Transforms the first input with the second input. O = I1 · I2

Selection Forwards the preferred input, if available within a given timespan.
Otherwise, the default input is forwarded.

ConfidenceSelect Forwards the event with the highest confidence value within a given timespan.
Filter Performs linear averaging of a number of (sequential) events

Table 1. Common OpenTracker nodes.

for remote events can be calculated as explained in Sec-
tion 4.1. Therefore, the inverse of the local event is cal-
culated by an EventInvertTransform node, and the result is
multiplied with the remote event by a DynamicTransforma-
tion node. Calculating the inverse of the result gives us the
desired transfromation matrixX21.

Tracking data for other markers that is received via the
network is then transformed with this matrix and fed into
a Selection filter. The selection filter prefers local tracking
information, if available within a given timeout. If no local
tracking data for the given marker is available, the trans-
formed remote data is taken and sent to the application.

4.4. Confidence selection

If several markers are seen by both hosts, we want to use
the marker that is tracked most accurately by both hosts as
reference marker. Confidence Values are provided by AR-
Toolkit as an estimate how accurate the tracking is. Con-
fidence values range from 0.0 to 1.0, with higher values
representing more accurate tracking. OpenTracker provides
a ConfidenceFilter node that take several inputs and only
passes the one with the highest confidence value. Normally,
if there are several markers tracking a single object, one
would use the tracking data with the highest confidence
value as input for the application.

Since in our approach, the reference marker is seen by
two cameras, the two confidence values must be combined
to give a correct decision parameter for selecting the ”best”
marker. We interpret the confidence value as a probability
measure for the correctness of the sampled data, and there-
fore multiply the two confidence values to get a combined
value. If more than one marker is seen by both cameras,
the marker with the highest (combined) confidence value is
taken to calculate the offset between the two cameras.

4.5. Multiple hosts

Since the configuration on each host is completely sym-
metric, it is very easy to extend the system from two to mul-
tiple hosts sharing their tracking data. Although every host

communicates with every other host in the system, network
traffic increases only linearly, because UDP multicast on
a single channel is used for transmission of tracking data.
Since it can be assumed that co-located cameras are con-
nected via a single LAN segment, this is an efficient way to
solve the distribution of the event data.

Each host has to maintain a transformation matrix for ev-
ery host that is known to it, and the subgraph for calculating
the transformation matrix and transforming remote events
must be defined in the configuration file. This results in
fairly large processing graphs with modular structure that
can be easily extended to include more hosts or markers.
Although, at the moment, this is done manually, this pro-
cess can easily be automated (see Section 6).

4.6. Putting it all together

Fig. 6 shows the data flow on one host in a 2 host setup,
using 3 markers, confidence selection and filtering for the
events sent over the network. Fig. 7 shows video-overlay
images of successful shared tracking.

Figure 7. Successful shared tracking.

5. Applications and results

In our application, the camera capturing the image is
mounted onto a helmet worn by the user (see Fig. 8). See-
through augmented reality is provided by a Sony glasstron
Head-Mounted display. Since there is a fixed offset between
camera and display, we can use the camera and ARToolkit

Figure 6. Data Flow Diagram for setup on one host, using 3 markers A, B and C.

to get the position of markers relative to the users viewpoint
(adding the fixed offset to the tracking data).

The helmet described above is part of our mobile AR
kit [4] – the user is wearing the helmet with camera and
display, and a backpack with all the necessary hardware
and batteries. As an interaction device, gloves [6] are pro-
vided that are also tracked by ARToolkit, allowing the user
to ”pinch” or ”grab” virtual objects and still keep his or her
hands free for interaction with real objects.

Figure 8. The mobile AR Kit.

Dynamically shared tracking has greatly improved the
tracking availability, espescially in collaborative sessions
with two or more users – ”split reality” situations, in which
one user sees tracked content that is invisible to the other

are greatly reduced. Although the calculated results are not
as accurate as local tracking, they are sufficient to create the
impression of continuity of the AR environment.

