
Dissertation

On Software Design for Augmented Reality

ausgeführt
zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften

unter der Leitung von
Ao. Prof. Dipl.-Ing. Dr. Dieter Schmalstieg

Institut 188 für Software Technologie und Interaktive Systeme

eingereicht
an der Technischen Universität Wien

Fakultät für Informatik

von
Dipl.-Ing. Gerhard Reitmayr

Bleichergasse 13/9
1090 Wien

Matr.-Nr. 9325167

Wien, im März 2004

On Software Design for
Augmented Reality

Gerhard Reitmayr – Dissertation

reviewers:

Dieter Schmalstieg
Gudrun Klinker

Abstract

Augmented reality (AR) is an intriguing user interface technique that com-
bines the properties of the real world with information processed by a com-
puter. By augmenting the experience of the real world with computer-
generated sensations, e.g. through the use of head mounted displays with
optical combiners, virtual information can behave like a real object and users
can leverage their knowledge of the real world to interact with that informa-
tion.

The development of augmented reality systems encompasses a large num-
ber of areas in computer science. Sensor technology is required to measure
the state of the real world such as the position and gaze direction of a user.
Advanced computer graphics are necessary to render convincing images of
virtual information. Mobile applications with a focus on location-based in-
formation require large data sets to adequately model the large area they are
deployed in. Finally, collaborative applications are implemented using dis-
tributed systems to support several users. Therefore, a comprehensive AR
system needs to address all of these aspects and build upon a scalable design
that combines the individual areas.

The topic of this dissertation is a set of designs each of which address a
part of an augmented reality system that combines collaborative and mobile
applications. The individual designs focus on flexibility and high-level pro-
grammability to allow rapid incremental development of applications. The
combination of high-level configurations with optimized implementations can
provide the required performance while being flexible and extensible. The
areas that have been addressed are configuration and manipulation of track-
ing inputs; flexible scene graph management combining visual and semantic
model properties; a three-tier architecture managing and using large data sets
with a data-driven application design; flexible session and space management
for complex collaborative applications.

The individual designs are implemented as part of the Studierstube frame-
work and are demonstrated by a set of applications which focus on mobile
augmented reality systems that provide location-based navigation aids and
information displays to the user. These applications are based on a mobile
AR setup developed for indoor and outdoor use. The setup is also shown in
a set of collaborative applications supporting multiple mobile users.

The combination of these designs allows for rapid development of flexible
and scalable applications. A generic software architecture is presented to
illustrate the optimal combination of the individual solutions into a coherent
application. The architecture is demonstrated by a tourist guide system
which incorporates mobile and collaborative aspects.

i

Kurzfassung

Augmented Reality (AR) – erweiterte Realität – ist eine User Interface-
Technik, welche die Wirklichkeit mit computergenerierten Informationen ver-
bindet. Die Wirklichkeit wird durch den Computer erweitert, z.B. durch
Head Mounted Displays mit halbdurchlässigen Spiegeln. Virtuelle Infor-
mation verhält sich nun wie ein reales Objekt, und der Benutzer kann auf
natürliche Weise mit ihr interagieren.

Die Entwicklung von AR-Systemen verbindet verschiedenste Gebiete der
Informatik. Sensoren messen Ereignisse in der Wirklichkeit, z.B. die Posi-
tion und Blickrichtung eines Benutzers. Anspruchsvolle Computergrafik wird
benötigt, um glaubwürdige Bilder von virtuellen Informationen zu erzeugen.
Mobile Anwendungen bauen auf positionsabhängigen Informationen auf und
verwenden daher große Datenmengen, um ein interessantes Gebiet abdecken
zu können. Kollaborative Anwendungen setzten verteilte Systeme zur Real-
isierung ein um auf einfache Weise mehrere Benutzer bedienen zu können.
Ein umfassendes AR-System muss alle diese Aspekte vereinen.

Das Thema der vorliegenden Arbeit ist eine Reihe von Software-Designs,
welche einzelne Bereiche eines mobilen und kollaborativen AR-Systems ab-
decken. Die einzelnen Designs streben eine flexible und einfache Program-
mierung an, um rasche Iterationen bei der Entwicklung von Applikationen zu
erlauben. Durch die Kombination von einfachen Konfigurationen mit opti-
mierten Implementation wird die erforderliche Performance ermöglicht, ohne
die Flexibilität einzuschränken. Die einzelnen Bereiche sind folgende: die
Konfiguration und Verarbeitung von Messdaten von Trackinggeräten; eine
flexible Szenegraphen-Architektur, welche visuelle und semantische Aspekte
eines Modells verbindet; eine Three-Tier-Architektur für die Verwaltung von
großen Datenmengen; ein flexibles Session- und Raum-Management für kom-
plexe kollaborative Anwendungen.

Jedes der Designs wurde als Teil des Studierstube Frameworks implemen-
tiert und wird durch einige Anwendungen veranschaulich, welche aus dem
Bereich ortsabhängiger Navigations- und Informationsvisualisierung stam-
men. Ein mobiles AR-System für Indoor- und Outdooreinsatz wurde als
Basis dieser Applikationen entwickelt und wird auch in mehreren kollabora-
tiven Anwendungen für mobile Benutzer eingesetzt.

Die entwickelten Lösungen erlauben die schnelle Erstellung von flexi-
blen und skalierbaren Anwendungen. Eine allgemeine Softwarearchitektur
wird beschrieben, welche die optimale Kombination der einzelnen Designs zu
einer umfassenden Anwendung erleichtert. Diese Architektur wird schließlich
eingesetzt um eine Touristenführer-Anwendung zu implementieren, welche
mobile und kollaborative Aspekte vereint.

ii

Acknowledgements

This dissertation would not have been possible without the help of many peo-
ple: I want to thank foremost my advisor Dieter Schmalstieg for the constant
support and guidance during the development of this work. He always sug-
gested new ideas to explore and taught me the principles of scientific work.
I also would like to thank Christian Breiteneder for creating a stimulating
working environment and being a model of scientific scrutiny.

Many thanks go to past and present members of the virtual reality re-
search group at Vienna University of Technology for extensive discussions
and general help with whatever would come up: Istvan Barakonyi, Tamer
Fahmy, Anton Fuhrmann, Gerd Hesina, Hannes Kaufmann, Karin Kosina,
Florian Ledermann, Joseph Newman, Thomas Pintaric, Jan Prikryl, Thomas
Psik, Rainer Splechtna and Daniel Wagner.

The applications described throughout this dissertation are also the re-
sult of the dedicated work of our students. Thanks go to Ivan Viola and
Matej Mlejnek for their work on the first iteration of the mobile augmented
reality setup; to Thomas Lidy and Michael Kalkusch for their work on the
original Signpost implementation; and special thanks to Michael Knapp for
his outstanding work on both the first and the final Signpost 2 applications.

I also want to thank the WG Bleichergasse and all the members who
lived there at some point in time: Ali, Manfred, Markus and Thomas. It was
always a great place to live, work and party! Special thanks to Alexandra who
had endless patience when I worked through yet another weekend instead of
spending more time with her. Finally I’m very grateful to my family who at
all times supported my interests in computer science and mathematics and
enabled me to reach this point.

Part of this research was supported by the Austrian Science Fund (FWF)
contract no. P14470 and Y193, and Vienna University of Technology by
Forschungsinfrastrukturvorhaben TUWP16/2002.

iii

Contents

Abstract i

Kurzfassung ii

Acknowledgements iii

Table of Contents vii

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Augmented Reality – a ubiquitous user interface 1
1.2 Software design for AR applications 2
1.3 Problem statement . 4
1.4 Contribution . 5

2 Related work 9
2.1 Mobile augmented reality . 9
2.2 Collaborative augmented reality 10
2.3 Software frameworks for augmented reality 11
2.4 Software frameworks for tracking 13
2.5 Overview of Studierstube . 14

2.5.1 Open Inventor . 14
2.5.2 3D event system . 16
2.5.3 Widget system . 16
2.5.4 Dynamic application loading 18
2.5.5 Single-host multi-user Studierstube 18
2.5.6 Distributed Inventor 19

iv

Contents v

3 Data flow engine 20
3.1 Tracking for Augmented Reality 20
3.2 Related work . 22
3.3 Concepts . 23

3.3.1 Multiple Input Ports and References 23
3.3.2 Edge types . 24

3.4 Implementation . 25
3.4.1 Source Nodes . 25
3.4.2 Filter Nodes . 26
3.4.3 Sink Nodes . 27
3.4.4 Time . 27
3.4.5 Software architecture 27
3.4.6 Software engineering with XML 29
3.4.7 Data flow implementation 32

3.5 Results . 33
3.5.1 Distributed tracking 34
3.5.2 Mobile Augmented Reality setup 35
3.5.3 Indoor wide area tracking 38

3.6 Summary . 42

4 Context sensitive scene graph 43
4.1 Concepts . 45

4.1.1 Scene graph model for data storage 45
4.1.2 Context sensitive scene graph 47

4.2 Implementation . 48
4.3 Decoupling of model and control 50
4.4 Results . 52

4.4.1 System management in Studierstube 52
4.4.2 Signpost - attributing of a general model tree 53

4.5 Summary . 56

5 Data management 57
5.1 Related work . 59
5.2 Concepts . 60

5.2.1 Modelling . 61
5.2.2 Data handling . 62

5.3 Implementation . 63
5.3.1 Schema definition . 64
5.3.2 Transformations . 66

5.4 Results . 69
5.4.1 Indoor navigation . 69

Contents vi

5.4.2 Information browsing 71
5.5 Summary . 73

6 Managing collaboration 75
6.1 Related work . 76
6.2 Locale framework . 77

6.2.1 Requirements . 77
6.2.2 Concepts . 78
6.2.3 Definition of locales . 79
6.2.4 Managing applications with locales 80

6.3 Implementation . 81
6.3.1 Using Distributed Inventor for applications 82
6.3.2 Shared applications . 82
6.3.3 Locales in the scene graph 84
6.3.4 Session manager . 84

6.4 Results . 86
6.4.1 Basic stationary multi user setup 86
6.4.2 Application migration 87
6.4.3 Augmented Classroom 89

6.5 Summary . 92

7 AR application design 93
7.1 Principles . 93

7.1.1 Tracking . 97
7.1.2 User Interface . 99
7.1.3 3D presentation . 104
7.1.4 Application core . 104
7.1.5 Data management . 105
7.1.6 Collaboration . 106

7.2 Design work-flow . 109
7.3 Summary . 111

8 A collaborative tourist guide application 112
8.1 Requirements . 113

8.1.1 The mobile augmented reality setup 114
8.2 Applying the work-flow . 115
8.3 Tracking configuration . 117
8.4 Navigation application . 118

8.4.1 User interface . 118
8.4.2 Application core . 120
8.4.3 Data management . 122

Contents vii

8.4.4 Collaboration . 124
8.5 Information browsing . 126

8.5.1 User interface . 126
8.5.2 Data management . 129
8.5.3 Collaboration . 131

8.6 Annotation . 131
8.6.1 User interface . 132
8.6.2 Application core . 133
8.6.3 Collaboration . 134

8.7 Data acquisition . 135
8.8 Summary . 137

9 Conclusions 138
9.1 Data flow network . 140
9.2 Context sensitive scene graph 140
9.3 Data management . 141
9.4 Managing Collaboration . 141

A BAUML definition 143
A.1 Global simple types . 143
A.2 Global complex types . 145
A.3 Basic types . 149
A.4 Global elements . 151

Bibliography 159

Curriculum Vitae 171

List of Figures

1.1 Studierstube components . 8

2.1 Studierstube widgets . 17

3.1 OpenTracker architecture . 21
3.2 Data flow graphs in OpenTracker 24
3.3 Class diagram of the OpenTracker library 29
3.4 Example configuration file and corresponding graph 31
3.5 Decoration of the DOM tree 32
3.6 Push and pull data flow . 33
3.7 Distributed tracking configuration 35
3.8 Hardware component diagram of the mobile AR setup. 36
3.9 Mobile AR setup configuration 37
3.10 Geometric model of a floor. 38
3.11 Coordinate systems for indoor tracking. 39
3.12 Use of GroupGate nodes . 41

4.1 Context sensitive scene graph 44
4.2 SoContext specification . 49
4.3 SoContextSwitch specification 49
4.4 SoContextMultiSwitch specification 50
4.5 Selecting representations of objects. 51
4.6 Combining rendering options. 52
4.7 SoBAURoom scene graph . 55

5.1 Data management architecture 58
5.2 Type hierarchy of model schema 63
5.3 Basic type elements . 65
5.4 XSLT template for SpatialObjectType 67
5.5 XSLT template for DEF names 68
5.6 XSLT template for representations 68
5.7 Transformation example . 70

viii

List of Figures ix

5.8 Work flow for Signpost data management 72
5.9 Studierstube XML database 74

6.1 Class diagram for session manager implementation 85
6.2 Panorama screen . 87
6.3 Panorama screen locale configuration 88
6.4 Tiled display wall . 89
6.5 The Augmented Classroom setup 90
6.6 The Augmented Classroom live 91
6.7 Locales configuration for the Augmented Classroom 91

7.1 Studierstube application architecture 95
7.2 Mapping to reference architecture 96
7.3 Tracking feedback loop . 99
7.4 Widget adaption layer . 101
7.5 Rendering and interaction scene graph 103
7.6 Application proxy . 108
7.7 AR application design work flow 110

8.1 Mobile AR setup . 115
8.2 Outdoor setup user interface 116
8.3 Outdoor navigation . 118
8.4 Navigation application scene graph 120
8.5 Navigation application field connections 123
8.6 Outdoor information browsing 127
8.7 Information browsing application scene graph 128
8.8 Information browsing application engine network 130
8.9 Outdoor annotation . 132
8.10 3D model of the City of Vienna 136

List of Tables

3.1 Components of the OpenTracker event data type. 25

4.1 Context information provided by the Studierstube framework. 53

8.1 Navigation user interface states 119
8.2 Fields of the NavigationContext node 121
8.3 Fields of the UserContext node 125
8.4 Information browsing user interface states 127
8.5 Annotation user interface states 133
8.6 Fields of the AnnotationContext node 134

x

Chapter 1

Introduction

1.1 Augmented Reality –
a ubiquitous user interface

The user interface technique of augmented reality is based on the intrigu-
ing idea of merging the presentation of the human computer interface with
the real world. Augmented reality (AR) seeks to establish a more natural
user interface by giving abstract information properties of the real world or
associating it with phenomena encountered within the real world such as
space and time. In doing so, AR blurs the distinction between the real world
and the user interface in a way similar to the ideas of ubiquitous comput-
ing as described by Weiser [115]. While ubiquitous computing focusses on
the computer becoming invisible among the objects of everyday life, aug-
mented reality seeks to add to the experience of reality to create new forms
of interaction between humans and computers.

The main idea of augmented reality is to superimpose or mix computer
generated sensations with stimuli generated by the real world. The distin-
guishing properties as defined by Azuma [7] are the combination of the real
and virtual, real time interaction and registration in 3D. Typically human
sense which is augmented is vision as appropriate output devices and tech-
niques are well established. A see-through device that mixes the real image
with a computer generated virtual image allows a computer generated im-
age to be superimposed over the user’s perception of the real world. As the
rendered augmentation is registered in 3D and the display is updated at in-
teractive frame rates, the user will perceive the augmentation in the same
way as a real object.

An important part of any AR user interface is 3D interaction. Humans
know how to interact with real objects, how to handle and manipulate them.

1

1.2 Software design for AR applications 2

The augmentation of the real world with artificial objects tries to leverage
that knowledge and extend it to the artificial information objects.

Combining mobile (computing using wearable computer setups) with aug-
mented reality can result in a 3D information space around the user [101].
With a global infrastructure to provide location-based information the world
itself becomes an interface to a second, overlaid world of information [100].

An important direction of research in augmented reality is the support of
collaborative activities. AR can provide a seamless environment for several
users simultaneously, thus providing unobtrusive support to their tasks.

1.2 Software design for AR applications

Developing augmented reality applications is still a challenging task, even
after years of research and numerous application demonstrators built. Be-
sides the limiting constraints of tracking and display technology, the software
complexity involved in producing a convincing application is significant. The
difficulties arise directly from the basic properties of augmented reality as de-
fined by Azuma [7]:

1. Combines real and virtual

2. Interactive in real time

3. Registered in 3D

The first property has some impact on the choice of technology to estab-
lish a model of the real world. Sensors are deployed to measure individual
properties of the real world to create this model. As more accuracy is needed
and as more and complex sensors are necessary, the amount of data requiring
processing is increasing. Applications require the synthesis of high-level com-
mands and interactions from the raw tracking data by a series of processing
steps. Sensor devices also add another level of complexity to the overall sys-
tem. Hardware devices that require configuration, permanent operation and
also raise additional constraints such as hardware interfaces, device drivers
for operating systems or distribution of tracking data over several hosts.

The third property not only demands 3D tracking systems, but often
leads to 3D output modalities as well, typically 3D graphics. Despite ever
increasing graphics throughput, high-quality rendering and realistic effects
are still an active area of research and development and can easily bring the
most powerful workstation to its knees.

1.2 Software design for AR applications 3

Finally, all of these complexities are aggravated by the second property,
real-time interactivity. This property requires solutions that work within
short time intervals to provide the necessary minimal frame rate to the user.
Even batch processing of input data and computation is often not an option,
because during the time it takes to evaluate the data, the user might have
changed her opinion about it.

Furthermore, the use of augmented reality in mobile computing applica-
tions requires that the software design scales well with respect to the amount
of data that needs to be processed and presented. Mobility implies that the
user is potentially interested in a large working area and information based
on locations within that area.

Collaborative applications require distributed systems that scale well with
the number of users. Stationary collaborative applications for same-space
work are usually limited in the number of users and therefore do not require
complex user and session management. However, the use of AR with mobile
systems leads to a potentially large number of participating users who want
to collaborate and interact with each other. The sessions of users working
together will also be very dynamic as users move about their environment
and join or leave existing working groups.

Real mobile collaborative applications in AR will require scalability in
both the volume of data and the number of participants in a distributed
system. The complexity of these requirements in the context of the basic
properties of AR as defined above are non-trivial. Therefore, a good software
design will balance the trade-offs between different requirements within an
AR application to create a satisfying system.

Additionally, a good software design will try to achieve reusability and
independence between application subcomponents. Also, software processes
that are well suited to the development of interactive applications require
an iterated process to include feedback from the end-users as early and fre-
quently as possible. AR user interfaces are still a new topic and subject much
experimentation. Thus, both aspects of developing AR applications require
a flexible design that allows testing of a large number of variations within
the usually limited time available.

Different areas of changeability can be identified. Tracking devices are
replaced by new ones; their location in a room may change and require re-
calibration; different user interfaces may require new combinations of input
devices. Therefore, changes to the tracking setup should be transparent to
and independent of the remaining parts of an application to support iterative
development.

Development of the graphical user interface will also require frequent
changes to test different variations. If the presentation of information and

1.3 Problem statement 4

the interaction therewith can be changed without interfering with the re-
maining application, the system will provide a more flexible development
environment.

Finally, it is certainly desirable to develop application functionality in-
dependently of the final user interface or tracking modalities used. Such an
approach furthers reuse of the core functions of an application and can lead
to a modular approach of building new applications from existing functional
blocks. In summary, an efficient development system for augmented reality
applications should support experimental and exploratory styles of program-
ming that use an iterative and prototype-based development process.

1.3 Problem statement

All the typical software components in augmented reality systems have been
subject to extensive research during the last few years. The work has resulted
in a number of frameworks that encapsulate algorithms and implementation
expertise in various specialized problems in code, ready for the developer
to reuse. However, these frameworks typically provide the developer with
a set of library calls or objects that implement the specific algorithms but
without illuminating the overall application design. The fine-grained func-
tionality provided by an application programming interface usually requires
a large management overhead on the part of the application programmer and
therefore still allows inefficient implementations.

The level of abstraction within the frameworks is not sufficiently high
to support the exploratory and iterative development process that would be
ideal for AR applications. A large number of existing frameworks are based
on languages that require compilation and therefore already oppose frequent
changes. Others employ interpreted languages but the disatvantages of too
fine-grained APIs persist.

Additionally, some software frameworks provide high-level architectural
patterns such as means of inter-component communications that are too
general to direct the developer towards a working design. The problem is
that the trade-offs associated with applying the general architecture to the
application are often non-obvious. For example, a generic inter-component
communication facility allows the implementation of every single software
object as a full fledged component at the cost of increased communication
overhead. Aggregating the functionality into appropriate components to im-
prove performance while retaining modularity is usually non-trivial.

1.4 Contribution 5

1.4 Contribution

The contribution of this dissertation is a set of software designs for recurring
subcomponents in augmented reality applications. The designs focus on scal-
ability and performance while providing a high-level configuration approach.
The implementations demonstrated offer a declarative programming style for
the individual components which permits exploratory and iterative develop-
ment and simplifies the use of automated tools to generate configurations.

Additionally, it addresses the complex development process of an AR
application by providing a design guideline for developing applications within
the context of the developed components. Such a guideline can lead the
developer to efficient combinations of the individual reusable components.
Consequently, the thesis statement is as follows:

The following designs for the respective components are efficient
implementations which offer high-level programmability:

• A pipes-and-filters architecture to implement a data flow ap-
proach to the manipulation of tracking data.

• A high-level multi-dispatch design for scene graphs to com-
bine semantic and implementation dependent structures in
the scene graphs.

• A data-driven three-tier architecture to provide a scalable
data management approach for AR applications.

• A generic session and space management system for dis-
tributed augmented reality applications.

An integrated software design approach using these components
simplifies the implementation of mobile and collaborative aug-
mented reality applications.

The individual subsystems developed for this dissertation deal with the
following aspects of an AR application. Configuration and operations of sen-
sor equipment and appropriate hardware abstractions within the application
are described in chapter 3. An extension of the scene graph concept for in-
tegrating application and presentation data to simplify application logic and
allow scalability in data complexity is presented in chapter 4. A three-tier
architecture to handle large scale data sets integrating with the presenta-
tion layer is presented in chapter 5. A concept to structure the distributed
application configurations of multiple users in a dynamic environment is pre-
sented in chapter 6. The true power of these developments can be delivered,

1.4 Contribution 6

if assembled into an integrated system of patterns. The design guidelines
to achieve such integration are described in chapter 7. Finally, the applica-
bility of these guidelines are demonstrated with the example of an outdoor
navigation and information browsing application in chapter 8.

The focus of this dissertation lies on augmented reality applications with
the following characteristics :

• 3D information and presentation

• 3D interaction

• Location-based mobile AR systems with large databases

• Collaborative applications

Therefore, the individual chapters will present demonstration applications
with these properties. While every application will use more then one com-
ponent, the individual result sections will only focus on aspects relevant to
the current chapter. The final tourist guide application described in chapter
8 will combine the different components in a coherent form.

The work described here was developed in the context of the Studier-
stube software framework for augmented reality applications and therefore
extends it in various ways. Figure 1.1 shows an overview of the existing
and contributed components of the Studierstube system. A more detailed
description of the Studierstube framework is given in section 2.5.

The work presented here contains material previously published in:

• G. Reitmayr and D. Schmalstieg. Mobile collaborative augmented re-
ality. In Proceedings of the Second International Symposium on Aug-
mented Reality 2001, pages 114-123, New York, New York, USA, Oc-
tober 29-30 2001. IEEE Press.

• G. Reitmayr and D. Schmalstieg. OpenTracker - an open software
architecture for reconfigurable tracking based on XML. In Proceedings
of IEEE Virtual Reality 2001, pages 285-286, Yokohama, Japan, March
13-17 2001. IEEE Press.

• D. Schmalstieg, G. Reitmayr, and G. Hesina. Distributed applications
for collaborative three-dimensional workspaces. PRESENCE - Teleop-
erators and Virtual Environments, 12(1):53-68, February 2003. MIT
Press.

1.4 Contribution 7

• G. Reitmayr and D. Schmalstieg. Location based applications for mo-
bile augmented reality. In R. Biddle and B. Thomas, editors, Proceed-
ings of the Fourth Australasian User Interface Conference 2003, volume
25 (3) of Australian Computer Science Communications, pages 65 - 73,
Adelaide, Australia, February 4 - 7 2003. ACS Inc.

• G. Reitmayr and D. Schmalstieg. Data management strategies for mo-
bile augmented reality. In Proceedings of the International Workshop
on Software Technology for Augmented Reality Systems 2003, pages
47-52, Tokyo, Japan, October 7 2003.

Details of demonstrations and applications described here were also pub-
lished in the following works:

• M. Kalkusch, T. Lidy, M. Knapp, G. Reitmayr, H. Kaufmann, and
D. Schmalstieg. Structured visual markers for indoor pathfinding. In
Proceedings of the First IEEE International Augmented Reality Toolkit
Workshop, Darmstadt, Germany, September 30 2002. IEEE Press.

• F. Ledermann, G. Reitmayr, and D. Schmalstieg. Dynamically shared
optical tracking. In Proceedings of the First IEEE International Aug-
mented Reality Toolkit Workshop, Darmstadt, Germany, September 30
2002. IEEE Press.

• D. Schmalstieg, H. Kaufmann, G. Reitmayr, and F. Ledermann. Ge-
ometry education in the augmented classroom. In Proceedings of the
IEEE and ACM International Symposium on Mixed and Augmented
Reality, Darmstadt, Germany, September 30 - October 1 2002. IEEE
Press.

• G. Reitmayr and D. Schmalstieg. Collaborative augmented reality for
outdoor navigation and information browsing. In Proceedings of the
Symposium Location Based Services and TeleCartography - Geowis-
senschaftliche Mitteilungen, volume 66, Vienna, Austria, January 28-29
2004.

1.4
C
on

tribu
tion

8

OpenTracker

Studierstube

Open Inventor

Context Sensitive
Scene Graph

Application Distribution
Management

Distributed
Open Inventor

Widgets & InteractionRendering Application
management

User management

Session ManagerData Management
Three Tier Architecture

Figure 1.1: Component diagram of the Studierstube system with contributions of this work highlighted.

Chapter 2

Related work

2.1 Mobile augmented reality

Combined with mobile computing using wearable computer setups, aug-
mented reality can create a 3D information space that lives around the user
[101]. Together with a global infrastructure to provide such location-based in-
formation it uses the world itself as the interface to a second, overlaid world
of information [100]. By allowing users to edit the information the world
becomes an Augment-able Reality [84] that can be enhanced with digital
information by all participants.

The first example of a mobile augmented reality application was the Tour-
ing machine [39, 38] demonstrating the possibilities of displaying location-
based data in an augmented reality user interface. The followup develop-
ments of the Mobile Augmented Reality System (MARS) [46] and situated
documentaries [48] further explored the user interface aspects of such sys-
tems and potential applications to interactive presentations for tours through
a university campus. Further work on presentation and view management
issues for heads-up displays [15, 45, 16] are aimed at improving the layout of
information within the user’s view.

The Battlefield Augmented Reality System (BARS) is a related develop-
ment based on the Touring machine. First applications demonstrated con-
structing models with the mobile AR system [8]. However, the main focus
lies on efficient information display for mobile users by selective information
filtering [52], optimized display techniques [60] and finally combinations of
different techniques in an adaptive system [53].

Another application area for mobile augmented reality are maintenance
scenarios. Here a worker is equipped with a wearable computer that displays
assembly and maintenance instructions directly into the view of the worker.

9

2.2 Collaborative augmented reality 10

Early demonstrations involved wire bundling in aircraft manufacture [32].
Other examples involve powerplant maintenance [57] and car design [36].

Applications of augmented reality to navigation were demonstrated early
on by Thomas et al. [108, 72]. The further development of the Tinmith sys-
tem demonstrated the applicability to entertainment [107] and investigated
the use of mobile AR for directly constructing models of real objects in place
[74, 75].

Other examples of using mobile augmented reality interfaces include the
Townwear system [88] which demonstrates simple information overlay for
tourists in pre-defined locations. Newman et al. [67] demonstrated mobile
AR applications within a sentient environment based on the Bat system [3],
a wide area tracking system for buildings.

Recent developments focus on applying mobile AR interfaces to real ap-
plications to be deployed to end users. An interesting piece of work is the
Geist [59, 58] project that aims to envelope users in an interactive story
situated at real places throughout the historic center of Heidelberg.

2.2 Collaborative augmented reality

Early examples of collaborative augmented reality were demonstrated in the
Shared space project [21] which demonstrated the use of AR for remote
teleconferencing [18, 20] and support of same-space collaboration.

TransVision [82] implemented collaborative AR application for design
inspection using hand-held displays that act as lenses through which the
combined environment can be seen. The users view and interact with a
common model in an intuitive way while being able to see each other without
difficulty.

Another piece of work was EMMIE [26] that demonstrated a shared
workspace enriched with virtual objects. It focused on managing the en-
vironment for different display modalities and users [25]. The combination
of mobile AR and remote collaboration between a mobile user and a station-
ary workspace was also investigated in the MARS project [46] later.

The Tinmith project also investigated remote collaboration between mo-
bile users and a stationary command post in a military setting [71]. Here
mobile soldiers would operate in a virtual battlefield and move in the real
world while their positions would be displayed in a virtual reality setting
back at the command post.

The Studierstube project [91] developed by the author’s research group
always placed an emphasis on supporting collaboration in shared augmented
reality workspaces [92]. Based on an underlying distribution mechanism [44]

2.3 Software frameworks for augmented reality 11

Studierstube extends its support to multiple users working with multiple
different display techniques in a shared workspace that features multiple
applications and management techniques similar to a common 2D desktop
[90]. Refer to section 2.5 for a more detailed description.

2.3 Software frameworks for augmented
reality

Several research groups having developed a series of augmented reality demon-
strators quickly discovered that a software design supporting development
increases software reuse and allows quicker iteration of their explorations of
possible AR user interfaces.

