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Abstract

In this paper, a simple and efficient solution for
combining shear-warp volume rendering and the
hardware graphics pipeline is presented. The ap-
proach applies an inverse warp transformation to the
Z-Buffer, containing the rendered geometry. This
information is used for combining geometry and
volume data during compositing. We present ap-
plications of this concept which include hybrid vol-
ume rendering, i.e., concurrent rendering of polyg-
onal objects and volume data, and volume clip-
ping on convex clipping regions. Furthermore, it
can be used to efficiently define regions with dif-
ferent rendering modes and transfer functions for
focus+context volume rendering. Empirical results
show that the approach has very low impact on per-
formance.

1 Introduction

Shear-Warp factorization [6] is generally consid-
ered to be one of the most efficient methods for
software-based volume rendering [10]. It has
proven to achieve interactive frame-rates compara-
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ble to methods that exploit hardware acceleration,
but still maintains the flexibility of a software solu-
tion. For applications which cannot take advantage
of the features provided by the latest graphics hard-
ware, it therefore provides a reasonable alternative.
Images created with this algorithm are usually ren-
dered as billboard textures with graphics APIs such
as OpenGL [18].

However, a problem arises when it is desired to
integrate shear-warp volume rendering with con-
ventional geometry rendering. When polygons in-
tersect the volume, the ”flat” nature of the texture
becomes visible, which is disturbing and partly de-
stroys the three-dimensional impression. Moreover,
augmenting the volume with text, markers, etc. as
it is often useful in medical applications, is limited.

In volume visualization, compositing is com-
monly used to model emission and absorption ef-
fects [9]. This discrete approximation accumulates
color contributions (emission) which are weighted
by translucency (absorption). Compositing allows
to simultaneously visualize surfaces and interior
structures. For combining geometry and volume
rendering, emission and absorption effects of the
geometry have to be considered during this process.

In this paper we describe a method to produce
renderings of intersected volume data and opaque
geometry through a simple modification of the
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shear-warp algorithm. We also show that our ap-
proach can be used to perform volume clipping.
Additionally, a focus+context volume rendering ap-
proach can be realized using this method.

In Section 2, we describe other approaches that
have been presented for concurrent rendering of ge-
ometry and volume data. Section 3 describes the in-
verse warp transformation, which is the basis for the
applications discussed in Section 4. In Section 5,
we present the results and discuss the performance
of our method. Finally, this paper is concluded in
Section 6.

2 Related Work

Much work has been done on rendering geometry
and volume data concurrently. The main problem
that has to be considered is the difference in repre-
sentation. While volume data is a set of samples,
geometry data is analytically defined. Volume data
is usually represented on a three-dimensional grid.
Geometry data is a set of analytically defined sur-
faces. In real-time rendering these are polygonal
meshes.

One idea is to convert polygon and volume data
into a common representation. Algorithms such as
Marching Cubes [8], extract surfaces from volume
data. These surfaces can then be rendered together
with the geometry, using the graphics hardware’s Z-
Buffer to ensure correct visibility. However, since
only surfaces are extracted, a lot of information is
lost during this process. The process of converting
geometry into volume data is referred to as vox-
elization [15]. This approach does not have the
problem that information about the interior of ob-
jects is lost. However, since applications use a huge
number of polygons, it can be very time-consuming
when done in software.

The drawbacks of these approaches have lead to
algorithms that simultaneously operate on geome-
try data and volume data [7, 4]. They combine ras-
terization of the geometry and volume rendering to
produce a hybrid rendering.

Lacroute and Levoy [6] introduced shear-warp
factorization, an efficient volume rendering algo-
rithm. In his thesis [5], Lacroute suggested a hybrid
algorithm that simultaneously performs composit-
ing and rasterization for each scanline. However,
this software approach cannot compete with the ras-
terization capabilities of modern graphics hardware,

available in every standard PC. Furthermore, it can-
not be integrated with standard graphics APIs.

