
www.elsevier.com/locate/jvlc

 Journal of
Visual Languages
 & ComputingJournal of Visual Languages and Computing

14 (2003) 443–469

VizIR—a framework for visual
information retrieval

Horst Eidenberger*, Christian Breiteneder

Interactive Media Systems Group, Institute of Software Technology and Interactive Systems, Vienna

University of Technology, Favoritenstrasse 9-11-188/2, A-1040 Vienna, Austria

Received 31 May 2002; received in revised form 4 March 2003; accepted 28 April 2003

Abstract

In this paper the visual information retrieval project VizIR is presented. The goal of the

project is the implementation of an open visual information retrieval (VIR) prototype as basis

for further research on major problems of VIR. The motivation behind VizIR is the

implementation of an open platform for supporting and facilitating research, teaching, the

exchange of research results and research cooperation in the field in general. The availability of

this platform could make cooperation and such research (especially for smaller institutions)

easier. The intention of this paper is to inform interested researchers about the VizIR project

and its design and to invite people to participate in the design and implementation process. We

describe the goals of the VizIR project, the intended design of the querying framework, the

user interface design and major implementation issues. The querying framework consists of

classes for feature extraction, similarity measurement, media handling and database access.

User interface design includes a description of visual components and their class structure, the

communication between panels and the communication between visual components and query

engines. The latter is based on the multimedia retrieval markup language (MRML, Website.

http://www.mrml.net (last visited: 2003–03–20)). To be compatible with our querying

paradigm, we extend MRML with additional elements. Implementation issues include a sketch

on advantages and drawbacks of existing cross-platform media processing frameworks: Java

Media Framework, OpenML and DirectX/DirectShow and details on the Java components

used for user interface implementation, 3D graphics with Java and Java XML parsing.

r 2003 Elsevier Ltd. All rights reserved.

Keywords: Visual information retrieval; Content-based image retrieval; Content-based video retrieval;

Media processing

ARTICLE IN PRESS

*Corresponding author. Tel.: +43-158801-18853; fax: +43-158801-18898.

E-mail addresses: eidenberger@ims.tuwien.ac.at (H. Eidenberger), breiteneder@ims.tuwien.ac.at

(C. Breiteneder).

1045-926X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S1045-926X(03)00035-1

http://www.mrml.net

1. Introduction

The global integration of information systems with the ability of easy creation and
digitization of visual content have risen the problem of how these vast amounts of
data in collections or databases are managed. One of the crucial success factors of all
approaches to solve this problem is apparently the implementation of effective but
still easy to handle retrieval methods. Visual information retrieval (VIR) is still a
rather new approach to overcome these problems by deriving features (or:
descriptors; like color histograms, etc.) from the visual content and comparing
visual objects by measuring the distance of features with distance functions. VIR is
usually divided in two directions: Content-based image retrieval (CBIR) and
content-based video retrieval (CBVR). The major advantages are fully automated
indexing and the description of visual content by visual features. On the other hand,
the fundamental drawbacks of VIR are the semantic gap between high level concepts
presented to a user and the low level features that are actually used for querying [1]
and the subjectivity of human perception. The latter means that different persons or
the same person in different situations may judge visual content differently. This
occurs in various situations: different persons may judge features (color, texture,
etc.) differently, or if they judge them in the same way they still may perceive them
differently [2].
Partly due to these principle drawbacks four major problems of VIR approaches

can be identified:

* Low result quality.
* Complicated user interfaces.
* Unsatisfactory querying performance.
* Lack of assessment methods.

Retrieval results of low quality are—next to semantic gap and subjectivity of
human perception—often the consequence of working only with general features for
all types of visual content and asking the user to choose the features, he would like to
use. Complicated user interfaces overtax the casual user if they demand for a precise
opinion on similarity, the selection of features, and especially, the provision of
feature weights. Many users would not even try a classic VIR interface, if they had
the opportunity to use it. Simpler, but still effective user interfaces are needed to
improve the acceptance of VIR systems.
Unsatisfactory querying performance—especially for large media collections—is a

result of using distance functions in VIR systems to calculate the dissimilarity
between visual objects. This process is often very slow and unbearable reply times
may occur for large databases. Query acceleration methods include (1) indexing
techniques (e.g. R*-trees), (2) complexity reduction techniques (e.g. coarse feature
vector representation or suitable transformations) and (3) media object occlusion
techniques (e.g. using the triangle inequality in [3]).
Finally, despite reasonable efforts in the last 3 years, very few standardized

methods exist for assessing new querying paradigms. One exception is the Brodatz

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469444

sample collection, which represents some kind of de-facto standard for the
evaluation of texture querying. Promising approaches to overcome this situation
are the Benchathlon project [4] that tries to collect and compare the performance of
CBIR benchmarks and the annual TREC video retrieval competition [5] that defines
evaluation procedures for CBVR.
In this paper we present the visual information retrieval project VizIR. The goal of

the project is an open VIR framework as a basis for further research in order to
overcome the problems pointed out above. The basic structure of VizIR was first laid
down in [6,7]. VizIR was initiated in summer 2001 as a consequence of our
experiences gained in earlier VIR projects and is supported by the Austrian research
fund since December 2002. The motivation behind VizIR is: an open VIR platform
would make research (especially for smaller institutions) easier and more efficient
(because of standardized evaluation sets and measures, etc.). The intention of the
paper is to let interested researchers know about the VizIR project and its design and
to invite them to participate in the design and implementation process.
The goal of VizIR is not the development of a monolithic system but of a system-

independent class framework of querying and user interface components (interaction
panels, event model, etc.) based on the Java programming language. An important
issue of VIR is the communication of user interfaces and query engines. This
communication should be standardized in order to combine arbitrary user interfaces
and querying systems and be based on modern communication paradigms (XML,
etc.).
The paper is organized as follows: the following section points out relevant related

work, Section 3 is dedicated to the VizIR project goals and Section 4 to the querying
and user interface framework design. Section 5 discusses major implementation
issues and finally, Section 6 gives an overview over past, current and next activities in
the VizIR implementation process. The paper is supplemented by an appendix with
an extension of the MRML [8].

2. Related work

In this section we discuss the architectural properties and shortcomings of earlier
CBIR and CBVR prototypes and the user interface approaches that were used.

2.1. Existing VIR prototypes

Past research efforts have lead to several general-purpose prototypes like QBIC
[9], Virage [10], VisualSEEk [11], Photobook [12], MARS [13], El Niño [1,14] and
GIFT [15] for CBIR as well as OVID [16] and VIQS for CBVR and some
application-specific prototypes like image retrieval systems for trademarks [17] or
CueVideo for news videos analysis (e.g. [18]). Most of these prototypes share a
number of serious drawbacks. The first is that all of them implement only a small
number of features and do not offer the developer an API for extensions. An

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 445

exception is IBM’s QBIC system for image querying, which has (in version 3) a well-
documented API for feature programming.
Another problem is that none of these prototypes has an architecture that

supports the MPEG-7 standard (see [19]). To our knowledge, at present no MPEG-
7-compliant prototype for VIR exists or is under development. Part 6 of MPEG-7
contains a reference implementation of its visual descriptors and a simple querying
application, which was developed for testing and simulation [19]. Unfortunately, this
reference implementation does not contain a framework, a documentation of the
VIR part, a modern user interface (though a simple web-interface for experts is
available by now), a suitable database, optimized descriptor extraction functions and
performance-optimized algorithms. That is why it cannot be used as a VIR
prototype, although it is still a good starting point for developing one.
One prototype that should be mentioned here is the GNU image finding tool

(GIFT). GIFT is an extendible CBIR system (developed at the University of
Geneva) available under GNU public license [15]. Unfortunately, GIFT supports
only image querying and because it is based on C++ and the Unix operating system
it can not be extended to video retrieval easily. Currently, no standardized video
processing environment with a C/C++-API is available for Unix operating systems
(see Section 5.1). Still, GIFT introduced several valuable concepts to CBIR
(including MRML, see Section 2.2).
Apart from the mentioned focal points of research and the implemented

prototypes the following key issues of VIR systems have not yet been investigated
to a sufficient extent:

* Similarity measurement in multi-feature environments.
* Media sets for assessment.
* Integration of computer vision methods.