Coterie The Coterie system [61] is based on Modula3 and supports scene
graph based graphics programming and abstractions for tracking devices.
It formed the basis for the aforementioned Touring machine and MARS
projects. A later extension allowed for networked objects [62] to simplify the
implementation of distributed AR applications. The support for distribu-
tion was, however, not completely transparent requiring the implementation
of various callback functions on the application side. Nevertheless, complex
data structures such as scene graphs could be easily shared .

ARToolkit The ARToolkit library [54] is an example of a minimal AR
framework. It provides a tracking solution based on fiducial markers and
rendering simple graphics using OpenGL on top of the video stream used
for tracking. The typical application template only consists of a main loop
iterating over the tracking and rendering functions. Despite its simplicity
the library has been widely adopted and a large number of AR applications
based on ARToolkit have been developed.

Avango is a framework for developing virtual and augmented reality ap-
plication that also supports transparent distribution [110]. It is based on
SGI Performer and extends it with a more powerful scene graph, data fields
for objects and a Scheme language binding. By extending a mechanism to
connect fields to route data flow between them to support transparent net-
worked operation, distributed applications can be developed that implicitly
share data between different instances.

2.3 Software frameworks for augmented reality 12

Tinmith The Tinmith system is a full featured software architecture for
mobile augmented reality applications [76]. Originating from an older ar-
chitecture that was built from a network of communicating agent processes
[71, 77], it developed into an object-oriented software framework supporting
hierarchical scene graph based modelling and generic data flows between ob-
jects [73]. Implemented in C++, it features an extensive runtime support
system with type information, serialization and persistent storage to the file
system.

Rendering support is included via a set of objects that can be composed
into a scene graph structure to create geometric models. Tinmith supports
advanced modelling features such as CSG operations to simplify the con-
struction of real buildings with a mobile AR system.

DWARF The DWARF project [11] aims for a design concept that differs
greatly from traditional AR software designs. The basic units of the DWARF
framework are distributed services. A service is a piece of software running on
a stationary or mobile computer that provides a certain piece of functionality
such as optical tracking. Services can be connected to use the functionality
of other services establishing a data flow network to achieve a more complex
function.

To model what a service can offer to other services and what it needs from
other services, DWARF uses the concept of needs and abilities. A match of
one service’s need to another service’s ability leads to a connection between
the services; this is set up by the distributed service managers.

Abilities describe the functionality a service provides, such as position
data for optical markers. A service can have several abilities, such as an
optical tracker that can track several markers simultaneously. Abilities are
typed; an example is PoseData for 6D pose.

Needs describe the functionality required of other services. For example,
an optical tracker needs a video sequence and descriptions of the markers it
should detect. Needs are also typed, and only abilities of the same type can
satisfy a need.

CORBA-based middleware manages the services. Each DWARF system
network node has one service manager; there is no central component. Each
service manager controls the node’s local services and maintains descriptions
of them. The service managers cooperate with each other to set up con-
nections between services. Applications are created by configuring available
services into networks connecting their needs and abilities as required [63].

2.4 Software frameworks for tracking 13

2.4 Software frameworks for tracking

A specialized group of software architectures relate only to the topic of device
abstraction and handling of tracking data. As both virtual and augmented
reality applications rely heavily on input devices and sensors beyond the
basic mouse and keyboard, managing such devices and the data they produce
becomes increasingly important to such systems.

Typically, a variety of devices provide the same or similar data, therefore
abstraction from an individual device would be beneficial to the reusability
and portability of an application. Qualitative properties of input devices
such as degrees of freedom may vary but combinations of different devices
can make up for the lack of certain features. However, typically the combi-
nation of data from different devices is a non-trivial problem due to different
measurement modalities, update rates or error properties.

MR Toolkit An early example of a software toolkit dedicated to develop-
ing interactive and immersive graphics applications is the MR Toolkit [97].
Historically it focused on virtual reality settings, but can also be applied
to augmented and mixed reality applications. It provides device abstrac-
tion and network transparency for tracking devices. Therefore, applications
are decoupled from the actual tracking devices used and programmers can
substitute real devices with virtual ones for debugging and testing purposes.

VRPN The Virtual Reality Peripheral Network (VRPN) [104, 69] is a C++
library implementing device abstraction for a large number of tracking de-
vices and also networking support based on tracking servers and application
clients. It defines a small set of data types that can be reported by a device
through individual facets. VRPN provides similar features as the MR Toolkit
but supports a wider range of tracking devices.

VRCO trackd is a commercial tracking device software framework [113].
A central server process implements device drivers and provides device ab-
straction and network transparency to applications that connect to the server
process. It is extensible through loadable modules that implement the actual
device drivers.

VARIO The Virtual and Augmented Reality Input Output (VARIO) frame-
work [96] builds upon the concepts introduced by MR Toolkit and VRPN.
Similar to DWARF it implements a generic flow scheduling framework with

2.5 Overview of Studierstube 14

distributed components that can reside on different hosts. A central con-
figuration process manages the connections between components and the
configuration of individual components. Configurations are made persistent
by saving and loading descriptions of the connection and configuration pa-
rameters to and from XML files.

VARIO supports multi-modal event data because it does not prescribe
the type of data exchanged between components. It only provides for the
exchange of byte arrays which need to be interpreted by the components
themselves.

2.5 Overview of Studierstube

The context of this work is a research software system for augmented reality
applications called Studierstube [91]. It provides the foundation and basic
software design layers for the contributions developed in the main body.
Therefore it is necessary to describe some concepts and features of the system.

The goal of the development of Studierstube is a software framework to
support the technical requirements of augmented reality applications. It is
a set of extension nodes to the Open Inventor [102] rendering library and
an additional layer of objects that provide advanced runtime functions. It
includes support for interaction based on 3D tracking events, rendering and
output modes for all available virtual and augmented reality output devices,
tools for developing distributed applications, and user management functions
to support multiple users in a single setup.

2.5.1 Open Inventor

The Open Inventor (OIV) [102] rendering library is the basic software layer
upon which Studierstube is build. It is a framework of C++ classes that
implement a scene graph based rendering library using OpenGL. The princi-
ple architecture is that of an application framework with inversion of control
that supports an event driven programming style whereby the application is
typically composed as a set of callback functions that react to events issued
by the framework.

The basic unit of OIV is a node. This is a C++ class type with additional
functions to support runtime type system and serialization to and from an
ASCII based text format. Nodes aggregate objects called fields that store a
value of a certain type such as a string, a integer of floating point number, a
2D or 3D vector, or a rotation.

2.5 Overview of Studierstube 15

A dedicated node of type SoGroup can also associate a list of other nodes
called children to form a hierachical structure, the scene graph. Such a graph
forms a directed acyclical graph and orders a set of nodes into a certain
structure. The children of a group node are also ordered and can be accessed
in a left-to-right fashion numbering the first child with index 0 up to the last
child with index n− 1.

The scene graph is traversed recursively by a set of mechanisms called ac-
tions to compute different data. The actions implement the Visitor pattern
[40, p. 331] and call different functions on the nodes to trigger certain behav-
ior. For example, the SoGLRenderAction sends appropriate commands to
the OpenGL library to draw the image represented by the scene graph. The
SoSearchAction traverses a graph to find nodes of specified type or name.
The SoWriteAction serializes a scene graph into the Open Inventor file for-
mat.

Each node type can define the behavior for each action separately by
registering a function to be called by the action when it traverses a node of
this type. Thus a double dispatch mechanism is created to provide a flexible
implementation and extension mechanism. For a more detailed discussion of
these concepts, see the Inventor Toolmaker [117].

In addition to the scene graph traversal another flow scheduling mech-
anism is provided by Open Inventor. Fields of nodes can be connected to
receive updates from other fields forming a data flow network for small scale
stream processing and event handling. A special class of objects called en-
gines can be embedded in the data flow graph to process the change events
and compute new updates to other fields. These objects are not part of the
scene graph but only of the overlaid field network graph.

The Open Inventor API provides methods to construct and operate on
the scene and field network graph. Additionally sensors observe changes
to fields, nodes and the scene graph and report these to callback functions.
Time based sensors trigger callback functions after a certain time span, in
regular intervals or when the library has CPU time to spare.

Finally, the library provides a text based and a binary file format to seri-
alize a scene graph and field network structure to persistent storage (see the
Inventor Mentor [116]). Complex scene graphs can be constructed directly
as text files and read in by a client application of the library. Both manual
and automatic authoring of such structures becomes possible in an efficient
and transparent way.

Studierstube uses all of the above concepts to extend the base library
in several ways and provides AR-centered functionality in the form of new
nodes, actions and engines.

2.5 Overview of Studierstube 16

2.5.2 3D event system

Open Inventor only supports user interface events generated by a standard
desktop interface consisting of mouse movements and key and mouse but-
ton presses. Such events are propagated into the scene graph via the Han-
dleEventAction and are consumed by different types of nodes. A default set
of manipulator nodes exist which implement a set of standard 3D interac-
tions such as translating, scaling and rotating an object with the help of 3D
widgets.

Studierstube extends the library to support more generic user input de-
vices, generally 6DOF trackers. It implements a list of individual event
channels that supply the scene graph with streams of 6DOF tracking events.
These events consist of a channel id referred to as a station number, 3D po-
sition, a rotation, button states for up to 8 buttons, a time stamp and an
event type discerning between movements or changes to the button state.
They are propagated with a dedicated Handle3DEventAction.

An additional node base class Base3D implements the basic methods
that the Handle3DEventAction calls during traversal. New node classes that
react to 6DOF events use multiple inheritance to inherit from Base3D in
addition to the Open Inventor node class and override the action methods to
implement their own behavior. A simple example node class is SoStationKit
which encapsulates a sub-scene-graph and moves it according to the incoming
events. Different configuration fields choose which station channels to listen
to for events and geometric offsets for each individual channel.

Nodes can choose to cull the traversal of attached sub-graphs based on
containment of the event’s position within the bounding box of the node and
its children. Traversal can also be limited to events associated with a set of
stations or of defined types.

Individual stations are associated with different input devices such as a
user’s head, a pen or a tablet that are manipulated by the user or with other
tracked objects in the environment that are required for an application.

2.5.3 Widget system

A special group of nodes that interact with the 3D event system implement
a set of standard widgets. Widgets are graphical objects that react to in-
coming 3D events and change their state based on a sequence of 3D events.
Thus, they implement filters to compute a higher abstracted event from the
stream of raw 3D events. Their state is represented by different graphical
representations and changes to fields which are picked up by the application
in turn.

2.5 Overview of Studierstube 17

(a) (b)

Figure 2.1: (a) A ListBox widget and several buttons to load and save applications.
(b) A WindowKit widget contains application data.

2D widgets represent a typical example of such objects. Studierstube im-
plements a standard set consisting of toggle, push and radio buttons, lists,
and linear sliders. They are represented by 3D geometry that can be ma-
nipulated by the user. For example, buttons are boxes that have different
heights for the released and pressed state. Thus, it simulates the look and
feel of a real button.

A traditional 2D graphical user interface is usually presented on a tracked
tablet called the Personal Interaction Panel (PIP) [103]. The physical rep-
resentation provides a natural way to interact with the virtual widgets and
gives haptic feedback when an interaction device intersects the virtual wid-
get and collides with the real tablet. The PIP supports switching between
different sets of widget groups similar to a tabbed dialog. Each pane can
represent a user interface associated with a different application.

3D widgets allow simpler but less restricted interaction. They encap-
sulate geometry that can be dragged and rotated by the user with direct
manipulation. The Raypicker widget implements a ray casting interaction
that computes the intersection of a ray with given geometry. The ray is
controlled by one or more 3D event channels. A more complex 3D widget is
the WindowKit node which implements a box shaped container for geometry
similar to a window in a 2D graphical user interface. The window’s borders
act as manipulators to move, rotate and resize it.

2.5 Overview of Studierstube 18

2.5.4 Dynamic application loading

Applications are implemented as a sub-scene-graph in a Studierstube pro-
cess. They are defined by implementing a new application node class that
provides the application specific functionality. The application node can use
any sub-scene-graph to create the required graphics, user interface elements
and interaction methods. Additionally, applications can define their own
specialized node types to store dedicated data structures reusing Open In-
ventor’s rich set of field data types. At the same time, such a design enables
the use of all Open Inventor operations on the application’s data.

Because Open Inventor supports serialization of any scene graph to and
from a file, applications can be loaded and saved at runtime. As an ap-
plication will store all required data structures in fields and/or nodes of a
sub-scene-graph, the application’s scene graph already represents the appli-
cation’s state. Studierstube supports concurrent execution of several appli-
cations and provides an API to start, stop and save applications as well as a
user interface for manual control of applications.

2.5.5 Single-host multi-user Studierstube

Collaborative work scenarios are supported by Studierstube by providing the
necessary functionality to drive the hardware devices required for multiple
simultaneous users and by using an API to model resources for these users.
Studierstube supports several independent output windows to drive multi-
headed systems that offer a number of video outputs. Thus, several display
devices can be connected simultaneously and provide personalized views to
their users. Each output window can be configured independently in size,
position and rendering method for stereo displays. The virtual cameras for
each output window are controlled by independent input devices.

Moreover, the number of input devices is not limited, allowing the use of
as many devices and trackers as are necessary to build a multi-user setup. A
typical dual user setup for collaborative work will consist of two HMDs, two
interaction devices and two PIPs, resulting in a total of six tracked devices
and two output windows.

A set of resources consisting of an output window and event channels for
head-tracking and input devices are modelled as a user identified by a unique
id within the software framework. Applications are notified on startup of the
number of users and their configuration. 3D events are associated with a
user, if they are representing one of the user’s input devices. Therefore,
applications can distinguish between users and react differently as required.
The output display of each user can also be configured to use a private sub-

2.5 Overview of Studierstube 19

scene-graph which is only rendered for this user. This mechanism enables
personalized and private views.

2.5.6 Distributed Inventor

Like Studierstube, most distributed virtual environment systems use a scene
graph for representing the graphical objects in the application, but many
systems separate application state from the graphical objects. To avoid this
”dual database” problem [62], Studierstube introduces a distributed shared
scene graph using the semantics of distributed shared memory. Distribution
is performed implicitly by a mechanism that keeps multiple replicas of a
scene graph synchronized without exposing this process to the application
programmer or user. Our OIV extension - Distributed Inventor (DIV) [44] -
uses OIVs notification mechanism to distribute changes.

The communication between different replicas uses a reliable multicast
protocol. All hosts of replicas can send updates but the implementation
only provides causally-ordered update semantics. Therefore updates send by
different hosts can be executed in different order on individual hosts.

A scene graph to be replicated is denoted by a special group node So-
DIVGroup. It is configured with the necessary networking parameters and
automatically establishes connection with other peers. Any changes to the
sub-scene-graph of such a group node are communicated automatically. It
also can be configured to retrieve a current copy of the sub-scene-graph from
another peer upon joining a session.

DIV supports a master/slave property for each peer. Only peers with the
master property set generate updates. Peers with the master property set to
slave only listen for updates and apply them to their local replica. To avoid
inconsistencies in the updates of the replicas only one peer is a master within
Studierstube and therefore controls the replicated scene graph alone.

As the scene graph can be distributed using DIV, so can be the appli-
cations embedded in it. For each application a dedicated SoDIVGroup is
created as a parent to the application’s scene graph. Then, a newly created
application instance will be added to it and will therefore be distributed to
all replicas of a scene graph. The programming model of making application
instances nodes in the scene graph also implies that all application specific
data - i.e. data members of the application instance - are part of the scene
graph, and thus are implicitly distributed by DIV.

At any point in time only one replica is a master and therefore controls
the application. The other replicas only use the application’s scene graph to
render the personalized view for their outputs. Moving the master property
between replicas implements a simple forms of load distribution [93].

Chapter 3

Data flow engine

Tracking is an indispensable part of any virtual reality and augmented reality
application. While the need for quality of tracking, in particular for high
performance and fidelity, has led to a large body of past and current research,
little attention is typically paid to software engineering aspects of tracking
software. Some current systems have a modular approach that allows to
substitute one type of tracking device for another. Typically, this is the
approach taken by commercial VR products that offer turn-key support for
many popular tracking and input devices, but at the cost of a limited amount
of extensibility and configuration options. In particular, they make it hard
to combine existing features in novel ways.

In contrast, research systems may offer features not found in commer-
cial systems, such as prediction or sensor fusion, but are usually limited to
their particular research domain and not intended for the end user. In such
systems, replacing a piece of hardware or changing its configuration usually
leads to rewriting a significant portion of the tracker software.

In the middle(-ware), there is a lack of tools that allow for a high degree
of customization, yet are easy to use and to extend. What is needed is a sys-
tem that allows mixing and matching of different features, as well as simple
creation and maintenance of possibly complex tracker configurations. To ad-
dress this issue we present a software design and implementation that applies
the pipes-and-filter architectural pattern [24, p. 53] to provide a customizable
and flexible way of dealing with tracking data and configurations.

3.1 Tracking for Augmented Reality

The contribution of this chapter is the development of a generic data flow
network library called OpenTracker to deal specifically with tracking data.

20

3.1 Tracking for Augmented Reality 21

OpenTracker

Studierstube

StbSink

Transform

TrackerOT

Source BSource A

Merge

Module B

Application 1 Application 2

Module C

Device Driver

Figure 3.1: The OpenTracker library is a new layer abstracting the input devices
from applications such as the Studierstube framework. It operates a pipes-and-
filter network of nodes that process tracking data. Extensions are implemented by
adding new nodes and associated modules that provide services to the nodes.

3.2 Related work 22

It is built on two key observations :

• Abstraction of recurring operations on tracking data separates applica-
tions from concrete devices and configurations and yields better code
reuse.

• Flexible arrangement of such operations simplifies experimentation with
and development of VR and AR applications.

In a typical VR or AR application tracking data passes through a se-
ries of steps. It is generated by tracking hardware, read by device drivers,
transformed to fit the requirements of the application and send over network
connections to other hosts. Different setups and applications may require
different subsets and combinations of the steps described but the individual
steps are common among a wide range of applications. Examples of such in-
variant steps are geometric transformations, Kalman filters and data fusion
of two or more data sources.

The main concept behind OpenTracker is to break up the whole data
manipulation into these individual steps and build a data flow network of
the transformations. To describe the details of this concept, we will need
some theoretical definitions which are discussed in section 3.3. Details of an
actual implementation are described in section 3.4. The use of OpenTracker
is further simplified by providing a declarative configuration language based
on XML. Such an approach allows us to leverage the existing developments
in the area of XML and to apply a set of existing tools to the configurations
used by OpenTracker.

3.2 Related work

Device abstraction is a standard requirement for 2D graphical user inter-
faces, (e. g. GKS [51]), and sometimes incorporated into 3D applications
[42]. There is a number of libraries such as VRPN [69], MRToolkit [97] im-
plementing device abstraction for input devices typically found in VR and
AR systems. Their main goal is to provide a fixed interface to the application
for different devices and provide simple services for relaying the data over
the network between several hosts. These libraries mostly lack any further
means to process the data. Device abstraction is also an important goal
of OpenTracker. However, it goes beyond pure abstraction using a static
interface in that the data can be re-combined in novel ways.

Many interactive systems employ sophisticated event handling schemes.
State changes to attributes of scene objects are either propagated by func-
tional dependencies (e.g. routes in VRML [27], engines in Open Inventor

3.3 Concepts 23

[102]), or may be handled by user supplied callback functions (e.g. script
nodes in VRML [27]). These approaches inspire the architecture of Open-
Tracker, although none of them deals specifically with tracker configurations.

3.3 Concepts

Each unit of operation in OpenTracker is represented by a node in a data
flow graph. Nodes are connected by directed edges to describe the direction
of flow. The originating node of a directed edge is called the child whereas
the receiving node is called the parent. To allow more than simple linear
graphs, we introduce ports, references and edge types as follows.

3.3.1 Multiple Input Ports and References

Each node has one or more input ports and a single output port. A port is
a distinguished connection point for an edge, i.e. the node can distinguish
between events passing through different node ports. The output port of one
node is connected to any of the input ports of another node. This establishes
the flow by defining directed edges in the graph. A node receiving a new
data event via one of its inputs computes a new update for itself and sends
the new data event out via its output port.

Multiple input ports are desirable because computations typically have
more than one parameter. Dynamic transformations, for example, are pa-
rameterized by the value of another node and thus use the data value received
by a child to be transformed differently from the data of the parameterizing
child. Merge nodes may select part of the data of an event based on the input
port the event used. This allows more complex computational structures.

Additionally, an input port can be connected to several output ports.
This enables several children nodes connected to the same input port of a
node. Upon receiving an event, the parent node can only distinguish between
the input ports, not between the actual children. Fan-In of several events is
accomplished by serializing the events and the parent operates on each event
in turn.

Conversely, an output port can also be connected to other nodes by using
references within the graph. This establishes new edges between a nodes
output port and other nodes input ports. However this is transparent to
the child node. It cannot selectively send events to only one parent, but all
events are distributed equally to all parents.

Figure 3.2 gives some examples of data flow graphs that can be build with
OpenTracker. Part (a) shows a simple linear graph applying a geometrical

3.3 Concepts 24

a) linear graph b) multiple ports

c) reference nodes d) putting it all together

Figure 3.2: Visualizations of a data flow graphs as used in OpenTracker. (a) A
linear flow. (b) A node with different input ports. (c) Fan-Out of output ports. (d) A
complex example employing all features.

transformation to a data source, (b) shows a node with several input ports,
combining the received data. Part (c) is a graph using a reference node to
get a copy of the output of a node and (d) combines these features in a more
complicated graph.

3.3.2 Edge types

The basic mechanism behind the data flow concept is event passing. Data
events are passed from the children nodes upward to their parents. However,
not all computations fit well into this model: Algorithms that operate on a
list of tracker measurements or that require or compute the tracker state at
an arbitrary point in time require different types of input or output interfaces.
Examples are smoothing algorithms that take a history of events into account,
or prediction algorithms that compute an expected measurement for a given
point in time.

Therefore, we also distinguish between different edge types. Edges are
typed by typing the ports of the nodes they connect. We establish the rule

3.4 Implementation 25

Component Description
position 3 component vector describing a position in space.
orientation 4 component vector describing a rotation as a quaternion.
button 16 bit integer value describing the state of 16 button de-

vices.
confidence floating point value in the interval [0, 1] describing the qual-

ity of the measurement.
time time stamp giving the time of measurement.

Table 3.1: Components of the OpenTracker event data type.

that only two ports of the same type can be connected and this type is the
type of the edge. There are three edge types: event, which is implemented
by event passing, event queue and time dependent. The latter two are im-
plemented as interfaces that are polled by the parent node, because the data
returned is parameterized. In the case of the event queue interface, it is
possible to query the number of stored events and retrieve them by index.
The time dependent interface can be queried by specifying a point in time,
for which the appropriate data value is returned.

3.4 Implementation

In an actual implementation we distinguish source nodes, which are leaves in
the graph and receive their data values from external sources, filter nodes,
which are intermediate nodes and modify the values received from other
nodes, and sink nodes, which propagate their data values received from other
nodes to external outputs.

The data type passed between nodes is a complex data structure tailored
towards the requirements of AR applications and consists of a fixed set of
components (see Table 3.1). Although this restriction to a fixed data type
appears as an limitation, it can easily be extended or generalized because
nothing in the supporting system relies on the type of the event data.

3.4.1 Source Nodes

Most source nodes encapsulate a device driver that directly accesses a partic-
ular tracking device, such as a Polhemus or Ascension tracker connected to a
serial interface. Other nodes objects form bridges to complex self-contained
systems, such as the video tracking library from ARToolkit [55] or imple-
ment a DWARF service interface [12]. A third type of source node emulates

3.4 Implementation 26

a tracker via the keyboard, access network data (see section 3.5.1) or simply
responds with constant values (useful for development and debugging).

Some source nodes have a multi-threaded execution model to implement
an efficient decoupled simulation model [97] (e. g. , when blocking I/O must
be used).

3.4.2 Filter Nodes

Filter nodes receive values from one or more child nodes. Upon receiving
an update from one or more of their children, they compute their own state
based on the collected data. A non-exhaustive list of filters includes:

• Transformation filters perform geometric transformations of their chil-
dren’s values. These include pre- and post-transformations and may be
static or depend on data values received from other children. The latter
allows to modify the filtered state relative to another tracker state.

• Button filters perform boolean operations on the button state of dif-
ferent input sources to combine them into a new event value.

• Prediction filters allow to partially compensate for lag in the measuring
and processing tracker data.

• Noise and smoothing filters are handy to deal with inherent inaccuracies
of trackers.

• Undistortion filter are necessary e.g. to linearize distortions in the
magnetic field of a magnetic tracking device.

• Permutation filters are necessary to match data representations from
different hardware or software platforms, such as equivalent, but in-
compatible quaternion representations.

• Merge filters assemble new data values using different parts of the data
values of several children. Use cases include the combination of orienta-
tion from an inertial tracker with position information from an acoustic
tracker, or adding a button device to a closed tracking solution such as
Polhemus Ultratrak.

• Conversion filters are able to translate one data type into another. For
example, 2D positions from a desktop pointing device can be translated
into 3D positions by adding a constant third value.

3.4 Implementation 27

• Clamp filter are special nonlinear transformation filters that cut off
values at user-specified extrema, for example to deliberately limit in-
teraction to a valid range.

• Store-and-forward filters are useful if transient loss of tracking can be
expected, for example if occlusion occurs in optical tracking. The last
measured value is simply repeated to provide at least a reasonable and
valid state.

• Confidence filters select data values from different children based on
some measure of confidence in the accuracy of the data.

3.4.3 Sink Nodes

Sink nodes are similar to source nodes but distribute data rather than receive
it. They include output to network multicast groups, debugging output to a
user interface or thread-safe shared memory output to integrate OpenTracker
as a library into other applications.

3.4.4 Time

Time is reflected in several ways in the architecture of OpenTracker. The
type system for edges supplies us with different ways of dealing with time,
either having an event based approach, with or without queuing of events,
or by specifying functions of tracking data as continuous functions of time.

For the event based nodes, each event is time stamped by the individual
device driver or node that generated it. Thus nodes can react to the temporal
aspects of tracking data. For example, a simple prediction node incorporates
the time difference between single events to correctly update its output.

More complex aspects such as a prediction for a changing prediction in-
terval is satisfied by the different edge types. An application that wants to
get a calculated value for an arbitrary point in time can query the state at
that time from a node supporting time dependent output. How this value is
calculated depends on the node’s implementation.

OpenTracker does not implement any clock synchronization of different
hosts working together in a network. There are already well established
means to solve this problem such as the NTP protocol [1].

3.4.5 Software architecture

The intent of OpenTracker is to provide an auxiliary library that is to be
integrated into VR or AR applications. Therefore it is kept lightweight and

3.4 Implementation 28

customizable. The library is designed as a class hierarchy of tracker objects,
implemented in C++. It is build around a small set of core classes that im-
plement the basic node interfaces, a parser that builds the runtime structure
from a configuration file and the main loop driving the event model. Any
other functionality is implemented by a set of module classes that can be
easily extended or modified.

The module classes create and manage the nodes representing the func-
tionality of the module. In the main loop of the library each module is called
to provide new events and after an event is processed to handle results of the
data flow. For example, the implementation of a network sink node stores any
event data that it received during event propagation. Afterwards the network
module checks each network sink node for updated data values, constructs
a new network packet and sends it to the configured destination. Modules
may be implemented multi-threaded to avoid stalling the main thread during
longer computations or polling a device with blocking I/O.

There are also nodes that perform without an underlying module. Exam-
ples are filter nodes that implement geometric transformations on incoming
events and pass the transformed events to their parents.

There is no fixed interface to the integrating application to maximize
flexibility. Application programmers have to either use one of the supplied
nodes (such as a generic call back node) or supply their own module imple-
menting sink nodes as interfaces to their application. Moreover, the use of
the library main loop is not mandatory. The processing can be integrated
with the applications main loop to avoid additional threads and synchronize
the tracking data processing more closely with the application. These design
decisions ensures that the library can adapted to the special needs of any
application.

Figure 3.3 shows a class diagram of the core classes. The class Context
implements the main loop and keeps reference of all modules and the data
flow data structure. It employs an object of class ConfigurationParser to
parse the configuration files. Actual node implementations are derived from
Node, for example the Transformation or the TestSource class. Wrapper-
Node and RefNode are special nodes that implement the port and reference
functionality. State is the default event type.

The library is extensible through the use of an abstract NodeFactory
interface to define the class interface for creating new nodes and through the
Module class that provides an interface for processing during the main loop.
Any extension adds new node types by providing an object that implements
the NodeFactory interface. The object is added to a list of factories known
by a Context object at startup and can then create nodes of the new type as
requested by the parser.

3.4 Implementation 29

Context

Node ConfigurationParser NodeFactory Module*

ThreadModuleWrapperNode RefNode

Transformation TestSource TestModule
*

State

Figure 3.3: Class diagram of the OpenTracker library

To add more complex functionality such as device drivers a subclass of
Module is created and added to the list of modules known to a Context
object. The modules are called regularly during processing of the main loop.
Within these callbacks they can implement any processing and create new
events. These events are then propagated into the network by associated
nodes. Events can also be read in from the network by these nodes. A
module can obtain references to the nodes it is interested in by implementing
the NodeFactory interface. It acts thereby as both the creator and the active
implementation of the nodes.

3.4.6 Software engineering with XML

XML, the eXtensible Markup Language, is the emerging standard primar-
ily aimed at web-based applications and software systems [23]. XML is a
markup definition language that allows to define hierarchical markup lan-
guages with so-called document type definitions (DTD). With the appropri-
ate DTD, standard XML tools can be used to conveniently edit, type check,
parse, and transform any XML file.

Thus, providing a simple DTD for describing the data flow graphs of
tracker nodes opens access to software libraries and tools that simplify several
steps of the development cycle:

• A visual DTD editor can be used to design and maintain the DTD.

