
Distributed Applications for Collaborative Augmented Reality

Dieter Schmalstieg
Vienna University of Technology, Austria

email: schmalstieg@ims.tuwien.ac.at

Gerd Hesina
Vienna University of Technology, Austria

email: hesina@cg.tuwien.ac.at

 Abstract
 This paper focuses on the distributed architecture of

the collaborative augmented reality system Studierstube.
The system allows multiple users to experience a shared 3D
workspace populated by multiple applications using see-
through head mounted displays or other presentation
media such as projection systems. The system design is
based on a distributed shared scene graph that alleviates
the application programmer from explicitly considering
distribution, and avoids a separation of graphical and
application data. The idea of unifying all system data in the
scene graph is taken to its logical consequence by
implementing application instances as nodes in the scene
graph. Through the distributed shared scene graph
mechanism, consistency of scene graph replicas and the
contained application nodes is assured. Multi-user 3D
widgets allow concurrent interaction with minimal
coordination effort from the application. Special interest is
paid to migration of application nodes from host to host
allowing dynamic workgroup management, such as load
balancing, late joining and early exit of hosts, and some
forms of ubiquitous computing.

1 Introduction
 In contrast to most distributed virtual environments

(DVEs) and networked games (e. g., [16, 23] that are based
on an egocentric virtual world metaphor, collaborative
augmented reality allows multiple co-located users to
experience a shared virtual workspace through see-through
head mounted displays (HMDs) or projection environments.
A virtual workspace makes natural communication as well
as interaction with both virtual and real objects is possible.
This approach fits well into a conventional office
environment that is augmented with heterogeneous media,
as exemplified in UNC’s office of the future [26] and
Columbia’s EMMIE [8] projects.

 In previous work [31] on the Studierstube system
(Figure 1), we have demonstrated how a collaborative
augmented reality system can provide convergence of
several aspects of user interfaces:
- Multiple users can be accommodated simultaneously;
- multiple applications can be used concurrently by

multiple users or alternatingly by a single user
(applications as a set of complementary tools)

 Figure 1: The distributed virtual workspace
Studierstube supports multiple users and applications
using tracked head mounted displays and hand-held
tracked props. The image shows two users engaged in
a geometry education task (live video overlay).

- multiple heterogeneous input and output media (e. g.,
HMD vs. desktop display) can be used to accommodate
several user interface styles.

 In this work, we focus on the design of Studierstube’s
underlying distributed system, which tries to accommodate
the networking requirements of a virtual workspace. It
manages a distributed shared scene graph that hides the
details of networking from the application programmer. A
key contribution is the unification of all application specific
graphical and non-graphical data in the scene graph through
the implementation of application instances as nodes in the
scene graph. Such application nodes are distributed through
the same mechanism as conventional scene graph nodes.
Applications also rely heavily on multi-user 3D widgets,
which ensure consistency but also enhance responsiveness
through controlled consistency relaxation. A second key
contribution is application node migration which allows
dynamic workgroup management, in particular late joining,
early exit, load balancing and some degree of ubiquitous
computing [41]. Please note that the presented distributed
system techniques were designed for face-to-face
collaboration in collaborative augmented reality, but are
applicable to any kind of distributed virtual environment.

2 Related work
 Synchronous groupware and distributed virtual

environments have much in common in terms of user
requirements, but technical solutions have sometimes
surprisingly little overlap. DVEs typically try to minimize
communication costs at the expense of generality by
specialized protocols and minimal sharing of application
state [32]. In contrast to DVEs, synchronous groupware
tries to introduce collaborative tools to a conventional 2D
desktop environment, which requires a more general
approach to distribution. In particular, collaboration
transparent systems try to provide shared use of applications
that were originally intended for a single user, following a
WYSIWIS (“what you see is what I see”) [35] paradigm.

 Later relaxed variants of WYSIWIS were introduced
that allow users to share individual windows rather than the
complete desktop, or set an individual non-shared viewpoint
for a specific window [34, 25, 18]. This development is
mirrored in the DVE area in concepts such as subjective
views [33], privacy widgets [7], or even dead reckoning
techniques [20]. While users of relaxed WYSIWIS can
suffer from a lack of mutual location awareness and have to
use tools like telepointers [30, 34], collaborative augmented
reality allows users to truly share a 3D space, providing
excellent location awareness.

 Building collaboration aware applications that have
true multi-user interface elements should be only “slightly
harder” than building conventional applications, or
application programmers will be reluctant to do so [30]. In
object oriented frameworks, a feasible approach is therefore
to provide components (widgets) that have built-in
collaboration facilities, and can readily be (re-)used by
application programmers or even retro-fitted to legacy
applications [3]. Our framework offers similar possibilities
through application nodes and multi-user 3D widgets.