With similarity measurement we mean the transformation of a distance space (the
result of distance measurement for multiple features and distance functions) to a
result set. The common way of similarity measurement in VIR systems is measuring
distances with an L1- or L2-metric (e.g. city block distance and Euclidean distance),
merging a single object’s distance values for multiple features by the weighted sum
and presenting the user the objects with the lowest distance sum as the most similar
ones. We have shown in our earlier work that this approach is not the most effective
one [20]. More sophisticated methods for similarity definition would result in higher
quality results (e.g. [21]).
Additionally, as pointed out above, not enough effort has been undertaken so far

to put together standardized rated image and video sets for the various groups of
features. This has lead to vague, often worthless statements on the quality of VIR
prototypes.
Finally, surprisingly few ideas and methods have been taken over from computer

vision and other areas up to now. Neural networks have been used for feature
clustering (e.g. self-organizing maps [43]), face detection and thresholding methods
for segmentation but hardly any shaping techniques for 3D object reconstruction or
sophisticated neural networks for scene analysis have been yet applied.

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469446

2.2. VIR user interfaces

This section overviews user interfaces of well-known VIR systems: first CBIR
systems and then CBVR systems. The focus in CBIR will be on classic systems
(including QBIC and Virage) and two promising more recent approaches (El Niño
and ImageGrouper). The section ends with a short description of an approach to
standardize the communication of VIR user interfaces and query engines.
In the past, the design of user interfaces of VIR systems was quite simple—in

comparison to most other visual systems. Most systems (QBIC, Virage [10],
Photobook, VisualSEEk) use a single 2D panel of images for query definition and
result set display. Querying is done by selecting one or more query examples, one
(e.g. QBIC), a few (e.g. MARS) or all features (Virage) and—in the latter two
cases—weights for the importance of these features. Iterative Refinement by
Relevance Feedback [44,45] can usually be performed by defining the importance
of result set elements textually and iterating the query. This paradigm has several
drawbacks: earlier result sets are thrown away, selecting features and weights
overtaxes the casual user and after all, the static structure of such an interface
is not very user-friendly and from today’s point of view may be judged old-
fashioned.
Therefore several research groups have been working on new user-centric interface

approaches in the last years. Two of the most interesting are El Niño and
ImageGrouper [22]. To our knowledge, El Niño is the first approach to define a
query implicitly by the distance relations of objects in a 3D panel. This query
definition process can be done intuitively and easily by drag-and-drop. The most
interesting innovations in ImageGrouper are the usage of two panels for the active
and the last query and a history over all refinement steps in a querying session. The
central idea of ImageGrouper is the definition of queries by three groups: positive
examples, negative examples and neutral examples. ImageGrouper’s major draw-
back is that it has no standard interface to query engines and is bound to an engine
with classic distance measurement and linear weighted merging.
Like El Niño, VizIR will contain 3D user interfaces for query formulation. Using

3D information visualization techniques instead of 2D methods has several
advantages. Generally, each 3D view is just a 2D projection [23]. 3D views
take advantage of human spatial memory and allow displaying more information
without incurring additional cognitive load because of pre-attentive processing of
perspective views. In general, they lead to better retrieval results in user studies in
terms of reaction time, number of incorrect retrievals and failed trials [24].
Additionally, they allow the rendering of more information items because of scaling
possibilities and a better global view. Finally, there is experimental evidence that
3D displays enhance subjects’ spatial performances [23]. The major open problem of
3D systems in this context is the development of suitable 3D user interaction
techniques [24,25].
Classic CBVR systems are OVID [16] and VQIS. One of the most interesting

aspects concerning the user interfaces of CBVR systems is the handling of temporal
media (video and animations) in a static user interface. In general, there are three

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 447

principle solutions to present video information: (1) integration of the full video with
player controls into the environment (CPU power and network bandwidth
consuming), (2) creation and usage of animated icons (CPU power consuming)
and (3) creation of still images that represent the video content. The third solution
is the most widely applied one (in VIR). The simplest form of the third type is an
image matrix of all keyframes in a video clip. Another approach is the Micon, a
3D cube showing the first frame of a video clip as well as the first line and the
last column of all consecutive frames (see element A and B in Fig. 5 for examples).
Another type is the Hierarchical Video Browser, a tree-structured view of a
video clip. In [26] a general overview of different presentation styles for video is
given.
The interoperability of VIR user interfaces and querying systems is an issue that is

gaining more and more attention. Interoperability should be achieved by
standardized interfaces. The most promising effort in this direction is the MRML
(developed at the University of Geneva [8]). MRML is an XML-based standard. It is
implemented in GIFT, the user interface Charmer and the basis of the Benchathlon
project (see [8] for details). We try to incorporate MRML into the user interface
components of VizIR.

3. VizIR project goals

This section gives an overview of the objectives of the VizIR project. VizIR aims at
the following major goals:

* Implementation of an open VIR class framework.
* Integration of MPEG-7 visual.
* Implementation of a framework of user interface components for VIR.
* Support for distributed querying.

The overall goal is the implementation of a modern, open class framework for
content-based retrieval of visual information as basis for further research on
successful methods for automated information extraction from images and video
streams, the definition of similarity measures that can be applied to approximate
human similarity judgment and new, better concepts for the user interface aspect of
visual information retrieval, particularly for human–machine interaction for query
definition and refinement and video handling. On top of this framework working

prototypes are implemented that are fully based on the visual part of the MPEG-7

standard for multimedia content description. Reaching this goal requires the careful
design of the database structure and an extendible class framework as well as
research on suitable extensions and supplementations of the MPEG-7 standard by
additional descriptors and descriptor schemes. Mathematical and logical fitting
distance measures have to be selected for all descriptors (distance measures are not
defined in the standard) and an appropriate and flexible model for similarity

definition has to be defined. MPEG-7 is not information retrieval specific. One goal

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469448

of this project is to apply the definitions of the standard to visual information
retrieval problems.
Another goal is the development of a general-purpose user interface framework for

visual information retrieval. This framework has to include a great variety of
different properties: methods for query definition from examples or sketches,
similarity definition by positioning of visual examples in a 3D space, appropriate
result display and refinement techniques and cognitively easy handling of visual
content, especially video. User interfaces and querying methods both have to
support methods for distributed querying, storage and replication of visual
information and features as well as methods for query acceleration. The importance
of this issue becomes apparent from the large amount of data that has to be handled
and the computation power that is necessary for querying by—often quite
complex—distance functions. Methods for distributed querying, storage and
replication include the replication of feature information, client-server architectures
and remote method invocation in the querying and indexing modules as well as
compression of video representations for the transport over low bandwidth
networks. Methods for query acceleration include indexing schemes, mathematical
methods for complexity reduction of distance functions and the generation of
querying heuristics [27].
An additional, however, implicit goal of the VizIR project is the development of a

multimedia-specific UML-based software development process. Multimedia applica-
tions have special needs that have to be considered during the system design and
implementation. This includes modeling of real-time media processing (multiplexing,
conversion with codecs, rendering, etc.), more sophisticated modeling of users and
use-cases (e.g. abstraction of users to user profiles, etc.), metadata modeling and
modeling of multimedia restrictions (Quality of Service parameters, interaction, etc.).
Developing tailor-made software development methods on the basis of the UML
design process is just a natural consequence.