• An XML parser [106] enforces content format on the tracker configu-
ration file while building the corresponding structure in memory, thus
automatically performing many of the consistency checks that other-
wise have to be hand-coded.

3.4 Implementation 30

• The same parser implements an API to manipulate the data structure
at runtime and still keep it consistent with the DTD. Such a runtime
structure can easily be written out to a valid configuration file again.

• A convenient XML editor such as [50, 49] with a graphical user inter-
face allows the end user to design the tracker configuration without
having to master the syntax. It also enforces the correct content for-
mat, reducing syntax and semantic errors made by users.

• Integration with high-level software engineering tools that create code
or configuration files from specifications is simplified by the use of XML.
Even automatic reverse engineering of complex configurations is easier
relying on a defined structure than from pure source code.

• Using the eXtensible Stylesheet Language (XSL) [4, 30], automatic
textual and even graphical documentation can be created from a tracker
configuration file, for example by using the free graph drawing utility
dot [6] (see Figure 3.2).

Markup languages are generally used to annotate textual documents with
structural information. Thus a general XML document consists of text
grouped and structured with tags. Markup languages defined in XML con-
sist of elements, essentially expressed as tags, and a structural model (the
content model) of the possible ways these elements may be nested. Moreover,
elements are annotated by name-value pairs called attributes.

OpenTracker maps elements to nodes and attributes to members of these
nodes. We are not using any textual content but purely rely on the content
model provided by the DTD. An open source XML parser [106] builds a tree
of elements representing the given configuration file. OpenTracker walks the
tree and creates a new node for each element based on the elements name.
The string values of the attributes are parsed according to the objects class
and the corresponding members are set. Attributes typically describe such
data as the parameters of a transformation. The parent - child relationship
of the data flow graph is directly mapped onto the parent - child relationship
of XML elements.

The content model enforces interface and semantic constraints on the
specified graph. As described in section 3.3 edges and the corresponding
node ports are typed and therefore restrict the possible combinations in the
construction of the graph. These constraints are expressed in the DTD and
are checked by an XML parser or enforced by an XML editor. Also restric-
tions on the number of children are described in the DTD. Source nodes
typically do not have any children as they rely on data from external sources

3.4 Implementation 31

ConsoleSink

Pip

StbSink

EventTransform

Ref

ARToolKitSource

pip.tag

ConsoleSink

Pen

StbSink

Data Base

DynamicTransformation

EventTransform

WacomGraphireSource

ConsoleSink

Viewpoint

StbSink

EventTransform

TestSource

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE OpenTracker SYSTEM "opentracker.dtd">
<OpenTracker>

<configuration>
<ARToolKitConfig camera-parameter="camera_para.dat"/>

</configuration>
<ConsoleSink comment="Pip">

<StbSink station="0">
<EventTransform scale="0.001 0.001 0.001">

<ARToolKitSource tag-file="pip.tag" />
</EventTransform>

</StbSink>
</ConsoleSink>
<ConsoleSink comment="Pen">

<StbSink station="1">

<EventTransform scale="-2.1 -2 0" translation="0.14 0.1 -0.01">
<WacomGraphireSource device="1"/>

</EventTransform>

</StbSink>
</ConsoleSink>
<ConsoleSink comment="Viewpoint">

<StbSink station="2">
<EventTransform rotation="1 0 0 0">

<TestSource frequency="25"/>
</EventTransform>

</StbSink>
</ConsoleSink>

</OpenTracker>

DEF="Camera"

<EventDynamicTransform>

</EventDynamicTransform>

<TransformBase>

</TransformBase>
<Ref USE="Camera"/>

Figure 3.4: An example configuration file and the corresponding data flow graph.
The use of Ref nodes and multiple input ports is highlighted.

to compute their own data. A number of filter nodes get the value of a single
child node, transform it and pass it on. In contrast, confidence filters use
any number of children to compute their data value.

The reference structure is created by using unique ID attributes on ele-
ments and referencing these IDs in reference elements. Again XML enforces
the uniqueness of these IDs and the parser library simplifies the search for
the referenced elements.

While children of nodes with only one input port are directly mapped
to children elements in the XML file, children of different input ports need
to be addressed differently. This is handled using wrapper elements. Any
group of children that is connected to a specific input port is wrapped by
an additional XML element. This element in turn is the direct child of the
node of interest. These elements are closely related to the node’s element
and are typically the only possible children elements. They are mapped to
special wrapper nodes that can be distinguished by the node implementation.
Otherwise they are transparent to the actual data processing.

Figure 3.4 gives an example of such a configuration file, using all of the
features described before. The interesting constructs are highlighted and
cross linked with the corresponding nodes in the resulting data flow graph.

3.4 Implementation 32

ConsoleSink

InterSenseSource

MergeNode

NetworkSourceNodeDOMElement
NetworkSource

DOMElement
Merge

DOMElement
ConsoleSink

DOMElement
InterSenseSource

Figure 3.5: The DOM tree elements in green are decorated with the white Open-
Tracker nodes. The links between the nodes are only virtual and are inferred from
the DOM structure.

3.4.7 Data flow implementation

The implementation of the node graph and the data flow of events is directly
based on the Document Object Model (DOM, [118]) tree structure provided
by the XML parser library Xercex [106]. A configuration file is read in and
represented as a data structure in memory. This data structure represents
the entities of an XML file such as elements and attributes and the relations
between them as structures called DOM nodes. It forms a tree where subele-
ments and attributes are child nodes of other element nodes in the tree. The
DOM API provides methods to retrieve the parent node, child nodes and
attribute nodes of any element node.

OpenTracker reuses the in-memory DOM tree and decorates it with in-
stances of the node types described above. A DOM node provides a facility to
store a mapping of names to pointers to user data and OpenTracker stores
the pointer to the node instance associated with a certain element in the
configuration file in this map (see Figure 3.5). The Decorator pattern [40,
p. 175] describes this construct accuratly and succinctly. Any OpenTracker
node implements an interface to retrieve references to its parent or children
by recurring to the DOM API of the decorated DOM node.

Tracking events flow through the network via a push and a pull mecha-
nism. The event interface uses a push mechanism, that passes the current
event from the source nodes via any intermediary nodes to the sink nodes.
Every node calls an update method on its parent node which recursively calls
its own parent’s node update method after processing the event (see Figure
3.6(a)). Thus, the modules associated with the source nodes only have to
trigger this event propagation by calling the update method on their source

3.5 Results 33

NetworkSource InterSenseSource

Merge

ConsoleSink

event

event

NetworkSource InterSenseSource

Merge

ConsoleSink

getEventreturn

getEvent
return getEvent

return

(a) (b)

Figure 3.6: Two types of data flow in OpenTracker. (a) Events are pushed by source
nodes through the graph. (b) Events are pulled by sink nodes.

nodes. Only a reference to the object storing the event data is passed. A
node that changes the event’s data has to provide a new instance to avoid
changing an instance that may also be used by other nodes. This instance
is typically a member of the node reused to avoid frequent allocation and
deallocation of an event object on the stack.

The event queue and time dependent interfaces use a pull mechanism. If
a node is queried via one of these interfaces and it requires event informa-
tion from any children nodes upstream in the network, it recursively calls
the children nodes’ interfaces with the appropriate parameters (see Figure
3.6(b)). Again all nodes have to provide their own object instances to avoid
side effects by shared event instances.

Not all nodes implement all interfaces. The event interface is the stan-
dard case and is implemented by all nodes. The remaining interfaces are
only implemented in a small subset of nodes that use it to implement more
complex behaviors. For example, an EventQueue node stores a queue of
the last events pushed through it and exposes the queue through the event
queue interface. Another node called Filter then uses an EventQueue node
to implement a linear filter over the last events that is triggered by any event
pushed through it.

3.5 Results

The OpenTracker library has been incorporated into the Studierstube frame-
work and has since become the only interface Studierstube provides for track-
ing devices. We continue with an overview of some applications that were
implemented based on this work.

A dedicated module implements source and sink nodes to allow commu-
nication between the OpenTracker data flow network and the Studierstube

3.5 Results 34

applications. A sink node StbSink is associated with a single event channel
via an attribute denoting the station number of the channel. Tracking events
routed to this sink node are picked up by the 3D event distribution mecha-
nism in Studierstube and propagated over the scene graph. A source node
StbSource generates new events from field values of Open Inventor nodes
allowing the generation of virtual tracking events from Studierstube applica-
tions.

3.5.1 Distributed tracking

OpenTracker implements a pair of source and sink nodes that allow the
transportation of tracking events over the network. Using these nodes larger
networks spanning multiple hosts can be created. There are several reasons
why it is desirable to share tracker data over a network:

• Using the tracker data at multiple host computers for a distributed
virtual environment (local or remote): Input in the form of tracker
data becomes readily available through transparent network access via
OpenTracker. The scene database still has be to kept consistent by a
proprietary application protocol, but the task is much simplified.

• With the same approach, multi-processing based on inexpensive PCs
becomes possible with little configuration effort. This is useful to
achieve some degree of load balancing. In particular, computationally
expensive functions such as filtering or undistortion can be assigned to
either sender or receiver, depending on the computational budget.

• Network support makes it easy to span multiple operating systems, in
particular if a specific tracking device or service is only available at one
particular host.

• Transparent substitution of tracking devices enables to switch devices
during run-time or to use virtual devices for testing and playback of
prerecorded or generated tracking data.

OpenTracker allows multiple senders and receivers of tracker data to com-
municate asynchronously by using IP multicast (see Figure 3.7). It is even
possible for a single host to operate as a sender and receiver at the same
time, by picking up data, then modifying it and re-sending it to the network
on another network channel.

While there is a preferred network protocol for OpenTracker, support for
additional formats can be easily implemented. In the following, we give some
examples as to how a networked setup can be used:

3.5 Results 35

Magnetic tracker Optical tracker

Rendering hosts User 1 User 2 …

Figure 3.7: A distributed setup using network transparency of OpenTracker. Dedi-
cated hosts drive magnetic and optical tracking systems and provide the data to
rendering hosts.

• A tracker server (typically a cheap PC with lots of serial I/O boards
running Linux) samples an Ascension Flock of Birds at highest rate and
sends the resulting data stream via multicast to several clients using
this data to animate a collaborative virtual environment.

• The Polhemus Ultratrak uses a proprietary network format and IP uni-
cast packages. Unfortunately, its closed architecture does not support
input devices with buttons such as a stylus or 3D-mouse. Therefore, we
added a tracker object to the client that is able to decode the Ultratrak
protocol. A button source reads button values from a standard parallel
interface, and a merge filter combines these two sources to emulate a
complete VR input device.

• Simulation of tracking sources for development. An application can be
configured to receive tracking input via multicast and is thus decoupled
from any process querying the actual tracking device. Therefore it is
possible to substitute the tracking device with a software simulator
of the tracking information. This substitution is transparent to the
application and can even be performed while the application is being
executed.

3.5.2 Mobile Augmented Reality setup

Augmented reality setups often require the integration of various different
tracking devices. We built a series of mobile AR setups to investigate mobile
collaborative applications [80]. The first iteration consisted of a PC notebook
equipped with a NVidia GeForce2Go video chip and a 1GHZ processor and
worked under Windows 2000. It is carried by the user in a backpack.

3.5 Results 36

orientation tracker

web camera

see-through display

notebook pc

markers

pen

graphics
tablet

3D graphics USB

helmet

Figure 3.8: Hardware component diagram of the mobile AR setup.

As an output device, we use an Sony Glasstron see-through stereoscopic
color HMD. The display is fixed to a helmet worn by the user. Moreover,
an InterSense InterTrax2 orientation sensor and a web camera for fiducial
tracking of interaction props are mounted on the helmet.

The main user interface is a pen and pad setup using a Wacom graphics
tablet and its pen. Both devices are optically tracked by the camera using
markers. The 2D position of the pen (provided by the Wacom tablet) is
incorporated into the processing to provide more accurate tracking on the
pad itself. Figure 3.8 gives an overview of the setup.

Tracking of the user and the interaction props is achieved by combining
data from various sources. The OpenTracker component receives data about
the user’s head orientation from the InterTrax2 sensor to provide a coordinate
system with body stabilized position and world stabilized orientation.

Within this coordinate system the pen and pad are tracked using the
video camera mounted on the helmet and ARToolKit [54] to process the
video information. Because the video camera and the HMD are fixed to the
helmet the transformation between the cameras and the users coordinate
system is fixed and determined in a calibration step.

The pad is equipped with one marker. This is enough for standard opera-
tion, where the user holds it within her field of view to interact with 2D user
interface elements displayed on the pad. The pen, however, is equipped with
a cube featuring a marker on the five sides which are not occluded. This

3.5 Results 37

EventVirtualOrientationTransform

RefRef Ref

EventOrientationTransform

InterSenseSource

StbSink

Data Base

DynamicTransformation

EventVirtualTransform

EventVirtualTransform

EventTransform

Ref

ARToolKitSource
ptag.tag

StbSink

DataData BaseBase

DynamicTransformationDynamicTransformation

Default Position Button

Merge

EventTransform

Ref

EventTransform

Default

Merge

EventVirtualTransform

ARToolKitSource
pen1.tag

EventVirtualTransform

ARToolKitSource
pen2.tag

EventVirtualTransform

ARToolKitSource
pen3.tag

EventVirtualTransform

ARToolKitSource
pen4.tag

EventVirtualTransform

ARToolKitSource
pen5.tag

Data Base

DynamicTransformation

Ref

EventTransform

WacomGraphireSource

ConsoleSource

StbSink

Data Base

DynamicTransformation

EventTransform

TestSourceoptical pen

graphics tablet

optical pad

orientation sensor

HMD location

relative transform

Paths for :

Data Base

DynamicTransformation

Figure 3.9: The data flow graph of the tracking configuration for the mobile AR
setup. Individual flows are indicated per source. The diagram was automatically
generated from the XML configuration description.

allows to track the pen in almost any position and orientation. Moreover
whenever the user touches the pad with the pen the more accurate informa-
tion provided by the graphics tablet is used to set the position of the pen
with respect to the tablet.

The data flow graph describing the necessary data transformations is
shown in Figure 3.9. Round nodes at the top are source nodes that encapsu-
late device drivers. The round nodes at the bottom are sinks that copy the
resulting data to the AR software. Intermediate nodes receive events con-
taining tracking data, transform it and pass it on, downwards. An important
type of transformation is the relative transformation that takes input from
two different devices and interprets the location of one device relative to the
location of the other (called the base).

Different colors denote paths through the graph that describe how the
tracking data for different devices are processed. Relative transformations are
marked by cross stripes in the color of the two paths connecting. For example,
the optical pen path describes the five markers that are each transformed
to relate the pen point location. This information is merged, then further
transformed. After another merge with data from the graphics tablet, it is
once more transformed to the reference system established by the orientation
sensor.

Similarly, the optical pad path describes the computation to obtain the
location of the pad. As a side effect, the optical pad information is used at

3.5 Results 38

Figure 3.10: This diagram shows the geometric model of the floor the author’s re-
search group is located on. The red dots denote the locations of measured markers
used to track the user within the environment.

one step to transform the 2D information from the graphics tablet path to
the actual pen position which is subsequently merged with the pure optical
information.

Finally the white HMD location path is used to provide information about
the head location. The TestSource node’s task is to provide a constant value
which is then transformed by the orientation sensors.

We would like to note that using a visual XML editor, this complex
configuration was created without writing a single line of code.

3.5.3 Indoor wide area tracking

To build an environment where we could test drive our mobile AR kit, we
implemented an indoor tracking solution to cover a floor of our building.
As we did not have access to a proprietary building-wide positioning infras-
tructure (such as AT&T Cambridge’s BAT system used by Newman et al.
[67]), we choose to rely on a hybrid optical/inertial tracking solution. This
approach proved very flexible in terms of development of positioning infras-
tructure, but also pushes the limits of what the used optical tracking library
ARToolkit can provide.

To implement a wide area indoor tracking solution we resolved to use a set
of well-known markers that were distributed in the environment. Together
with a geometric model of the building that includes the location of the
well-known markers (see Figure 3.10) we can compute the user’s location as

3.5 Results 39

Figure 3.11: This diagram shows the different coordinate systems involved to com-
pute the user’s position. U is the user’s position and orientation, R the room coor-
dinate system, M a markers position and orientation within that room and W the
world or model coordinate system.

soon as a marker is tracked by the optical tracking system. The model is
structured into individual rooms and the connections between these rooms
called portals. The location of a room within a world coordinate system
completes the model. These models and the location of the markers were
obtained by manual measurements with a geodetic device.

A measurement of a marker by the optical tracking returns the markers
position and orientation TUM within the user’s coordinate system U (see Fig-
ure 3.11). This is essentially the transformation to convert coordinates from
the system U into the system M . Inverting TUM gives the user’s position and
orientation within the marker’s coordinate system M as TMU = T−1

UM . By
combining the fixed and measured transformation TRM between the room co-
ordinate system R and the marker’s M with the value TMU , we calculate the
user’s position and orientation TRU = TRM ·TMU within the room coordinate
system R.

The implemented tracking approach requires a large set of markers. It is
necessary to place a marker about every two meters and to cover each wall
of a single room with at least one marker. Deploying it in our floor covering
about 20 rooms and long hallways would require several hundred different
markers.

However, marking up a large indoor space with unique ARToolKit mark-
ers is not feasible for two reasons. The more markers, the higher the degree
of similarity of markers will be. Additionally, lighting conditions vary often

3.5 Results 40

from one room to another. All this leads to inferior recognition accuracy.
For a larger set of markers this implies a higher number of false recognitions.
A large set of markers also enlarges the search space that ARToolKit has to
traverse, leading to significant decrease in performance. As a consequence,
it is not possible to scale the use of ARToolKit to arbitrary large marker
assemblies.

To overcome this restriction, we developed a space partitioning-scheme
that allows reusing sets of markers within the given environment. The idea
behind this approach is that, if the tracking system knows the user’s location,
it can rule out large parts of the building because they will not be visible to
the camera. Therefore, for two areas, which are not visible to each other, it
becomes possible to use the same set of markers. This problem is equivalent
to approaches for indoor visibility computation based on potentially visible
sets [5].

To compute a possible placement of markers, the space of the model is
partitioned into a 3-dimensional cubic grid of a fixed length. Then, marker
patterns are assigned to the measured positions such that the patterns are
unique within each cubic cell and its 26 direct neighbors. Basically, every
cell defines a partial mapping from marker patterns to marker positions in
the environment. Varying the grid size allows to tune the tradeoff between
the minimal distance of positions of the same pattern and total number of
individual patterns necessary. The minimal distance is always twice the grid
size. Because the volume of a grid cell and its neighbors increases with
grid size, more marker positions lie within the volume and require pair-wise
different patterns. We ran calculations for different grid sizes and established
a grid size of 4m requiring 30 different patterns to be a good compromise.
Altogether we measured 210 marker positions within the building.

The tracking computes the user’s location from a known cell and a marker
pattern observed by the camera mounted on the helmet. Because the pattern
is unique within the cell and it’s neighbors the associated marker position
can be established and the user’s location is computed by concatenating the
marker position and the relative measurement computed by the ARToolKit
library. These computations are executed within OpenTracker by configuring
appropriate transform nodes.

The representation of the mapping from marker patters to marker posi-
tions within the cells is implemented with the help of a special node within
OpenTracker called GroupGate. A GroupGate defines a gate that passes in-
coming events on, if enabled and stops them otherwise. A set of GroupGate
nodes is configured into an directed graph describing a neighborhood rela-
tionship. The relationship is typically symmetric but need not be. At any
point in time only one GroupGate node is denoted as active. If a GroupGate

3.5 Results 41

Source

Transform Transform Transform

GroupGate GroupGate GroupGate

Sink

GroupGate

GroupGate

GroupGate

GroupGate

GroupGate

GroupGate

active

enabled

(a) (b)

Figure 3.12: The function of the GroupGate node. (a) A set of GroupGates allows
to select a single path from a set of paths through the graph. Only the active
GroupGate propagates events. (b) The GroupGates are in a neighborhood relation.
The active GroupGate’s neighbors are enabled to propagate events as well and
become active, if an event passes through them.

node is active, it is enabled and all its neighboring GroupGates are enabled
as well. All other nodes are disabled and will not pass events. A GroupGate
becomes active, if it is enabled and an event passes through it. Additionally,
a GroupGate also defines a second input port named override. If an event
passes through the override port, the node is also activated.

A single cell is modelled as a GroupGate and its 26 neighboring cells are
configured as neighbors. The measured data from a single marker pattern is
passed through all possible transformations for the different maker positions
it is used at. Then, each transformed data event is passed through the
GroupGate of the cell the marker position is associated with. The active
GroupGate corresponds to the cell the user is currently in. Because events
can only pass through the active GroupGate and its neighbors, data from
a marker will be used only once. Moreover the data passes only through
the GroupGate associated with the marker position of the last seen marker
activating it if necessary. Thus the activation will always shift with the user’s
movement through the set of GroupGates. Figure 3.12 gives an example of
the use of the GroupGate node.

The tracking needs an initial position at startup to set the first active cell
and GroupGate. Two solutions were implemented to set the initial cell. The
user of the system can select her current location from a list of rooms. For
each room a standard cell was selected that reflects the center of the room.
Moreover, unique markers can be placed in the environment to identify a

3.6 Summary 42

location absolutely. The output of the marker nodes are then connected to
the override ports of the GroupGate that corresponds to the cell the unique
marker is in. A set of such markers is used to denote the different floors
in front of the elevator to allow the system to deduce the user’s location
automatically, whenever she steps out of the elevator. Because the system
cannot measure the position of the elevator, it can not continuously track the
active cell the user is in and needs a unique marker to establish the absolute
position again.

3.6 Summary

OpenTracker is the first software framework to thoroughly apply the pipes-
and-filters architecture to the problem of manipulating tracking data. The
resulting advantages are twofold. The high-level language introduced to con-
figure the processing of tracking data simplifies experimental and exploratory
programming of data manipulations and also enhances reuse because the ef-
fects of an existing configuration are fixed. Describing the configuration in
a dedicated language renders it also more accessible to automated methods
such as generating a certain configuration.

The layered architecture that OpenTracker enforces on the overall appli-
cation provides a clear cut interface between the application logic and the
functions required to deal with tracking devices. A number of issues ap-
pearing in relation with tracking devices such as calibration and registration,
network transparency or fusion of input data can be dealt with in a way
that is transparent to the application. Decoupling the application specific
functionality from the device layer also furthers reuse of the application in
the context of different tracking systems.

Chapter 4

Context sensitive scene graph

Scene graph APIs have become an established tool for developing interactive
3D applications. They offer an object-oriented and structured approach to
describing the application’s graphical needs and interactions with the 3D
representation. From a software architecture standpoint they also address a
source of complexity in developing graphics applications which Strauss and
Carey [102] described as the ”dual database” problem.

Strauss and Carey observed that interactive graphical applications were
using two separate data structures to compute application state and to ren-
der the graphical output. They proposed an object oriented graphics toolkit
called Open Inventor that can serve both as a data structure for the ap-
plication’s state and to compute the rendered output image. The unifica-
tion of two separate data structures into one is a powerful mechanism that
greatly simplifies the design of interactive graphical applications. The graph-
ics toolkit provides both a high-level view of the application’s data as well as
performs the low-level computations necessary to drive a rendering pipeline
such as OpenGL.

The idea of a scene graph appears to be contradictory to the established
Model-View-Controller (MVC) pattern [24, p. 125] for interactive applica-
tions. The separation into the model storing the application’s state and the
view dealing with the presentation of the state is deliberately given up. The
rationale behind the merger of the two databases is the large volume of data
that needs to be exchanged otherwise. The resulting performance issues be-
come relevant for interactive applications that have to achieve soft real-time
frame rates of 30 Hz and above. Thus, the scene graph is an optimization
of the MVC architectural pattern tailored to the need of complex interactive
graphics applications. The result is similar to the Document-View variant of
the MVC pattern which integrates the View and Controller parts into one
component leading to a simpler pattern.

43

44

Action 3
Action 2

Context

Group

ContextSwitch

Material A Material B

Cube

Action

State

ContextElement

set state

read state

traverse
Application

configure context

Figure 4.1: The context sensitive scene graph provides a dedicated state during traversal that can be configured by an
application. A Context node sets the state and a ContextSwitch reads it out later during traversal. The state allows the
decoupling of the context selection and using the context information.

4.1 Concepts 45

While the general idea is simple to apply, the details of developing a
scene graph based application can still be dauntingly complex. Although the
scene graph can represent all different visualizations an applications uses, the
control over these requires detailed structural knowledge of the scene graph
which increases in complexity as the scene graph grows. Therefore, relying
on scene graphs to handle everything will not scale well with data size. As
a solution, we propose to separate control over the scene graph from the
actual structure. Using a new mechanism, the context sensitive scene graph
traversal, allows to leverage the advantages of the scene graph while keeping
scalability for large data sets.

4.1 Concepts

Traversal is the common method of computing results from a scene graph.
An action traverses the scene graph by recursively iterating over all nodes and
calling a method on each node. The overall result depends on the structure
and content of the scene graph as well as on the performed operations during
traversal. The structure is usually static and the traversal has a predefined
order that may depend on the action as well.

Actions implement the Visitor pattern [40, p. 331] using a double-dispatch
technique. Each type of action manages a table of functions for each type of
node. Upon visiting a node, the action looks up the corresponding function
and passes the node and itself as parameters. Thus, it allows to vary the
operation executed depending both on the type of action and the type of
node. The function table technique also allows to extend the framework with
new nodes by adding a new entry to the function table of existing actions or
with new actions by defining a new function table and appropriate functions.

4.1.1 Scene graph model for data storage

Scene graphs are designed to unify the application’s data model with the
visual representation. Typically they also offer a runtime object system sup-
porting various levels of introspection, persistence through serialization to file
formats and memory management. These additional benefits are exploited
to great lengths within Studierstube. Distributed Inventor [44] and dynamic
application management depend on these features. The textual representa-
tion of the scene graph allow rapid prototyping and simple development by
writing scene graphs by hand.

The generality of a typical scene graph API poses a design problem. The
structure of the scene graph influences the final outcome of any traversal. For

4.1 Concepts 46

example, the order of material nodes setting the color of rendered geometry
influences the rendered image. Thus, the structure of the scene graph usu-
ally reflects the constraints imposed by the desired visual outcome. Complex
visual effects may require rendering of the same geometry but with different
parameters for the graphics pipeline. Therefore geometry has to be dupli-
cated or at least referenced in distinct places in the scene graph or within
several independent graphs.

However, applications typically deal with objects that may have different
presentations but that are treated as single entities that are created, manipu-
lated and destroyed as one. Having different presentations scattered about a
large scene graph is diametrally opposed to a simple data model for the appli-
cations. Even more so, it recreates the ”dual database” problem on a higher
level of abstraction. Whenever a new object is created, the application has
to look up all locations where to put different presentations of it. Similarly,
when the object is destroyed all references to it need to be removed.

Affecting changes in the scene graph requires detailed structural knowl-
edge because of its hierarchical nature. Typically, an application needs to
establish the path through the scene graph from the root node to the node
it wants to change. In the Open Inventor library this is further acerbated
by the left-to-right evaluation scheme which implies that also nodes that are
not on the path influence the final presentation of the node the application
is interested in.

Common solutions to the situation described above are the following:

• Computing an a-priori list of references to the nodes of interest and
storing them in the application. Such a method introduces more de-
pendencies between variables and components thereby increasing the
complexity of the design.

• Labelling interesting nodes in the scene graph and searching for them
at run-time. Following this approach delays the coupling until run-time
and is also flexible with respect to changes in the scene graph. However,
it incurs a run-time overhead because of the search during execution.

Scene graph APIs usually provide means of influencing the traversal be-
havior, which are not flexible enough. A static way of switching between sub
scene graphs is implemented in a dedicated node that only allows traversal of
selected children. Again the application requires knowledge about the iden-
tity or location of such a switch node to use the mechanism. Traversal can
also depend on the type of action executed. Such an approach is usually only
tailored towards the specific requirements and implementation of the action.

4.1 Concepts 47

4.1.2 Context sensitive scene graph

To overcome the design complexities described above, we propose to add an
independent context state to any traversal that can influence the traversal
order or select from different sub-graphs of the scene graph to be traversed.
In effect, the scene graph can be made to ”look differently” for each traversal
by setting generic parameters that are independent of the traversal itself. By
enabling such a selective traversal order independently of the actual action
used it becomes an additional orthogonal parameter usable by the applica-
tion. Because the scene graph can integrate different views in one structure,
it unifies the application’s requirements into a simpler model. The interface
for selecting different views becomes a high-level interface between the func-
tional components of the application and the scene graph for adapting the
scene graph to various uses.

The proposed generic context state is a generalization of the concept of
state for traversals. The scene graph library tracks a state as a set of stackable
data elements during traversal to enable the action to compute its results.
Normally, the type and operation of these elements are fixed and tailored
to specific nodes and actions. We augment the state with a general purpose
element. The element is tracked for all actions and can be set and used by all
nodes. Consequently, a set of additional nodes can influence traversal based
on the new element but independent of the type of action.

The additional traversal element is called context and a scene graph anno-
tated with context is a context sensitive scene graph. The context is tracked
by an additional state that is processed during traversal. Because it is inde-
pendent of the operation of any action, it is applicable to all actions in the
same way.

The context state is modelled as a partial mapping from Z onto Z. For
each index z ∈ Z either a NIL value or a result r = f(z) ∈ Z is returned. The
NIL value simply describes the fact that the mapping is not defined for this
index. The mapping itself is implemented as a simple map data structure,
where keys and values are signed integers. The NIL value is returned from
the state, if the given index is not stored as a key in the map.

Context state needs to be set and traversals or nodes need to react to the
context. These two operations are embedded in special nodes that are part
of the scene graph. A dedicated property node allows the modification of
the context state during traversal and implements the following operations
on the state:

ADD inserts a set of (key, value) pairs into the current context. Older
entries with the same keys are overwritten by the new values.