In the work by Zakaria and Zaman [19] and
Schmidt et al. [13] the geometry is rasterized into
sheared-object space(this means that the shear
transformation of the shear-warp algorithm is ap-
plied to the geometry). The color and Z-Buffer es-
tablished during rasterization are then used in com-
positing to account for geometry contributions to
the rendering. Finally, the two-dimensional warp is
applied to theintermediate image. The rasterization
can be performed using graphics hardware, by ren-
dering the intersecting geometry into a non-visible
buffer and reading out the color and Z-Buffer.

However, existing systems need considerable
modifications for incorporating this method: Inter-
secting objects have to be determined and excluded
from the normal rendering process. For a large
number of objects, this might require to perform in-
tersection tests for all objects or the introduction of
advanced spatial data structures.

Our method does not suffer from this drawback,
making it more applicable for integration into exist-
ing systems. All geometry is rendered first. Then
the region of the hardware’s Z-Buffer correspond-
ing to the projection area of the volume is read out.
An inverse warp is applied to this partial Z-Buffer,
to transform it intosheared-object space. As sug-
gested by Schulze et al [14], this inversely warped
Z-Buffer is used to determine intersecting geome-
try.

3 Method Overview

In this section, we describe the basics of our method
for hybrid shear-warp volume rendering. First, we
introduce the terminology of the shear-warp factor-
ization. We then describe the inverse warp transfor-
mation of the Z-Buffer, which allows to integrate
geometry into the volume rendering algorithm.

3.1 Shear-Warp Factorization

The basic idea of shear-warp factorization [5, 6] is
that the view matrix is factorized into a shear and
a warp matrix. Also a permutation according to the
principal viewing axis is involved, but for simplicity
we will disregard it here.

Applying the shear transformation to the volume
means transforming each volume slice in a way,
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so that all viewing rays are parallel to the princi-
pal viewing axis. The coordinate system defined
by this property is calledsheared-object space. For
parallel projections, this means a translation of ev-
ery volume slice. For perspective projections, each
slice has to be scaled as well. Since all viewing rays
are parallel to the principal viewing axis insheared-
object space, the algorithm can process the vol-
ume in a slice-by-slice, scanline-by-scanline man-
ner, compositing into a so-calledintermediate im-
age. This allows cache-efficient access to the vol-
ume data and is the basis for several high-level op-
timizations [5, 6, 11].

After compositing has taken place, a warp is per-
formed which transforms theintermediate image
to the final image. However, since theintermedi-
ate imagecontains color information, only the two-
dimensional part of this transformation has to be
considered.

3.2 Inverse Warp Transformation

Today’s graphics hardware uses the Z-Buffer algo-
rithm [16] for displaying polygons with correct vis-
ibility. In general, for each fragment (a rasterized
portion of a polygon, attributed with location, color,
etc.), the fragment is only written into the frame
buffer if its distance to the image plane is lower
than the distance stored in the Z-Buffer. If this is
the case, the fragment’s depth value is written into
the Z-Buffer, overwriting the old value at that loca-
tion. Graphics APIs, such as OpenGL [18], allow
to read out the graphics card’s Z-Buffer into main
memory.

The Z-Buffer established when rendering geom-
etry can be used within the volume rendering algo-
rithm to perform several operations, such as hybrid
volume rendering or clipping (see Section 4). For
using the information provided by the Z-Buffer dur-
ing the compositing phase of the shear-warp algo-
rithm, it has to be transformed intosheared-object
space.

One way to perform this operation would be to
adjust the transformation matrix such that rasteri-
zation of the geometry is performed directly into
sheared-object space. However, this approach has
several drawbacks: Rasterization of polygons inter-
secting the volume has to be performed twice, one
time, using the original transformation in order to
establish the actual frame buffer, and once for trans-
forming them intosheared-object space. Therefore,

// Input: M (transformation matrix)
// source (source image)
// Output: destination (destination image)

for y = [0 .. destination.height-1]
{

for x = [0 .. destination.width-1]
{

t = Mˆ(-1) * (x,y)
destination[x][y] = source[t.x][t.y]

}
}

Listing 1: Two-dimensional backward-mapped
warp

for scenes containing a large number of polygons,
the portion of polygons that actually intersect the
volume has to be identified - otherwise the whole
scene would have to be rendered twice. This can be
accomplished by using the spacial data structures
such an application surely would incorporate (e.g.
bounding volume hierarchies). However, it compli-
cates the task of integrating the algorithm into ex-
isting systems.