4. VizIR framework design

This section describes technical details of the VizIR objectives and the intended
system architecture. The VizIR framework can be split into four areas of work: (1)
querying framework, (2) user interface framework, (3) configuration and commu-
nication interfaces and (4) assessment methods. The querying framework contains all
methods for feature extraction, similarity measurement, query refinement, media
handling and database access. The user interface framework contains a class
hierarchy of user interface elements (panels), events and event handling methods
and media visualization classes. Configuration and communication concerns all
classes and methods for standardized communication of framework elements with
other elements (e.g. query engines and user interfaces) or the environment.
Assessment methods include benchmarking techniques and media sets for
evaluation. The next four subsections detail the relevant design issues for these
areas of work.

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 449

4.1. Querying framework

The most important issue related to the design and implementation of the
querying framework is the implementation of a technically sound class framework
for the system components. Even though this is not a research but a software
engineering problem, we have to stress that using a professional database and
programming environment are crucial success factors for a modern VIR research
prototype. As pointed out above, most past approaches have serious shortages in
their system architecture.
VizIR uses a relational database for media and feature data storage. Fig. 1 gives

an overview of its data model and indicates the relationships between media and
feature storage. Visual media is stored in table Media and associated with a single
MediaType. Each media may belong to n collections and each collection may contain
m elements. Descriptors are described in table FeatureClass with the MPEG-7
descriptor definition language (DDL; based on XML schema). Feature data for a
certain descriptor is stored in binary and/or XML format in table FeatureData. To
allow the implementation of MPEG-7 descriptor schemes, descriptors are organized
in collections in table FeatureCollection. A collection may consist of descriptors and
other collections. Optionally, it may have a DDL-description. Based on this data

ARTICLE IN PRESS

Feature Description

Feature Data

Media Data

Media MediaType

MediaCollection

ID

n:m

n:1FeatureData n:1

FeatureCollection

FeatureClass

n:m

1:n

Name

Desc

Name

ID

ID

Name

URL

Desc

Raw

ID

Name

Desc

Desc

Name

ID

Desc

ID

Name

Desc

Binary XML

n:m

Fig. 1. EER database diagram. The framework contains a database manager that creates this structure

during VizIR installation automatically.

H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469450

model it is possible to use descriptor schemes in queries. If a certain feature collection
is selected for a query, all referenced descriptors are selected and used in the query.
Fig. 2 outlines the class structure of the querying framework. To a certain extent

this class framework follows the architecture of IBM’s QBIC system [9], but largely
differs from QBIC in its server/client independent classes. Similarly to QBIC, the
database access is hidden from the feature programmer and the structure of all
feature classes is predefined by an interface. Key element is class QueryEngine, which
contains the methods for query generation and execution. Each query consists of a
number of QueryLayer elements each of which implement exactly one feature. The
result of each query is a set of media objects that is stored in a Vector object. Media
objects are represented by objects of class MediaContent. MediaContent has an
interface that hides the complexity of the actual media access from the framework
programmer. For example, he can access the media data—independent whether it is
image or video—with a method getViewAtTime(Time, ColorModel). For images,
Time is irrelevant and for videos it is the position in the media stream.
The ColorModel of the resulting image can be RGB, HMMD, etc. With the
MediaContent-mechanism CBIR and CBVIR can be implemented in the
same framework without having to introduce media-specific peculiarities in
the architecture. Similarly, the methods for database access are encapsulated
in the DatabaseManager.

ARTICLE IN PRESS

1

1

1

*

1 *

1

1

* 1

<<Interface>>
Descriptor

...

+extractFeature() : void
+calculateDistance(other : Descriptor) :

double
...

...

+prepare(...) : Integer
+execute(...) : Integer
...

QueryEngine

MediaContent

...

...

QueryLayer

+feature : String
+threshold : Double
+weight : Double

...

DatabaseManager

...

...

Vector

...

...

ReadConfig

...

...

Fig. 2. UML class diagram for an ideal implementation of the VizIR class framework. Custom query

engines can be added by sub-classing QueryEngine. The DatabaseManager offers a standard interface for

accessing arbitrary relational databases. Similar to that, MediaContent offers methods for media access

that hide the actually used media processing library.

H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 451

All feature classes—MPEG-7 descriptors as well as all others—are derived from
the interface Descriptor For the MPEG-7 descriptors it is intended to follow the
reference implementation of part 6 of the standard. For the reasons given above and
especially, because the algorithms of the reference implementation are not
performance-optimized the redesign and implementation of the MPEG-7 descriptors
is a time- and human resources-consuming task.

Descriptor contains methods for descriptor extraction (extractFeature()) and
distance measurement (calculateDistance()). Unfortunately (for us), MPEG-7 is not
a visual information retrieval-specific standard and in general does not include
distance functions for the various descriptors. Neither does it give any recommenda-
tions for their selection. Therefore it is necessary to implement common distance
metrics (like L1-, L2-metric, Mahalanobis distance, etc.; [2]), to associate them with
descriptors and to find custom distance functions where these metrics are not
applicable (e.g. object features, etc.).
The extractFeature()-method of Descriptor applies the actual feature extraction

algorithm to the media considered (and accessible) as MediaContent. The MPEG-7
standard—although it is a major advance in multimedia content description—
standardizes a number but not all useful features. It is necessary to implement
additional descriptors and distance functions for texture description of images
(wavelets, etc.; e.g. [28]), symmetry detection of objects (useful for face detection,
detection of human-made objects, etc.), object description in video streams (structure
recognition from motion, etc.), object representation (scene graphs, etc.) and video
analysis (shot detection, etc.). Additionally, we plan to use fractal methods (iterated
function systems; IFS) to describe the shape of objects effectively. So far IFS have
been used for the compression of self-similar objects (e.g. [29]) but hardly for
content-based retrieval (see [30]). We think, that IFS could be very effective for shape
description, too.
The sequence diagram in Fig. 3 depicts the querying process. Methods for query

definition and query refinement have to be flexible enough to satisfy different ways of
how humans perceive and judge similarity and should still be applicable in a
distributed querying environment. In VizIR each type of application (server, Servlet,
client, applet, etc.) can initiate a query by instancing a QueryEngine object and
calling the prepare() method. The execute() method of a query creates a feature class
for each QueryLayer of a query and extracts a descriptor by calling extractFeature().
These objects of class Descriptor are then used for feature comparison with
Descriptor objects of the images in the database by the method calculateDistance().
The images of the result set are returned via the getElements() method. To accelerate
queries, indexing schemes and other query acceleration models will be implemented
as part of VizIR. Next to classic index structures for visual content (e.g. R-tree,
segment index tree, etc.) and query acceleration techniques (storage of the factorized
terms of the Mahalanobis distance [31], etc.), experiments will be undertaken with
new heuristic approaches like those we previously published [27].
Concluding this sketch of the VizIR querying framework architecture we outline

several aspects of the application and data distribution. In a scalable framework it is
simply necessary to implement tools for distributed and replicated visual content

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469452

management as well as database management. Modern Web Service- or CORBA-
based programming environments like the Java environment permit the network-
independent distribution of applications, objects and methods (in Java through the
Remote Method Invocation library) to increase the performance of an application
by load balancing and multi-threading. VizIR is based on Java. Therefore the objects
for querying can be implemented as JavaBeans, feature extraction functions with
RMI, database management through Servlets and user interfaces as Applets.
Database distribution is realized through standard replication mechanisms and
database access through JDBC.