4.2 Implementation 48

SET sets the context mapping to a given set of (key, value) pairs after
deleting all former entries.

REMOVE deletes a set of entries defined by a set of keys from the map. If
an entry for a given key is not present, the key is ignored.

CLEAR resets the context to the default state which contains no entries at
all.

Other nodes react to the current context during traversal. It would be
possible to directly map different states to different behavior such as selecting
a color from a given list, based on the value of certain index in the context
state. However, this requires implementing a new node for every aspect that
the application would like to influence by setting the context.

A more general approach is to use the structure of the scene graph itself
to describe the different behaviors associated with the context. A dedicated
group node can have children nodes that represent the different options avail-
able for a given context. Such a context-aware group node will traverse only
children indicated by the context that is active when the traversal reaches the
group node. The traversal behavior is generally independent of the action
that is executed. The type of action can however be modelled as an entry in
the context itself and therefore be taken into account as well.

In effect the context state adds a number of new parameters to the
double-dispatch between node type and action type to create a multiple-
dispatch invocation. The context-aware group node switches between differ-
ent sub-scene-graph based on an arbitrary number of states to extend the
fixed double-dispatch scheme of the original scene graph.

4.2 Implementation

The implementation of the context sensitive scene graph is straightforward
based on Open Inventor’s built in extension mechanisms. Open Inventor
stores the state during traversal in a set of stacks comprised of individual
elements. For each type of element a dedicated stack tracks the current
value of the element. The framework provides for extending the traversal
state with new elements independently of any action and to enable the use of
these elements during all actions. A more detailed exposition on using this
mechanism can be found in [117], chapter 2.

A new element SoContextElement was implemented that stores the cur-
rent map describing the context. Accessor methods to add, set, remove

4.2 Implementation 49

elements to and from the context and to clear it were implemented together
with the necessary interfaces of the framework. Moreover, the use of the new
element together with every action was enabled.

A dedicated property node SoContext was created that modifies the con-
text during traversal. The node uses the element’s accessor methods to up-
date it according to its own parameters which are set using a number of fields
of the node. The exact specification of the node is given in Figure 4.2. The
enumeration field mode can take the values ADD, SET, CLEAR and CLEAR ALL

which correspond to the four operations on the context. The multiple value
fields index and value denote (key, value) pairs for the ADD and SET operations
while the CLEAR operation only uses the index field.

SoContext {
SFEnum mode ADD
MFInt32 index []
MFInt32 value []

}

Figure 4.2: Specification of the SoContext node. The first column specifies the
type of the field, the second column the name and the third the default value. index
and value define the (key, value) pairs and mode the operation to execute.

Two nodes react to the current context during traversal by limiting the
traversal to subsets of their children. The SoContextSwitch node uses the
entries in the context map to compute which children to traverse (see Figure
4.3 for the full specification). The field index sets the key to use in looking
up a value in the context map. The returned value is then interpreted as
the index of the child to traverse. The values -1 and -3 are interpreted to
traverse none or all children. The field defaultChild sets the index of the
child to traverse, if the index is not present in the context and is therefore
mapped to the NIL value.

SoContextSwitch {
SFInt32 index INT32_MIN
SFInt32 defaultChild -1

}

Figure 4.3: Specification of the SoContextSwitch node. The columns are the same
as in Figure 4.2. index specifies the entry in the context to read out and defaultChild
the behavior if the index is not present.

The SoContextMultiSwitch implements a more complex behavior (see Fig-
ure 4.4 for an exact specification). Instead of only specifying a single child to
traverse, it allows to specify a family of sets of children to traverse further.

4.3 Decoupling of model and control 50

These are indexed starting with 0 and increasing the index by 1 for each
set. The context state is then used to index into the family of sets and the
resulting set of children is traversed.

SoContextMultiSwitch {
SFBool ordered TRUE
SFInt32 index INT32_MIN
MFInt32 whichChildren []
MFInt32 numChildren []
MFInt32 defaultChildren [-1]

}

Figure 4.4: Specification of the SoContextMultiSwitch node. The columns are the
same as in Figure 4.2. whichChildren and numChildren specify different subsets
of children. index again defines the entry in the context to specify the subset to
traverse.

The field index again specifies the index into the context map to use.
The field whichChildren specifies the sets as a concatenated list of the chil-
dren’s indices for each set. To delimit the individual sets in the list the field
numChildren contains a list of the size of each set. The field defaultChildren
specifies the subset of children to traverse, if the given index is not set in the
context map. Finally, the field ordered specifies if the given indices in result
set should be traversed in the order they are specified in the fields or should
be sorted to be traversed in the left-to-right order of the scene graph.

4.3 Decoupling of model and control

The nodes described above allow the construction of scene graphs that can
be controlled without detailed knowledge of their structure.

In a simple setup SoContextSwitch nodes are embedded throughout the
scene graph to only traverse partial sub-graphs. For example, a scene graph
might store different representations of objects locally for each object sepa-
rately but as children of SoContextSwitch nodes (see Figure 4.5). The nodes
are configured to use the same index and the order of the children corre-
sponding to different presentations is the same for each object. Then an
application can control the presentation by manipulating a single SoContext
node above the scene graph to set the common index to the desired value.

Several of such indices can be overlaid to produce a matrix like structure
of options. Typically combinations can be arranged by simply serializing
SoContextSwitch nodes configured with different indices for different aspects
(see Figure 4.6). For example, one index could select the color of an object
and a second one the render style. Because they can be set independently,

4.3 Decoupling of model and control 51

SoContextSwitch

Different representations

Object A Object B
Context

Sets context to select
representation

Figure 4.5: A context sensitive scene graph to select between differen representa-
tions of a set of objects.

the switches can be arranged in any order and do not depend on each other.
Another approach is to combine the switches in a hierarchical structure.
The top switch is controlled by one index and selects among different sub-
switches which are controlled by a second index. Sub-switches can also be
reused between different top switches or branches of top switches to reduce
the number of nodes in the scene graph. Such an approach is enabled by the
DAG nature of scene graphs.

More complex computations can be implemented by alternating switches
and SoContext nodes in the scene graph. Then, the choice of one or more
indices can influence the setting of another set of indices, implementing a
general mapping from a tuple of indices to another tuple. Recursively build-
ing such mappings can lead to powerful computations by simply arranging
scene graphs in the appropriate way.

The proposed mechanism shifts the complexity of managing multiple pre-
sentations from the application code to the scene graph data structure. How-
ever, it also enforces a unified approach to dealing with multiple representa-
tions and dynamic switches between them. Automatic methods of generat-
ing the graph can be applied to cope with the added complexity in the scene
graph. Refer to chapter 5 for an in-depth discussion of such an approach.

4.4 Results 52

Index 1 Index 2

Material
0

Material
1

Texture
0

Texture
1

Figure 4.6: A context sensitive scene graph to select between multiple options at
the same time to allow different combinations.

4.4 Results

The general mechanism provided by context sensitive scene graphs is used in
the Studierstube framework to implement functions ranging from providing
system level information to supporting the needs of individual applications.
Some demonstrated uses are described in the following sections.

4.4.1 System management in Studierstube

Applications within Studierstube need different system level information to
implement their behavior. Displayed information can depend on the user, left
or right eye, the DIV group used to distribute the information and many more
parameters. Such information can be transported in a traversal independent
manner using the context of a traversal.

Studierstube defines a set of well-known context indices as parameters
(see Table 4.1). The information about the user id and the selected buffer is
only available during a render traversal, because it is not applicable for other
actions.

Several nodes in the Studierstube framework use the system specific con-
text information to implement adaptive presentations. The SoWindowKit
node draws window borders in different colors for users depending on each
user’s window focus. The focus color can be configured for each user individ-
ually. The SoWindowKit node uses the user id information during a render

4.4 Results 53

Index name Value Description
User -1 user id associated with the current output window.
Application -2 application id of the application that contains the

current node.
Window -3 window id of the window widget that contains the

current node.
Eye -4 a value LEFT or RIGHT specifying into which

buffer the current render traversal writes.
DivMode -5 the value MASTER or SLAVE specifying the mode

of the application the current node is in.

Table 4.1: Context information provided by the Studierstube framework.

traversal to index into an array of color values storing these user dependent
colors and sets the window borders’ color to the user’s focus color. The con-
text information separates the control for which user is rendered from all the
instances of windows that might be present in a scene graph.

Another optimization concerns the use of the application id. Widgets
need to implement special behavior in a distributed setting and need to
change field values without the propagation of these changes over DIV. Fields
are selectively put into and removed from filters in the DIV mechanism to
disable or enable propagating changes. Therefore, a widget needs to know
the instance of the DIV object it is subject to. The instance can be retrieved
from the framework based on the application id provided via the context
mechanism with a simple look-up. This is much more efficient than the
alternative, namely to search the scene graph from a common root node
for the widget node and then walk the computed path to look for any DIV
objects that are ancestors of the widget node.

4.4.2 Signpost - attributing of a general model tree

The Signpost application described in [81] is an indoor navigation application
based on a wide area tracking solution (see also section 3.5.3). It provides
navigational hints to a user roaming a building. The user interface provides
a number of graphical representations of the buildings geometry:

World in Miniature A world model with the current location of the user
floats in a head stabilized position in front of the user.

4.4 Results 54

Augmentation of room geometry The room geometry of the building
can be augmented by a wire frame representation.

Navigation aides The navigation system highlights doors the user has to
pass through.

A core requirement of the software architecture was to build a modular,
extensible system that allows to easily add application features. To address
this issue we separated the building model from the components that are
responsible for different presentations and interactions. A dedicated model
server component holds the scene graph of the building model and presents
an interface for client components to reuse it in their own scene graph for
rendering. The interface also provides hooks into the model scene graph, so
that client components can add their own rendering style nodes to the model
scene graph in a controlled manner. The model scene graph itself relies on
the context sensitive features to implement the control mechanisms.

The model server’s scene graph relies on two dedicated nodes, SoBAU-
Builing to model a whole building and SoBAURoom to model a single room
contained within a building. The scene graph encapsulated by an SoBAU-
Building node contains a switch node holding all the rooms of the building.
The switch node allows to traverse only a subset of all rooms to limit the ren-
dering to a certain selection. The SoBAURoom node contains a scene graph
describing the geometry of a room separated into different sets of polygons
for wall, ceiling, floor and other surfaces. Also portal geometry representing
doors and connections to other rooms are modelled separately. Every set of
polygons is rendering individually with its own render parameters. These
parameters are set by dedicated sub scene graphs that are controlled by a
SoContextSwitch node (see Figure 4.7).

A client of the model server obtains a reference to the top level SoBAU-
Building node and a unique index for the context sensitive traversal. Then
it inserts its own rendering styles into the SoBAURoom nodes as desired.
Finally, the client’s scene graph reuses the SoBAUBuilding node but sets
the context so that only its own rendering styles are used. The described
mechanism is again encapsulated in a dedicated node SoBAUClient which
takes care of the details of obtaining the index and inserting the style nodes.
It is configured using an SoBAUStyle node that holds the different styles
for walls, ceiling, floor and portal polygons. Moreover, it also provides an
interface to set the top level SoMultiSwitch node to only traverse a subset of
the rooms.

4.4
R
esu

lts
55

BAU
Room

WallFloor

Context
Switch

Group
local

Group

Coord3 Context
Switch

Group
all

Context
Switch

Group
local

Group

Group

Style groups for client A

Style groups for client B

Coordinates for
room geometry

Facesets for
different polygons

Figure 4.7: The scene graph contained in an SoBAURoom instance uses context sensitive traversal to select between different
rendering styles. Clients of the SoBAURoom node reserve a certain index value and add their own rendering style to the style
groups below the SoContextSwitch nodes. By setting their reserved value as the parameter of the SoBAURoom context index,
the instance of SoBAURoom will use their customized rendering style.

4.5 Summary 56

The different client components implementing the WIM, augmentation
or navigational hints all use one or more SoBAUClient nodes in their scene
graph. They all can select different presentations via the SoBAUStyle pa-
rameter node while being independent of the actual building scene graph.
For example, the augmentation component uses an SoBAUClient node with
styles to render the polygons in wire frame mode with different colors for
walls, ceiling, floor and portals. A second SoBAUClient node can be switched
into the scene graph to render filled polygons into the Z-buffer only before
rendering the wire frame to achieve a hidden line effect.

4.5 Summary

The context sensitive scene graph traversal introduces aspects of declarative
programming using the structural aspects of the scene graph. While the
original scene graph approach already represents a powerful application of
the Composite pattern [40, p. 163], the declarative programming possible by
constructing a scene graph was limited to a fixed visual appearance dictated
by the structure. By adding an orthogonal method to vary the structure
another dimension of programmability was added.

The context implements a generic multiple-dispatch function for scene
graph traversal which can be accessed via simple declaration of additional
scene graph nodes and subgraphs. Therefore, it allows a declarative style of
programming which easies the implementation work for applications.

The structural complexity of a context sensitive scene graph can increase
dramatically with the number of objects and number of features that are
varied. This development can be countered with automated methods. A
data-driven program architecture will allow to generate the required scene
graph from given data and a template pattern to apply to the set of objects
passed in. The programmer then only needs to create the template instead of
manually applying the same structure to all objects. A possible architecture
that realizes the proposed method is presented in the next chapter.

Chapter 5

Data management

Mobile augmented reality applications require a detailed model of the user’s
environment including semantic and contextual elements related to the (po-
tentially dynamic) real environment. Therefore AR models are more difficult
to produce and maintain than typical virtual reality and visual simulation
applications, which concentrate on visual fidelity of a purely virtual model,
even if produced from the measures taken from a real object. Also, detailed
information on the environment is often only available in legacy systems and
needs to be extracted and transformed to be useful for the AR application.

However, AR not only requires integration of a wider variety of data
sources to build interesting applications, it also creates new types of content.
For example, in the virtual showcase project [22], light maps are used to
provide detailed lighting effects on real objects. In AR, geometrical models
of real objects are frequently not used for visualization purposes, but for
dealing with occlusions, rendering of shadows, interaction, and vision-based
tracking of real objects.

In an ubiquitous computing environment, multiple applications and users
need to share the same environment model. These applications should be
based on a common database which should also be capable of shared access
for modification and updates. Since different applications will potentially not
work with the same abstraction or representation of the model data, it may
be difficult to keep the model data consistent if changes cannot be uniquely
traced back to the data source.

To address the complex modelling and data handling needs of ubiquitous
augmented reality applications, we present the concept of a 3-tier application
architecture based on XML [23] as the enabling technology. A central XML-
based database stores a common model used for all applications. Required
data is transformed and imported from different sources using common XML
tools. Once in the database, the data can be maintained more easily and

57

58

Application

Scene Graph

Presentation Layer

Transformation

Selection & FilteringCustomization

Data Store Layer

Model Schema

Figure 5.1: The proposed three-tier architecture. The data store layer stores data
in the model format. The presentation layer contains transformations that mediate
between the applications and the data store and can be customized to fit different
output requirements.

5.1 Related work 59

application or domain specific preprocessing operations can be applied. At
run time, the client applications query the central store for relevant pieces of
information (e.g. based on the current location). Before the data is delivered
to the client, it is transformed from its original form to one directly useful
to the client application. These transformations will often cull the model to
return only those aspects of the data relevant to the application.

5.1 Related work

Typical AR demonstrations work with small data sets that have been entered
manually and do not require data warehousing. To our knowledge, there has
been little work done on data management techniques for large AR models.
One piece of related work by Julier et al. [52] addresses the issue of selecting
appropriate data for display, but from a user’s point of view rather than that
of the application. Höllerer et. al [47] describe the use of a database and
description logic based meta-data to store a model of a building floor which
is annotated with meta-data for navigation target selection. The sentient
computing project [3] uses a CORBA run-time infrastructure to model a live
environment as distributed software objects where locations and attributes
of objects are updated permanently. Newman et al. [67] describe a set of
AR applications based on this infrastructure.

The Nexus project [87] is unique in that is specifically deals with the
software architecture required for ubiquitous location-based applications and
providing abstract interfaces to position data to such applications. Although
the project does describe some preliminary augmented reality applications
[41], it does not focus on AR applications interacting with complex infor-
mation structures. Glonass [33] also describes a software architecture to
distribute context information but does not provide the extensive models
that advanced AR applications require.

The geographic information systems (GIS) community has a lot of experi-
ence with storing and manipulating large scale geometric data [98]. However,
the current data sets are still mostly dealing with 2D features without com-
plex interrelations. A current trend towards 3D models for communities such
as the City of Vienna [35] will hopefully provide a better basis for mobile AR
applications.

5.2 Concepts 60

5.2 Concepts

The architectural concept is based on a 3-tier model [2]. The first tier is
a central database storing the overall model (see Figure 5.1). The second
tier mediates between database and application by converting the general
model from the database into data structures native to the respective ap-
plication. The applications themselves are the third tier and only deal with
data structures in their own native format.

The architecture provides the usual advantages of the 3-tier model. A
common data model and data store reduces the amount of redundancy in
the stored data required for different applications and allows centralized and
efficient management of this data. The middle layer separates the presen-
tation issues from the actual data storage and the applications. Thus the
applications can be developed using efficient data structures independent of
the actual storage format. Moreover, the transformation can be adapted to
changing data formats or processes without touching either the application
or the storage back-end, because it is a distinct entity separated from both.

Our architecture differs from to the traditional 3-tier model for client-
server applications in some aspects. The second tier is rather passive and
focuses only on data translation and will not provide extensive application
functionality. Because our third tier on the client itself needs to provide in-
teractive realtime feedback, the argument for a thin client offering only user
interface functions and no application processing does not hold anymore.
Calculations by the application need to be available to the user interface in-
stantaneously, which was also a driving force in the unification of application
data and graphics data in the scene graph data structure.

We propose to use such an architecture and build upon XML technology,
leveraging recent developments in the web development community. The
proposed architecture is very common in this area and directly supported in
a number of products, either open-source or developed commercially. The
use of XML has a number of advantages for our task:

• A hierarchical data model fits well to our general spatial model. Rather
than using a flat enumeration of building representations, a hierarchical
model can represent several levels of a spatial hierarchy, from districts
and streets down to rooms within buildings and other detailed geomet-
rical data.

• While a document and file-oriented approach is generally sufficient for
research prototyping, it obviously lacks scalability. More powerful stor-
age solutions are required for real applications. Some of these exist in

5.2 Concepts 61

the form of XML databases [105, 66, 99]. As XML technology is gen-
erally aimed at compatibility, the tools and APIs used for prototyping
are directly supported by commercial XML products, and the transfer
to a production system is greatly simplified.

• XML tools such as XSLT [30] allow rapid prototyping and development
of import, transformation and export tools to and from the data model.
Such tools focus on the functional aspect of the transformations and
reduce the overhead work to implement parsing and generation of data
structures.

• Parsers and generators exist for a wide range of programming lan-
guages, and allow applications and tools to use the most appropriate
language for the task.

• Standards for meaningful descriptions of data exist, on a syntactic level
such as RDF [64] as well as on a semantic level for meta-data such as
the Web Ontology Language [65] or the Dublin Core [114]. This allows
to define and use ontologies to support semantically rich queries and
interactions.

5.2.1 Modelling

At the heart of our architecture lies a data model that encompasses the
requirements of all applications. Care was taken in keeping the model ex-
tensible so that new data could be integrated during the development. This
data model is described by an XML schema [37].

The model should fulfill a number of key requirements:

• Geometric representations and hierarchies need to be stored in the
model.

• Interaction with other data schemas should be possible to maximize
reuse of already established knowledge presented in the form of these
schemas.

• Extensibility for new applications and data types with fall-back options
for generic processing is important.

The model is based on an object-oriented approach using a type hierarchy
to define types of objects. The root type is called ObjectType and contains an
id and a generic annotation subelement that can be used to store any XML
tree. All data types defined in the model are derived from this type. The

5.2 Concepts 62

SpatialObjectType adds pose information and a geometrical representation
to the super class. We further derive the SpatialContainerType that adds a
children subelement to aggregate entities of type ObjectType for hierarchical
composition.

From the three base types, we derive a number of application specific
types that are used in the actual data files. The Object, SpatialObject and
SpatialContainer elements are used for general purpose data and correspond
directly to the base types (see Figure 5.2). Applications can define additional
types derived from the base types to provide more specific information. For
example, we define a special Waypoint element used by an outdoor navigation
application which has a specific subelement to define neighboring waypoints
connected by a path. Because elements refer back to their base type, an
application can always provide a reasonable fall back behavior if it encounters
an unknown derived application element. The Nexus project uses a similar
structure to model their data types.

The XML tree is interpreted in the standard geometrical way, by defin-
ing a child’s pose relative to its parent. We chose this mapping to support
conventional modelling of visual data as directed acyclic graphs or trees.
However, the open XML based format is not bound to any particular visu-
alization tool or platform, and affords the definition of other than spatial
relations by using relational techniques such as referring to object ids.

The annotation subelement of the abstract root type can be used to model
free form data or to augment pre-existing types with extra information. This
allows us to use more flexible technologies to annotate the objects in our
model.

5.2.2 Data handling

Having defined a model and data format, there are a number of tasks and
tools necessary to fill the database, transform and manipulate the data and
finally make it available to the user by developing appropriate applications.
The typical tasks include the following:

Import Extract information from source data formats based on XML or
other formats and map it to the data model. Non-XML source formats also
require the combination of an appropriate parser with an XML generator to
map the foreign format to XML.

Maintenance Maintaining a model requires the application of filters and
transformations on data stored in the model format.

5.3 Implementation 63

Figure 5.2: Overview of the type hierarchy in the model schema. A set of basic
types can be used for general modelling. Applications may derive additional types
for specific requirements.

Export In the last step transformations are applied to retrieve relevant ap-
plication data from storage and generate data structures for the applications.
As described in section 2.5.4, applications are implemented as Open Inven-
tor scene graphs. Each application uses a custom XML stylesheet to directly
generate the required scene graph and additional data structures from the
general model.

The use of a separate step to transform the data into the application
format has a number of advantages. It separates the general data format from
the application specific data structures and provides an interface between
both. It also provides a point for customizing the presentation independently
of the application, similar to the way traditional cascading stylesheets work
for HTML. As the stylesheet generates the actual graphical content, it can
adapt it to different output requirements or profiles.

5.3 Implementation

We will now describe the implementation of the model schema and typical
data transformations in more detail covering the first and second tier of the
architecture. The third tier itself is already the unmodified AR application
that directly processes only the generated data structure and is therefore of
no further interest at this point.

5.3 Implementation 64

5.3.1 Schema definition

The definition of the model schema is based on the structural XML Schema
definition [109]. The implementation of the type system described in sec-
tion 5.2.1 follows the concepts of the XML Schema definition and tries to
leverage the expressive power of schemas. We defined an XML language
called BAUML (Building AUgmentation Modelling Language) to describe
our model data.

Both our BAUML model and the XML Schema definition contains the
concept of a type as a class of data structures that conform to a certain
schema. To avoid confusion in the following discussion we will call types
contained in the BAUML model model types and XML schema types only
types or complex types as appropriate.

The basic model types are implemented as complex types of the Schema
language. Such a definition allows the derivation of several element tags
that share the common attributes and subelements of the basic model types.
The complex types allow a hierarchy of types which is used to model the
relationships between the basic model types. Any new general model types
would be added on this level to the modelling language.

There are only three basic model types defined so far: ObjectType, Spa-
tialObjectType and SpatialContainerType. Figure 5.3 shows their detailed
definition. The SpatialObjectType is derived from the ObjectType and the
SpatialContainerType is derived in turn from the SpatialObjectType forming
a simple linear derivation hierarchy.

The ObjectType only models general properties applicable to all objects
in the model. The only properties defined are a unique identifier and a
subelement called annotation which is defined to allow inclusion of arbitrary
subelements to allow extension of the model by combining different schemas.

The SpatialObjectType further specializes the ObjectType to include
properties applicable to an object with a spatial footprint. They consist
of two parts, a representation element storing a geometric description of the
object and a pose storing a location in three-dimensional space. Both el-
ements are typed to specific helper types that describe the format of the
contained information.

The SpatialContainerType is a further specialization of the SpatialOb-
jectType to add hierarchial composition of complex geometric structures. It
implicitly defines a coordinate system and adds a children element that may
contain in turn elements derived from ObjectType. All geometric informa-
tion contained in such child elements is interpreted relative to the coordinate
system of the parent SpatialContainerType. The coordinate system is trans-
formed by any pose defined in the pose element.

5.3 Implementation 65

(a)

(b)

(c)

Figure 5.3: The structure of the three basic model types. Subelements describing
complex properties are modelled again as dedicated helper types which are not
part of the type hierarchy.

5.3 Implementation 66

Application developers need to create instances of the basic model types.
Therefore, the BAUML language defines elements derived from each of the
complex types defined for the basic model types. In addition to that, the
application specific elements are also derived from the most appropriate com-
plex types and augmented with further attributes or subelements to afford
their application’s requirements. To explicitly model the derivation rela-
tionship between the basic types and the instance elements, a compulsory
attribute is added that stores the name of the complex type the element is
derived from. This mechanism allows XML processors to work on the infor-
mation modelled by the generic basic types alone as a fall back solution for
unknown element types. Refer to appendix A for a complete definition of
the BAUML language.

5.3.2 Transformations

The second tier is the presentation layer of our architecture and provides the
transformations from the generic model data into application specific data
structures. In our implementation the target data format were scene graphs
described in the ASCII file format of Open Inventor. An application loads
the generated scene graph as a parameter and operates on it.

The actual transformations where implemented in XSLT [30] which is
a language for transforming XML documents into other XML documents.
Any text file can be generated as a special case of an XML document. XSLT
is a fully functional language that is used to describe the actions an XSLT
processor will execute on an input document to generate an output document.
XSLT represents a powerful implementation of the concept of data driven
programming because the structure and content of the input file drives the
control flow of the XSLT processor.

The basic item of operation is a template which specifies a pattern to
match on the input document and a template XML fragment which is written
to the output file. The XML fragment can be customized with parameters
and data taken from the matched location in the input document. In addition
to that, templates can be called with parameters to provide a fixed control
flow as required. Libraries of templates can be included from external style
sheets to provide reuse and modularity in XSLT development.

As an example for the typical transformations implemented in XSLT we
will describe a generic style sheet that generates a basic scene graph describ-
ing the hierarchy and geometry of all objects in the given BAUML input file
that have a geometric representation.

The style sheet creates an Open Inventor scene graph that represents
the hierarchical structure of a model stored in a BAUML file. It transforms

5.3 Implementation 67

all elements derived from the SpatialObjectType to a sub-scene-graph con-
sisting of the local transformation stored in the pose sub-element and an
IndexedFaceSet describing the geometry stored in the representation sub-
element. Elements derived from SpatialContainerType are transformed to
Group nodes containing the above information and the transformations of
all child elements. The result is an Open Inventor file which can be displayed
and reused in Studierstube applications.

The starting point of the style sheet is a template which matches the root
node of the input XML file. The template generates the necessary header
information for an Open Inventor file and then applies template matching
again to all its child elements. Child elements do not match the root tem-
plate anymore but they can match one of three templates which operate on
elements derived from ObjectType, SpatialObjectType and SpatialContain-
erType. Each of these templates generates the Open Inventor representation
of the stored elements.

These templates reuse named templates to generate the scene graph de-
scription for the pose and representation subelements if present. Figure 5.4
shows the structure of the template acting on elements derived from Spa-
tialObjectType. The template itself only generates a Separator enclosing
the actual representation which is generated by the named templates that
are called inside. The current element is passed implicitly as a parameter to
the called templates.

<xsl:template name="TransformSpatialObject"
match="*[@baseType=’SpatialObjectType’]">

<xsl:call-template name="GenerateDefName"/>
Separator {

<xsl:call-template name="GenerateTransformation"/>
<xsl:call-template name="GenerateFaceSet"/>

}
</xsl:template>

Figure 5.4: The basic template to transform elements derived from SpatialObject-
Type. Some technical details are omitted for clarity.

Figure 5.5 and 5.6 give two examples of such named templates that gener-
ate the representation. The first template GenerateDefName shown in Figure
5.5 simply looks for the id attribute of the current element and if present will
generate an Open Inventor node name. Such a name consists of the keyword
DEF and the name stored in the id attribute.

The template GenerateFaceSet shown in Figure 5.6 generates an Indexed-
FaceSet to render the geometry of an element stored in the representation
subelement. If the representation subelement is present, it will output an In-

5.3 Implementation 68

<xsl:template name="GenerateDefName">
<xsl:if test="@id">DEF <xsl:value-of select="@id"/>
<xsl:text> </xsl:text>

</xsl:if>
</xsl:template>

Figure 5.5: The basic template to generate DEF names for the grouping Separator
nodes.

dexedFaceSet node. The vertices of the model are stored in the vertextProp-
erty field and are generated by iterating over the Vertex subelements of the
representation element. The attribute position contains the 3D coordinates
of a vertex and its content is simply copied to the output. In a second step
the polygons are described as set of indices into the vertex array. Again the
template iterates over all Polygon subelements and copies the indices over to
the output. Between processing individual polygons it also writes out a stop
value to signify the end of an index set.

The template also takes care of creating the correct syntax for the fi-
nal Open Inventor format by adding quotes and commas as appropriate.
Therefore, both the structure as well as the syntactical considerations of a
transformation are captured by the XSLT language.

<xsl:template name="GenerateFaceSet">
<xsl:if test="representation">
IndexedFaceSet {

vertexProperty VertexProperty {
vertex [
<xsl:for-each select="representation/Vertex">
<xsl:value-of select="@position"/>
<xsl:if test="not(position()=last())">, </xsl:if>

</xsl:for-each>
]

}
coordIndex [
<xsl:for-each select="representation/Polygon">
<xsl:value-of select="translate(

normalize-space(@vertices),’ ’,’,’)"/>, -1
<xsl:if test="not(position()=last())">, </xsl:if>

</xsl:for-each>
]

}</xsl:if>
</xsl:template>

Figure 5.6: The basic template to generate an IndexedFaceSet representing the
geometry stored in the representation element.