Therefore, we chose an approach which relies on
no information about the scene apart from the Z-
Buffer that has been established during rendering.

Our method uses the inverse warp transforma-
tion to transform the Z-Buffer fromimage space
to sheared-object space. However, in contrast to
the warp of theintermediate imagefrom sheared-
object spaceto image space, a two-dimensional
transformation is not sufficient. One can inter-
pret the Z-Buffer as a set of point samples of the
scene geometry. The x and y coordinates of a sam-
ple point are implicitly defined by its location in
the buffer, whilst the z coordinate is stored in the
buffer itself. Performing just a two-dimensional
warp would only cause a two-dimensional transla-
tion of each point, rather than correctly transform-
ing it. In the remainder, we will refer to the actual
Z-Buffer assourceand to the result of the inverse
warp asdestination, treating both as images con-
taining depth values. This highlights the difference
between a two-dimensional and a three-dimensional
warp and suggests an implementation.

Common methods for image warping use
backward-mapping. In backward-mapped warping,
the destination pixels are inversely mapped to the
source image and sampled accordingly, as depicted
in Listing 1. However, since we need the depth
value at each sample location in order to compute
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// Input: M (transformation matrix)
// source (source image)
// Output: destination (destination image)

for y = [0 .. source.height-1]
{

for x = [0 .. source.width-1]
{

t = M * (x,y,source[x][y])
destination[t.x][t.y] = t.z

}
}

Listing 2: Three-dimensional forward-mapped
warp

the transformation, backward-mapping cannot be
used. Instead, we use a forward-mapping algo-
rithm [1] as depicted in Listing 2.

This causes some problems. The inverse warp
is performed on a discrete set of samples. Thus,
proper reconstruction has to be done. We use a
rectangular footprint, scaled according to the ratio
of the dimensions of the volume’s projection on the
image plane and the dimensions of theintermediate
image. For perspective projection, the footprint is
scaled according to the depth value as well. This
ensures that no holes occur in the transformed im-
age. Though this is a rather coarse approximation,
it has proven to provide sufficient quality.

Yet another problem remains: Severalsourcelo-
cations can map to the samedestinationlocation.
When not handled correctly, this introduces very
disturbing visibility errors. We therefore use a min-
imum operator to combinedestinationvalues and
sourcevalues (thedestinationis initialized with in-
finity). This corresponds to the Z-Buffer algorithm
- the value closest to the viewer is chosen.

The result of the inverse warp is a depth map in
sheared-object spacecoordinates of the same size
as theintermediate image. Therefore, finding the
depth value for a sample location can be accom-
plished by looking up the depth map’s value using
the current indices for theintermediate image. Neg-
ative values in this map correspond to geometry in
front of the volume, values that exceed the volume’s
dimension along the principal viewing axis, corre-
spond to geometry behind the volume. All other
values correspond to geometry that intersects the
volume. Figure 1 illustrates the use of the inverse
warp transformation for combining volume and ge-
ometry rendering.
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Figure 1: Integration of geometry and volume ren-
dering using the inverse warp transformation

4 Applications

4.1 Hybrid Volume Rendering

Concurrent display of intersecting volume data and
polygons is often desired in virtual environments. It
allows to display augmentations, markers or labels
located next to structures of special interest within
the volume, enabling the user to perceive this in-
formation in the correct context. Virtual objects
aligned with real-world props can be used to pro-
vide a three-dimensional interface [3]. Using the

Figure 2: An example of hybrid volume rendering
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// Input: volume (volume data)
// depthmap (inv. warped Z-Buffer)
// Output: final (final image)

for k = [0 .. volume.dimensions.z - 1]
{

for j = [0 .. volume.dimensions.y - 1]
{

for i = [0 .. volume.dimensions.x - 1]
{

[u,v] = Shear(i,j,k)
[i,j,u,v] = Skip(i,j,u,v)

if (k >= depthmap[u][v])
Terminate(intermediate[u][v])

else
{

Composite(intermediate[u][v],
volume.data[i][j][k])

if (intermediate[u][v].opacity >= 1.0)
Terminate(intermediate[u][v])

}
}

}
}

Warp(final,intermediate);

Listing 3: Hybrid shear-warp algorithm

inverse warp transformation, hybrid volume render-
ing can be easily implemented.