4.2. User interface framework

The VizIR user interface framework is a collection of components that can be
combined arbitrarily. The major issue is the design of querying & query refinement
interfaces that integrate image and video content, the implementation of methods for

ARTICLE IN PRESS

Application QueryEngine

example:Descriptor

new QueryLayer()

prepare()

execute()

new DatabaseManager()

new Descriptor

: Descriptor

extractFeature

new MediaContent

new Descriptor

new MediaContent()

Vector : calculateDistance

MediaContent[] : getElements

for each QueryLayer

for each Object in MediaCollection

mergeDistances

for each QueryLayer

extractFeature

Media example

Fig. 3. Schematic UML sequence diagram of the querying process.

H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 453

video content representation in static user interfaces and the support of multiple
media-based querying paradigms. All user interface components have to be designed
as intuitive and self-explanatory as possible to guarantee high usability and, as a
consequence, increasing acceptance of VIR. In addition to user interface building
blocks, methods have to be developed that allow their combination in application-
specific user interfaces (fields of application in the future will be digital libraries,
medical image search, TV broadcast archives, etc.).
Fig. 4 shows the static structure of the VizIR user interface framework that should

satisfy these demands. Central element is the interface UserInterfaceComponent that
is inherited by all classes having a visual panel. These are MediaPanel (the mother
class of all panels that deal with media objects), QueryEngine (the mother class of all
querying engines, the panel contains all elements necessary for query formulation),
Descriptor (mother class of all implemented features, the panel contains a toolbox
for sketch drawing),MetadataPanel and LayerPanel (a layer manager for multi-layer

ARTICLE IN PRESS

+getVisualComponent()
+getControlComponent()

«interface»
Visualizable

+getDocumentation()
+getTip()

«interface»
Transparent

+getPanel()

«interface»
UserInterfaceComponent

+extractFeature()
+calculateDistance()

Descriptor

JavaSDK Swing

+prepare()
+execute()

QueryEngine

JavaSDK Panel

MediaPanel

MetadataPanel FeedbackPanelLayerPanel

«interface»
VisualLayer

MediaRenderer

ImageRenderer XMLRenderer VideoRenderer

JavaMediaFrameworkJavaSDK:Java2D

Fig. 4. Class diagram of the VizIR user interface framework.

H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469454

image sketching as in Photoshop). VizIR user interface components are based on
Java Swing. UserInterfaceComponent inherits methods from the interfaces Visualiz-

able (methods for receiving a visual panel and a visual control component like in the
Java Media Framework [32]), Transparent (methods for receiving visual documenta-
tion and help in the user interface) and VisualLayer (defines the structure of a layer
of the sketching panel, basically a Java Image type).

MediaRenderer is a special type of MediaPanel for the visual rendering of media
objects. MediaRenderer takes an arbitrary media object as input and generates a (2D
or 3D) diagrammatic representation. Representing media objects in a static user
interface is easy for images but difficult for (time-based) video content. Common
approaches are index frames and Micons, which obviously are unsatisfactory. A
more sophisticated approach would be an object viewer for all objects and their
temporal trajectories in a video shot. Also, video cubism (allowing for interactively
cutting an X2Y -time cube of video data along arbitrary oriented planes; [33])
should be considered as an alternative for presenting video results. So far, we have
implemented three renderers for images (JPG, PNG, GIF, etc., based on Java2D),
videos (generates Micons—see Section 2.2—for arbitrary video formats: MPG, AVI,
MOV, etc., based on the Java Media Framework) and XML. XMLRenderer can
render any XML-file that can be displayed in a web browser (see [7] for technical
details). Fig. 5 shows examples: element A and B are Micons (representing videos of

ARTICLE IN PRESS

B

C

F

E

G

A

H I J

D

Fig. 5. Screenshot of the 2.5D panel (media objects are positioned at random).

H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 455

the Vienna opera house and the Prater Ferries wheel), element C is a webpage and all
other media objects are standardized images. Like MediaContent for media access,
theMediaRenderer-mechanism allows performing CBIR and CBVR in the same user
interfaces and the implementation of unified APIs for both types of media.
The most important MediaPanel is the 2.5D media panel. For examples see Fig. 5

and element A of Fig. 6. The 2.5D panel is used for example selection, browsing,
query formulation and the display of result sets. The rendered substitutes of media
objects are displayed as images parallel to the image plane. It is possible to navigate
in two dimensions (left–right, forward–back) and to zoom. Groups of objects can be
selected, moved and associated with metadata (by communication with a
MetadataPanel). The angle of the image plane and the X2Y -plane can be varied
between 0� and 90�. The panel may have visual control components (elements G–J
in Fig. 5 and element C in Fig. 6). Panel G in Fig. 5 (also shown in the lower left part
of element C in Fig. 6) allows to set the selection mode for the cursor and panel H is
for group definition. Panel I shows information on the currently selected object and
panel J its metadata entries. The upper panel of element C of Fig. 6 is initialized with
all dimensions of the media space to be displayed (in the VIR context: all
implemented features). The view changes whenever new dimensions are chosen for

ARTICLE IN PRESS

B

C D E

F

A

Fig. 6. Screenshot of a VizIR user interface prototype.

H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469456

the X - or Y -axis or the querying button in the lower right part of element C in Fig. 6
is pressed.
It is important to know—in rough terms—the querying process implemented in

VizIR to understand the role of the 2.5D panel. Fig. 7 shows a State-Transition-
Diagram of the underlying querying process. First the user interface components are
initialized with media objects and query parameters (element F of Fig. 6 shows a
progress bar panel for media loading). Then the user can define a first query by
selecting example media objects. This sets the user interface in the defined state.
Executing the query brings the user interface in the active state where refinement can
be started or a new query can be defined. In active state the query is re-executed
whenever the user presses the ‘activate’ button or the query engine control
component detects substantial changes in the query definition.
Both panels for query definition and query refinement are 2.5D panels that have

been initialized with MRML-documents. They can visualize any two-dimensional
subspace of the distance space (for the selected features and examples) generated in
the previous querying iteration. This is done by showing the media objects (or their
representations) parallel to the image plane and, on the X - and Y -axis, arranged
according to their relative distance (depicted in element E and F in Fig. 5). Similar
objects are placed near to each other, un-similar objects far from each other. Element
A of Fig. 6 shows the distance of images for a color histogram feature on the X -axis
and the distance for an edge histogram on the Y -axis. The features (distance space
dimensions) shown on the X - and Y -axis can be changed interactively. Queries are
defined and refined in the same way by selecting media objects or groups and

ARTICLE IN PRESS

Initialized. Ready for
query definition

Load media objects
and configuration

Defined. Ready for
querying

Active. Ready for
refinement

Manipulate
example panel

Start querying
(send MRML script,
receive distance space layout
and result set)

Manipulate
example panel

Manipulate
example panel

when:
substantial changes or
activate button pressed

Fig. 7. State-transition-diagram of the querying process.