 In both DVE and groupware literature there is a
continued debate over centralized vs. replicated
architectures. Replication is often associated with better
performance because processing can be carried out locally
at every host and is available immediately without going
through a possibly congested network first. In fact, for real-
time rendering local availability of graphical models is
compulsory. However, a pure replicated architecture makes
it difficult to deal with non-deterministic and time-
dependent application behavior, which causes replicated
state to diverge. Some applications optimistically neglect
this issue, while others impose object locking [25] or floor
control [19] schemes. Regardless of mechanism, the price
for consistency is paid by some additional network load and
latency. Therefore, the key to a successful implementation
lies in choosing the right trade-offs for the given
application, and the most promising schemes are often
hybrids, e. g., [14, 15, 24]. The architecture presented in
this paper also tries to exploit domain specific properties
using a hybrid approach.

App.

App.
specific
data

App.

Scene Graph

Host 1 Host 2
explicit
Sync.

a)

App. App.

Host 1 Host 2

implicit
Sync.

b)

 Figure 2: (a) Traditional distributed virtual
environments separate graphical and application state,
and synchronize only application state. (b) A distributed
shared scene graph achieves replication that is
transparent to the application.

 Besides static workgroup topology, some research also
considers dynamic changes to the workgroup and client
migration [4, 10], in particular accommodation of late-
comers that need to be updated on the current state of the
session. Two competing solutions are replaying all previous
events to the newcomer vs. transmitting a current image of
application state. Because the history of previous events can
become arbitrarily large despite potential for compression
[9], recent work favors the image copy approach [37]. This
is partly due to novel architectures that make it easy to
marshal complex runtime structures [2], and is also the
foundation for our application migration facility. It should
be noted, however, that this kind of migration in a
constrained runtime environment is not comparable to full
operating system level process migration.

 Finally, several projects on collaborative user interfaces
inspired our work. SharedSpace [5] features collaborative
augmented reality, but is limited by its lack of an underlying
distributed system. CRYSTAL introduces multi-tasking to
virtual environments [38]. The closest relative to our
approach is EMMIE [8], which provides a similar platform,
but does not include dedicated application management.
Other prominent collaborative user interfaces, such as
mediaBlocks [39] or multi-computer interaction [28, 29]
anticipate many of our goals, but do not incorporate
stereoscopic 3D graphics.

3 Distributed system architecture

3.1 Distributed shared scene graph
 Current high-level 3D graphics libraries are engineered

around the concept of a scene graph, a hierarchical object-
oriented data structure of graphical objects. Such a scene
graph gives the programmer an integrated view of graphical
and application specific data, and allows for rapid
development of arbitrary 3D applications. While most DVE
systems use a scene graph for representing the graphical
objects in the application, many systems separate
application state from the graphical objects. The application
state is then distributed, while the graphical objects are kept
locally (Figure 2a).

 This allows custom solutions that optimize network
utilization through minimal sharing of application state. In
groupware systems, which also rely on sharing of data
structures, the separation of graphical and application state

is considered beneficial because it allows independent
handling of core application state and graphical “view”,
which can be exploited for relaxed WYSIWIS [15].

 However, this design has two distinct disadvantages:
Additional effort is spent on keeping application state and
graphical objects synchronized (called “dual database
problem” in [21]), and the distribution is not fully
transparent to the application developer, who may even be
forced to actively send synchronization messages in some
replication schemes. In our opinion, this makes it more than
“slightly harder” to build a collaborative application.

 An alternative solution recently popularized by a
number of research projects (DIVE [13], Repo-3D [21],
Avango [37], SGAB [42]) overcomes these disadvantages
by introducing a distributed shared scene graph using the
semantics of distributed shared memory. Distribution is
performed implicitly through a mechanism that keeps
multiple local replicas of a scene graph synchronized
without exposing this process to the application
programmer or user (Figure 2b). By embedding application
specific state in the scene graph, applications can now be
developed without taking distribution into account, unless
special multi-user features are desired.

 Our own implementation of this concept, Distributed
Open Inventor (DIV) [17] is based on the popular Open
Inventor (OIV) toolkit [36]. It utilizes OIV’s notification
mechanism to automatically trigger an “observer” callback
whenever an application changes something in the observed
scene graph similar to [18]. These changes are then
propagated to all scene graph replicas using reliable
multicast.