5.4 Results 69

The following example demonstrates the use of the described templates.
A simple SpatialObject is transformed into a scene graph using an Indexed-
FaceSet to visualize the geometry. Figure 5.7 gives the BAUML represen-
tation of the object, a simple cube, and the resulting Open Inventor scene
graph created by the transformation. The overall scene graph is created
by the TransformSpatialObject template that writes out the encapsulating
Separator and then calls the helper templates at the appropriate positions.

The GenerateDefName template is called before the Separator string is
written out to generate an appropriate DEF name, if an id attribute is
present. Then another helper template is called to create the Transform
node representing the transformation stored in the pose subelement. Fi-
nally, the GenerateFaceSet template uses the geometry information in the
representation subelement to create an IndexedFaceSet node. The subnode
VertexProperty contains the vertex positions and the face set the polygon
definitions.

5.4 Results

In this section, we will describe results from a number of mobile augmented
reality applications we implemented. All applications are based on the model
language BAUML which was described in more detail in the former sections.

5.4.1 Indoor navigation

The Signpost indoor navigation application [81] heavily uses the described
architecture to leverage the advantages of data-driven programming. At
the heart of the application lies a building model that is reused between
different components of the application (see section 4.4.2). In addition to
that it uses a tracking system based on recurring fiducial markers that are
distributed throughout the environment (see section 3.5.3). Therefore the
application requires two different data sets, one for rendering and one for
tracking configuration, both of which are based on the same model.

A number of advanced tasks need to be supported by the data manage-
ment besides these basic data requirements. The tracking system is based on
associating recurring markers with measured positions according to a certain
scheme. To support extending and changing the model, it is necessary to be
able to compute the associations based on a partially fixed set and only for
a subset of new markers.

5.4
R
esu

lts
70

<?xml version="1.0" encoding="UTF-8"?>
<SpatialObject baseType="SpatialObjectType" id="MyObject">
<pose>
<Transformation translation="1 0 0"/>

</pose>
<representation>
<Vertex position=" -0.5 0.5 0.5"/>
<Vertex position="-0.5 -0.5 0.5"/>
<Vertex position="0.5 0.5 0.5"/>
<Vertex position="0.5 -0.5 0.5"/>
<Vertex position="0.5 0.5 -0.5"/>
<Vertex position="0.5 -0.5 -0.5"/>
<Vertex position="-0.5 0.5 -0.5"/>
<Vertex position="-0.5 -0.5 -0.5"/>
<Polygon vertices="0 1 3 2" type="wall"/>
<Polygon vertices="4 5 7 6" type="wall"/>
<Polygon vertices="6 7 1 0" type="wall"/>
<Polygon vertices="2 3 5 4" type="wall"/>
<Polygon vertices="6 0 2 4" type="wall"/>
<Polygon vertices="1 7 5 3" type="wall"/>

</representation>
</SpatialObject>

←→

←→

#Inventor V2.1 ascii
DEF MyObject Separator {

Transform {
translation 1 0 0
}

IndexedFaceSet {
vertexProperty VertexProperty {

vertex [-0.5 0.5 0.5,
-0.5 -0.5 0.5,
0.5 0.5 0.5,
0.5 -0.5 0.5,
0.5 0.5 -0.5,
0.5 -0.5 -0.5,
-0.5 0.5 -0.5,
-0.5 -0.5 -0.5

]
}
coordIndex [0,1,3,2,-1,

4,5,7,6,-1,
6,7,1,0,-1,
2,3,5,4,-1,
6,0,2,4,-1,
1,7,5,3,-1

]
}

}

Figure 5.7: An example for applying XSLT transformations to a BAUML model. The SpatialObject on the left is transformed
into a scene graph with the appropriate transformation and geometry. The first arrow indicates the application of the Gener-
ateDefName template and the second the application of the GenerateFaceSet template.

5.4 Results 71

Consequently, we have identified the following tasks related to the data
management:

• Compute a marker pattern distribution scheme based on the position
of markers and already associated marker patterns.

• Generate a scene graph based model of the environment for rendering
and interaction.

• Generate a tracking configuration based on the pattern distribution
stored in the model.

Figure 5.8 gives an overview of the work flow involved in maintaining the
model and generating the required data. Input to the model results in a
modification of the building model. After such a manipulation the marker
allocator tool updates the model itself by computing the marker pattern
distribution and storing the model again. The resulting improved model
is then the basis for any application relying on the model. In case of the
Signpost application, the building converter tool takes the current model
and generates the OpenTracker configuration file and the Open Inventor file
for the final applications.

The Signpost applications themselves rely on the Open Inventor file gen-
erated by the building converter tool. The model server component reads in
the scene graph described in the file and manages it for the other compo-
nents. The required specialized scene graph structure described in section
4.4.2 was already generated by the building converter tool. Therefore the ap-
plication code itself need not concern itself with the original generic model,
but operates directly on the dedicated data structure. The generation of the
specialized data structure is factored out into a dedicated tool. Therefore,
the architecture decouples the application from the general model.

The tracking configuration is described by an OpenTracker config file.
Again, the required file for a given building stored in the model is generated
by the building converter tool. The tool creates the necessary structure
of ARToolkit source nodes, transformation nodes and GroupGate nodes as
described in section 3.5.3.

5.4.2 Information browsing

To implement a simple information browsing application for mobile AR sys-
tems we combined the BAUML language with a simple XML language to
describe various aspects of objects stored in the BAUML language. The sec-
ondary language defines a set of elements storing various attributes such as

5.4 Results 72

Building model

Marker allocator

Optimized
building model

Building model
 editor

Building model
converter

Open Inventor file OpenTracker file

Figure 5.8: The work flow for data management in the Signpost application. The
green shapes denote the BAUML model before and after the maintenance operation
of associating marker patterns with positions. The output data sets are shown at
the bottom. Different tools to process the data are shown as yellow boxes.

5.5 Summary 73

owner, a telephone number and a general description. Then we annotated the
already existing Room objects within our building model with data format-
ted in the new language by adding the elements to the annotation element
of the respective BAUML entries.

Furthermore dedicated transformation scripts extract the information and
position it with respect to the containing BAUML object in the environment.
The scripts generate a scene graph containing visual representations of the
information. The final application itself simply renders the scene graph using
the user’s current view.

5.5 Summary

The proposed architecture and set of tools are based on established tech-
niques in current computer science. However, we have found little evidence
of using scalable data management techniques for large scale AR. There is
a small set of related areas where indirectly applicable techniques are used:
GIS databases are primarily aimed at 2D information and static, station-
ary use cases. Location-based services are aimed at abstract, text-oriented
information and low-end devices. Visual simulation focuses on high-fidelity
graphical representation and stationary displays. In this work, we have at-
tempted to explore the combination of aspects of these areas into a scalable
mobile AR database system.

Today’s most common technology for storing data are relational database
management systems (RDMS). However, we did not base our approach on a
relational data model for several reasons. The hierarchical structure inherent
in 3D data models is more directly mapped to an XML structure. One
of the great advantages of XML technology is its self-description and self-
organization by using schemas and namespaces. AR applications benefit
from this flexibility, because data definitions can be decoupled by domain
and developed independently without breaking application compatibility.

The basic extensibility of BAUML allowed us to merge new data with
the general model without breaking any existing applications but still create
meaningful associations within the model. The ability of XML technology
to mix various orthogonal languages within one data set simplifies such local
extensions of the data model.

In principle, these aspects can also be addressed with a relational model,
but at the expense of imposing the organizational workload on the developer
rather than the underlying tools. Nevertheless, an RDBMS provides a solid
performance basis for implementing an XML storage system and will play an
important part in any production system following the proposed architecture.

5.5 Summary 74

XMLResource

XMLQuery

XMLDatabase

Studierstube application

Client Server

Apache
Web Server

Tomcat Servlet Container

Xerces2 Java
XML Parser

Xalan2 Java
XSLT Processor

Tamino
Passthru Servlet

Tamino
XML

Database

Xerces2 C++
XML Parser

SoSFString SoXML

HTTPConnection
(ACE)

XPath, XQuery

HTTP
Request

HTTP
Response

GetContent() GetContentAsDOM()

Xalan2 C++
XSLT

Processor

Figure 5.9: Design of the Studierstube XML database components. The server side
provides a transformation layer on top of a native XML database. The client side
provides an API to query and update the database and to transform result sets.

During the writing of this dissertation we have begun to develop a storage
solution based on a native XML database. The basic system design uses a
simple client/server architecture (see Figure 5.9). Transformations can be
provided on both the server and client side. In the former case they are part
of the servlet providing the connection to the XML database backend. In
the later case, the client API allows to perform arbitrary transformations on
the result sets obtained from the server.

Chapter 6

Managing collaboration

All but the most simple collaborative applications will require some level of
distribution between different processes. A typical collaborative augmented
reality application will consist of one workstation per user which drives the
rendering and interaction for this user. A distributed system will then im-
plement some sort of data sharing between the workstations to provide the
collaborative experience for several users.

Studierstube applications deal with very different scenarios ranging from
large virtual workspaces that are operated by several hosts to mobile and
location-based applications and collaboration between disjoint workspaces.
A system that is able to accommodate all such situations needs to be flexi-
ble and provide a general model to describe these situations. However, the
complexity should not extend to the user or the application programmer.
Therefore, the distributed system should work as transparently to the end
user or application programmer as possible. Moreover, a generic model and
API allows to develop different user interfaces for the required user interven-
tion which are appropriate for the usage scenario.

A workgroup of hosts executing a collaborative session should be able to
accommodate changes to its configuration, for example, to provide the cur-
rent state of applications to late-comers. For more complex scenarios such as
mobile augmented reality, ubiquitous computing and large or remote shared
workspaces whole sets of applications need to be managed by appropriate
forms of migration. Application migration requires that a running appli-
cation instance moves from one host to another, while user interface and
internal state are kept intact.

We found that most of these situations deal with the relationship be-
tween the location of one or more workspaces and a set of application ob-
jects contained in these workspaces. To accurately model these relationships
we implemented a locale concept inspired by Barrus et al. [10] to explic-

75

6.1 Related work 76

itly model the relationship between locations and applications. The locale
concept is supported by a runtime system management infrastructure that
implements the basic operations to make the locale management transparent
to the application developer.

6.1 Related work

Building collaboration aware applications that have true multi-user interface
elements should be only slightly harder than building conventional applica-
tions or application programmers will be reluctant to do so [86]. In object
oriented frameworks, a feasible approach is therefore to provide components
(widgets) that have built-in collaboration facilities, and can readily be (re-)
used by application programmers or even retro-fitted to legacy applications
[13]. The Studierstube framework offers similar possibilities by using trans-
parent distribution and multi-user 3D widgets.

Besides static workgroup topology, some research also considers dynamic
changes to the workgroup and client migration [17, 28], in particular accom-
modation of late-comers that need to be updated on the current state of the
session. Two competing solutions are replaying all previous events to the
newcomer vs. transmitting a current image of application state. Because the
history of previous events can become arbitrarily large despite potential for
compression [29], recent work favors the image copy approach [110]. This
is partly due to novel architectures that make it easy to marshal complex
runtime structures [14], and is also the foundation for our application migra-
tion facility. It should be noted, however, that this kind of migration in a
constrained runtime environment is not comparable to full operating system
level process migration.

Finally, several projects on collaborative user interfaces inspired our work.
SharedSpace [19] features collaborative augmented reality, but is limited by
its lack of an underlying distributed system. CRYSTAL introduces multi-
tasking to virtual environments [111]. The closest relative to our approach
is EMMIE [26], which provides a similar platform, but does not include
dedicated application management. Other collaborative user interfaces, such
as mediaBlocks [112] or multi-computer interaction [85, 83] anticipate many
of our goals, but do not incorporate stereoscopic 3D graphics.

The work described here builds on the developments described in the dis-
sertation of Gerd Hesina [43]. He extended the basic Studierstube framework
with a distributed scene graph called Distributed Inventor (DIV). DIV sup-
ports transparent replication of an Open Inventor scene graph among a group
of peers using a reliable multi-cast protocol. To avoid concurrent changes a

6.2 Locale framework 77

single host is assigned to be master and has sole control over the scene graph,
while the other hosts become slaves and only replicate the changes. A more
detailed discussion of DIV can be found in section 2.5.6.

6.2 Locale framework

Extending Studierstube from a simple distributed framework supporting
fixed configurations of shared scene graphs to a dynamic and ubiquitous
application environment requires a basic model of the relations between the
basic components of users, applications and places. The locale framework is
this model and will be described in more detail in the following.

6.2.1 Requirements

To clarify the discussion of the requirements and solutions we start with a
short description of the most important concepts.

An application is a single Studierstube application which can be started
and stopped as one entity. Using the dynamic application features of Studier-
stube, such applications can be written to and loaded from files for persistent
storage and later retrieval of a certain application state (see section 2.5.4).

A workspace is usually a single coherent coordinate system that one or
more users interact in. A single workspace can contain more than one applica-
tion and conversely, an application can be member of one or more workspaces
to support remote collaboration.

A user within Studierstube is a set of configuration items that represent
a user to the framework and any applications executed. It encompasses the
the output display and format, and a set of interaction channels that are
associated with a single user. Applications adjust their behavior to different
users because they will receive information on the different users that are
working with these applications.

A host is generally a single Studierstube process that participates in a
distributed session to provide a collaborative workspace. While several pro-
cesses can be executed on a single workstation, usually only one is used to
maximize the performance. Therefore, we simply identify the single process
with the host.

Within the Studierstube framework we want to support a simple but
flexible way to implement various collaboration scenarios. These should in-
clude collaborations between users in a fixed workspace, mobile users that
roam between workspaces and join and leave them, mobile users that carry

6.2 Locale framework 78

their own mobile workspace and finally remote collaboration between dif-
ferent workspaces. Still, the actual collaboration situation should be trans-
parent to the application. Also the management of applications within these
workspaces should not be a burden on the user but rather happen as transpar-
ent and seamless as possible. The appropriate user interface for these tasks
still depends on the actual setup. We can identify the following requirements
from the given description:

Data sharing We require a data sharing mechanism to implement collab-
orative applications supporting a variety of usage scenarios and setups. It
should fit to the typical application programming model in the Studierstube
framework and avoid additional overhead for the application programmer.

Shared workspace Collaboration within Studierstube should support a
workspace metaphor where multiple users can interact with multiple appli-
cations and have control to start and stop, save and restore applications and
move them between different workspaces.

Transparent to user Details of the application management should be
transparent to the user. The systems developer should provide appropriate
user interfaces that are employed by the user to control the applications.

Transparent to application programmer Also, application programmers
need not to worry about the workspace and management user interfaces in
which their applications will be deployed. Therefore, details of workspaces,
such as their geometric configurations, should be transparent to the applica-
tion where possible.

6.2.2 Concepts

To address the requirements we deploy the following concepts: a distributed
shared scene graph mechanism implements the basic data sharing; dynamic
session management across all hosts in a distributed setup organizes running
applications by appropriate forms of migration; dynamic spatial management
models the relations between workspaces and applications.

Distributed shared scene graph The basic data sharing requirements
are already addressed by Distributed Inventor. It provides a transparent
way to distribute scene graphs and therefore allows programmers to develop
distributed and collaborative applications in a similar manner to stand-alone

6.2 Locale framework 79

applications. However, DIV only takes care of fine grained data distribution
and does not address the system management issues of sharing and moving
whole applications between users and workspaces.

Dynamic session management To support the complex workspace sce-
narios, a dynamic session management similar to a window manager on a
modern desktop operating system is required. It also needs to incorporate
different users and their operations on the overall session. A user may join a
shared workspace at any time which requires that running applications are
migrated to the user’s setup. Leaving a session might require to keep a copy
in the user’s disjoint workspace or to remove the application instance. A
central component called session manager keeps the track of the relations
between workspaces, applications, hosts and users and updates hosts of any
changes to the overall configuration.

Dynamic spatial management Besides the generic session management
facilities provided by the session manager, a spatial model of the workspaces
is required. This is provided by the locale framework which provides the
necessary representations for workspaces as locales. These locales also in-
corporate the spatial properties such as locations of workspaces and appli-
cations within workspaces and manage transformations of tracking events as
required.

6.2.3 Definition of locales

We define a locale as an independent coordinate system that is used to group
application objects based on geometric or semantic properties. A locale de-
fines a pose (position and orientation) for each contained application - more
precisely, the root of the application’s scene graph. There is no global co-
ordinate system for applications; every application’s pose is only meaningful
with respect to a specific locale. Locales themselves are defined with respect
to a global coordinate system. In a more formal way we define a locale as
a set M of objects o and a function f that maps each object o to a pose
represented by a transformation matrix t:

L = (M, f) where f :

{
M → R4×4

o→ t = f(o)

Unlike Barrus et el. [10], we allow an application to be a member of
several locales at the same time. Any application that is member of two
locales defines already a relative transformation between the two locales. If

6.2 Locale framework 80

the application o is member of two locales L1 = (M1, f1) and L2 = (M2, f2),
we can define the relative transformation from L1 to L2 as t = f2(o) ·f1(o)

−1.
If there is more than one application common to both locales, we can define
a relative transformation for each of them.

We allow an application to be a member of several locales even if its global
pose (taking into account the relative pose of the application in each locale,
and the absolute pose of the locales) is inconsistent. Such a configuration is
not meaningful in most cases where two locales overlap in the same physical
space, and share an absolute input device (tracking system). In these cases,
an application pose is configured to be coordinated across locales. However,
in remote collaboration situations, a more relaxed pose control can be useful.

6.2.4 Managing applications with locales

Within the distributed system we use locales to organize applications into
sets. Each host subscribes an arbitrary collection of locales and replicates all
applications that are members of these locales. Because an application may
be a member of several locales at the same time, there are two situations
when an application is shared between two hosts:

• Two hosts use the same locale. In this case they share all applications
of that locale. As clients sharing a locale will usually be physically
close (and on the same network segment), their sharing of input data
can be implemented efficiently.

• Two hosts use two different locales containing the same application.
The application can have different positions in each locale but is still
shared between the two hosts. This allows remote collaboration be-
tween disjoined workspaces.

Information on the status of individual hosts, users, locales, etc. is kept
by the session manager (see section 6.3.4). Any Studierstube host notifies
the session manager about the locales it is working with, the applications it
runs and the users it knows about. The session manager keeps track of the
relationship between locales, applications and users. It notifies other hosts
about any changes in the configuration, updates newcomers of the current
status and performs cleanup operations after a client disconnects. The session
manager is not involved in propagating any input events or updates to the
actual application; this is exclusively done with fast peer-to-peer multi-cast
networking among the hosts.

6.3 Implementation 81

Instead, its purpose is to coordinate the hosts in performing the following
book-keeping operations:

Join a locale A host has to notify the session manager of all locales it is
working with. Thereby is subscribes to be updated on any changes to the
set of applications contained in the locale.

Leave a locale Again a host also has to notify the session manager, if it
is not interested in a locale anymore. In this case applications contained in
the locale will not be shared anymore with the departing host.

Start an application This tells the session manager that a certain appli-
cation is loaded and started in a certain locale. All hosts that use the same
locale will be notified of the new application and become slaves for the newly
shared application via application migration. The starting host becomes the
master for this application.

Stop an application This notifies the session manager that a certain ap-
plication is stopped and unloaded. The server notifies all hosts that are
using locales the application appears in of the event and all hosts unload the
application as well.

Share an application In this case an already existing application instance
is also added to another locale. Any hosts that use this locale will share the
application as well.

We impose some restrictions on the way a host may work with locales.
Firstly, if a host joins a locale it shares all applications that are members of
this locale. This allows us to use locales to control which hosts share which
applications. Secondly, a host can only execute one instance of a shared
application. That is, the host must not join two locales which contain the
same application. This restriction guarantees that a single application and its
content will not appear in two different places to a single user, if its poses in
two different locales do not correspond to the relative transformation between
these locales (see section 6.2).

6.3 Implementation

The implementation of the locales framework is based on three parts: the
basic distribution mechanism for applications based on the Distributed In-

6.3 Implementation 82

ventor described in section 2.5.6; the setup in the Studierstube host to model
locales, the application’s containment in locales and to deal with the correct
transformations of tracking data between locales; the management of the
distributed system itself which is located in the session manager component.
Each of these parts is described in further detail in the following sections.

6.3.1 Using Distributed Inventor for applications

Extensions in Studierstube are created by OIV subclassing, and can be loaded
and registered with the system on the fly. Using this mechanism, we can
take the scene graph based approach that avoids a dual database (graphical
+ application data) to its logical consequence by embedding applications
as nodes in the scene graph. Applications in Studierstube are written as
new application classes that derive from a base application node (see section
2.5.4). Multiple instances of application objects can be present in the scene
graph simultaneously for multitasking.

Therefore, to distribute an application it is sufficient to distribute the
scene graph that represents that application using DIV (see section 2.5.6). A
SoDIVGroup is created at all hosts interested in sharing the application and
its scene graph is added to that group. The new application node is added to
all replicas of the scene graph, and therefore is distributed. With the appli-
cation node all data contained in attributes will be replicated, not only the
scene subgraph of graphical objects, but also attributes that are not visible
objects but represent other application data. Non-graphical attributes are
simply added as additional fields of the application node that do not directly
contribute to rendering. We have found this unified treatment of graphical
and non-graphical data to drastically simplify application development.

Application specific computations, such as callbacks triggered by events
created from user input, need not be repeated at every host. Instead, for
every application instance, a master host is determined, which is responsible
for performing all execution of application code. The updates to the ap-
plication state resulting from these computations are then replicated in the
slaves replicas of the application instance. At the same time, the master host
can be determined for every application instance separately. Coarse grained
parallelism is introduced by distributing the master responsibilities over the
hosts.

6.3.2 Shared applications

A workgroup of hosts executing a collaborative session should be able to ac-
commodate changes to its configuration, for example, to provide the current

6.3 Implementation 83

state of applications to late-comers. For more complex scenarios such as
mobile augmented reality, ubiquitous computing and large or remote shared
workspaces whole sets of applications need to be managed by appropriate
forms of migration.

Studierstube keeps each application contained in an SoDIVGroup to en-
able sharing of the application. The attributes of the SoDIVGroup are set
according to commands received from the session manager and in turn imple-
ment the actions required for starting, sharing and migrating applications.

At startup an application is simply instantiated in the scene graph with
its associated SoDIVGroup disabled, so that the application runs in stan-
dalone mode. As a next step an application would be shared among different
hosts using application migration. In an already running assemble of appli-
cations distributed among various hosts, activation migration can distribute
the master token between the different instances of an application.

Application migration requires that a running application instance moves
from one host to another, while user interface and internal state are kept
intact. Therefore, complete transportation of the live application to a re-
mote host is necessary. Since all application state is encoded in the scene
graph, marshalling an arbitrary application into a memory buffer becomes
a standard operation of OIV (SoWriteAction). The application’s complete
live state, both graphical and internal, is captured in a buffer, and can be
transmitted over the network to the target host where it is demarshaled
(SoDB::readAll) and added to the local scene graph, so it can resume opera-
tion. Next, the application’s binary object module is loaded at the destina-
tion, and callbacks from scene graph objects are adjusted.

To trigger application migration the session manager sends commands to
the receiving host to create an empty SoDIVGroup for the new application
and to configure it for the multi-cast channel of the application. The group
is also configured to receive a copy of the application as described above. If
the new instance is the first slave instance, then the session manager also
configures the sending host to activate the dormant SoDIVGroup and to
configure it as a master in the resulting DIV communication.

Activation migration is a simple procedure to change an application in-
stance’s master from one host to another similar to [9]: The master ap-
plication node and its contained subgraph recursively deregister their event
callbacks at the old master host, and the instance at the new master host
registers its callbacks. The hosts swap roles in a way transparent to other
hosts, the user and even the application itself. A possible application for this
lightweight procedure is load balancing as described in [93].

The described function does not require any interference from the session
manager and is directly implemented in the SoDIVGroup. The application

6.3 Implementation 84

triggers a field on its encapsulating group to request master mode. When the
mode is transferred both instances update the session manager to the new
state.

6.3.3 Locales in the scene graph

The implementation of locales is straightforward by mapping the logical
structure discussed above to a scene graph. For every locale that a Studier-
stube host subscribes, a special locale group node with a transformation
reflecting the locale’s pose is created. Application objects are inserted below
the locale node based on locale membership, again with a pose transfor-
mation applied relative to the locale. Both application objects and locales
themselves can be stationary or tracked. Tracked locales allow dynamically
changing relationships among locales.

Tracking data needs to be associated with a locale to provide correct
transformations into other locales if necessary. Every locale stores a set of
station ids of event channels that are associated with the locale. Events
generated by these stations are transformed with the inverse of the locale’s
pose before they are propagated through the scene graph. When the events
pass a locale group node the embedded transformation is applied and they
are correctly transformed from their originating locate to the current locale.
In the case of the locale the event originates from the transformations cancel
each other out and the event is processed unchanged.

6.3.4 Session manager

The session manager is a simple server process that is central to organizing a
distributed session of several Studierstube hosts. Acting as a central contact
and configuration management point, the session manager provides the basic
needs of discovering peers and managing the configuration of distributed
applications. All Studierstube hosts in a distributed session connect to the
session manager for the duration of their participation. The communication
between the hosts and the manager is based on exchanging asynchronous
messages. Reacting to such a message can create new messages that are send
to and from the session manager.

A distributed session is characterized by a set of locales, hosts and ap-
plications and their relations: A host can join a set of locales and a locale
can contain a set of applications, while applications can be contained again
in a set of locales. This information is maintained in a set of classes seen
in Figure 6.1. Additionally, any configuration of users attached to hosts are
stored with the host and the locales they are associated with. Joining hosts

6.3 Implementation 85

SessionManager

Host

SessionVisitorAdaptor

SessionVisitor

StreamHandler

User

SessionHandlerLocale

*

*

Application
*

*
*

*

*

MessageFactory SessionAcceptor

Figure 6.1: A class diagram detailing the implementation classes of the session
manager. Green classes form the data model, pink classes deal with the low level
network connections and violet classes perform parsing and dispatching of mes-
sages.

are then updated with the configuration of any other users that are contained
in the locale.

A connected host is always kept up-to-date on the part of the model that
it requires to know. The scope of the visible subset are all locales it joins and
the applications and users contained therein. The session manager also sends
configuration parameters for the SoDIVGroups of individual applications to
start and stop sharing an application based on the number of hosts that share
the application. The required information can exceed the scope of a single
host and therefore can only be computed by the session manager. Hosts in
turn create and join locales, and start and stop and share applications within
joined locales.

The design of the session manager itself is oriented after a single-threaded
server working in a reactive mode. Within a single threaded event loop
a singleton object [40, p. 127] of type SessionManager waits for incoming
messages from any of the connected hosts. Upon receiving a message it
performs the necessary computations, updates its internal state and sends
new messages to hosts notifying them of any necessary changes. Then the
event loop will sleep again waiting for the next incoming event.

The implementation uses the Reactor pattern [95, p. 179] to process in-
coming events and connections. If a host establishes a new connection, a
new SessionHandler object is created that stores the object representing the
connection and a new Host object that represents the information on the
host itself in the data model. The SessionHandler class also implements the
handle callbacks that are called by the Reactor to notify the object of incom-

6.4 Results 86

ing data. Incoming data is parsed into messages and then forwarded to the
SessionManager singleton that interprets the message and acts on it.

Parsing of incoming messages is implemented in terms of the Abstract
Factory pattern [40, p. 87] and acting on messages as a Visitor pattern [40,
p. 331]. The SessionManager provides a singleton object of type MessageFac-
tory that stores construction functions for all known message types. These
functions parse a data block and decide whether they can create a message
object of a certain type or not. The SessionHandler passes incoming data
blocks to the MessageFactory singleton and receives a new message object.
Next, it executes a visit method on the message object passing in a Session-
VisitorAdaptor object. The message object itselft then dispatches the right
method on the SessionVisitor interface of the adapter object to implement
the double dispatch functionality. The adaptor object’s methods then call
the correct methods of the SessionManager distinguishing between different
message types and passing in additional parameters identifying the connec-
tion.

The SessionManager object itself implements a set of callback methods
that get message objects of different types passed in. Acting on the different
message types and content, it updates the data model and sends out any new
messages to hosts as required.

6.4 Results

In this section we will describe some example configurations using the locale
framework. The examples use increasingly complex setups of hosts and ap-
plications. The locale framework can be used nicely to organize the set of
shared applications into subsets that are meaningful to the user.

6.4.1 Basic stationary multi user setup

The simplest configuration for a distributed Studierstube session is a two
user setup where a dedicated host renders the view of each user. Thus, the
setup consists of two hosts, each running a Studierstube process and possibly
some additional computers driving tracking hardware. Such a configuration
is typical for a shared workspace where two users work collaboratively with
a set of applications.

Such a setup is supported by configuring a single locale that both hosts
join. The two users are created to be objects in that locale as well. All
applications that are started by either user will be created in the joint lo-
cale and therefore be shared between the two hosts and available to both

6.4 Results 87

Figure 6.2: A user moves an application across three displays by manipulating the
associated marker. The application migrates from host to host in the process.

users. The master copy will typically reside on the host of the user who
started the application. By activation migration the master property can be
switched between the two hosts for each application individually, for example
to distribute the load evenly to achieve load balancing.

The setup can be augmented with private spaces for each user where
applications appear that are only visible to the user the private space belongs
to. For each user an additional private locale is created that is joined only
by the host associated with that user. Then any application that should
be accessible only for this user is started in the private locale. Because the
second host does not join the private locale of the first host, the applications
contained in the locale are not shared with the second host and therefore are
not accessible to the second user.