H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 457

marking them as positive or negative examples. Thus, it is possible to define n-
dimensional hyper-cubes (clusters) of (un-)similar media objects. The query engine
tries to find all media objects that belong to the clusters with positive examples minus
those with negative examples. We call this similarity measurement process Logical
Retrieval (LR, see [35] for a more detailed description).
We are implementing two querying paradigms: query by example (QBE) and

query by sketch (QBS), because they are media-based and intuitive. Even though for
beginners text querying may be the easiest form of interaction, we are—at this point
in time—not planning to implement a text interface, because implementing such an
interface would not raise new VIR research questions nor help to solve the existing
ones. QBE follows the querying process described above. Sketches for QBS can be
drawn in the ‘sketch drawing’ panel in Fig. 6. This panel contains layers of type
VisualLayer that are managed by the LayerManager (element E in Fig. 6) and allow
drawing with the tools provided by the descriptor objects. These tools are collected
in the ‘sketching tools’ panel (element B in Fig. 6). The ‘last result set’ panel contains
the media objects of the last result set (similarity values are associated as metadata).
It is just a special 2.5D example panel with an image-plane to X2Y -plane angle
of 0�. The same is true for the ‘example groups’ panel in Fig. 6 that lists all query
examples partitioned in three groups: positive, negative and neutral examples.
(Neutral examples are explicitly excluded from the query. Their properties are
marked as irrelevant for the query.) The ‘description’ panel (element D in Fig. 6)
contains the information of the methods from the Transparent interface for the
active user interface element.
The VizIR user interface class structure follows the paradigm that all components

(methods, panels, etc.) are defined, where they are used. Thus, each query engine has
a visual panel for query formulation and each descriptor has a panel with tools for
sketching (e.g. line drawing tools for an edge layout descriptor). To guarantee the
transparency of VizIR (defined in [6]), each visual component has to implement the
Transparent interface with documentation and tips. The panels of the framework can
be integrated into any visual Java container and organized arbitrarily. The layouts in
the screenshots in Figs. 5 and 6 are just examples. Because the VizIR framework is
based on Java and the Java SDK is possible to integrate the user interface
components into any container (frame, applet, etc.) to perform distributed querying
(with Web Services, CORBA, RMI, etc.) and querying in the background (in a
separate thread).
The validity of arbitrary combinations is guaranteed by the communication

mechanism of the framework. It follows the Delegation-Event-Model and is
conceptually shown in Fig. 8. Each object of class MediaPanel (MediaPanel-1 and
MediaPanel-2) may communicate with any other MediaPanel through MediaPanel-

Event objects (e.g. the selection mode panel in element G in Fig. 5 with a 2.5D panel).
Thus, all media panels have to implement listener classes that are defined in
UserInterfaceComponent and flag the media panel events they fire. For easier user
interface building the framework contains convenience classes with listener functions
for standard communication operations (e.g. communication of query control panel
and 2.5D panel when the example group selection is changed, etc.).

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469458

4.3. Configuration and communication interfaces

Query engines in VizIR can be of arbitrary kind. We are implementing a query
engine based on the querying process sketched in the previous section (see [35] for
more details). In VizIR, the communication of user interfaces and query engines is
loosely coupled based on MRML (see Section 2.2).
Each framework component that uses MRML for communication, uses instances

of the classes MRMLReader and MRMLWriter (see Fig. 9). These classes are
derived from ReadConfig (XML parser class) and WriteConfig (XML writer class).
Communication classes for new XML languages can be implemented in the same
way. In order to perform LR queries with MRML we had to extend its document
type definition (see Appendix A for DTD code). We have defined elements for
context-free media and media group definition (required for the implemented
querying paradigm), descriptor definition and query definition. The following
example illustrates how these extensions can be used:

ologicalQuery>

oclusterDefinition>

oclusterRestriction>

oclusterDimension lowerBound=’’0.0’’

upperBound=’’0.5’’>

omediaGroup id=’’qe1’’ type=’’positive’’>

omediaObject dataLocation=’’file:img1.gif’’

iconLocation=’’file:thumb1.gif’’/>

o/mediaGroup>

odescriptor name=’’ColorHistogram’’>

o/clusterDimension>

ARTICLE IN PRESS

+addPanelListener()
+removePanelListener()

«interface»
UserInterfaceComponent

MediaPanel

-eventType

MediaPanelEvent
<<object>>

MediaPanel-1
<<object>>

MediaPanel-2
receivethrow

instatiate instantiate

ConvenienceListener
use use

Fig. 8. Event model for panel communication. Media panels communicate through MediaPanelEvent

objects.

H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 459

o/clusterRestriction>

o/clusterDefinition>

o/logicalQuery>

This construct defines a query (on the collection defined elsewhere in the MRML
script) with a single feature. A color histogram is used to find all media objects that
have a distance to the positive query example ‘img1.gif’ (represented by the icon
‘thumb1.gif’) that is smaller than ‘0.5’. If we liked to retrieve all objects that fulfil this
cluster-condition and a second one, we would put the second clusterRestriction in the
same clusterDefinition. If we wanted to retrieve all media objects meeting the first or

the second condition, we would put the second one in a new clusterDefinition. These
constructs are flexible and can be used in various ways. They should not only
support our LR concept but—according to the published querying paradigm—the
one used in MARS as well [13].

4.4. Assessment methods

Concluding this description of the VizIR framework, we would like to point out
issues that are related to VIR assessment methods. To our belief, a significant
improvement of VIR research in the future will be the development of standardized
quality assessment procedures (like in the Benchathlon project [4]). In the VizIR

ARTICLE IN PRESS

+getPanel()

«interface»
UserInterfaceComponent

+prepare()
+execute()

QueryEngine

ReadConfig

MRMLReader

«interface»
JavaSDK:Serializable

LookmarkReader

WriteConfig

MRMLWriterLookmarkWriter

JavaSDK:XML

1

0..1

1

0..1

Fig. 9. Class diagram for MRML communication in VizIR. Query engines and user interface

components use the classes ReadConfig and WriteConfig or their subclasses to read and write XML

configuration files.

H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469460

project the following assessment tasks will be undertaken:

* Formulation of standardized evaluation procedures.
* Collection and creation of media sets with ground truth.
* Evaluation of descriptors and querying methods.
* Evaluation of query acceleration methods.

