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Abstract 
In this paper, we explore possibilities to improve existing video segmentation algorithms by 
utilizing a stereo-derived depth map as additional source of information. The goal is to make the 
segmentation results more robust in order to reduce the need for user interaction in typical video 
editing and compositing tasks. In tests with synthetic and real video scenes, we show that a 
combination of the original and stereo-derived edges in conjunction with active contour models 
(snakes) can improve the quality of the segmentation results. 
 
 
1 Introduction 
 
Video object segmentation is an important step in many computer vision and multimedia tasks, 
including video editing and compositing, and the combination of real with synthetic video content. 
A review of image and video segmentation algorithms that have been proposed for multimedia 
applications can be found in [9]. The authors group the various methods into transition-based (e.g., 
using edges) and homogeneity-based (e.g., region growing) approaches. Only few published studies 
[3] have investigated the potential of stereo-derived depth maps to aid the segmentation process, 
which is the focus of our investigation. For example, [11] proposed the use of an MRF/GRF 
framework for incorporating depth information and [5] utilizes object contours in a hierarchical 
matching approach. Contrary to our experiments, the use of active contour models (snakes) is not 
considered in those studies.  
  
In the context of an ongoing project, we use multiple video cameras to capture a dynamic scene 
from different points of view for subsequent 3D reconstruction. This approach is motivated by the 
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growing availability of inexpensive video cameras and new generations of more powerful 
computers, which provide the basis for processing the multiple video streams in reasonable time. 
Examples of research laboratories that operate a large amount (e.g., 64) of synchronized video 
cameras in a multi-view configuration are the Robotics Institute at Carnegie Mellon University [6] 
and the recently established Keck Laboratory at the University of Maryland [2]. Whereas most 
traditional (correlation-based) matching algorithms tend to blur edges, some recent research [1] has 
specifically addressed the detection of depth discontinuities in stereo image pairs, which is of 
particular interest for extracting the video object from the background. 
 
In our experiment, we first apply available segmentation algorithms based on edges and active 
contour models to the original image and stereo-derived disparity map, in order to explore possible 
synergisms between the results. We then demonstrate how a combination of original and stereo-
derived edges can improve the quality of the segmentation results. 
 
 
2 Test Data 
 
We performed tests on both real and synthetic image sequences. The artificial scene shown in 
figures 1 and 2 was generated by using 3D Studio MAX. The frame size is 640 x 480 pixels. For the 
experiments with real data (figures 3 to 5), we employed a stereo configuration consisting of two 
Dragonfly IEEE-1394 video cameras as delivered by Pointgrey [8]. The camera set-up was 
calibrated using the calibration routines provided by Intel’s Open Source Computer Vision 
(OpenCV) library [4]. For further processing, we converted the original 24 bit color images into 8 
bit gray value images and transformed the stereo image pairs into epipolar geometry. An example 
of such a pre-processed pair of stereo video frames (size 421 x 480 pixels) is shown in figures 3 (a) 
and (b). 
 
 
3 Algorithm, Tests, and Results 
 
Figure 1 (a) shows a synthetic image with the initialization for a snake algorithm overlaid. In our 
tests, we employed both a classical snake implementation which follows the original work by [7] 
and a more recent snake implementation based on the gradient vector flow (GVF) method 
introduced by [10]. The illustrations in figure 1 were generated using the classical snake 
implementation. The final snake position, i.e. the contour found by the snake after iteration, is 
visible in Figure 1 (b). Note that the chessboard pattern on the ground produces errors in the snake 
result. The original image from (a) along with a corresponding stereo partner (not shown here) was 
used to compute the disparity map shown in (c). We employed the matching algorithm proposed by 



[1], which has shown good results in preserving the edges. The final snake obtained from the 
disparity image is overlaid in (c). The deviations between the computed snake and the actual object 
contour can be recognized more clearly in subfigure (d). 
 
 

  
(a) Original image with snake initialization. (b) Final snake on original image. 

  
(c) Final snake on depth image. (d) Original image with snake from (c) overlaid. 