6.4.2 Application migration

A more complex configuration demonstrating the use of application migra-
tion is a tiled display wall where each display is driven by a dedicated host.
Applications are moved throughout the whole display area and migrate be-
tween tiles based on spatial containment. Again the locale framework is used
to implement the necessary migration management.

A recent trend in visualization is the construction of tiled displays from
inexpensive projectors driven by clustered PC workstations [70]. A basic test
setup was used to simulate such a display wall. A Studierstube cluster works
as a scalable panorama display using conventional displays placed side by side
or in arbitrary configurations. Each display provides a window into a portion
of the virtual workspace by depicting the content of a locale associated with
that sub volume. Overhead cameras pick up how users move markers in the
workspace, and move the corresponding application instances accordingly.
Applications migrate between displays, if they cross from one volume into an
adjacent volume (see Figure 6.2).

6.4 Results 88

locales for each display

A

display 1 display 2 display 3

B

A B

display 1 display 2 display 3

A A B

BA A

display 1 display 2 display 3

A A B

B

(a) (b) (c)

Figure 6.3: Locales organizing application migration for a multi display setup. (a)
Each display uses an assigned locale. It only executes the applications contained
in its locale. (b) As an application is moved across the combined display, it enters
another locale and the application migrates to the associated display. (c) As soon
as the application leaves its former locale, it is removed from it and the display.

For each host a locale is defined and joined by that host. A dedicated
control application is started in the locale and checks for any markers that
enter a spatial volume defined as the extend of the locale. The volume
describes the subset of space that a single display tile renders. Whenever a
marker enters such a volume, the control application triggers the migration
of the corresponding application to the associated locale. If a marker leaves
the volume again, the application is removed from the locale.

Since each host/display combination displays a volume of finite extent,
it need not know about the content of other locales. Hence as long as ap-
plication instances remain stationary, there is no need to communicate with
other hosts about the interaction regarding application instances contained
in the locale, thus preserving network bandwidth and improving scalability
by exploiting locality (see Figure 6.3(a)). An application instance need only
be shared if it spans multiple locales because it happens to lie on the border
(see Figure 6.3(b)) or is very large. If the application is moved from one
locale to another, it will migrate from display host to display host. As soon
as it leaves a locale completely it will be removed from that host (see Figure
6.3(c)).

Using the tangible marker objects, the panorama setup can accommodate
interaction in the style of Rekimoto’s multi computer drag and drop oper-
ations [83]. A user can move an application instance across the workspace,
and the corresponding application will migrate from locale to locale, thus
preserving the principle of locality.

Later this basic setup was extended to a fully functional display wall
where multiple projectors were used to provide a seamless tiled display [89]
(see Figure 6.4). The basic distribution setup, however, remains the same.

6.4 Results 89

Figure 6.4: Two images from the tiled display wall. Accurate correction for oblique
projection and edge blending provide a single seamless image.

6.4.3 Augmented Classroom

A more complex setup demonstrates the full power of the locale framework.
In the Augmented Classroom [94] a visionary scenario is created that demon-
strates the integration of augmented reality into a classroom situation. We
designed an environment that blends mobile augmented reality, collabora-
tion, and tangible user interfaces.

The Augmented Classroom allows two users equipped with wearable mo-
bile augmented reality systems to directly interact in a shared workspace
similar to the configuration described in section 6.4.1. They use direct ma-
nipulation and tangible user interfaces to interact with a 3D geometry ed-
ucation application called Construct3D [56]. In this setup a student and
an instructor can work collaboratively to understand and solve geometrical
problems.

To let a larger audience participate in the results of the ongoing instruc-
tion, a projection screen presents the application’s output as well. The geo-
metrical objects the mobile users interact with are manipulated with tangible
markers independently from the mobile users’ view. Therefore, the remain-
der of the class can interactively explore the results of the current or a past
collaborative session.

Figure 6.5 gives an impression of the setup. The two mobile users interact
at a table with the application. Individual constructions are attached to
tangible markers and can be inspected from any side by manipulating the
markers. Tracked gloves allow direct manipulation of the constructions such
as moving points and selecting objects for operations (see Figure 6.6). Both
users share the same workspace and can interact with each other to help with
a construction and point out interesting features in the models.

6.4 Results 90

Figure 6.5: A sketch of the Augmented Classroom setup. The shared workspace on
the right is used by two mobile users. The display wall on the left allows inspection
of the mobile users’ work.

Another user inspects the ongoing work on a construction on the pro-
jection screen to the left. She can manipulate the same construction in her
workspace with another tangible marker. Note, that the same construction
is presented at two independent locations in the real world. However, only a
mobile user can perceive both presentations simultaneously.

The supporting locale configuration for such a complex setup is shown
in Figure 6.7 and is as follows: A workspace locale is created for the col-
laborative workspace of the two mobile users. Both mobile hosts join the
workspace locale and start Construct3D in it, thereby sharing it between
both hosts to allow both users to interact with the application simultane-
ously. A second locale, the screen locale, is created for the space visible in
the projection screen, and the host dedicated to rendering the view on the
screen joins this locale. The application is also distributed into the second
locale and therefore shared by the render host as well.

However, as the host does not join the same locale as the two mobile
systems, the application’s geometry can be tracked and moved in space in-
dependently from the workspace locale. The tracking configuration splits
tracking information into two subsets, one for the workspace locale and one
for the screen locale. The constructions of the application receive their po-

6.4 Results 91

Figure 6.6: Users in the Augmented Classroom. To the left a mobile user is inter-
acting with a construction. To the right two users are inspecting a construction on
the display wall.

sition depending on the host that renders them. Thus, the mobile setups
render the objects at their position in the workspace locale and the render
host at the position in the screen locale.

The application is still shared between all three hosts and therefore any
change and manipulation to the constructions by the mobile users is shared
among all hosts and can be perceived instantly on the screen as well. There-
fore, the spectators will always see an up-to-date version of the current work
on the screen.

The setup could be augmented with additional features from the config-
uration described in the former sections. Private locales for each mobile user
could be added to support private applications only accessible by and visible
to that user.

Screen locale Workspace localeApplication

Render host Mobile setup 2Mobile setup 1

joined joinedjoined

Figure 6.7: The locales configuration for the Augmented Classroom setup. The
application is contained in both locales. The hosts join different locales to support
independent positions of the application within their workspace.

6.5 Summary 92

6.5 Summary

The goal of Studierstube to provide a ubiquitous workspace where users in-
teract with multiple applications simultaneously requires the management
of users, applications and places where interaction happens. The described
locale framework achieves this by modelling the required interactions accu-
rately. The technical requirements of application migration and distribution
were already present in the Studierstube framework. However, more complex
scenarios than a fixed set of users and hosts require the additional manage-
ment of the basic migration and distribution functions.

The locale framework does not provide a high-level configuration inter-
face. In the described form it is still an application programming interface
within the Studierstube framework. Additional components such as dedi-
cated applications that provide a user interface to control the API need to
be implemented to give the user control over the functionality. For example,
the panorama screen setup used dedicated control applications running in
each locale that would trigger the application migration based on hand-held
tiles entering an associated volume. Therefore, an important direction of fu-
ture work is to develop appropriate user interfaces for managing applications
in changing collaborative work scenarios.

Chapter 7

AR application design

Complex application benefit from a strong framework such as Studierstube,
but overtime our experience has shown that this is not sufficient for efficient
development. In addition, we find it necessary that application develop-
ment is supported with best-practice guidelines and a work-flow to guide the
developer. This chapter develops a common design for Studierstube based
applications as a set of sub-components interacting with each other using a
system of patterns. A work-flow is described that can help the developer
to factor different aspects of the application design into the correct sub-
components and to arrive at a complete implementation and configuration
of each component.

7.1 Principles

The first guideline for a developer is a reference architecture of a Studierstube
application. Figure 7.1 gives an overview of the different sub-components
that a typical application assembles. These sub-components each focus on
a subset of the problem space and address the configuration and implemen-
tation issues surrounding the areas of tracking, control user interfaces, 3D
interaction, graphical representation, data management for large scale data
repositories, distribution and the core application logic.

To fill the reference architecture with an implementation a work-flow is
provided as another guideline that assists with two recurring development
tasks. Firstly, it provides a separation of the problem description into con-
cerns matching the sub-components. Secondly, it outlines a path to the
consecutive implementation of the sub-components. The actual implemen-
tation work is supported by a number of patterns for internally controlling
the sub-components and organizing the communication between these. A

93

7.1 Principles 94

catalog of design issues to take into consideration helps with exploring the
solution space for each sub-component.

A Studierstube application typically consists of the following components:

Tracking Tracking encapsulated in an OpenTracker configuration.

Application core The application core consists of application specific func-
tionality.

Control UI A control user interface built from standard 2D widgets and
other high-level interaction.

3D Interaction 3D user interfaces to select and manipulate 3D information
directly.

3D presentation 3D presentation containing models and rendering infor-
mation.

Data Management The data management works outside of the actual run-
time environment to provide large models.

Collaboration Different forms of data distribution to implement collabo-
rative applications.

Each of these components and a set of issues related to implementing
these will be discussed in the following sections. Moreover their relations and
possible communication patterns between them will be described. Finally an
overall work-flow tying together the individual pieces into a larger net is
described.

Within the following sections we also describe some patterns that repre-
sent reusable solutions to typical design problems. They appear at appro-
priate places within the discussion of the components they relate to. In the
language of Buschmann et al. [24] they are similar to idioms, because they
are usually tailored towards the Studierstube framework and do not always
make sense in another context.

7.1
P
rin

ciples
95

Studierstube application

Application core

User interface

Control UI 3D presentation 3D interaction

Distribution - Collaboration

Data managementTracking - OpenTrackerDistribution - Collaboration

Figure 7.1: The central components of a Studierstube application.

7.1 Principles 96

Reicher et al. [79, 78] have developed a reference software architecture
similar to the one presented here to investigate and compare different archi-
tectures deployed in AR applications. It is an interesting exercise to match
the sub-components as given above to the subsystems of the reference archi-
tecture (see Figure 7.2). Some components are straightforward to associate:
the tracking component is contained in the tracking subsystem; the applica-
tion core is in the application subsystem; the data management is in the world
model subsystem. The control user interface and 3D interaction components
are both contained in the interaction subsystem. They are separated in our
model because Studierstube provides different highly specialized objects that
allow and fit such a separation. Finally, the 3D presentation component is
certainly contained in the presentation subsystem but can also be part of
the world model subsystem. The collaboration component does not appear
explicitly in the reference architecture. However, it can be mapped as part
of the context subsystem where collaborative designs such as blackboard for
sharing information are placed.

Control

Distribution

Application

Application core

World Model

Data management

3D presentation

Interaction

Control UI

3D Interaction

Tracking

OpenTracker

Presentation

3D presentation

Figure 7.2: Mapping of Studierstube application components in green to the sub-
systems of the reference architecture. The grey components mark alternative map-
pings for a component.

7.1 Principles 97

7.1.1 Tracking

Tracking is an indispensable part of any AR application and therefore plays
a predominant role in most current software designs. Implementing tracking
specific functionality in a dedicated software component allows for code reuse
and changeability of an application. Indeed, these were some of the main
motivations for the development of a data flow library for tracking data in
chapter 3. However, it is also necessary to make good use of the provided
functionality. In this section we will explore some principles that lead to
optimal use of the OpenTracker sub-component.

A first step is to identify the abstract tracking requirements of the appli-
cation. The requirements should specify the quality of the tracking data in
terms of degree of freedom, update rate, accuracy and also variability of these
features. The number and use of several tracking channels needs to be estab-
lished, for example knowledge that a user’s head and one or two interaction
props need to be tracked. The type of reference system should be defined
as well, e.g. to distinguish between a world-stabilized, body-stabilized or
head-stabilized coordinate system [18]. These considerations should not in-
volve the actual tracking systems used or any necessary combinations of such
systems. The goal is to establish the final tracking input to the application
itself.

In a next step, the actual configuration of the individual trackers is cre-
ated. Typical considerations include the availability of the trackers. Does the
data require any post-processing such as filtering? Do we have to combine
and fuse different trackers to create the required tracking data, for example
by fusing a position tracker and and orientation tracker to provide full 6
degrees-of-freedom information? And finally, does the tracking data need to
be transformed to register the tracker’s reference system to the application’s
system or to calibrate any markers within the tracker’s system?

Another aspect of any tracking configuration is the location of the track-
ing resources. Typically not all trackers will be connected to the host running
an application, but will provide the necessary data via network transmission.
Refer to section 3.5.1 for an in-depth discussion of this topic. The location of
possible transformations of the data is usually associated with the distribu-
tion of tracking data. Should such transformations be located at the source
so that they are visible for every user of the data or should they only appear
in the local configuration of the application?

A final issue is feedback from the application itself into the tracking sys-
tem. Calibration procedures, switching between different tracking systems or
tuning filters, all require the application to manipulate the tracking configu-
ration in some way. By providing prepared entry points in the configuration

7.1 Principles 98

the developer can define a well-known interface to the application. Such a
separation decouples the application itself from the tracking configuration
because it does not require any detailed structural knowledge about the con-
figuration anymore.

The following pattern describes an effective way of implementing such a
feedback loop with the help of OpenTracker (described in chapter 3) which
maintains the separation between application and tracking configuration
while providing the required feedback channel.

Tracking feedback loop

Problem Some situations require the application core to provide feedback
into the tracking subsystem. For example a calibration procedure needs to
set an offset value to correct incoming tracking data of an interaction prop.
The following issues need to be considered:

• Changes to the tracking configuration should not influence the appli-
cation directly as long as the semantics of the feedback do not change.

• Conversely, changes to the application’s side should not propagate to
the tracking configuration.

• The interface should use existing designs in both the application and
the tracking domain to avoid a close coupling to the feedback mecha-
nism.

Solution Use an application-driven OpenTracker source node (in our case
a StbSource node) to provide transformation information to the tracking
subsystem. Configure the node to use output from an Open Inventor node
that generates the required transformation data. The transformation data is
then combined within OpenTracker to correct incoming tracking data using
any dynamic transformation filter node.

Structure The StbSource node acts as a subscriber to an arbitrary Open
Inventor node. The Open Inventor node acts as the interface to the scene
graph and field connection network. Both together form a bridge between
the event flow of Open Inventor and the event flow of OpenTracker (see
Figure 7.3). The dynamic transformation filter node acts as the combining
element which applies the changing transformation to incoming data. Both
the OpenTracker node and the Open Inventor node act as proxies to their
respective event system and encapsulate the underlying connection allowing
changes on both ends that do not propagate to the other end.

7.1 Principles 99

App

Calibration
Node StbSource DeviceSource

DynamicTransform

StbSink

Scene graph Data flow graph

Figure 7.3: The structure of the tracking feedback loop pattern.

Dynamics Whenever field data stored in the Open Inventor node associ-
ated with the StbSource changes, the StbSource node generates new tracking
events based on the new data. These events are then forwarded to the filter
node which applies the changing transformation to incoming data. The fields
can depend on other fields from other nodes and engines in turn.

Consequences The Feedback loop pattern offers important benefits:
Transparency Because each proxy node acts in the standard way of the

associated event system the feedback loop conforms to the usual semantics
of that system. The individual interfaces are well known and should not hold
any surprises to the developer.

Flexibility Changing the source of the feedback data can be accomplished
by changing the tracking configuration in a well known location or simply re-
connecting the source field on the Open Inventor node. The first option lends
itself more to hand-tuning a configuration, while the latter offers changeabil-
ity at runtime as well. �

7.1.2 User Interface

User interface components in an augmented reality application usually fall
into one of two categories. Traditional control user interfaces are required
to set the mode of an application, select from a set of given textual values,

7.1 Principles 100

set abstract numerical values or trigger actions. The interactive and three-
dimensional nature of AR also requires the use of 3D direct manipulation
user interfaces to provide the natural interaction with real or virtual objects.
The Studierstube framework provides dedicated APIs for both kind of user
interfaces and allows the developer to assemble the required mix of interface
modalities. Still, a number of issues should be taken care of.

A first step is to identify the states of the application that will be con-
trolled by the user interface. A list of these states consisting of their name,
type and possible values or ranges of values can be helpful. Now it is possible
to decide which states should be represented and modified using traditional
2D widgets and which information and input should be provided by 3D in-
teraction. Within Studierstube the Personal Interaction Panel is a standard
way of presenting a 2D GUI (see section 2.5.3). Other possibilities is the
PUC framework [68] that allows the application to interface with a graphical
user interface presented on a hand held device.

Any presentation of the user interface should be separated from the ap-
plication itself. On the one hand, the application should expose the current
state as a set of variables that describe the state as succinct and fitting as
possible. The user interface, on the other hand, will typically consist of a set
of widgets with less abstract state information that needs to be filtered and
aggregated to arrive at the high-level information that matches the applica-
tion’s state. The translation between both can be achieved by a layer of glue
logic that implements the necessary steps. If any change to the user interface
or the application’s logic is necessary, only this intermediate layer needs to
be adapted. The following pattern describes this approach in detail.

Widget adaption layer

Problem User interface widgets are software components for standard in-
terface actions tailored towards reuse. Therefore, they typically model the
state appropriate to the widget. However, application state usually differs
from the abstract widget state and dedicated functions are required to trans-
late from the input data from a set of widgets to the high-level state of the
application. For example, a 3-valued state variable in the application can be
represented by a single selection listbox, a group of three radio buttons or
some other widget. While the listbox will be able to directly represent the
selected value in it’s state, the radio buttons require an additional layer that
infers the selected value from the button state and identity.

7.1 Principles 101

Widget A

Widget B

State 1

State 2

State 3

A
pp

lic
at

io
n

en
gi

ne
ne

tw
or

k

Figure 7.4: The structure of the widget adaption layer pattern. Data between the
application object on the left and the widgets on the right is transformed by an
engine network in the middle.

The following issues need to be considered:

• To preserve changeability, the application state should not be tightly
coupled to the widget state but rather be represented as required by
the application.

• Conversely, standard widgets should be reused instead of developing
an expanding set of custom widgets.

Solution Add a dedicated layer to separate widget state and application
state and translate between different representations. Within Studierstube
both widgets and applications are represented as Open Inventor nodes and
state is represented as fields. Therefore, the layer should be implemented as
a network of field connections and engines that automatically performs the
required translations. This layer implements the Bridge pattern [40, p. 151].

Structure Model your application state as fields of one or more application
nodes. Create the appropriate widget set that should be used in the appli-
cation. Then author the required network of field connections and engines
that perform the necessary translations.

Dynamics The pattern itself is fairly static. It implements a data flow
network that performs the computations implicitly. Any changes to the wid-
get or application state triggers updates in the field connection network that
evaluates the connections and performs the configured calculations. The
necessary notifications are handled by the Open Inventor framework itself.

7.1 Principles 102

Consequences The Widget adaption layer offers the following benefits:
Accurate state representation The application state is represented as fit

for the application and not as required by the widget set. Therefore, the
application functionality is decoupled from the actual widgets used.

Transparency Both widget set and application state can be changed with-
out propagating changes into the other component. All necessary transfor-
mations are captured within the engine and field connection network and
therefore can be modified at a single point. �

For 3D interaction some support from the presentation system is required
because the user will interact with visible objects that are part of the 3D reg-
istered experience, either real or virtual. In each case the interaction method
usually requires a model of the object in order to compute intersections with
interaction devices and the results of the operation. Within Studierstube,
such a model can be used cooperatively with the 3D presentation component
by relying on the scene graph. To address differences in usage but still allow
an organized structure of the scene graph the context sensitive traversal de-
scribed in chapter 4 can be deployed. The following pattern describes such
a solution in detail.

Reuse scene graph for both rendering and interaction

Problem Scene graphs used for rendering and interaction computations
may require different geometrical representations of application objects which
are represented as scene graphs. However, managing different representations
increases the complexity of the application implementation. Two main forces
need to be resolved:

• Different functions require different representations of objects.

• Data management should operate on single objects without having to
deal with their representations.

Solution Combine the different representations in a single context sensitive
scene graph. The scene graph is organized in such a way, that object man-
agement only deals with a single sub-scene-graph per object. The different
functions select via associated context values the appropriate representation
during traversal.

Structure The required scene graph structure is presented in Figure 7.5.
Each object contains an SoContextSwitch node which contains the two dif-
ferent representations as separate sub scene graphs. The switch node is

7.1 Principles 103

root

Object

A

Render
Shape

Pick
Shape

Object

B

Render
Shape

Pick
Shape

Context
= render

Context
= pick

Ref to
root

Figure 7.5: The structure of a scene graph combining representations for rendering
and interaction. The scene graph is reused through a second reference to the root
node.

configured to use a well-known index whose value chooses between the rep-
resentations during traversal. An SoContext node sets the context value to
select which version is used for each reference to the scene graph containing
all objects.

Dynamics The pattern acts during traversal by presenting a different scene
graph to different traversal functions. Object management operations such
as creation, insertion and deletion are used at a single point in the scene
graph.

Consequences The pattern has the following consequences:
Simple control The management of the application objects is simplified

because different uses are merged into a single sub-scene-graph.
Increased object complexity The simplified management structure is coun-

tered with increased complexity within the objects’s scene graph itself. �

Additionally the 3D interaction requirements can have influences on the
tracking requirements of the application. Typically they will create new
interaction props or require information derived from other tracking sources
but transformed to fit the interaction model.

7.1 Principles 104

7.1.3 3D presentation

In a visual augmented reality application the presentation of visual data plays
a key role. The rendering style of virtual objects is varied to provide visual
feedback to the user in selection and interaction tasks. Thus, the application
programmer has to deal with variations on rendering and selections of data
to be presented within an environment.

Within Studierstube all visual data is stored and presented by using a
scene graph. Therefore, the two operations of varying the presentation style
and selecting a subset of objects to present should be translated into op-
erations on the scene graph. By combining both operations, any variation
required becomes possible. In the extreme case, each variation could be
combined with the selection of a single object, resulting in each object being
rendered differently to one another. Both operations can be implemented by
building a scene graph that supports context sensitive traversal.

The methods described in chapter 4 can be applied to the scene graph
containing the visual data. Two dimensions need to be investigated: iden-
tify the individual objects the application uses; list the different presentation
styles that should be possible for all or a subset of objects. Then one can
derive the structure of a context sensitive scene graph that allows the appli-
cation to switch between different presentations per object.

The resulting template scene graph structure is also important input for
the data management step. This template needs to be applied to the data
objects retrieved from the data storage to generate the scene graph the ap-
plication will use.

7.1.4 Application core

In the design of the tracking configuration, the user interface and the presen-
tation component, a number of state variables and input and output channels
have been defined. These need to be connected with additional functions to
provide the final application functionality. The required algorithms can now
be implemented in a dedicated software object called application core.

Within Studierstube the core can be represented within the application
class that is created to relate the application to the framework’s features.
Such an application class is an Open Inventor object derived from the basic
SoContextKit object. Any state variable, input and output channels should
be represented as Open Inventor fields to leverage the properties of the Open
Inventor framework such as serialization, distribution and introspection. Ad-
ditional static configuration information is also best represented in this way
to allow simple modifications to the configuration.

7.1 Principles 105

Directly using the Open Inventor model to represent all the necessary
information is a powerful paradigm. The framework’s features such as ob-
servers for field changes and time flow directly help with the implementation
of the application’s core by inverting the control flow from the application
to the framework. The developer only has to implement callback functions
that react to events and changes in the application’s state.

Also, the strict separation of the functional aspects from the presenta-
tional aspects and the interface of fields allow the reuse of the functional or
the presentational components independently of each other. For example,
the application object could be directly reused within another project by
omitting the user interface and presentation component.

The separation between the user interface component, the 3D presen-
tation and the application core again follows the traditional Model-View-
Controller pattern for interactive applications. However, it is applied at a
more abstract level above the pure graphical data and raw input devices.
The user interface acts as a controller that provides already filtered events
as output from widgets. The 3D presentation is a view that can also be
reused for interaction computations or general application model. Finally,
the application core represents the functional aspects of the model.

Not all aspects of an application need to be implemented in one SoCon-
textKit object. A good design guideline is to distribute independent func-
tionalities between different Studierstube applications that may interact as
necessary. Such a separation allows to iteratively develop the complete appli-
cation by implementing only a coherent subset of functionality at one point
in time. Also, testing and reuse of such smaller functional components is
simplified.

7.1.5 Data management

For applications that present large amounts of data some organized form of
data management is required. In chapter 5 we presented an approach to
organize and reuse complex data sets for AR applications. The developed
architecture will now be tied into the process of developing such an applica-
tion.

In section 7.1.3 we have seen that the scene graph can be organized to
allow for simple reuse and changes without complex operations on the ap-
plication’s behalf. However, the structures that are created within the scene
graph to support these operations can become too complex to be created by
manual means for a larger set of data. Therefore, the automated transfor-
mations from a general data model into the required scene graph enable the
use of the techniques developed in the former sections.

7.1 Principles 106

If the scene graph structure has been defined, the following three steps
are required to reuse the data management architecture.

Firstly, identify possible mappings of your required data to the model
schema BAUML. If required, add new types to BAUML or embed additional
dedicated information into existing elements. The annotation element is the
default place for such low-key extensions. Additional information can be
put into a separate XML namespace to avoid name clashes between different
applications that reuse the same model.

Secondly, the original data needs to be imported into the general model.
Depending on the source format, this can be a simple transformation between
different XML dialects or require a dedicated tool that reads the source
format and creates an equivalent model.

Finally, a set of tools needs to be developed to generate the required scene
graph structure and any additional control information from the stored data.
These tools take the model as input and create a serialized Open Inventor
scene graph for use in the final application’s scene graph. The result is
embedded into the application’s scene graph by including a File node or direct
preprocessing of the different scene graph files to create a unified application
file.

7.1.6 Collaboration

A focus of Studierstube lies on collaborative applications to support sev-
eral users in a shared workspace. To support the required data distribution
the Distributed Inventor (DIV) component allows the transparent sharing of
scene graphs between different hosts. A number of different design patterns
can be built upon this basic function which cater to different requirements
in coordination and consistency between the different hosts.

The basic unit is a scene graph below a SoDIVGroup node which is shared
between other instances of SoDIVGroup that are configured to use the same
multicast channel to communicate. Any group node configured as a master
can send updates and all group nodes receive and apply updates to their copy
of the scene graph. The updates are causally-ordered, that is they may be
applied in different orders at different locations but updates from one source
are always applied in the same relative order they were generated.

Simple sharing of information between two or more application instances
can be accomplished by sharing a dedicated sub-scene-graph. The restrictions
of the update ordering allow only certain applications to be able to use such
a scheme. Typically only incremental changes like constantly adding new
nodes to a scene graph or operating on distinct parts of the scene graph can
use such a simple model.

7.1 Principles 107

A more complex approach is to combine the above design with a mas-
ter/slave mode where only one instance is in master mode at any given point
in time. An application then has to request the master token before it can
proceed to update the shared scene graph.

Studierstube itself provides a strong application model based on the func-
tionality described above. Within this model a full application scene graph
is mirrored between hosts sharing that application. One host acts as a mas-
ter instance and executes the application’s functions that are triggered by
callbacks and timers in the event based execution model of Open Inventor.
There are no conflicts between different hosts, because only the master host
will affect changes to the scene graph while the remaining slave hosts only
render the replicated scene graph. The application sharing model can be
applied to the overall complete application or to only one functional part
implemented as a SoContextKit (see section 7.1.4). Another design is pre-
sented in the following Application proxy pattern. It describes how to create
a dedicated application object that deals with the distribution aspects of an
application.

Application proxy

Problem Not all collaborative applications can be modelled with a sym-
metric data distribution scheme such as provided by Distributed Inventor.
Distributed application instances might only have to coordinate some data
such as a common target or exchange commands. Here the full replication of
the application’s data is unnecessary and increases the complexity of the soft-
ware design because local variations need modelled explicitly. However, the
collaborative functions should still be able to reuse the collaboration man-
agement features provided by the Studierstube. To summarize, the following
forces need to be resolved:

• An application can not be shared using the default model of the dis-
tributed scene graph.

• High-level application migration and management features of Studier-
stube should still be accessible to the application.

Solution The communication between different application instances is ac-
complished via dedicated proxy applications that are replicated using the
standard distributed scene graph approach. On each host local communica-
tion mechanisms based on field connections interface the application and its
proxy. The proxy applications are created in one or more dedicated locales

7.1 Principles 108

Application

Proxy 2

Proxy 1

ApplicationProxy 2

Proxy 1

Host A

Host BDIV

DIV

shared locale

Figure 7.6: The relations between an application and its application proxy. Proxies
exist an all hosts and communicate locally with the application. Proxy instances
communicate remotely via DIV.

which are joined by all hosts participating in the collaboration. Therefore
the automatic application and locale management mechanisms are still used
to setup communication between the application instances. The application
proxies are an example of the Remote Proxy pattern [24, p. 263].

Structure The structure consists of the separate applications per host. One
application implements the actual functionality, while the other acts as a
communication proxy. The application only communicates with its local
proxy and is not aware of the other instances within the distributed system.
The replicated proxy instances then act on the remote side for the application
and communicate again via local mechanisms with the remote instances. The
shared nature of each proxy application provides the remote communication
mechanism. Figure 7.6 gives an overview of the communication structure.

Dynamics The application proxies decouple the functional application part
from the dynamics of the distributed system. The proxies themselves act only
on events requiring distribution of information. Whenever a new replica of
a proxy is created, it establishes new connections on the local host with
the resident applications. Any other communication is dependent on the
applications function itself.

Consequences The pattern has the following consequences:
Transparency The functional part of the application is separated from

the communicating part. Often the whole collaborative functionality can be
implemented with the proxy relying on the basic functionality offered by the
basic application.