3.2 Input processing
 Most distributed architectures assume a remote

collaboration situation where one user is equivalent to one
host with designated input and output facilities, and network
bandwidth is uniformly scarce. The face-to-face
collaboration we are considering is quite different to this
assumption implicit in both groupware and DVE
applications. For example, the collaborative session in
Figure 1 uses one host and HMD per user, but has a
dedicated server for the magnetic tracking system that
processes input for all users. Also consider a virtual
workspace for design reviews, composed of a large
curvilinear “dome” display driven by projections from three
networked workstations, with input for multiple users
coming from an optical tracker connected to one of the
hosts. Neither of these configurations is symmetric, and
input, output or hosts cannot be directly assigned to users.

 The general assumption of groupware systems and
many DVE systems that user input is available at a user’s
local host does not apply to these situations. Instead, real-
time rendering depends on the input data to be delivered to
all hosts quickly, in particular for head tracking. The
problem is further acerbated by the fact that unlike input
from a keyboard and mouse, tracking for multiple users
produces a substantial amount of data. Fortunately, the co-

located setup of users allows us to assume a high-
performance local area network (LAN) in which such data
can be efficiently distributed via multicast. Because of high
update frequency and idempotent semantics, simple and fast
unreliable multicast is sufficient for our purposes.

 By comparison, “output” events propagating changes to
the shared database after application processing generate
only a small volume of data by comparison, but require
reliable distribution to prevent replicated state from
diverging. However, as graphical state is already replicated
via the distributed shared scene graph, a simple reliable
multicasting scheme is sufficient and scales reasonably
well. This situation stands in gross contrast to shared
windowing systems based on centralized design, where all
graphical state is considered as application output and must
be distributed, which is problematic for such systems.

3.3 Application objects
 All DVE platforms, even dedicated end-user

applications such as current computer games incorporate
require some kind of extension mechanism. In an object
oriented framework, it is good practice to extend a system
through deriving new objects from a foundation class, so
that they can inherit a standard interface that will allow the
surrounding simulation framework to talk to them in a
meaningful way. Some approaches take this idea to the
extreme by only providing a kernel capable of loading
extensions [40, 22].

 Studierstube [31] uses object-oriented runtime
extension through subclassing. New node classes for OIV
are loaded and registered with the system on the fly. Using
this mechanism, we can take the scene graph based
approach that avoids a dual database (graphical +
application data) to its logical consequence by embedding
applications as nodes in the scene graph. Applications in
Studierstube are not written as monoliths linked with a
runtime library, but as new application classes that derive
from a base application node. Application classes are
loaded as binary objects on the fly during system execution,
and instances of application objects are embedded into the
scene graph. Naturally, multiple application nodes can be
present in the scene graph simultaneously, which allows
convenient multitasking. Surprisingly, we are not aware of
any other extension mechanism that uses this particular
approach.

 Application classes are derived from an application
foundation class that extends the basic scene graph node
interface of OIV with a fairly capable application
programmer’s interface (API). This API allows convenient
management of 3D user interface elements and events, and
also supports a multiple-document interface – each
document gets its own 3D window. Multiple documents are
implemented through application instances embedded as
separate nodes in the scene graph. However, they share a
common application code segment, which is loaded on
demand.

M

Host 1

S
S M

Host 2

S

Host 3

M

S

S
S

M

S

= Master

= Slave

 Figure 3: Replicated application instances embedded in
a distributed shared scene graph run in master mode at
exactly one host and in slave mode at all other hosts.

 As the scene graph is distributed, so are the
applications embedded in it. A newly created application
instance will be added to all replicas of a scene graph, and
will therefore be distributed. With the application node all
data contained in attributes will be replicated – a sub scene
graph of graphical objects, but also attributes that are not
visible objects but represent other application data. Non-
graphical attributes are simply added as additional “fields”
of the application node that do not directly contribute to
rendering. We have found this unified treatment of
graphical and non-graphical data to drastically simplify
application development.

 This has the advantage that application specific
computations, typically callbacks triggered by events
created through user input, need not be repeated at every
host. Instead, for every application instance, a master host is
determined, which is responsible for performing all
execution of application code. The updates to the
application state resulting from these computations are then
replicated in the slaves’ replicas of the application instance.
Using this scheme, application specific computation is
distributed over the workgroup.

 This approach shares the a significant advantage of
centralized DVE systems [11, 14, 23]: serialization of
updates is implicitly performed, which removes the need for
a special consistency protocol and simplifies distribution
semantics.