  
(e) Final snake on edge combination 

image. (f) Original image with snake from (e) overlaid. 

Figure 1 Experimental results from synthetic test frame 1 with traditional snake. 

 
After analyzing the errors in (b) and (d), we implemented an algorithm in which we first apply a 
Canny edge detector to both the original image and corresponding depth map and then compute a 
so-called edge combination image, which  contains only those edges of the original image that are 
also present in the disparity image. The implementation had to account for minor deviations 
between corresponding edges in the original and disparity image which were caused by non-perfect 
edge localization of the stereo matcher. The computed edge combination image along with the 



corresponding snake result can be seen in subfigure (e). The good fit of the edge-derived snake is 
also apparent in (f). A comparison of subfigures (b), (d), and (f) confirms the improvement 
achieved by incorporating the stereo-derived edges into the segmentation process. Similar results 
were obtained from the same test images when using the GVF snake.  
 
 

  
(a) Original image with snake initialization. (b) Final snake on original image. 

  
(c) Final snake on depth image. (d) Original image with snake from (c) overlaid.

  
(e) Final snake on edge combination image. (f) Original image with snake from (e) overlaid. 

Figure 2 Experimental results from synthetic test frame 2 with GVF snake. 

 
In the test scene in figure 2, the sphere has moved closer to the cone. The proximity of the two 
objects causes perturbations in the snake on the original image (b), which are not present in the 
depth-derived results in (d) and the edge-combination result in (f). The most prominent errors in 
(b), however, are caused by the edges of the chessboard pattern on the ground. This effect is more 
pronounced in figure 2 due to the use of the GVF method than in the result obtained from the 
classical snake in figure 1. Again, the edge combination image (f) delivered the best results, 



although in this case the improvement over (d) is only minor, due to the high quality of the stereo-
derived depth map in (c). 
 
 

 
(a) Left camera image. (b) Right camera image. 

 
(c) Depth image. (d) Edge combination image. 

Figure 3 Stereo video frames with computed depth map and edge combination result. 

 
Figures 3, 4, and 5 demonstrate the results obtained from experiments on real video sequences. 
Note that despite obvious errors in the stereo-derived depth map in figure 3 (c), the computed 
combination edges in figure 3 (d) show good correspondence with the outlines of the objects in the 
3D scene. In figure 4, one can recognize how the traditional snake on the original image in 
subfigure (b) is influenced by intensity edges outside the object of interest. These errors are 
suppressed in the edge combination result in figure 4 (f).   
 
 



  
(a) Original image with snake initialization. (b) Final snake on original image. 

  
(c) Final snake on depth image. (d) Original image with snake from (c) overlaid. 

  
(e) Final snake on edge combination image. (f) Original image with snake from (e) overlaid. 

Figure 4 Experimental results obtained from the real video frames in figure 3 with traditional snake. 

 
Further experiments are illustrated in figure 5. The GVF snake on the original intensity image (b) 
shows errors in the region of the head and knees of the test person. The most prominent errors in the 
depth-derived result (d) occur around the feet. The errors are clearly reduced in the edge 
combination result in (f). 
  



  
(a) Original image with snake initialization. (b) Final snake on original image. 

  
(c) Final snake on depth image. (d) Original image with snake from (c) overlaid. 

  
(e) Final snake on edge combination image. (f) Original image with snake from (e) overlaid. 

Figure 5 Results obtained from another test frame with GVF snake. 

 
 
4 Summary and Outlook 
 
In experiments on synthetic and real images, we have demonstrated how stereo-derived depth maps 
can be utilized to improve the segmentation results obtained from an active contours algorithm. We 
suggested the computation of a so-called “edge combination image” which combines edges from 
the intensity image with the location of discontinuities in the stereo-derived depth map. 



 
As a next step, we plan to perform experiments on a larger variety of test scenes in order to study in 
more detail the advantages and possible limitations of the method (e.g., in areas where errors in the 
depth map coincide with intensity edges.) Furthermore, we will investigate the user interaction 
required for the snake initialization as well as the possible exploitation of inter-frame redundancies 
for a more efficient implementation. 
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