Common evaluation models (recall, precision, etc. [36,37]) are analyzed to develop
standardized evaluation procedures. The application of the standard measures in
information retrieval, recall and precision, to VIR systems using linear weighted
merging (see above) implies giving up at least 10% of recall, since a system with
linear weighted merging returns the n ‘most similar’ available objects (independent of
the question whether or not they are really similar), while the recall measures the
ratio of really similar objects to all available objects. This has to be considered in the
evaluation process. As a consequence, the feasibility of less well-known methods
(systematic measures, etc.) will be investigated and methods from other research
areas will be checked for applicability. This could be psychological methods, e.g.
semantic differential techniques [38].
Evaluation sets with image and video content will be collected and—where not

available—created for groups of descriptors and ground truth information will be
derived from tests with volunteers (students, etc.). Such sets are obviously decisive
for the quality judgment of VIR systems. Actually, however, only a few de-facto
standards do exist, including the Brodatz database for texture images. Partially, these
evaluation sets will be created by enriching and extending the image and video clip
sets, used for the MPEG-7 evaluation. As well, different approaches—e.g. findings on
the basis of gestalt laws—will be checked for their suitability to develop those test sets.
The extended evaluation of the MPEG-7 descriptors, descriptor schemes and

other implemented descriptors with statistical methods will be performed in two
steps: (1) Evaluation of their independent performance and their performance in
combinations. From this information the overall performance of the visual part of
MPEG-7 and VizIR can be judged. (2) Analysis of dependencies among descriptors
with statistical methods (cluster analysis, factor analysis, etc.) to identify a base for
the space of descriptors and to be able to normalize the visual part of the MPEG-7
standard and to extend it by new independent descriptors.
Finally, the performance optimization methods developed for VizIR will be

compared to those developed for other comparable retrieval systems. In the past, we
have implemented several performance optimization techniques and compared them
by the reply time for queries (e.g. in [39]). This will be continued in VizIR.

5. Implementation

In this section, two major implementation decisions of VizIR are discussed: the
choice of the programming environments for media handling and graphic i/o. When
we made these decisions, we had not yet decided if we should base VizIR on C++
or Java.

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 461

5.1. Media programming environment

The major question concerning the implementation of the VizIR prototype is the
programming environment. At this point in time, there are three major alternatives
that support image and video processing to choose from:

* Java and the Java Media Framework (JMF; [32]).
* The Open Media Library standard (OpenML) of the Khronos group [40].
* Microsoft DirectX (namely DirectShow [41]).

All of these environments offer comprehensive video processing capabilities and
are based on modern, object-oriented programming paradigms. DirectX is limited to
Windows-operating systems and a commercial product. Therefore, in the following
discussion we will concentrate on the first two alternatives: JMF and OpenML. JMF
is a platform-dependent add-on to the Java SDK, which is currently available for
SunOS, Windows, MacOS-X (implementation by SUN and IBM) as well as Linux
(implementation by Blackdown) in a full version and in a Java version with less
features for all other operating systems that have Java Virtual Machine
implementations. JMF is free and extensible. OpenML is an initiative of the
Khronos Group (a consortium of companies with expert knowledge in video
processing, including Intel, SGI and SUN) that standardizes a C-interface for
multimedia programming. OpenML includes OpenGL for 3D and 2D vector
graphics, extensions to OpenGL for synchronization, the MLdc library for video and
audio rendering and the ‘OpenML core’ for media processing (unfortunately, the
media processing part of OpenML is named OpenML as well; therefore we will use
the term ‘OpenML-mp’ for the media processing capabilities below). Lately, the first
implementation of the OpenML SDK was announced for summer 2003 (for Irix).
Among the concepts that are implemented in a similar fashion in JMF and

OpenML-mp are the following:

* Synchronization: a media object’s time base (JMF: TimeBase object, OpenML-
mp: Media Stream Counter) is derived from a single global time base (JMF:
SystemTimeBase object, OpenML-mp: Unadjusted System Time).

* Streaming: both environments do not manipulate media data as a continuous
stream, but instead as discrete segments in buffer elements.

* Processing control: JMF uses Control objects and OpenML-mp uses messages for
this purpose.

Other important media processing concepts are implemented differently in JMF
and OpenML-mp:

* Processing chains: in JMF real-time processing chains with parallel processing can
be defined (one instance for one media track is called a Codec Chain). In
OpenML-mp processing operations data always flow from the application to a
single processor (called a Transcoder) through a pipe and back.

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469462

* Data flow: JMF distinguishes between data sources (including capture devices,
RTP servers and files) and data sinks. OpenML-mp handles all I/O devices in the
same way (called Jacks).

The major advantages of OpenML-mp are:

* Integration of OpenGL, the platform-independent open standard for 3D
graphics.

* A low-level C API that will probably be supported by the decisive video hardware
manufacturers and should have a superior processing performance.

* The rendering engine of OpenML (MLdc) seems to have a more elaborate design
than the JMF renderer components. Especially, it can be expected that the
genlocking-mechanism of MLdc will prevent lost-sync phenomena, usually
occurring in JMF when rendering media content with audio and video tracks
longer than 10minutes.

* OpenML-mp defines more parameters for video formats and is closer related to
professional video formats (DV, DVCPRO, D1, etc.) and television formats
(NSTC, PAL, HDTV, etc.)

On the other hand the major disadvantages of OpenML are:

* It is not embedded in a CASE environment like Java for JMF. Therefore
application development requires more resources and longer development cycles.

* OpenML is not object-oriented and does not include a mechanism for parallel
media processing.

The major drawbacks of JMF are:

* Lower processing performance because of the high-level architecture of the Java
Virtual Machine. This can be reduced by the integration of native C code with the
Java Native Interface.

* Limited video hardware and video format support: JMF has problems with
accessing certain video codecs, capture devices and with transcoding of some
video formats.

The outstanding features of JMF are:

* Full Java integration. The Java SDK includes powerful methods for distributed
and parallel programming, database access and I/O processing. Additionally,
professional CASE tools exist for software engineering with Java.

* JMF is free software and reference implementations exist for a number of
operating systems. JMF version 2.0 is a co-production of SUN and IBM. In
version 1.0, Intel was involved as well.

* JMF is extensible. Additional codecs, multiplexers and other components can be
added by the application programmer.

The major demands for the VizIR project are the need for a free and bug-free
media processing environment that supports distributed software engineering and
has a distinct and robust structure. Issues as processing performance and extended

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 463

hardware support are secondary for the project. Therefore we think JMF currently
being the best choice for the implementation.
Design and implementation follow an UML-based incremental design process and

rely on prototyping. UML and prototyping are employed, because they both
represent state-of-the-art in software engineering. Prototyping, in addition, shows
invaluable positive effect on the motivation of the developers.

5.2. User interface and communication issues

One of the most important elements of the user interface class framework is the
2.5D panel. It is based on Gl4Java [34] instead of Java3D for the following reasons:
(1) Gl4Java is based on OpenGL and much faster than Java3D, (2) event handling is
easier and bug-free, (3) it is easier to install (e.g. less dependent on graphics hardware
than Java3D) and (4) has less bugs than Java3D.
XML reader and writer classes are based on the Java XML package (JAXP). We

use the JDOM parser for XML writing (because it allows the construction of an
object tree in memory and does serialization automatically) and SAX for XML
parsing (because it is more flexible and faster than JDOM).
A special communication problem of VIR user interfaces is the transportation of

media objects to the client computer. We do media loading in the background
through an RTP stream. The Java Media Framework contains a convenient RTP-
based streaming component. The user interface is operational as soon as at least a
certain quantity of the media objects has arrived at the client side. This is improved
by first sending a subset of representative media objects through the stream.