 At the same time, the master host can be determined for
every application instance separately. This implies that a
single host can be master for one application instance, but
slave for another (Figure 3). Coarse grained parallelism is
introduced by distributing the master responsibilities over
the hosts according to some scheme. This dual role of every
host as master/slave for application instances can be seen as
a generalization of replicated DVE systems [20], where
hosts manage the locally controlled entity and remote
entities are represented as “ghosts” [6].

3.4 Event processing
 Like most interactive systems, Studierstube works

event-driven, i. e., user input – usually through tracked
props – is translated into 3D events.

App.
Code callbacks

Tracking input

updates

Master
App.

Slave

DIV

 Figure 4: A user’s interactions trigger callbacks that
modify the scene graph. Changes are propagated to
remote replicas through DIV.

 Nodes in the scene graph express interest in events
through registering callbacks with the system, which are
triggered as events are cascaded into the scene graph by the
runtime system and consumed by nodes as appropriate.
Because it is a regular node in the scene graph, an
application nodes receives events without additional
measures.

 However, an application is not a leaf in the scene graph,
but rather a group node that manages an application specific
sub graph, usually the content appearing in the 3D window
and a set of application controls mapped to hand-held
props. Many of the nodes contained in this application-
specific sub graph are themselves event-aware widgets
(section 0) that autonomously respond to user input in
possibly complex ways, for example using gesture
recognition [12]. The application node itself is mostly
responsible for higher level functions – managing its scene
graph –, while most of the interaction callbacks are deferred
to contained widgets.

 As pointed out above, only the master copy of a
replicated application instance needs to perform application
specific computation (Figure 4). Therefore, only the master
copy of an application node registers event callbacks with
the runtime system, and this rule applies recursively to all
event-aware nodes (widgets) contained in that application’s
sub graph. As a consequence, if an event occurs, only the
master copy of an application instance will react to it
directly, regardless whether the event processing is done
directly by the application or indirectly by a contained
widget. Slave copies receive their updates through network
messages that are automatically created when a node’s state
changes.

 In addition to reactive behavior triggered by event, an
application can also be proactive, for example to service
independently animated objects. Fidelity of this feature is
limited to time-triggered “tick” and “idle function”
processing by Open Inventor’s runtime model, but
nevertheless works well within the distributed framework:
Changes to the shared scene graph that occur through
independent processing of a master application are
immediately communicated to the slaves. As only the
master application performs the proactive computations,
computing capacity is preserved and no inconsistencies can
occur.

3.5 Multi-user 3D widgets
 The system architecture as outlined above allows

implementations of simple collaborative applications, but
does not address two important issues:
- Concurrent input of multiple users to one application
- 3D direct manipulation such as dragging creates

excessive “output” updates that congest the network
Let us first consider concurrent input. As pointed out above,
input from multiple users is available at any host. It is
therefore up to the application to consider appropriate
multi-user behavior. To ease development, the 3D widget
nodes available in Studierstube’s interaction library have
reasonable default behavior. Often per-widget locking is
sufficient – for example, it usually does not make sense to
allow multiple users to drag an object simultaneously into
opposite directions. Other behaviors may be more specific –
for example, a color selector may store one selected color
per user. This does not even imply relaxed consistency, as
the states for all users can be stored separately in the
widget. Local variations will only be produced in the final
rendering depending on which user the rendering is
intended for. In general, such multi-user behavior will be
encapsulated within the widget, so an application
programmer need not be concerned with it.

 3D widgets are also useful to address the second
problem: When a user directly manipulates an object, a
large amount of output events will be generated as the scene
graph is modified at the frequency of tracking events. The
responsible master will then try to notify the slaves of all
these updates and flood the network. To overcome this
issue, consistency of affected widget attributes is
temporarily relaxed [21]. Rather than linking the widget’s
attributes using network messages, master and slave widgets
both perform local computation directly from user input,
which can lead to slight deviations of state. This may be
seen as a generalized form of dead reckoning. Like dead
reckoning, it remains the master widgets responsibility to
ensure that all replicas are finally synchronized, usually
through periodic correction updates. This scheme
significantly reduces the amount of update messages sent
and improves the system’s scalability without affecting
long-term consistency.

 Again, the internal workings of 3D widgets are shielded
from the application programmer. Moreover, a protocol that
ensures consistency of all widget replicas despite temporary
deviations can be built entirely from the system’s capability
of updating individual attributes of nodes without requiring
access to lower level networking. It is therefore straight
forward for an application programmer to add new widgets
that use these advanced features.