Added complexity The overall configuration of a collaborative system is
increased as the required locale configuration becomes more complex. There-
fore the pattern is more applicable in a configuration that already requires a
detailed locale model. �

7.2 Design work-flow 109

Applications that require complex manipulations of their scene graph but
do not have elevated data communication requirements can directly be shared
as such. Also simple applications within a symmetric environment where
each instance receive full information on tracking data will benefit from the
simpler structural model. The implicit sharing renders the slave copies as
pure replicates to provide the same view. The master copy holds the sole
responsibility for computations and can act as a stand-alone application.

7.2 Design work-flow

The different sub-components do not stand alone but are interconnected
with various dependencies and need to conform to common interfaces to
enable communication between them. A structured approach to investigating
into the different sub-components and tracking the dependencies between
them simplifies the problem of resolving these dependencies and providing
the necessary interfaces. Such an approach is presented as a work-flow for
the design of augmented reality applications. The overall work-flow is shown
in Figure 7.7.

Starting from a problem description as a set of use cases, a general de-
scription of the user experience or similar material, we can proceed to analyze
the requirements with respect to four problem areas: tracking, user interface,
presentation and data model. For each of these areas we have discussed a
set of issues and typical implementation patterns that can be applied.

A result of the analysis of the above sub-components is a set of parame-
ters, additional and specialized functionality, scene graph structures for the
presentation part and a data model that provides the basic data for the gener-
ation of the scene graph structures. Based on such a collection of structured
information it is now the final task of implementing specialized functionality
in the form of new software components and providing custom data transfor-
mations between the data model and the appropriate data structures used
in the application itself.

The proposed work-flow is applicable to the development of Augmented
Reality applications because it addresses the complete set of problem ar-
eas encountered in such applications. Moreover, it attempts to address the
dependencies between different sub-components in an appropriate way by
constructing the depending components after any components providing ser-
vices to avoid premature design decisions based on incomplete information.

7.2
D

esign
w
ork-fl

ow
110

Tracking Input Required DataSupporting UI

Scene Graph

Application Logic

Transformations

Visualisation

Parameters

Describe User Experience and Interface

Figure 7.7: Work flow for designing an augmented reality application in the Studierstube framework.

7.3 Summary 111

Note, that the design work-flow does not try to impose a certain software
engineering methodology but can be used within any deployed methodology.
For example it can be employed within every iteration of an iterated proto-
typing process or can be applied to a limited feature of an application within
a feature driven process. Its role is to provide a guideline for the design of
an augmented reality application by actively supporting the investigation of
different problem areas and structuring the interactions between these areas.

7.3 Summary

The approach taken here to describe efficient application development for the
Studierstube framework tries to follow the approach of providing a system
of patterns for AR applications. While it does list a number of individual
patterns for certain problem areas, the main impetus lies in the sensible
separation of concerns into appropriate subcomponents and then applying
tested methods of connecting them to create the final application.

The design principles and the work-flow discussed in this chapter evolved
over a period of 4 years of working intensively with the Studierstube frame-
work to create a number of augmented reality systems. Preliminary versions
and subsets of the presented ideas were taught in the lab on virtual reality
where students built small augmented reality demonstrators. These groups of
newcomers to the Studierstube framework provided valuable feedback, either
by consciously reporting on issues and insights they had, or unconsciously
by the errors and mistakes they made.

In order to demonstrate the developed concepts and patterns at work, a
larger example will be developed in the next chapter. It describes the design
of a fairly complex augmented reality application in the area of outdoor
navigation and information browsing.

Chapter 8

A collaborative tourist guide
application

After we have developed a design process for augmented reality applications
within the Studierstube framework, we will demonstrate the applicability of
the process with the example of a mobile collaborative AR application for
outdoor use. The application scenario revolves around a group of tourists
visiting the City of Vienna.

The needs and requirements of a tourist are a suitable starting point for
testing location-based applications. A tourist is typically a person with little
or no knowledge of the environment. However, tourists have a strong interest
in their environment and also want to navigate through their surroundings
to visit different locations. Guided tours are a common practice for tourists.
In such a situation a single person navigates a group of people and presents
information.

Consequently, we have chosen a tourist guide application for the City
of Vienna as an example scenario for an augmented reality application that
integrates a large amount of data from different sources. It provides a naviga-
tion aid that directs the user to a target location and an information browser
that displays location referenced information icons that can be selected to
present more detailed information in a variety of formats. Both functions
support collaboration between multiple mobile users.

The tourist guide application will demonstrate the use of the various
software components developed in the former chapters. We will develop it
as an example of the design work-flow outlined in the last chapter and show
how the individual design patterns are applied to arrive at a complete system
that is open for future extensions.

112

8.1 Requirements 113

8.1 Requirements

Three tasks should be supported by the tourist guide application: Navi-
gation, information browsing and annotation in the form of simple virtual
graffiti. All functions should be useable in a stand-alone mode by a single
user. Additionally, they should support collaborative work with the roles of
expert and novice users. Here the tour guide of a group of tourists acts as
an expert and should be able to control the functions of the tourists devices.
The individual tasks are described in more detail in the following.

Navigation A navigation component should provide support for the fol-
lowing tasks: The user selects a destination by name and the system will
present markers that direct her to the selected destination. These markers
are based on path that is computed to the destination. A variant of the selec-
tion process is to select a type of destination such as a shop, church or police
station and navigate towards the nearest instance of such a destination.

The presentation of the guides should be intuitively understandable and
require no further skills to understand besides the everyday knowledge of
how real objects behave. The system should also adapt to the user’s actual
movement and provide always a correct route to the selected destination.

A number of collaborative navigation tasks should be supported. A user
can choose to follow another user and will be continuously directed to the
location of her partner. The converse operation of guiding another user to
a selected destination should be possible. And finally, a simple meeting
functionality should provide directions for both users to meet at a location
halfway between them.

Information browsing A user should be able to view information in dif-
ferent media forms which describes interesting facts on certain locations or
objects. For example, frescos on a building facade could carry information
on the sculptor who created them and the topic of the picture. Statues could
give information on the background of the person they are representing.

The information itself should consist of text, images and 3D objects or
animations that appear in the view of the user or at fixed locations as de-
fined by the content author. The display of the information itself should be
triggered by the system without any manual action by the user. It should
provide an intuitive browsing experience where information is presented on
the object in the focus of the user’s attention and vanish as soon as the focus
shifts to another object.

8.1 Requirements 114

A user might get overwhelmed by a large number of locations that trig-
ger information displays or not be interested in every type of information.
Therefore, the objects and content needs to be described with a set of key-
words and the user can select interesting information by selecting a subset
of these keywords. Only information matching the selected keywords will be
displayed.

Support for multiple users should allow a tour guide to select the currently
visible information and trigger it on all members of the tour group. The guide
should also be able to set the keywords to select the information items which
are relevant to the current tour.

Annotation Users should also be able to contribute in a simple way to the
available information. Annotation allows users to place graphical icons in the
environment with different colors and shapes. To simplify the interaction for
determining the position, icons are always placed on the surface of existing
buildings which reduces the required manipulation to a simple direction from
the user’s current position.

A group of users should be able to share the different icons that each
participant creates, so that every user can see all icons. Again, to reduce
possible clutter, a filtering option should allow users to restrict the visible
icons. Possible criteria are the icon’s creator, it’s color or shape.

8.1.1 The mobile augmented reality setup

The mobile AR setup uses a notebook computer with a 2GHz processor and
an NVidia Quadro4Go graphics accelerator operating under Windows XP.
It includes a wireless LAN network adapter to enable communication with a
second mobile unit. A Trimble Pathfinder Pocket differential GPS receiver
is used to determine the position of the system in outdoor applications. All
the equipment is mounted to a backpack worn by the user. We use a Sony
Glasstron optical-see-through stereoscopic color HMD fixed to a helmet as
an output device. An InterSense InertiaCube2 orientation sensor provides
information on the direction the user is looking in while a PointGrey Research
Firefly camera mounted above the HMD is used for fiducial tracking and
video see-through configurations. Both devices are mounted on a helmet
worn by the user (see Figure 8.1).

The system presents information to the user on the head mounted display.
Such information is either presented as graphical objects rendered to fit into
the natural environment or as text, images and 3D objects providing a heads-
up display. The graphical objects are drawn to enhance and complement the
user’s perception of the natural environment. They can represent abstract

8.2 Applying the work-flow 115

(a) (b)

Figure 8.1: The mobile AR setup: (a) A laptop computer, GPS receiver and battery
packs are mounted on a backpack. (b) The HMD, inertial sensor and a miniature
camera are mounted on a helmet worn by the user.

information, alternative representations of real objects or highlighted real
structures. The heads-up display is used to provide a graphical user interface
consisting of typical 2D widgets such as buttons, lists, and text fields and to
provide other status information. Figure 8.2 shows a typical view through
the users display.

The user can control a cursor within the 2D user interface part in the up-
per right corner with a touchpad that is either worn on the belt or handheld.
She can switch between different modes of the application such as naviga-
tion, information browsing and annotation. Each mode presents a number
of individual panes to provide control of parameters and other options re-
lated to the current task. A general heads-up display at the bottom of the
view presents generic information such as the current location, selected tar-
get location, distance to the target and an orientation widget modeled after
a compass.

8.2 Applying the work-flow

Applying the work-flow we will start with investigating into each of the four
main aspects and derive a specification from the given requirements and
application descriptions. We will start with the tracking aspect and walk
through the decisions made to arrive at the final configuration of the tracking
component.

8.2 Applying the work-flow 116

(a) (b)

Figure 8.2: (a) An overlay of the building model over the real world. (b) 2D user
interface components and heads-up display.

Next, we analyze the user interface requirements and presentation aspects
of each application and then derive also the application core from that. To
simplify the analysis and the development we chose the approach outlined in
section 7.1.4 and split the overall application into three components which
are implemented as stand-alone Studierstube applications: Navigation, in-
formation browsing and annotation. Navigation addresses the navigational
aspects of the tourist guide application, information browsing the display and
interaction with pre-authored information on sights in the environment and
annotation provides the interactive placement and display of user supplied
information icons.

For each component we will discuss the user interface implemented, the
presentation aspects and the derived state variables. Then we describe the
resulting application logic and the overall implementation of the component.
Having identified the data structures used by the applications we will then
describe the data management schemes put in place to provide the content
for the applications from a general model. Finally, we apply one of the
collaboration patterns to implement an appropriate form of collaboration for
each of the application components.

A last section will deal with the creation the general model. Because the
three-tier architecture presented in chapter 5 separates the applications from
the model itself, the applications are not affected anymore by the necessary
transformations.

8.3 Tracking configuration 117

8.3 Tracking configuration

The central tracking requirement for the described application is to localize
the user in the city environment. Moreover to accurately overlay information
and highlight structures full 6DOF tracking of the user’s view is required. A
world-stabilized reference system was chosen as the overall reference system
over other possibilities such as a body-stabilized coordinate system because
it allows for simple interpretation of coordinates involved in building the
system. It is more intuitive to think about a moving user than to transform
the world geometry to fit a user centric reference frame.

In addition to the user’s pose a ray picking interface is required to allow
interaction with 3D registered information. Generally, this would require
a second 6DOF input channel to control the ray. Thus, for the abstract
tracking input requirements we arrived at two 6DOF input channels that
would generate data in a world-stabilized reference system.

The actual devices chosen to track the user’s pose were a DGPS loca-
tion device and an 3DOF orientation tracker based on inertial sensors. The
required tracking configuration contains a number of steps to generate the
final pose: DGPS data requires transformation from the global WGS84 ref-
erence frame to the local map datum with the additional offset used to create
a reasonable origin for our application. The resulting local coordinates are
merged with the rotation data from the inertial device. To improve the user’s
experience a smoothing filter was also applied to the position data to avoid
hard jumps between updates.

Moreover, we chose to separate the above operations into a dedicated
process and only provide the final pose data via network transport to the
application. Thus, we could exchange the tracking process with another
configuration that provides only simulated pose data in a manner that is
transparent to the overall application simplifying debugging and testing.

After experimenting with various tracking approaches to track an addi-
tional user interface prop for providing the ray pick interaction, we decided
to settle on a simpler gaze derived ray pick. Therefore, the pose required for
the ray can be derived from the user’s pose by a simple transformation which
was added to the overall tracking configuration.

Because the inertial sensor does not operate in a fixed reference frame and
also exhibits drift we chose to add a calibration feedback loop as described in
section 7.1.1 to the user’s pose. The required addition was implemented in the
tracking configuration of the application itself, instead of at the dedicated
process driving the devices. Such an arrangement allows us to debug the
calibration function with simulated pose data as well.

8.4 Navigation application 118

(a) (b)

Figure 8.3: (a) A visualization of the path to the selected target without clipping on
known objects. (b) The same path clipped at an object.

8.4 Navigation application

As the first aspect of the application we want to examine the navigation
interface. In navigation mode the user selects a specific target address or a
desired target location of a certain type such as a supermarket or a pharmacy.
The system then computes the shortest path in a known network of possible
routes. It is interactive and reacts to the user’s movements. It continuously
re-computes the shortest path to the target if the user goes astray or decides
to take another route.

The information is displayed as a series of waypoints that are visualized
as cylinders standing in the environment. These cylinders are connected by
arrows to show the direction the user should move along between the way-
points. Together they become a visible line through the environment that is
easy to follow (see Figure 8.3(a)). The user can enable an additional arrow
that points directly from her current position to the next waypoint. Build-
ings can clip the displayed geometry to enable additional depth perception
cues between the virtual information and the real world (see Figure 8.3(b)).
Finally, simple directional information is displayed, if the user is not able to
perceive the next waypoint because she is looking into the wrong direction.

8.4.1 User interface

The user interface consists of selection of a destination, either from a list
of available destinations, or by selecting a number of keywords that de-
scribe a certain type of destination. A number of Boolean state flags are
also controlled by the user to customize the presentation of the path to the

8.4 Navigation application 119

Name Widget type Description
Targets Listbox a list of possible target addresses
Keywords Listbox a list of possible keywords to filter targets
Active Togglebutton a control to enable or disable display of navi-

gation information
Clipping Togglebutton a control to enable or disable clipping of navi-

gation information on buildings
Arrow Togglebutton a control to enable or disable display of an ar-

row pointing the user to the next waypoint
HUD Togglebutton a control to enable or disable the heads-up dis-

play

Table 8.1: States controlled by a 2D user interface in the navigation application.

computed destination. There is no further 3D interaction involved besides
moving through the environment. The inputs described above are presented
to the user in a traditional 2D GUI using a set of standard widgets provided
by the Studierstube framework. Table 8.1 denotes the parameters that are
controlled by the user interface and their representation as widgets.

The 3D presentation needs to display any path throughout the waypoint
network that is computed by the navigation application. A simple solution
is to represent all waypoints and directed edges with geometry in the scene
graph and only traverse the subset of waypoints and edges that create the
computed path. Thus, we created a scene graph that contains two large
parts, one for the set of waypoints and one for the set of edges. Each of these
parts is controlled by a switch node that allows to select a subset of children
to traverse by setting the indices of the children in a field of the switch node.
Then selecting and displaying a path is a simple matter of creating two lists
of indices that correspond to the waypoints and edges to draw.

Some more components are required to implement the additional visual
effects described above. To implement the clipping on buildings another
sub-scene-graph was created that contains the buildings geometry but is only
rendered into the Z-buffer and not into the frame buffer. It is traversed before
the scene graph containing the path geometry and therefore obstructs any
path geometry behind a building geometry because the Z-test for fragments
from the path geometry fails. An additional switch allows to select whether
the building geometry is actually drawn or not.

The additional arrow drawn between the user’s current position and the
first waypoint is created by adding a sub-scene-graph that contains a shape
drawn between two given points. The points are set by the navigation ap-

8.4 Navigation application 120

Z-Buffer
only

Way
point

Way
point Arrow Arrow

3D
presenta

tion

City model Waypoint shapes Arrow shapes

Figure 8.4: Schematics of the scene graph for the navigation application.

plication to the user’s current position and the position of the first waypoint
on the path. Again, a switch controls the display of this feature. Figure 8.4
gives an overview of the complete resulting scene graph.

Another part of the user interface output is the heads-up display. The
display is implemented as a scene graph that renders with a fixed orthogonal
camera into the user’s view, thereby creating a head-stabilized display. The
following set of generic information is shown in the heads-up display: The
current position as textual values, the current orientation represented with a
compass-like widget, the address of the currently active target, the distance
to the target computed along the path, and an indication if the target is
reached.

8.4.2 Application core

The application’s functional core needs to deal only with computing the
path from the current position to the selected destination within the avail-
able network. All other aspects are already taken care of by the components
described above. We model the core as a single Open Inventor node called
NavigationContext that implements the path finding algorithm. The node
has a number of fields which are interpreted as configuration fields, input
fields, and output fields. It simply computes the value of the output fields

8.4 Navigation application 121

Name Type Description
Configuration fields
waypoint MFString a list of all waypoint identifiers
waypointPosition MFVec3f a list of the positions of all waypoints
edge MFInt32 a list of edges as neighborhood list for

each waypoint
numEdge MFInt32 the number of edges for each waypoint in

the edge list
Input fields
destination MFString list of possible destinations
userPosition SFVec3f current position of the user
userOrientation SFRotation current orientation of the user
Output fields
currentWaypoint SFString the waypoint the user is closest to
currentIndex SFString index of the currentWaypoint
path MFString the list of waypoints making up the path
edgeIndex MFInt32 list of edge indices for display
nodeIndex MFInt32 list of node indices for display
computedTarget SFString the closest target found
distance SFFloat distance to target
direction SFRotation direction from the user to the next way-

point
relativeDirection SFFloat relative azimuth between users direction

and direction to the next waypoint

Table 8.2: Fields of the NavigationContext node. Configuration fields hold static
data describing the waypoint network, input fields are incoming interfaces from
the user interface and output fields set the presentation parameters and heads-up
display information.

based on the current value of all configuration and input fields. The dis-
tinction between configuration fields and input fields is only minimal: input
fields are expected to be changed by the user interface while configuration
fields contain static information that is read upon startup. The node also
implements the application API of the Studierstube framework. Table 8.2
shows the different fields of the NavigationContext node.

The configuration fields define the information on the network of way-
points and connecting edges. Waypoints are identified by textual ids and
have a position in space both of which are stored in two lists where items at
the same indices correspond to one waypoint. A list of all connected way-
points is given for each waypoint joined into one large list of indices. To

8.4 Navigation application 122

be able to separate the joint list, a second list containing only the number
of items per list for each waypoint is given. Such a method of storage is
similar to the one used by indexed face sets. From the given information the
node builds an internal representation of the waypoint network as a directed
graph with the edges weighted with the distance between two waypoints. All
connections are represented as two directed edges going into both directions.

The input fields describe the input to the wayfinding algorithm. The
basic information is the user’s position as the starting point of the path and
one or more destinations described by the textual ids for the corresponding
waypoints. The algorithm then computes the shortest path using Dijkstra’s
algorithm [34] from the waypoint that is closest to the user’s position to one
of the destination waypoints. If a list of possible destinations is given, it com-
putes the path to the closest destination along the network. Whenever either
the user’s position or the destination field changes, the wayfinding algorithm
is executed again to provide the dynamic behaviour of the application.

The results of the computation are written to the output fields. The
computed closest destination is written to the computedTarget field. The
lists of waypoints and edges to traverse are output in the nodeIndex and
edgeIndex fields and the textual ids in the path field. The waypoint closest
to the user is output as textual id in the currentWaypoint field and as index
in the currentIndex field. The overall distance along the path is written to
the distance field. The additional ouputs direction and relativeDirection give
information about the direction of the next waypoint relative to the user’s
current orientation to provide some additional displays.

The application’s functional core is separated completely from the input
and presentation aspects of the overall application. The connection between
these components is achieved by using Open Inventor mechanisms to hook
up and transform field values from the user interface widgets to the Navi-
gationContext node and back again to the scene graph containing the pre-
sentational aspects. Some connections are also directly between the widgets
and the scene graph circumventing the core functionality (see Figure 8.5).

8.4.3 Data management

The application’s implementation is based on an intricately choreographed
and interconnected set of components consisting of the user interface widgets,
the NavigationContext node for wayfinding and the complex scene graph to
display the resulting graphs. They each store parts of the information as
lists of waypoint ids and position, edge lists or list of geometrical objects
representing the waypoints and edges. All these lists are connected by in-
dentical indexing, that is, the first entry in all of these lists correspond to

8.4 Navigation application 123

Navigation

Way
point

Way
point Arrow Arrow

3D presentation

ListBox

OnOff

Control UI

User position

Tracking

Heads-up Display

target

userPosition

current

computedTargetcurrentIndex edgeIndex

Figure 8.5: Schematics of the field connection and engine network for the navi-
gation application. Tracking and Control UI structures provide input events to the
application core object which in turn outputs data to configure the scene graph
and heads-up display.

one waypoint the second to the next and so on. As the complexity to create
these lists for larger networks increases dramatically, manual authoring will
become increasingly prone to error and an automated method of creating the
lists is required. Therefore we apply the mechanisms for data management
described in chapter 5 to address this issue.

We define a new element in the model schema to explicitly represent
a waypoint. The new element is called Waypoint and is derived from the
SpatialObjectType because a waypoint does have spatial properties such as
a position. The id attribute stores a unique id for each waypoint and the
pose element is used to represent the waypoints position. The network is
described by an additional attribute called neighbors that holds the ids of
all the connected waypoints forming a directed graph. If a segment of the
network is transmissible in both directions, it is represented by two edges.

The described representation allows to edit the network on a local basis for
each waypoint without destroying intricate relationships between long lists
and other data structures. Because it is part of our general model now, it
can be reused by all kinds of applications and is not limited to the navigation
application.

A dedicated transformation style sheet reads in a model and generates
the lists described above automatically from the data stored in the Waypoint

8.4 Navigation application 124

elements of the model. The implementation simply needs to iterate over all
Waypoint elements it encounters and build the lists by appending the ex-
tracted information to the individual lists. The geometric representations
are also built by writing a scene graph corresponding to the structure de-
scribed in the sections before. The presentation can be customized at this
point by writing out different geometry.

Finally, the lists and the scene graph are written out in the Open Inventor
ASCII file format to be used as configuration parameters in the resulting
file describing the full application. The application file is then read into a
Studierstube process describing the application’s structure and scene graph
and executing it by passing events along the connections between fields of
different components.

8.4.4 Collaboration

If two or more users are present, a number of collaborative interactions are
possible. The interface will present a list of all users that have joined the
collaboration session. Every user can select another user and specify an
interaction mode:

Follow The user can decide to follow the selected user. The navigation
display will update the target location to always coincide with the waypoint
closest to the selected user.

Guide The user can guide the selected user by setting the destination point
of the selected user. The navigation system of the selected user will then
behave as if that user had selected the target herself.

Meet This mode supports to meet halfway with the selected user. The
navigation system calculates the meeting point to be halfway between the
two waypoints the users are closest to. Then the destinations of both users
are set to this new target. Each user can still change the common target to
a more suitable location if desired.

The described functionality requires direct communication between to de-
signed systems out of a set of participating systems. Moreover, it should also
allow for disjunct pairs from the same set to work in parallel. To achieve
such a direct communication we chose the model of the application proxy
described in section 7.1.6. Each system has an additional Studierstube ap-

8.4 Navigation application 125

plication called UserContext that implements the collaborative navigation by
using the local NavigationContext application nodes on both user’s systems.

The UserContext application is running on each mobile system in a shared
locale that is joined by all systems. Therefore in the shared locale there is
one such application for each user. The application only present a user
interface to the user on the master system where they originated from. The
slaves act as proxies on behalf of the master and send events to fields of
the NavigationContext application on the local system they are residing on.
The communication between the master and the slave is by setting field
values on the UserContext node which are propagated transparently by the
DIV mechanism. Therefore the UserContext node has another set of fields
dedicated to the communication between the master and the slave instances
(see Table 8.3). The master and slaves simply implement different behaviors
in reacting to changes of these fields.

Name Type Description
Configuration fields
name SFString the name of the user
Input fields
activeNeighbor SFString the name of the user to interact with
mode SFInt32 variable describing the mode of operation
Output fields
destination SFString the destination resulting from the opera-

tion and user given.
Communication fields
currentWaypoint SFString the current waypoint of the user
currentPath MFString the current path of the user
currentIndex SFInt32 the index of the current waypoint

Table 8.3: Fields of the UserContext node. The additional communication fields are
used to transport data from the master to the slave instances.

The UserContext allows the selection of another user to interact with
by setting the value of the input field activeNeighbor. Moreover, the user
selects the mode of interaction through the mode field. As the values of
these fields are also communicated to the slave instances, they have the
required information to act on the master’s behalf. Typically only the slave
instance on the system of the user denoted in activeNeighbor acts while the
other instances ignore all updates. General information about a user’s state
are transported in the fields currentWaypoint, currentPath and currentIndex
that reflect the output of the user’s NavigationContext.

8.5 Information browsing 126

In Follow mode the master instance acts by setting the destination of the
local NavigationContext to the currentWaypoint field value of the local slave
UserContext instance of the active neighbor. Therefore, the collaboration
depends only on the information represented by the currentWaypoint field.

To implement the Guide mode the master simply sets the destination
field to the selected destination for the active neighbor. The slave instance
that resides on the active neighbor’s system then updates the local Naviga-
tionContext to guide the neighbor to the selected destination. Here the slave
acts as a proxy for the master component.

The Meet mode combines both functionalities. First the master uses the
information of the local slave copy of the active neighbor to determine a
route to the current waypoint of the neighbor. Then it uses its own slave to
set the remote and the local NavigationContext to a waypoint halfway along
the computed path. The result is that both the local user and the active
neighbor user are guided to the same meeting waypoint.

8.5 Information browsing

The information browsing mode presents the user with location-based infor-
mation. Location referenced information icons appear in her view and are
selected by looking at them. They then present additional associated infor-
mation. The application conveys historical and cultural information about
sights in the City of Vienna.

The information icons can have any shape for display as well as for ray
intersection. In the current application we use geometric representations of
parts of buildings to annotate these with cultural information. The icons
appear to the user as outlines of the building parts. A virtual ray is cast
through the center of the display and intersected with the information icons.
The first icon that is hit triggers the display of information that is associated
with it (see Figure 8.6).

The information consists of images and text which were taken from a
guide book. These are shown to the user in the heads-up-display. The user
can also select a subset of the icons to be active and visible by choosing a set
of keywords the icons should relate to. The reduction of visible icons avoids
visual clutter.

8.5.1 User interface

The information browsing component uses a 2D GUI to control the overall
application states (see Table 8.4). A set of toggle buttons allows to switch

8.5 Information browsing 127

(a) (b)

Figure 8.6: (a) Different parts of the building are highlighted to show possible addi-
tional information. (b) The user selects the column by looking at it and the content
is displayed.

on the application and to enable interaction with the presented targets or
choose the presentation of the information icons. A list of keywords allows to
select only a subset of active icons. Two additional buttons set the state for
collaborative use and will be explained in the following collaboration section.
In addition to the control user interface there is also 3D interaction in the
form of a gaze directed ray picking operation to trigger the display of the
information represented by the individual icons.

Name Widget type Description
On Togglebutton Turns application on or off
Raypicking Togglebutton to enable interaction by looking at targets
Show Togglebutton to enable highlighting of possible targets
Keywords Listbox a list of keywords to filter active targets for
Listen Togglebutton to enable receiving mode in collaborative use
Guide Togglebutton to enable guiding mode in collaborative use

Table 8.4: States controlled by a 2D user interface in the information browsing
application.

The presentation part incorporates two different visualization require-
ments. The information icons need to be rendered registered to the real world
depending on the selected keywords and state of the application. The infor-
mation associated with a certain icon needs to be rendered for an activated
icon. The latter consists of a different and independent scene graph either
containing head-stabilized textual information and images or 3D models at
world- or head-stabilized locations. Additionally there is also the requirement

8.5 Information browsing 128

Object 1

Picking Highlight Content

Object 2

Picking Highlight Content

Ray
picker

Multi
switch

Context
= 1

Highlight
Group

Context
= 2

Content
Group

Context
= 0

Figure 8.7: Schematics of the scene graph for the information browsing applica-
tion.

of a geometrical representation of the pickable areas that is appropriate for
the 3D interaction and therefore should only consist of a simple geometrical
description without advanced visual effects that might require a more com-
plex scene graph.

However, these different representations are all associated to one object,
a single piece of information registered with a certain location. An orga-
nizational structure that does not loose this association simplifies selection
of subsets of objects and provides for a more dynamic extension to add or
remove icons at runtime. The necessary mechanism is provided by the con-
text sensitive scene graph described in chapter 4. Each object is individually
broken down into three sub scene graphs, each containing one of the above
representations. An application defined well-known context index is associ-
ated to select between the representations and each representation is in turn
associated with a well-known value of the context index. The resulting scene
graph is visualized in Figure 8.7.

The constructed context sensitive scene graph is then reused for visualiz-
ing possible icons, to visualize a currently active icon’s content and as picking
geometry for the gaze directed raypicker. An SoContext node inserted before

8.5 Information browsing 129

the scene graph selects the actual representation to traverse for each object
by setting the well-known context index to the appropriate value. A general
switch containing the objects selects which icons to display or to pick.

The different reuse location of the context sensitive scene graph are fur-
ther contained in switches that enable or disable traversal of the respective
part of the scene graph in dependence of the widget states in the control
user interface. For example, the keyword selection listbox outputs a list of
keywords in a state field. The list of keywords is translated into a list of
indices of objects in the scene graph using a map engine that uses a generic
string to string map to store an arbitrary relation. The relation contains the
association between the individual objects and the keywords they are associ-
ated with. Thus, the map engine outputs a list of indices into the top switch
node containing only the objects that match all of the selected keywords.
The output of the engine is used for the visualization of the icons as a well
as for the picking geometry.