6. Past, current and future work

Currently, we are working on the first release of the VizIR framework. Most
components of the querying framework, the database manager, the basic user
interface framework (including a video renderer and a webpage renderer for
thumbnail creation), the 2.5D panel and the XML communication classes are
finished since autumn 2002. Next, we will implement a general-purpose query engine,
a unified media handler for images and video and some of the MPEG-7 visual
descriptors. A first prototype of the full framework should be finished by autumn
2003. This first version (and all following) will be released under GNU Public
License.
Next we will work on other methods for feature extraction, distance measurement

and video representation. New feature extraction methods we are currently working
on, are semantic feature classes that enrich existing descriptor data of low-level
features (e.g. MPEG-7 descriptors) with additional knowledge (modeling
information, statistical dependencies, etc.) to reduce the impact of the semantic
gap (first results in [42]). Concerning video representation, we will follow two
approaches. First, we will implement a renderer that produces animated icons of
selected keyframes of a video. The keyframes will indicate scene changes. The second

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469464

approach originates in 2D animation. Short sequences of keyframes will be overlaid
with an alpha-channel and thus integrated into a video thumbnail. Another idea that
we will follow in the future, is the implicit definition of features from the selection of
media elements or media element regions and expert knowledge. In the past we have
been working on a similar idea that resulted in the system presented in [20].

7. Conclusion

This paper describes the querying and user interface framework of the Visual
Information Retrieval project VizIR. The framework consists of a class hierarchy of
querying classes and user interface panels with event communication, communica-
tion and configuration methods based on XML and an extension of the MRML for
communication of user interfaces and query engines. The intended major outcome of
the VizIR project can be summarized as follows:

* An open class framework of methods for feature extraction, distance calculation,
user interface components and querying.

* Evaluated user interface components and prototypes for content-based visual
retrieval.

* System prototypes for the refinement of the basic methods and interface
paradigms.

* Carefully selected evaluation sets for groups of features (color, texture, shape,
motion, etc.) with human-rated co-similarity values.

* Evaluation results for the methods of the MPEG-7 standard, our earlier content-
based retrieval projects and other promising methods.

VizIR is open, extendible and free. A first version of the user interface part (3D
interaction panel, XML-communication classes) is available since autumn 2002, the
first release of the full framework should be ready by autumn 2003 and will be
available under GNU Public License. We would like to invite interested research
institutions to join the discussion and participate in the design and implementation
of the open VizIR project. Contact the authors to join the project and/or get a copy
of the available pre-release software.

Acknowledgements

The VizIR project is supported by the Austrian Scientific Research Fund (FWF)
under grant no. P16111–No 5.

Appendix A

This appendix contains the document type definition (DTD) for the essential part
of our MRML extension. The extension includes elements for context-free media

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 465

and media group definition, descriptor definition and query definition according to
our querying paradigm. It is based on version 1.0 of the MRML definition presented
in [8] (see Section 2.2 for details). The tags below can be easily integrated into
MRML by adding logicalQuery and mediaGroup as sub-tags of the mrml tag.

A.1. Media and media group definition

In MRML media objects can be context-sensitively defined as user–relevance–

elements (for querying) or as query–result–elements. For initialization we add a tag
for general media definition:

o!ELEMENT mediaObject (descriptor*)>

o!ATTLIST mediaObject

dataLocation CDATA #REQUIRED

iconLocation CDATA #REQUIRED>

dataLocation and iconLocation are URLs. As far as we understand, the collection

tag of MRML cannot be used for the definition of media groups (for querying, etc.).
We define the following element for this purpose:

o!ELEMENT mediaGroup (mediaObject+)>

o!ATTLIST mediaGroup

id CDATA #REQUIRED

type (positive|negative|neutral|init|other) ‘positive’>

The first three types define querying groups. The fourth is for initialization.
Neutral examples are explicitly excluded from the query. Their properties are
marked as irrelevant for the querying process.

A.2. Descriptor definition

MRML uses the algorithm-construct for the definition of features. For extended
use we define arbitrary descriptors as follows:

o!ELEMENT descriptor EMPTY>

o!ATTLIST descriptor

name CDATA #REQUIRED

value CDATA

distanceValue CDATA>

distanceValue is a special field used only when media objects are grouped to
describe the layout in distance space (related to the query examples) instead of
feature space.

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469466

A.3. Logical retrieval query definition

According to our Logical Retrieval approach, a query can be defined by the
following elements:

o!ELEMENT logicalQuery (clusterDefinition+)>

o!ELEMENT clusterDefinition (clusterRestriction+)>

o!ELEMENT clusterRestriction (clusterDimension+)>

o!ELEMENT clusterDimension (mediaGroup,descriptor)>

o!ATTLIST clusterDimension

lowerBound CDATA #REQUIRED

upperBound CDATA #REQUIRED>

See Section 4.3 for an example.

References

[1] S. Santini, R. Jain, Beyond query by example. ACM Multimedia, (1998) 345–350.

[2] S. Santini, R. Jain, Similarity Measures, IEEE Transactions on Pattern Analysis and Machine

Intelligence 21 (1999) 871–883.

[3] J. Barros, J. French, W. Martin, Using the triangle inequality to reduce the number of comparisons

required for similarity based retrieval, in: Proceedings of SPIE Storage and Retrieval for Image and

Video Databases, San Jose, USA, 1996, pp. 392–403.

[4] Benchathlon Network Website. http://www.benchathlon.net (last visited: 2003–03–20).

[5] TREC video retrieval competition website. http://www-nlpir.nist.gov/projects/trecvid/ (last visited:

2003–03–20).

[6] H. Eidenberger, C. Breiteneder A Framework for Visual Information Retrieval, in: Proceedings of

Visual Information Systems Conference, HSinChu, Taiwan, 2002, pp. 105–116.

[7] H. Eidenberger, C. Breiteneder A Framework for user interfaced design in Visual Information

Retrieval, in: Proceedings of IEEE Multimedia Software Engineering Symposium, Newport Beach,

USA, 2002, pp. 255–262 (published on CD).

[8] Multimedia Retrieval Markup Language Website. http://www.mrml.net (last visited: 2003–03–20).

[9] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,

D. Petkovic, D. Steele, P. Yanker, Query by image and video content: the QBIC system, IEEE

Computer 28 (9) (1995) 23–31.

[10] J. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, R. Jain, C. Shu, The Virage

image search engine: an open framework for image management, in: Proceedings of SPIE Storage and

Retrieval for Image and Video Databases, San Jose, USA, 1996, pp. 76–87.

[11] J.R. Smith, S. Chang, VisualSEEk: a fully automated content-based image query system, in:

Proceedings of ACM Multimedia Conference, Boston, USA, 1996, pp. 87–98.

[12] A. Pentland, R.W. Picard, S. Sclaroff, Photobook: tools for content-based manipulation of Image

databases, in: Proceedings of SPIE Storage & Retrieval Image & Video Databases, San Jose, USA,

1994, pp. 34–47.

[13] M. Ortega, R. Yong, K. Chakrabarti, K. Porkaew, S. Mehrotra, T.S. Huang, Supporting ranked

Boolean similarity queries in MARS, IEEE Transactions on Knowledge and Data Engineering 10 (6)

(1998) 905–925.