4 Migration
 A workgroup of hosts executing a collaborative session

should be able to accommodate dynamic changes, for
example, provide the current state of applications to late-

comers. In this section, we describe migration mechanisms
that allow migration of applications within the workgroup.

4.1 Activation migration
 It is straight forward to implement a light-weight form

of application migration that we call activation migration:
At any point between the processing of two events by an
application instance, the instance’s master can be changed
from one host to another. This has many similarities with
migration of serialization objects in replicated objects
systems such as [1]. All that is required is that the master
application node and its contained sub graph recursively
unregister their event callbacks at the old master host, and
register callbacks at the new master host. The old master
becomes a slave and vice versa; from this moment on the
new master host will be responsible for triggering all
application specific behavior. This process is transparent to
other hosts, the user and even the application itself. Section
5 details how activation migration is used to build support
for load balancing, early exit, and even some forms of
ubiquitous computing.

4.2 Application migration
 Complete application migration requires that a running

application instance moves from one host to another, while
user interface and internal state are kept intact. This is
different to the aforementioned activation migration in that
it requires complete transportation of the live application to
a host that did not replicate that application instance before
(otherwise activation migration would be sufficient).

 Since all application state is encoded in the scene
graph, marshalling an arbitrary application into a memory
buffer becomes a standard operation of OIV
(SoWriteAction). The application’s complete live state –
both graphical and internal – is captured in a buffer, and can
be transmitted over the network to the target host (using a
reliable TCP connection), where it is unmarshaled
(SoDB::readAll) and added to the local scene graph, so it
can resume operation.

 To complete migration, the source host must unregister
the application instance’s event callbacks before migration
and delete the application instance after marshalling.
Moreover, the destination host must load the application’s
binary object module if not already present in memory (the
binary must either be available at the destination host, e. g.,
via a shared file system, or must be sent along with the
marshaled application). The destination host then registers
the application’s event callbacks so it can become a master
copy. Alternatively, both copies can be kept, and either can
be master.

5 Usage of migration
 In this section, we describe the use of our new tools –

activation migration and application migration – to
implement several interesting behaviors in a distributed
virtual workspace. We tested most of our implementation
using a workgroup of three hosts located in the same LAN.

M

Host 1

S
SM

Host 2

S

M

a) M

Host 1

S

S M

Host 2

S

M

b)

M

Host 1

S
S

M

Host 3

M

S

d)M

Host 1

S
S M

Host 2

S

Host 3

M

S

S

S

c)

M

S

= Master

= Slave

 Figure 5: (a) Uneven distribution of load on hosts 1 and
2. (b) Load balancing moves one master privilege to
host 2. (c) Host 3 joins late and receives one master
privilege from host 1. (d) Host 2 exits early and passed
its master privilege to host 3.

 The workgroup consisted of Host A, an SGI Onyx2,
host B, an SGI Octane, and host C an SGI Visual
Workstation PC. Every host ran instances of a “spraying”
application and a “painting” application shown in Figure 8.

5.1 Load balancing
 One straight forward application of activation migration

is load balancing. Every master copy of an application
instance places load on a host from input processing and
proactive computations. Even if no interaction is intended,
tracking data from the user’s input devices continues to
arrive and must be checked for possible interactions. These
computations need not be performed if a host has only a
slave copy. Subdividing the responsibilities for master
copies among hosts allows a better utilization of
computational resources. As the set of application instances
changes over time, computational load may become
unevenly distributed.

 As a countermeasure, we have implemented a simple
load balancing mechanism which utilizes activation
migration (Figure 5a, b). A session manager which runs as a
dedicated process once in the environment is responsible
for monitoring the computational load. When the load
changes due to modifications of the set of application
instances, the session manager initiates appropriate
activation migration to balance the load. Currently, we have
only implemented a very simple load balancing strategy that
tries to assign an equal load to each host based on a simple
ad-hoc weighting of applications: load = M * number of
master + S * number of slaves (we used M=1, S=1/2).

 In our test, User A (at host A) started an instance of the
test application (spraying). The session manager computed
the load of each host and assigned master privileges to host
A and slave privileges to hosts B and C. After some work,
user A started another application (painting), and
application load was recomputed. As host B executed only
a slave instance, it was assigned master privileges for the
new instance.

 Figure 6: A game of chess with a mobile user after
spontaneous application streaming

 We compared the overall frame rate with a scenario
without load balancing where host B managed all master
instances. The result was that with load balancing we gained
30% of rendering performance (frame rate change) at host
B and lost only 20% at host A. Load balancing was
successfully able to offload the less capable single-CPU
host B. For comparison, we also let host A (the 4-CPU
Onyx2) manage all master copies, which resulted in an
approximate 30% performance increase at all hosts. Note
that having dedicated servers for particular applications can
also be useful in heterogeneous environments where
binaries are not available for all platforms.