As a meeting place for collaborative sessions we have
built a small table with an integrated overhead camera that
performs ”hot spot” tracking of the table surface. The ta-
ble is integrated like every other host into the tracking sys-
tem, and provides reliable tracking of markers lying on its
surface. Users can concentrate on each other or their in-
teraction devices and still see the virtual objects placed on
the table, even if the markers are not visible to the cameras
mounted on their heads.

5.1 Accuracy

The accuracy of shared tracking depends on many pa-
rameters in the processing chain: The quality of the cam-
era images, calibration of ARToolkit, size and visibility of
the reference marker, angle and distance between the two
cameras, the size of the marker to be tracked and network
latency, to name only the most important ones. If only one
of these factors is not optimally set, the results of shared
tracking may be inaccurate or even unusable.

To measure the accuracy of our setup, we recorded
the tracking of an artifact-space marker that was directly
visible to both cameras during a collaborative session of
two users. As well as the local output of ARToolkit, we
recorded the calculated output of shared tracking via a sec-
ond marker. With this information, we could plot the de-
viance between our shared tracking system and the direct
output of ARToolkit-based tracking. The plot is shown in
fig. 9, together with a plot of the movement speed of the
marker. Deviance ranges from 2 to 10 cm, with higher

Figure 9. Plot of the deviance (in meters) between direct ARToolkit tracking and shared tracking
during a collaborative session. The thin line shows the movement speed of the marker the measure
was taken from.

deviations during and after fast movements of the tracked
marker, as can be seen in the figure.

The subjectively perceived error is not as big as these
numbers suggest, because the direction of the deviance vec-
tor tends to stay reasonably constant over the whole session.
Users may notice a constant offset between marker and vir-
tual content during shared tracking, but can handle virtual
artifacts nearly as good as if directly tracked. For input de-
vices and applications that require precise positioning, extra
measures like using cameras with higher resolution and pre-
cise calibration of each individual camera have to be taken
to improve the accuracy of the underlying ARToolkit track-
ing.

Another method of improving the accuracy of AR-
Toolkit’s output is to simply apply a linear averaging filter
to the data. OpenTracker provides such a filter with itsFil-
ter node, and we use it to filter the last 3 events sent over
the network for shared tracking. Local events are passed
to the application without filtering, to keep response times
low for local changes. Events sent over the network are
filtered, which adds a delay of approximately 300ms but re-
duces noise and errors in the data used for shared tracking.

5.2 Additional improvements

A strength of OpenTracker is its ability to integrate var-
ious tracking technologies into a common, homogenous
framework. The idea of a shared tracking system is there-
fore not limited to ARToolkit as its data source, but can in-
clude different tracking systems, translating between them
as necessary and using the best available data as input for
the application. For example, if a mobile user enters a room
equipped with a magnetic tracking system, all the data pro-
vided by magnetic tracking is immediately available if there
is one marker that is fixed or tracked by the magnetic sys-
tem and ARToolkit. The mobile system doesn’t even have

to know that there is a magnetic tracking system, all it sees
is another host providing tracking data and the necessary in-
formation to translate between the two coordinate systems.

Knowledge about the environment can also be used to
further extend the range of operation of shared tracking. If
there are multiple markers attached to the walls of a room
or a building, the knowledge of the geometric relationships
between these markers can be used to translate between
two cameras coordinate systems, if each camera sees any
of these markers – even if no single marker is seen by both
cameras at the same time. A similar improvement is to at-
tach markers to the cameras themselves (or, in our mobile
system, to the helmet carrying the camera), which enables
translation of tracking data if one camera sees the other
camera (as it is the case if two users are talking to each
other face-to-face).

The helmets of our mobile AR kits are also equipped
with inertial trackers, measuring head movements. Al-
though, due to accumulating errors, they cannot be used to
accurately track the head of the user over a long time, their
output allows us to bridge the time gap if the user turns his
head, providing a continuous stream of tracking data until
the next marker is visible.