[14] S. Santini, R. Jain, Integrated browsing and querying for image databases, IEEE Multimedia 3 (7)

(2000) 26–39.

[15] GNU Image Finding Tool Website. http://www.gnu.org/software/gift/ (last visited: 2003–03–20).

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 467

http://www.benchathlon.net
http://www-nlpir.nist.gov/projects/trecvid/(lastvisited:20030320)
http://www-nlpir.nist.gov/projects/trecvid/(lastvisited:20030320)
http://www.mrml.net
http://www.gnu.org/software/gift/(lastvisited:20030320)

[16] E. Oomoto, K. Tanaka, OVID: design and implementation of a video-object database system, IEEE

Transactions on Knowledge and Data Engineering 5 (4) (1993) 629–643.

[17] J.K. Wu, C. Lam, B.M. Mehtre, Y.J. Gao, A. Desai Narasimhalu, Content-based retrieval for

trademark registration, Multimedia Tools and Applications 3 (3) (1996) 245–267.

[18] T. Chua, L. Ruan, AVideo retrieval and sequencing system, ACM Transactions on Information

Systems 13 (4) (1995) 373–407.

[19] MPEG-7 Documents Website. http://mpeg.telecomitalialab.com/working documents.htm#MPEG-7

(last visited: 2003–03–20).

[20] C. Breiteneder, H. Eidenberger, Automatic query generation for content-based image retrieval, in:

Proceedings of IEEE Multimedia Conference, New York, USA, 2000, pp. 705–708.

[21] G. Sheikholeslami, W. Chang, A. Zhang, Semantic clustering and querying on heterogeneous features

for visual data, in: Proceedings of ACM Multimedia Conference, Bristol, UK, 1998, pp. 3–12.

[22] M. Nakazato, L. Manola, T.S. Huang, ImageGrouper: Search, Annotate and organize images by

groups, in: Proceedings of Visual Information Systems Conference, HSinChu, Taiwan, 2002,

pp. 129–142.

[23] M. Tavanti, M. Lind, 2D vs. 3D, implications on spatial memory, in: Proceedings IEEE Symposium

on Information Visualization, San Diego, USA, 2001, pp. 139–145.

[24] G. Robertson, M. Czerwinski, K. Larson, Data mountain: using spatial memory for document

management, in: Proceedings of ACM Symposium on User Interface Software and Technology, San

Francisco, USA, 1997, pp. 153–162.

[25] D.A. Keim, Visual exploration of large data sets, Communications of the ACM 44 (8) (2001) 38–44.

[26] B. Furht, S.W. Smoliar, H. Zhang, Video and image processing in multimedia systems, Kluwer

Publishers, Boston, 1996.

[27] C. Breiteneder, H. Eidenberger, Performance-optimized feature ordering for content-based image

retrieval, in: Proceedings of European Signal Processing Conference, Tampere, Finland, 2000

(published on CD).

[28] F. Liu, R.W. Picard, Periodicity, directionality, and randomness: wold features for image modeling

and retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence 18 (7) (1996) 722–733.

[29] M.F. Barnsley, L.P. Hurd, M.A. Gustavus, Fractal video compression, in: Proceedings of IEEE

Computer Society International Conference, USA, 1992, pp. 41–42.

[30] A. Lasfar, S. Mouline, D. Aboutajdine, H. Cherifi, Content-based retrieval in fractal coded image

databases, in: Proceedings of Visual Information and Information Systems Conference, Amsterdam,

Netherlands, 1999.

[31] Y. Rui, T. Huang, S. Chang, Image retrieval: past, present and future, Journal of Visual

Communication and Image Representation 10 (1997) 1–23.

[32] Java Media Framework Website. http://java.sun.com/products/java-media/jmf/ (last visited: 2003–

03–20).

[33] S. Fels, K. Mase, Interactive Video Cubism, in: Proceedings of ACM International Conference on

Information and Knowledge Management, Kansas City, USA, 1999, pp. 78–82.

[34] GL4Java Website. http://www.jausoft.com/products/gl4java/gl4java main.html (last visited: 2003–

03–20).

[35] H. Eidenberger, C. Breiteneder, Visual similarity measurement with the feature contrast model, in:

Proceedings of SPIE Storage and Retrieval for Media Databases, Santa Clara, USA, 2003 (published

on CD).

[36] H. Frei, S. Meienberg, P. Schauble, The perils of interpreting recall and precision, in: N. Fuhr (Ed.),

Information Retrieval, Springer, Berlin, 1991, pp. 1–10.

[37] J.S. Payne, L. Hepplewhite, T.J. Stonham, Evaluating content-based image retrieval techniques using

perceptually based metrics, SPIE Transactions 3647 (1999) 122–133.

[38] C.E. Osgood, G.J. Suci, B.H. Tannenbaum, The Measurement of Meaning. University of Illinois

Press, Urbana, 1971.

[39] H. Eidenberger, C. Breiteneder, An experimental study on the performance of visual information

retrieval similarity models, in: Proceedings of IEEE Multimedia Signal Processing Workshop, St.

Thomas, US Virgin Islands, 2002 (published on CD).

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469468

http://mpeg.telecomitalialab.com/working_documents.htm
http://mpeg.telecomitalialab.com/working_documents.htm
http://java.sun.com/products/java-media/jmf/(lastvisited:20030320)
http://java.sun.com/products/java-media/jmf/(lastvisited:20030320)
http://www.jausoft.com/products/gl4java/gl4java_main.html(lastvisited:20030320)
http://www.jausoft.com/products/gl4java/gl4java_main.html(lastvisited:20030320)
http://www.jausoft.com/products/gl4java/gl4java_main.html(lastvisited:20030320)

[40] OpenML Website. http://www.khronos.org/ (last visited: 2003–03–20).

[41] DirectX Website. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wcegmm/htm/

dshow.asp (last visited: 2003–03–20).

[42] H. Eidenberger, C. Breiteneder, Semantic feature layers in content-based image retrieval:

implementation of human world features, in: Proceedings of International Conference on Control,

Automation, Robotics and Computer Vision, Singapore, 2002 (published on CD).

[43] T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, SOM-PAK: The Self-organizing Map Program

Package, HUT Technical Report, Helsinki, Finland, 1995.

[44] C. Nastar, M. Mitschke, C. Meilhac, Efficient Query Refinement for Image Retrieval, in: Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, USA, 1998,

pp. 547–552.

[45] M. Wood, N. Campbell, B. Thomas, Iterative refinement by relevance feedback in content-

based digital image retrieval, in: Proceedings of ACM Multimedia Conference, Bristol, UK, 1998,

pp. 13–20.

ARTICLE IN PRESS
H. Eidenberger, C. Breiteneder / Journal of Visual Languages and Computing 14 (2003) 443–469 469

http://www.khronos.org/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wcegmm/htm/dshow.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wcegmm/htm/dshow.asp

	VizIR-a framework for visual information retrieval
	Introduction
	Related work
	Existing VIR prototypes
	VIR user interfaces

	VizIR project goals
	VizIR framework design
	Querying framework
	User interface framework
	Configuration and communication interfaces
	Assessment methods

	Implementation
	Media programming environment
	User interface and communication issues

	Past, current and future work
	Conclusion
	Acknowledgements
	Media and media group definition
	Descriptor definition
	Logical retrieval query definition

	References