5.2 Late joining and early exit
 When hosts are added to a Studierstube session after

the distributed system is already executing, it is necessary to
build a copy of the replicated application instances at the
new host (Figure 5c). This is easily achieved through the
application migration mechanism described in section 4.1.
Whether or not the new copy becomes master or slave is
determined by the load balancing policy.

 For early exist of a host, its master copies need
activation migration to one of other hosts, so they remain
available (Figure 5d). Again, the target of the activation
migration can be determined using load balancing.

 In recent work described elsewhere [27], we used
dynamic streaming of applications to accommodate mobile
augmented reality users (powered by a Dell Notebook) that
spontaneously connect to a stationary Studierstube
environment via wireless LAN. Figure 6 shows a mobile
and a stationary user playing chess after the chess
application has been streamed to the mobile user.

5.3 Ubiquitous computing
 A ubiquitous computing environment allows a user to

get access to computing services using a variety of
interaction platforms. A simple form of this concept is
multi-computer direct interaction [28]. For example, two
non-immersive display platforms (e. g. back-projection
table and large desktop monitor) driven by two hosts can be
connected using a multi-computer direct manipulation

metaphor: By dragging the 3D window that belongs to an
application across display boundaries, it can also be
migrated (see Figure 7).

 This migration can take one of two distinct forms:
1. The application instance was already distributed and

shared by the hosts before the manipulation act. Then
only the activation needs to migrate to the destination
host. After this migration, the destination host becomes
master and the source nodes becomes slave, but the
application is still distributed and shared.

2. The application is only executing at the source host.
Then the manipulation act triggers application
migration to the destination host. After that, the
application is only executing at the destination host.
 We tested multi-computer direct interaction in a

different setup with two PC workstations with adjacent
desktop displays. Interaction was performed via a tracked
stylus (Figure 8). In this demonstration (shown in the
accompanying video), a user could interact with both
hosts/displays in seamless way.

Virtual
screen
space

A
B

Display 1Host 1

Host 1

Display 2

Physical space

A B

Display 1 Display 2

a)

b)

Host 2

Host 2

M S

A A

AA

B B

BB

M

M

M

M

S

S

S

S

= Master = Slave

 Figure 7: a) Two hosts sharing a single physical space.
b) when the user moves application windows across
display boundaries, the application is migrated along.

 Figure 8: Application migration through dragging one
of multiple 3D application windows across display and
host boundaries

 Both monitors were showing different portions of the
virtual environment corresponding to their physical position
(see also Figure 7). Using the stylus, the user could interact
with applications on either display, and naturally drag and
drop 3D-windows between displays. Activation migration
followed an application to whatever display it was dragged
to, and was visualized using a simple graphical load
monitor.

6 Conclusions and future work
 We have presented a distributed virtual workspace

capable of handling multiple users and applications. It is
based on a distributed shared scene graph. Applications are
embedded as application nodes in the scene graph and thus
implicitly distributed using a hybrid distribution scheme.
Applications can be moved among host using light-weight
activation migration or through streaming linearized scene
graphs. We have shown how to use these tools for
workgroup management, load balancing, and ubiquitous
computing.

 We find that the most important enhancement of our
system through the addition of application nodes and
associated migration tools is the ability to execute complex
and experimental distributed user interfaces in a
heterogeneous distributed system with little effort. PC
workstations are very powerful commodity items, but unlike
high-end system such as SGI Onyx2, they are usually not
very scalable. With our approach, we can cater for new
system requirements (e. g., to support more users or
displays) through the addition of a new workstation that
seamlessly fits into the already existing pool. Using an
appropriate load balancing policy that uses the mechanisms
presented in this paper, we can accommodate a large variety
of system requirements with a limited hardware pool. While
we do not claim unbound scalability, we found our system
design very useful for the small group collaboration we are
investigating.

 Future work will use application migration for fully
mobile AR: Users may leave Studierstube sessions at any
time with their mobile AR equipment, and meet for
instantaneous collaboration anywhere. A leaving user takes
(copies of?) running applications onto the road, and a new
user may share running applications with others.

 Acknowledgments
 This project was sponsored by the Austrian Science Fund
(FWF) under contract P-12074-MAT and P-14470-INF.
Special thanks to Anton Fuhrmann for many fruitful
discussions, to Klaus Dorfmüller-Ulhaas for his help with
the video, to all of the Studierstube development team, in
particular Rainer Splechtna, Jan Prikryl and Gerhard
Reitmayr, and to M. Eduard Gröller for his spiritual
guidance.