6. Conclusions and future work

We presented a setup for distributed tracking that can
make use of multiple cameras without being dependent on
them. The system, as described here, relies heavily on our
tracking middleware OpenTracker, because it allows us to
design complex dataflow graphs (including network trans-
mission) by simply editing XML configuration files.

The resulting system is even easier to set up and maintain
than the static approaches described in section 3, because no
manual registration of cameras or environment is necessary
for the system to work.

For the application, using dynamically shared tracking is
completely transparent. All processing of local and remote
tracking data is done by OpenTracker, the application just
receives the events that are provided on a best-effort basis
– if local information is available, it is used, otherwise the
missing information is calculated (if possible) from data re-
ceived from other hosts.

One possible future improvement would be the auto-
matic detection and joining of additional hosts – currently
this is done by editing the configuration files on all hosts
participating in the system. Since the changes to the con-
figuration files are already quite modular, it should be easy
to automate this. However, this requires application sup-
port for performing the run-time changes to the undelying
OpenTracker configuration, and an additional protocol for
discovering new hosts.

Another idea proposed in [7] is the partitioning of the
environment into zones, where the same marker has differ-
ent meanings. Depending on ”context markers”, the track-
ing subsystem decides which zone is currently active and
sends corresponding tracking output to the application and
other hosts. This allows the coverage of large environments
(outdoors, large buildings) with only a reasonable small set
of markers which can be reused, depending on the location
the user is currently in. This could also be combined with
GPS positioning of the user to determine the currently ac-
tive zone. Such a system could be implemented in Open-
Tracker alone, which sends the output of one marker to var-
ious ”virtual” ApplicationSinks, depending on the context
of operation.

7. Acknowledgements

This work was sponsored by the Austrian Science Fund
(FWF) under contracts no. P14470-INF and START Y193,
and Vienna University of Technology by an infrastructure
lab grant (”MARDIS”).

OpenTracker software for shared and distributed track-
ing is freely available under LGPL at the project web site
http://www.studierstube.org/opentracker.

References

[1] Kato H., Billinghurst, M. (1999).Marker Tracking
and HMD Calibration for a video-based Augmented
Reality Conferencing System, Proceedings Interna-
tional Workshop on Augmented Reality (IWAR99).
October, San Francisco, USA.

[2] Reitmayr G., D. Schmalstieg (2001).An Open Soft-
ware Architecture for Virtual Reality Interaction,
ACM Symposium on Virtual Reality Software and

Technology 2001 (VRST 2001), Banff, Alberta,
Canada, Nov. 15-17, 2001.

[3] Opentracker Website, visited July 05, 2002.
http://www.studierstube.org/opentracker.

[4] Reitmayr G., D. Schmalstieg (2001).Mobile Collab-
orative Augmented Reality, Proceedings International
Symposium on Augmented Reality (ISAR’01), New
York NY, Oct. 29-30, 2001.

[5] Schmalstieg D., A. Fuhrmann, G. Hesina, Zs.
Szalav́ari, L. M. Encarnaçao, M. Gervautz, W. Pur-
gathofer (2002).The Studierstube Augmented Reality
Project, PRESENCE, 11(1), pp. 33-54.

[6] Veigl S., A. Kaltenbach, F. Ledermann, G. Reitmayr,
D. Schmalstieg.Two-Handed Direct Interaction with
ARToolKit, IEEE First International Augmented Real-
ity Toolkit Workshop (ART02), Darmstadt Germany,
Sept. 29, 2002, to appear.

[7] Kalkusch M., T. Lidy, M. Knapp, G. Reitmayr, H.
Kaufmann, D. SchmalstiegStructured Visual Markers
for Indoor Pathfinding, IEEE First International Aug-
mented Reality Toolkit Workshop (ART02), Darm-
stadt Germany, Sept. 29, 2002, to appear.