All geometry is rendered first, then the Z-Buffer
is read out and is inversely warped. During the vol-
ume rendering algorithm, rays intersecting geome-
try are terminated. A test has to be performed at ev-
ery sampling location, comparing the current slice
index with the inversely warped Z-Buffer. If the
value is equal or higher than the current slice in-
dex, no more compositing has to be performed for
the correspondingintermediate imagepixel - the
ray can be terminated. When runlength-encoding
of the intermediate imageis used, as proposed by
Lacroute [5], runs of voxels only contributing to al-
ready terminated rays can be efficiently skipped.

Listing 3 gives the pseudo-code for the hybrid
shear-warp algorithm. Note that the only change
that is required (depicted inboldface), is a simple
lookup in the inversely warped Z-Buffer. This tech-
nique can be applied to any existing implementation
of the shear-warp algorithm.

The advantage of this approach is that no infor-
mation about the geometry, apart from the Z-Buffer,
is needed within the volume rendering algorithm.
This allows hybrid volume rendering to be inte-
grated very easily into existing geometry-based sys-
tems, such as virtual or augmented reality environ-
ments. The only constraint is, that the volume has to

Figure 3: An example of volume clipping

be rendered after the geometry, since the algorithm
needs the information stored in the Z-Buffer.

We have successfully integrated our hybrid ap-
proach into the Visualization Toolkit (VTK), a
data-flow based visualization library and Studier-
stube [12], a collaborative augmented reality envi-
ronment based on Open Inventor. An example im-
age of hybrid shear-warp volume rendering can be
seen in Figure 2. It displays a volume rendered
daisy pollen granule (acquired by laser scanning
confocal microscopy), intersected by a polygonal
cone.

4.2 Volume Clipping

As presented by Weiskopf et al [17], volume clip-
ping for convex clipping regions can be imple-
mented by testing against the Z-Buffers established
by rendering both, front faces and back faces sep-
arately. Sampling locations that lie within the clip-
ping region are simply skipped.

This concept can be used in conjunction with the
inverse warp transformation, to introduce such clip-
ping regions to the shear-warp algorithm (see Fig-
ure 3, which displays a MRI dataset clipped with
a polygonal box). Listing 4 depicts the innermost
loop of a shear-warp algorithm with support for
clipping regions.

4.3 Focus+Context Volume Rendering

Extending the previous approach, the concept of fo-
cus+context well known in information visualiza-
tion can be applied to volume visualization. Rather
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[u,v] = Shear(i,j,k)
[i,j,u,v] = Skip(i,j,u,v)

if (k < depthmap_front[u][v] ||
k > depthmap_back[u][v])

{
Composite(intermediate[u][v],

volume.data[i][j][k])

if (intermediate[u][v].opacity >= 1.0)
Terminate(intermediate[u][v])

}

Listing 4: Innermost loop of a shear-warp algorithm
supporting clipping regions

Figure 4: An example of focus+context volume ren-
dering

than just clipping the geometrically defined re-
gion, the render mode is adjusted inside the region.
Hauser et al introduced two-level volume render-
ing [2], a way to combine different render modes
within a single dataset.

Using geometry to define regions of interest fur-
ther extends the use of this idea. Instead of assign-
ing different render modes to presegmented objects
within the dataset, geometric regions of interest can
be used to provide tools, such as magic lenses, that
can be interactively repositioned and deformed. An
example can be seen in Figure 4, where an interac-
tive tool allows to render parts of the data set with
different transfer functions. Listing 5 depicts the
innermost loop of a shear-warp algorithm that sup-
ports focus+context volume rendering.