 Web information: http://www.studierstube.org/

 References
1. Bal H., M. Kaashoek, A. Tanenbaum (1990). Orca: A Language for

Parallel Programming of Distributed Systems. IEEE Transactions on
Software Engineering, Vol. 18, No. 3, pp. 190-205.

2. Begole J., C. Struble, C. Shaffer, R. Smith (1997). Transparent
Sharing of Java Applets: A Replicated Approach. Proc. ACM User
Interface Software and Technology (UIST'97), pp. 55-64.

3. Begole J., M. Rosson, C. Shaffer (1999). Flexible collaboration
transparency: Supporting worker independence in replicated
application-sharing systems. ACM Transactions on Computer-Human
Interaction, 6(2), pp. 95-132.

4. Bharat K. A., L. Cardelli (1995). Migratory Applications. Proc. ACM
User Interface Software and Technology (UIST’95), pp. 133-142.

5. Billinghurst M., H. Kato, (1999). Collaborative Mixed Reality. Proc.
International Symposium on Mixed Reality (ISMR’99), Yokohama,
Japan.

6. Blau B., C. Hughes, M. Moshell, C. Lisle, (1992). Networked virtual
environments. Proc. 1992 ACM Symposium on Interactive 3D
Graphics, pp. 157–164.

7. Butz A., C. Beshers, S. Feiner (1998). Of Vampire Mirrors and
Privacy Lamps: Privacy Management in Multi-User Augmented
Environments. Proc. ACM User Interface Software and Technology
(UIST’98), pp. 171-172.

8. Butz A., T. Höllerer, S. Feiner, B. MacIntyre C. Beshers (1999).
Enveloping Computers and Users in a Collaborative 3D Augmented
Reality, Proc. International Workshop on Augmented Reality
(IWAR’99), pp. 35-44.

9. Chung G., K. Jeffay, H. Abdel-Wahab (1993). Accommodating late-
comers in shared window systems. IEEE Computer, 26(1), pp.72-74.

10. Chung G., P. Dewan (1996). A mechanism for supporting client
migration in a shared window system. Proc. ACM Symposium on
User Interface Software and Technology (UIST’96), pp. 11-20.

11. Das T., G. Singh, A. Mitchell, P. Kumar, K. McGhee (1997).
NetEffect: A Network Architecture for Large-Scale Multi-User
Virtual Worlds. Proc. ACM Symposium on Virtual Reality Software
and Technology (VRST’97), pp. 157-164.

12. Encarnação L. M., O. Bimber, D. Schmalstieg, S. Chandler (1999). A
Translucent Sketchpad for the Virtual Table Exploring Motion-based
Gesture Recognition. Computer Graphics Forum (Proc.
EUROGRAPHICS'99), Milano, Italy, pp. 277-286.

13. Frécon E, M. Stenius (1998). DIVE: A Scaleable network architecture
for distributed virtual environments. Distributed Systems Engineering
Journal, 5(3), pp. 91-100.

14. Funkhouser T. (1995). RING: A Client-Server System for Multi-User
Virtual Environments. ACM Symposium on Interactive 3D Graphics,
pp. 85- 92.

15. Graham T, T. Urnes, R. Nejabi (1996). Efficient distributed
implementation of semi-replicated synchronous groupware. Proc.
ACM User Interface Software and Technology (UIST’96), pp. 1-10.

16. Greenhalgh C., S. Benford (1995). MASSIVE, A Collaborative
Virtual Environment for Teleconferencing. ACM Transactions on
Computer-Human Interaction, 2(3), pp. 239- 261.

17. Hesina G., D. Schmalstieg, A. Fuhrmann, W. Purgathofer (1999).
Distributed Open Inventor: A Practical Approach to Distributed 3D
Graphics, Proc. ACM Virtual Reality Software and Technology
(VRST’99), London, pp. 74-81.

18. Isenhour P., J. Begole, W. Heagy, C. Shaffer (1997). Sieve: A Java-
based collaborative visualization environment. Late Breaking Hot
Topics, Proc. IEEE Visualization '97, Phoenix, AZ, pp. 13-16.

19. Lauwers J., T. Joeseph, K. Lantz, A. Romanow (1990). Replicated
Architectures for Shared Window Systems: A Critique. Proc. ACM
Office Information Systems (COIS’90), Cambridge, MA, pp. 249-
260.