[u,v] = Shear(i,j,k)
[i,j,u,v] = Skip(i,j,u,v)

if (k < depthmap_front[u][v] ||
k > depthmap_back[u][v])

CompositeNormal(intermediate[u][v],
volume.data[i][j][k])

else
CompositeClipped(intermediate[u][v],

volume.data[i][j][k])

if (intermediate[u][v].opacity >= 1.0)
Terminate(intermediate[u][v])

Listing 5: Innermost loop of a focus+context shear-
warp algorithm

5 Results and Discussion

The advantage of our approach is that it is indepen-
dent of both, volume size and geometrical complex-
ity. The performance of the inverse warp is propor-
tional to the size of the volume’s projection on the
image plane.

One potential problem of our approach is that it
requires to read the Z-Buffer back into main mem-
ory. While modern graphics hardware has tremen-
dous rasterization and pixel fill capabilities, trans-
ferring data from the graphics card’s memory to
main memory can be a costly operation. Especially
on low-cost graphics hardware, the so-called ”2D-
path” is not optimized. We have therefore tested
the performance of the Z-Buffer read on various
common graphics boards. Table 1 shows the results
of our measurements for Z-Buffer read and inverse
warp. We have included timings for three com-
mon graphics chipsets to display the variations in Z-
Buffer read performance. Of those only the ProSav-
age DDR, a mobile solution with shared-memory
architecture, shows substantial problems. Even the
GeForce 4 MX 440, a low-cost consumer product,
provides sufficient performance.

During the volume rendering algorithm itself
only simple testing operations have to be per-
formed. To improve cache coherency, the inversely
warped z value for each pixel can be stored as an el-
ement of theintermediate image, instead of storing
it in a separate buffer. Using this approach the test
required for hybrid volume rendering introduced no
detectable performance impact in our implementa-
tion.

For evaluating image quality, we have compared
renderings of polygonal objects with voxelized ver-
sions of these objects, both intersected by geometry.
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Figure 5 shows images of a highly tesselated sphere
intersected by a cone and images of the same scene
using a voxelized version of the sphere. Differences
at the intersecting regions are visible in the magnifi-
cation. The visible artifacts are caused by the recon-
struction performed during the inverse warp trans-
formation (as described in Section 3.2). These ar-
tifacts could be reduced by using other reconstruc-
tion techniques, however, this would also affect per-
formance. Since the appearance is also improved
by texture blending, which causes smoothing, we
consider our choice to be a good trade-off between
quality and speed.

One limitation is that our method can only be
used for opaque geometry. It is not possible to re-
store original alpha values from the frame buffer,
after blending has been performed. While it is pos-
sible to introduce a limited number of transparency
levels, e.g. by rendering translucent objects sepa-
rately, easy integration, one of the main features of
our approach, severely suffers from this. It has been
suggested that a possible solution to this problem is
a Zlist-Buffer, which stores z and alpha values for
all surfaces seen through an image pixel [19]. If
such a buffer was to be implemented in hardware,
our approach could be extended to support translu-
cent geometry in a straight-forward manner.

6 Conclusion

The method we have presented allows to combine
polygons and shear-warp volume rendering by ap-
plying an inverse warp transformation to the Z-
Buffer. We have presented three applications of
this technique, hybrid volume rendering, volume
clipping and focus+context volume rendering. Our
method is independent of volume size and geomet-
ric complexity.

The key feature of our approach is that it al-
lows to integrate volume rendering into exist-
ing geometry-based systems, since no information
about the geometry apart from the Z-Buffer is
needed. This advantage enabled us to easily inte-
grate our algorithm into Studierstube, a distributed
augmented reality environment.

Future work will include the development of
more advanced interaction techniques and interac-
tive volume visualization tools based on the ap-
proach presented in this paper.
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Figure 5: Comparison of image quality.Top: Polygonal sphere intersected by polygonal cone, rendered
using OpenGL.Middle: Voxelized sphere intersected by polygonal cone, rendered using our hybrid shear-
warp algorithm (sharp transfer function).Bottom: Difference images of the magnified regions.
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