20. Macedonia M., M. Zyda, D. Pratt, P. Barham, S. Zeswitz (1994).
NPSNET: A Network Software Architecture for Large Scale Virtual

Environments. Presence: Teleoperators and Virtual Environments,
3(4), pp. 265-287.

21. MacIntyre B., S. Feiner (1998). A Distributed 3D Graphics Library.
Proc. SIGGRAPH’98, pp. 361-370.

22. Oliveira M., J. Crowcroft, D. Brutzman, M. Slater (1999).
Components for Distributed Virtual Environments, Proc. ACM
Virtual Reality Software and Technology (VRST’99), London, pp.
176-177.

23. Origin (1997). Ultima Online. Commercial online computer game,
http://www.owo.com/.

24. Patterson J, M. Day, J. Kucan (1996). Notification servers for
synchronous groupware. Proc. ACM Computer Supported
Cooperative Work (CSCW’96), pp. 122-129.

25. Prakash A., H. Shim (1994). DistView: Support for building efficient
collaborative applications using replicated objects. Proc. ACM
Computer Supported Cooperative Work (CSCW’94), pp. 153-164

26. Raskar R., G. Welch, M. Cutts, A. Lake, L. Stesin, H. Fuchs (1998).
The office of the future: A unified approach to image-based modeling
and spatially immersive displays. Proc. SIGGRAPH’98, pp. 179-188.

27. Reitmayr R., D. Schmalstieg (2001). Mobile Collaborative
Augmented Reality. Proc. ACM and IEEE International Symposium
on Augmented Reality (ISAR'01), New York, pp. 114-123.

28. Rekimoto J (1997). Pick-and-Drop: A Direct Manipulation Technique
for Multiple Computer Environments, Proc. ACM User Interface
Software and Technology (UIST’97), pp. 31-39.

29. Rekimoto J., M. Saitoh (1999). Augmented surfaces: A spatially
continuous work space for hybrid computing environments. Proc.
ACM Conference on Human Factors in Computing Systems (CHI'99),
pp. 378-385.

30. Roseman M., S. Greenberg (1996). Building Real-Time Groupware
with GroupKit, A Groupware Toolkit. ACM Trans. Computer-Human
Interaction, 3(1), pp. 66-106.

31. Schmalstieg D., A. Fuhrmann, G. Hesina (2000). Bridging Multiple
User Interface Dimensions with Augmented Reality. Proc.
International Symposium on Augmented Reality (ISAR’00), Munich,
Germany, pp. 20-30.

32. Singhal S., M. Zyda (1999). Networked Virtual Environments,
Addison-Wesley, New York NY.

33. Smith G., J. Mariani (1997). Using Subjective Views to Enhance 3D
Applications, Proc. ACM Virtual Reality Software and Technology
(VRST '97), pp. 139-146.

34. Stefik M, D. Bobrow, G. Foster, S. Lanning, D. Tatar (1987).
WYSIWIS Revised: Early Experiences with Multi-User Interfaces.
ACM Trans Office Information Systems, 5(2), pp. 147-167.

35. Stefik M., G. Foster, D. Bobrow, K. Kahn, S. Lanning, L. Suchmann
(1987). Beyond the Chalkboard: Computer Support for Collaboration
and Problem Solving in Meetings. CACM 30(1), pp. 32-47.

36. Strauss P., R. Carey (1992). An Object-Oriented 3D Graphics
Toolkit. Proc. SIGGRAPH’92, pp. 341-349.

37. Tramberend, H (1999). Avocado: A Distributed Virtual Reality
Framework. Proc. IEEE Virtual Reality ’99.

38. Tsao J., C. Lumsden (1997). CRYSTAL: Building Multicontext
Virtual Environments. Presence, 6(1), pp. 57-72.

39. Ullmer B., H. Ishii, D. Glas (1998). mediaBlocks: Physical
Containers, Transports, and Controls for Online Media. Proc.
SIGGRAPH’98, pp. 379-386.

40. Watsen K. M. Zyda (1998). Bamboo - A Portable System for
Dynamically Extensible, Real-Time, Virtual Environments. Proc.
Virtual Reality Annual International Symposium (VRAIS’98), pp.
252-259.

41. Weiser M (1991). The Computer for the twenty-first century.
Scientific American, 265(3), pp. 94-104.

42. Zeleznik B., L. Holden, M. Capps, H. Abrams, T. Miller (2000).
Scene Graph As Bus: Collaboration between Heterogeneous Stand-
alone 3-D Graphical Applications. Proc. EUROGRAPHICS 2000, pp.
91-98.