The selection of the activated icon is achieved in a similar manner. The
raypicking interaction widget outputs a path into the scene graph to the basic
geometry node it hit. Along this path there exists an SoContextSwitch node
that contains the different representations for one object. This node is named
with a unique id corresponding to the object. A converter engine takes the
path as input and outputs the names of the objects along the path omitting
all anonymous objects emitting only the unique id of the object. The output
is again routed into another map engine that translates the unique id into
the corresponding index in the top switch node of the scene graph part that
renders the associated information (see Figure 8.8).

Because all of the required functionality is implemented via field connec-
tions, engines and dedicated switch nodes, no further application functional-
ity was required. Therefore no specialized node was implemented filling the
role of the application core.

8.5.2 Data management

As with the navigation component the required scene graph exhibits a com-
plexity that prohibits extensive manual authoring. Therefore, again a data-
driven approach was taken by storing the required information in the general
model and then creating the scene graph structures in an automated trans-
formation step.

The information objects are represented by another dedicated element in
the model schema called Annotation which is derived from the SpatialObject-
Type. The spatial representation is used to provide the geometry for picking
which allows to author individual regions for the object. The visible geome-

8.5 Information browsing 130

Keywords

Control UI

Ray-
picker

Con-
text 1

Con-
text 0

Multi
switch

Multi
switch

Con-
text 2

Multi
switch

Map

Map Name

Raypicking direction

Tracking

Model

3D presentation

3D
 in

te
ra

ct
io

n

Figure 8.8: Schematics of the field connection and engine network for the informa-
tion browsing application. Control user interface inputs are mapped to indices in
the scene graph for display and interaction. The selected scene graph part is then
mapped to indices for highlighted display.

try is derived from the picking geometry by using a stencil buffer operation to
render a silhouette of the picking geometry. The information content is stored
in a set of additional elements stored in the generic annotation subelement.
The possible elements are a single Title element, a set of Content elements
storing different information items and a Keywords element storing the key-
word associations of the information object. The Content element stores an
attribute giving the mime type of the stored content and then the content or
a URI of the content file as CDATA.

The information stored in the Annotation elements is transformed by
a dedicated style sheet into the scene graph described above. In addition
to that, the different map engines that relate keywords and object ids to
indices are also created by the style sheet. Because the style sheet creates
also the scene graph representing the information content, it is the single
point of customization for the presentation of the information. For example
it computes the necessary arrangement of image and text representations as
seen in the information overlay in Figure 8.6(b). The actual Studierstube
application file only contains a reference to the created scene graph file.

8.6 Annotation 131

8.5.3 Collaboration

The information browsing mode supports multiple users. Users can choose
to share their selection of topics, or alternatively, tour guides can control the
selection for a group of guided users. A user can also trigger the highlighted
information on another user’s display. The two user interface widgets Listen
and Guide select the user’s mode. If the Guide mode is active the user’s
keyword selection and active icon will be shared with the group of partici-
pating users. If the Listen mode is active the shared keyword and active icon
information of another user will be used to set the state of the local user’s
display. Therefore, the local user will see the same information content that
the guiding user has selected and will also use the same keyword selection, if
she decides to still browse the icons on her own.

The functionality described above is implemented by using a dedicated
shared scene graph that stores the currently selected keywords and the cur-
rently active icon. All information browsing applications are set as masters
for the shared scene graph and can therefore change the state as required. At
the same time they also receive any updates initiated by another instance.

The widgets then simply enable or disable routing of the current users
selection to the shared state or vice versa. If Guide mode is active, any change
to the keyword list or active icon state are routed to the shared state and in
turn propagated to all other instances. If Listen mode is active, any change
received from another instance is used to update the local user interface and
application state.

As a result of the simple group communication protocol, there are no
mechanisms to guarantee consistency or allow one user full control over the
other users. However, such strict constraints were not required for the desired
functionality and can be left to social protocols in a user group.

8.6 Annotation

In addition to pure browsing, users can also annotate the environment by
placing virtual icons of different shapes and colors on structures and buildings
in their surroundings (see Figure 8.9). Again, a virtual ray is cast through
the cross hair in the heads-up display and intersected with the geometry of
the buildings. If an intersection is detected a yellow sphere is placed at the
intersection point to visualize it. Then the user can place a predefined 3D icon
at the intersection point. The icon is oriented parallel to the tangent surface
in the intersection point. The user can select between different predefined
shapes and colors to use and can also choose which kinds of icons to display.

8.6 Annotation 132

(a) (b)

Figure 8.9: (a) Annotation options and icons. (b) The building geometry used for
ray intersection is overlaid.

The virtual icons are shared between different users in a collaborative
session and are annotated with the name of the user who created them. In
this case a user can also include the name of the icons’ creator into the
selection of visible icons.

The virtual markers can help to point out features on distant structures
such as building facades. Users can attach and discern different meanings
associated with markers by assigning different styles. They support collab-
orative work styles because they are shared information and can help users
to communicate information about individual locations in the surrounding.

8.6.1 User interface

The user interface is again uses 3D interaction with a gaze directed ray pick-
ing operation to select the positions of 3D icons. The component is supported
with a 2D GUI to enable display of 3D icons, to enable the ray picking oper-
ation and to control what kind of 3D icon to place in the environment. For
collaborative use an additional filter operation also allows to filter for certain
subsets depending on the author and the color of icons. Table 8.5 gives a
complete list of user interface states presented in the 2D GUI.

The presentation part is a simple scene graph containing all icons set by
the user. At the start of the application the scene graph is empty. As the
user creates new icons the application core adds these to the scene graph.
A multi switch is controlled by an engine network that maps the selected
keywords to the indices in the switch to allow the list in the user interface to
filter the displayed icons. The configuration of the engine network is updated
by the application core to represent the current state of the scene graph.

8.6 Annotation 133

Name Widget type Description
On Togglebutton turns the application on or off
Raypicking Togglebutton to enable interaction by looking at targets
Icons Listbox a list of keywords to filter icons
Shapes Radiobuttons a radiobutton group selecting one of three

shapes
Colors Radiobuttons a radiobutton group selecting one of three

colors

Table 8.5: States controlled by a 2D user interface in the annotation application.

8.6.2 Application core

The application core is the central component of the annotation component.
The Open Inventor node AnnotationContext implements the core and also
the Studierstube application API to provide a full featured application. See
Table 8.6 for the configuration and input fields of the core component. Its
main functionality is to create a new instance of a 3D icon from the selected
shape and color and place it in the environment at the location determined
by the ray picking interaction widget.

The basic operation of the core is to create a new instance of the scene
graph configured in the field markerTemplate, substitute certain nodes in the
template scene graph with the content of the input fields iconTemplate and
colorTemplate to customize the template scene graph with the currently se-
lected shape and color and add it to the presentation scene graph referenced
in the field icons. The instantiated template scene graph is also configured to
place its geometry at the position passed in by the input field cursorPosition
and to be oriented according to the surface normal described in pickNormal.
The input fields isPicking and pickButton communicate the necessary inter-
action information to allow the core to detect a button press during a valid
picking operation to trigger the creation of a new icon.

The core also needs to update the engine network that filters the dis-
played icons for certain keywords. The necessary engines are referenced in
the configuration fields indexMap and markerMap and are updated with the
associations for a new icon when it is created. The markerKeywords field is
updated to represent new color or user name keywords as required and in
turn updates the listbox in the user interface with possible values to select.

Note, that the input fields for the shape and color options are not simple
values derived from the 2D user interface widgets but references to sub scene
graphs which are inserted into the template scene graph. The necessary
translation between the widget state of the radio buttons and the final node

8.6 Annotation 134

Name Type Description
Configuration fields
icons SFNode the scene graph containing created icons
markerTemplate SFNode a template scene graph for all markers
name SFString local user name
indexMap SFEngine reference to the engine mapping ids to in-

dices
markerKeywords MFString available marker and color names
markerMap SFEngine reference to the engine mapping user and

color names to ids
Input fields
cursorPosition SFVec3f position of the pick point
pickNormal SFVec3f surface normal in the pick point
isPicking SFBool flag to denote if picking is valid
iconTemplate SFNode current icon template node
colorTemplate SFNode current color template node
pickButton SFInt32 button state of the ray pick widget

Table 8.6: Fields of the AnnotationContext node. Configuration fields hold refer-
ences to engines and the scene graph updated by the node while input fields are
incoming interfaces from the user interface.

reference is again accomplished with a configurable engine network. Such a
mechanism decouples the application core from the user interface component
and allows simple and quick changes to the user interface.

The annotation component makes no further use of data management be-
cause it does not require large and complex data sets to begin with. Therefore
no data besides the building geometry for picking is derived from the gen-
eral model. The building geometry however is reused from the navigation
component which already uses it for clipping the path geometry against real
buildings.

8.6.3 Collaboration

The implementation of the collaborative aspects makes use of the shared
scene graph model similar to the information browsing component. Here
each instance of the annotation component updates a shared scene graph
with the new sub scene graphs representing the individual icons as they are
created by the user. All other instances observe the shared scene graph for
new children added to it. If a new child is received it is also added to the
local presentation scene graph and engine network. As the icon scene graph

8.7 Data acquisition 135

carries information on the authoring user, a new keyword entry can be added
to the user interface as well using the markerKeywords field. Because only
additions to the scene graph are interesting events, the lack of global ordering
of these events does not matter as there exists no dependency between the
individual icons. The result to the user will be the same for different orderings
of updates.

The scheme does also provide for late coming users because the shared
scene graph is configured to be updated from another instance. Therefore any
late coming system will automatically receive the current state as soon as it
joins the Distributed Inventor session. The application core will then simply
add all the existing icons one after the other in a rapid iteration. Because
it checks for already existing icons before adding them to the presentation
scene graph, it can also deal with network failures and reconnection and will
ignore the resulting replay of all existing icons.

8.7 Data acquisition

A number of aspects of the overall model were not discussed yet. An example
is the general building geometry required for clipping paths in the navigation
component or for picking in the annotation component. Another aspect is the
incorporation of the waypoint network into the general model. Because the
applications start with data derived from the general model, they need not
be concerned with the creation and maintenance of the model itself. These
topics will be further described in the following.

A general model was build to serve as the basis for all tourist guide ap-
plications. A single source would allow simpler editing and maintenance of
the model as changes to the geometry and content would propagate appro-
priately to each subcomponent automatically. The general model was stored
in the BAUML format described in appendix A. A 3D model of a part of
Vienna was obtained from the cartography department of the city adminis-
tration (see Figure 8.10). This model was created as a reference model of
Vienna, and is part of the official general map of the city [35]. The model
itself was delivered in the VRML format which we converted to the Open
Inventor ASCII file format. Then we developed a dedicated import tool that
read the Open Inventor file as a scene graph and constructed a BAUML
representation. The created 3D model was used as the base for the general
model.

The department of Geoinformatics at Vienna University of Technology
supplied us with a network of accessible routes for pedestrians, delivered
in GML2 format [31], an XML based file format used in the geographic

8.7 Data acquisition 136

Figure 8.10: A subset of the 3D model of the City of Vienna. It includes a digi-
tal elevation model, building blocks and roofs. 3D model curtesy of Vienna City
Administration.

information systems (GIS) community. This model was derived from the
general map of Vienna and is represented as an undirected graph. Each
node in this graph is geo-referenced and used as a way point in the navigation
model. For each building, a so-called address point was defined and included
into the path network to be able to construct a path to this address. As
navigation graph data was available in an XML based format, a simple XSLT
transformation script was sufficient to incorporate this data into the model.

Furthermore, annotation information such as businesses located at certain
addresses was derived from the general map of Vienna. This information is
connected to address points in the spatial database.

It was necessary to compute the intersection of the 3D model data and
the navigation graph, as the relevant input data was derived from two over-
lapping sections of the city map. This was achieved by computing a subset
of the model within a given bounding box and then repairing the internal
structures of the navigation graph to make sure the data is still coherent
after the trimming. The maintenance tool directly reads from and writes to
the common data model.

Finally, we placed the icons as spatial representations of interesting infor-
mation into our model. Cultural information taken from a guide book was

8.8 Summary 137

included at various places to provide the detailed data for the information
browsing component.

8.8 Summary

This chapter demonstrated the augmented reality application design princi-
ples outlined in chapter 7 at a larger application for outdoor navigation and
information browsing. The application of a generic AR software framework
such as Studierstube allowed us to leverage the graphical and interaction
possibilities of modern 3D rendering libraries and simplified development to
a great extent. Using an iterative development process we could enhance
the user interface rapidly because changes to the presentation and interac-
tion could be implemented and tested within short turn around cycles. The
separation of concerns with the described software components captured the
areas requiring change accurately. Together with the clear-cut interfaces be-
tween them, any modification could be tracked and applied to a well-defined
set of components without touching other parts of the application.

The described system was outfitted with data surrounding the area of
Karlsplatz and adjacent building blocks down to Gußhausstraße in Vienna.
The area of Karlsplatz proved to be a good testing ground because it is open
enough to allow reception of GPS signals for positioning, has a somewhat
complex network of foot paths through Resselpark and a number of famous
tourist attractions such as Karlskirche are situated at its border. Finally, it
is close enough to our institute to allow frequent visits for development and
testing purposes. The images throughout this chapter where captured during
such test runs. Also, the user’s general appearance would usually add to the
interest in the location demonstrated by traditional tourists.

The presented application tries to give an outlook into possible future user
interfaces for location-based services. Although many of the implemented
user interface features have been demonstrated before, our work exceeds
former work in two areas. Firstly, the collaboration features add another
dimension to the possibilities of such systems by supporting groups of users
in their tasks. While the features of the system are implemented, we need
more tests of the collaborative aspects to determine useful and interesting
extensions. Secondly, the integrated approach to handling the data required
by a location-based service allows the system to scale to environments of
realistic size. The use of a flexible data model also simplifies extending the
system with future applications that will have new requirements for data to
be stored in the repository.

Chapter 9

Conclusions

The presented work focused on reusable and flexible software designs for a
number of software components in a typical augmented reality application.
The demonstration applications showed how to apply the described designs
in common AR application areas. The high-level programmability of the
individual solutions allowed for rapid development using an iterative pro-
cess by small groups of one or two developers. We attribute the ease of
development and flexibility of the application designs to a large degree to
this feature. Therefore, we believe that such advanced designs can add to
the efficiency of the development process while increasing the quality of the
resulting applications.

The main point that we learned, is to apply just the right level of ab-
straction to the individual problem areas. It is important to preserve the
flexibility of a design while freeing the developer from the mundane task of
creating the targeted functionality by building on a low-level API. There-
fore each design encapsulates certain low-level operations and only provides
configurability at a carefully chosen level.

The validity of a generic application design is harder to prove. The de-
scribed design and guidelines to develop applications by it, are an attempt
to formalize and describe design knowledge accumulated in the process of
implementing a substantial number of applications within the Studierstube
framework. The results from teaching the generic design to beginners and
from refactoring existing applications confirm the design.

Beginners to the Studierstube framework find it easier focusing on the
component they have to implement than having to solve everything at once.
The high-level programmability made complex AR applications more ac-
cessible because it invites learning by experimentation. Refactoring existing
applications such as Construct3D usually provided for more flexibility within
the existing application design. As the design work progressed, the imple-

138

139

mentations became less likely to break with the slightest change to the user
interface or tracking configurations.

Augmented reality is evolving from the state of early research that needs
to address fundamental problems such as improving tracking accuracy, input
devices, rendering performance and appropriate output devices to a state that
focuses more on the applications and their content. Usability of applications
in real work environments and efficient ways to develop these come into focus.

Knowledge about developing augmented reality applications and appro-
priate user interfaces will become more important in the future. The current
state of development tools requires extensive knowledge in software design,
operation of equipment and creativity for and insight into the user interface
aspects. Therefore, important research questions are: How can the develop-
ment of AR applications be simplified? What tools allow a wider audience
of developers and designers to craft AR experiences?

A number of research directions can be deduced from this question:

• How would a tool look like that allows simple development of an AR
application? It needs to integrate tracking configuration and operation,
graphics design and interaction. At the same time it should operate on
a level above software development to reach a wider group of people.

• Automated configuration and calibration tools for tracking equipment.
It should be possible to build tools that allow us to assemble an AR
setup consisting of several trackers and configure it with a series of
mouse clicks similar to installing an application on a modern operating
system.

• Content generation for AR applications requires additional types of
content beyond the visible models. Models of real objects are required
for interaction, occlusion and or display management, all of which are
common techniques in AR applications. Thus, AR data structures
appear to model properties that are common between different appli-
cations. If this is true, it should be possible to extract these common
properties into a generic AR related ontology that can form the basis
for more intelligent and communicative AR applications.

• Reusable patterns for interaction in AR applications. Basic research is
able to provide us with different interaction forms. The next step is to
evaluate for which tasks they are appropriate and codify the knowledge
in well documented interaction patterns.

9.1 Data flow network 140

More specialized research directions for the work presented are manifold.
Each of the sub topics offers new directions that are interesting to pursue.
A short discussion of each topic will be presented in the following sections.

9.1 Data flow network

The current OpenTracker implementation has a set of shortcomings. The
data type processed is a fixed structure tailored towards a specific application.
An extension to different data structures will enable multi-modal processing
of input data and expand application area of the OpenTracker concept.

Runtime reconfiguration of the tracking graph would allow a number of
interesting applications. A dedicated tracking configuration tool can build
up a configuration based on user input and simplify setting up an AR system.
Auto-calibration of a running system becomes possible and would improve
the registration errors of the computer generated images transparently and
without intervention by a human operator.

A more ambitions research direction is Ubiquitous Tracking which aims
to provide an ubiquitous infrastructure service to AR applications. An appli-
cation can register with a UbiTrack service and request tracking information
on objects it is interested in. The service would then automatically compute
a configuration based on the available tracking devices and send it to the
application. A reconfigurable OpenTracker layer can use the configuration
to provide the required tracking data to the application. The actual tracking
devices and required configuration would be transparent to the application
and could change at runtime as required.

9.2 Context sensitive scene graph

A promising direction of future work is to extend the test operations on the
context with more complex expressions based on basic set theory. Such an
approach will extend the expressiveness of the structural variations. However,
a good trade-off between the possible expressiveness and the complexity of
the expressions has to be found. An overly complex language will only add
the available implementation options without providing a clear design to the
application programmer.

Allowing other data types such as floating point values or using names
to index the context could simplify the use of the context sensitive scene
graph. Floating point values would allow for continuous metrics such as
distance to be used in expressions of switch tests. A number of user interface

9.3 Data management 141

techniques such as information filtering based on distance could be added at
the declarative scene graph level without further implementation work.

By recursively combining changes to the context and switches based on
the context a simple declarative programming framework can be created. It
is interesting to investigate the theoretical limits of the resulting language.

9.3 Data management

To provide a ubiquitous AR experience a distributed system similar to the
World Wide Web will be required. Any such system will need a common
language to describe data and exchange between information providers and
client applications. The GIS community has experience with large scale
geographic data stores but has sofar focused mostly on 2D information that
is fairly static. Mobile AR applications will require more 3D information and
a dynamic model that captures the current state of the environment of the
user. Therefore, a common model language to describe AR specific models
and data in a ubiquitous environment is required.

A complete scalable production system for mobile AR will require a
server-based persistent database, which can be accessed by clients over a
network. The work described here used a simple file based approach and
executed the transformations off-line.

The transformation layer can either be implemented at the data store
or as part part of the client application that filters all communications with
the data store through the transformation layers. An advanced design could
split the transformations layer into functions running on the server such as
filtering and selections and pure data structure generators at the client side,
for optimal use of network bandwidth.

We have begun to develop such a service facility based on an XML
database to store the model as XML fragments combined with a transfor-
mation engine and network access. A client library provides access via the
HTTP protocol and allows additional XSLT transformations on the received
result sets.

9.4 Managing Collaboration

The technical foundations for collaborative AR applications are now well
understood and available by using existing software frameworks such as the
Studierstube. But a plethora of applications that are either static or move
with users in an ubiquitous computing environment pose the problem of

9.4 Managing Collaboration 142

providing efficient and scalable user interfaces for managing visibility, access
or simply distribution of these applications.

Users should not be overwhelmed by complex interactions or large number
of applications that need to be manually controlled. An intelligent system
should provide intuitive functions to manage the participation in joint work
sessions with other users. Besides parameters used in current communication
systems such a lists of known participants or searches for common interests,
parameters specific to AR applications could be used such as location or
visibility of real objects.

Application development itself should also not be constrained or become
more complex because of the required control. A sufficiently large ubiquitous
application environment cannot assume that all active applications are tested
to integrate and present the same coherent interface to the user. Therefore,
the supporting software infrastructure should provide the required functions
to allow integration of applications that were developed independently.

Appendix A

BAUML definition

This chapter gives a complete definition and description of the BAUML XML
language that is used to describe building models and tracking infrastructure.

A.1 Global simple types

Simple types define data types that can be used in attributes of XML el-
ements or in the CDATA section of an element with a simple production
only. They allow to describe finite valued or numerical types and restrictions
or repetitions of such types. The following simple types are defined in the
BAUML language as support types to provide some restriction for attributes
of later defined complex types.

UnitSphereValue

Double values in the interval [−1, 1] which is a basic type for quaternion
representation.
Definition

<simpleType name="UnitSphereValue">
<restriction base="xs:double">
<maxInclusive value="1" fixed="false"/>
<minInclusive value="-1" fixed="false"/>

</restriction>
</simpleType>

DoubleList

A list of double values, base type for restricted data types like vectors, rota-
tions, etc.

143

A.1 Global simple types 144

Definition

<simpleType name="DoubleList">
<list itemType="xs:double"/>

</simpleType>

IntegerList

A list of integer values, useful for list of indices.
Definition

<simpleType name="IntegerList">
<list itemType="xs:integer"/>

</simpleType>

UnitSphereValueList

A list of UnitSphereValue, base type for restricted data types like Quater-
nions etc.
Definition

<simpleType name="UnitSphereValueList">
<list itemType="xs:double"/>

</simpleType>

Vec3

A simple type storing three double values separated by spaces.
Definition

<simpleType name="Vec3">
<restriction base="DoubleList">
<length value="3" fixed="false"/>

</restriction>
</simpleType>

Quaternion

A simple type storing four double values in the interval [−1, 1] separated by
spaces.
Definition

<simpleType name="Quaternion">
<restriction base="UnitSphereValueList">
<length value="4" fixed="false"/>

</restriction>
</simpleType>

A.2 Global complex types 145

A.2 Global complex types

Global complex types are used to model various parts of the model types.
By representing these structures independently from the model types, they
can be reused and extended easily.

RepresentationType

Geometrical representation of SpatialObjects. Any kind of representation
could be possible. So far we support the simple vertex list and polygon model
for BAUML which are modelled by the subelements Vertex and Polygon.
Definition

<complexType name="RepresentationType" mixed="false" abstract="false">
<choice minOccurs="1" maxOccurs="1">
<sequence minOccurs="1" maxOccurs="1">
<element name="Vertex">
...
</element>
<element name="Polygon">
...
</element>

</sequence>
</choice>

</complexType>

Subelement Description

Vertex A single vertex in the representation.
Polygon A polygon indexing into the list of vertices.

Example

<representation>
<Vertex position="0 1 0" />
<Vertex position="0 1 1" />
...
<Polygon vertices="0 1 3 2" type="portal" name="toHallway" />
...

</representation>

Vertex

This element type stores a single vertex of a polygon based geometrical rep-
resentation. At least one point is necessary for a non empty representation.

A.2 Global complex types 146

Definition

<element name="Vertex" maxOccurs="unbounded" minOccurs="1"
nillable="false">

<complexType mixed="false" abstract="false">
<attribute name="position" type="Vec3" use="optional"/>
<attribute name="id"/>

</complexType>
</element>

Attribute Description

position The position attribute specifies the vertex position as x y z.
id a unique id for each vertex to enumerate them

Example

<Vertex position="0 1 0" id="1" />

Polygon

A polygon specifies a list of vertices it is built from. In addition to that it
can specify a certain type.
Definition

<element name="Polygon" minOccurs="0" maxOccurs="unbounded"
nillable="false">

<complexType mixed="false" abstract="false">
<attribute name="vertices" type="IntegerList" use="required"/>
<attribute name="type" use="required">
<simpleType>
<restriction base="xs:string">
<enumeration value="wall"/>
<enumeration value="floor"/>
<enumeration value="portal"/>
<enumeration value="ceiling"/>
<enumeration value="special"/>

</restriction>
</simpleType>

</attribute>
<attribute name="name" type="xs:NCName" use="optional"/>

</complexType>
</element>

A.2 Global complex types 147

Attribute Description

vertices list of indices of vertices the polygon is built from. The indices
use the implicit numbering as the vertices appear and not the id
attribute of the Vertex element.

type The polygon can be of one of the following types: wall, floor,
portal, ceiling, special.

name A polygon can also have a name. This is used to relate the portal
polygons to certain portals, for example.

Example

<Polygon vertices="0 1 3 2" type="portal" name="toHallway" />

PoseType

This complex type specifies the pose of SpatialObjects. It provides different
ways to specify the pose using either the Transformation or the MatrixTrans-
form sub-elements.
Definition

<complexType name="PoseType" mixed="false" abstract="false">
<choice minOccurs="1" maxOccurs="1">
<element name="Transformation">
...
</element>
<element name="MatrixTransform">
...
</element>

</choice>
</complexType>

Subelement Description

Transformation an element describing a transformation composed from
a translation, rotation and scale.

MatrixTransform an element describing a 4× 4 transformation matrix.

Example
See Transformation or MatrixTransform for examples on the contents of an
element of this type.

Transformation

This specifies a simple affine transformation consisting of a scale, a rotation
and a translation in that order. The rotational part can be specified in
different ways.

A.2 Global complex types 148

Definition

<element name="Transformation" minOccurs="1" maxOccurs="1"
nillable="false">

<complexType mixed="false" abstract="false">
<attribute name="translation" type="Vec3" use="optional"

default="0 0 0"/>
<attribute name="rotation" type="DoubleList" use="optional"

default="0 0 1 0"/>
<attribute name="rotationType" use="optional"

default="axisangle">
<simpleType>
<restriction base="xs:string">
<enumeration value="axisangle"/>
<enumeration value="quaternion"/>
<enumeration value="matrix"/>
<enumeration value="euler"/>

</restriction>
</simpleType>

</attribute>
<attribute name="scale" type="Vec3" use="optional"

default="1 1 1"/>
</complexType>

</element>

Attribute Description

translation the translational component of the Transformation.
rotation gives the rotational part of the transformation. The format

itself is specified by the rotationType attribute.
rotationType this attribute specifies the format of the rotation attribute.

It allows the following choices :

axisangle gives the rotation as four doubles. The first
three describe the axis of rotation and the fourth the angle
in radians.

quaternion gives the rotation as a quaternion. The first
three entries specify the x, y, z components of the vecto-
rial part. The fourth entry is the homogenous part of the
quaternion.

matrix gives the rotation as a 3×3 orthogonal matrix with
determinant 1.

euler gives the rotation as Euler angles around x, y and z.
scale gives the non-uniform scale of the transformation.

Example

<Transformation translation="1 0 0" scale="1 1 0.5"
rotationType="quaternion" rotation="1 0 0 0" />

A.3 Basic types 149

MatrixTransform

This specifies a general 4 × 4 transformation matrix in the usual manner.
The upper-left 3 × 3 submatrix specifies the linear transformation on the 3
dimensional space and the 4th column vector the translation.
Definition

<element name="MatrixTransform" nillable="false" abstract="false">
<complexType mixed="false" abstract="false">
<attribute name="matrix" use="optional">
<simpleType>
<restriction base="DoubleList">
<length value="16" fixed="false"/>

</restriction>
</simpleType>

</attribute>
</complexType>

</element>

Attribute Description

matrix an arbitrary 4× 4 transformation matrix.

Example

<MatrixTransform matrix=" 0 1 3 2
4 5 6 7
8 9 10 11
12 13 14 15" />

A.3 Basic types

The basic types are the XML schema types that all model elements are de-
rived from. Therefore, they describe the basic properties of the most general
entitites. The simple and complex types described before are used to build
up the basic types. There are no examples given for these types because
they are implemented using the global elements Object, SpatialObject and
SpatialContainer where examples are given.

ObjectType

Everything is represented as an object. Objects generally will follow this
type.
Definition

<complexType name="ObjectType" mixed="false" abstract="false">
<sequence minOccurs="0" maxOccurs="1">

A.3 Basic types 150

<element name="annotation" minOccurs="0" maxOccurs="1"
nillable="false"/>

</sequence>
<attribute name="id" type="xs:ID" use="optional"/>

</complexType>

Attribute Description

id The id attribute allows to define a unique identifier for any object
of this type.

Subelement Description

annotation Annotation data for all objects. The idea is to add any meta-
data of objects here. This could also included application
specific data. Therefore we specify so far no further content
model, but allow any content here. RDF might be a good way
to specify annotation data.

SpatialObjectType

Any object that represents something at a location. It includes a pose and
a geometric representation. Abstract objects at a location simply have no
representation.
Definition

<complexType name="SpatialObjectType" mixed="false"
abstract="false">

<complexContent>
<extension base="ObjectType">
<sequence minOccurs="0" maxOccurs="1">
<element name="pose" type="PoseType" minOccurs="0"

maxOccurs="1" nillable="false"/>
<element name="representation" type="RepresentationType"

minOccurs="0" nillable="false" abstract="false"/>
</sequence>

</extension>
</complexContent>

</complexType>

Subelement Description

pose The subelement pose is of type PoseType and represents the
location of the object with respect to its containing object.

representation The subelement representation is of type Representation-
Type and contains the shape of the object.

A.4 Global elements 151

SpatialContainerType

An object that is also a container of other spatial objects. It adds a children
element to the general SpatialObject. The childrens pose is interpreted rela-
tive to the SpatialContainerType parent object. This allows us to build the
ususal hierarchical spatial models. So far this is the only concept that we
codify in our ontology. We also use the hierarchical structure of the XML
format to express the relationship of containment implicitly.
Definition

<complexType name="SpatialContainerType" mixed="false"
abstract="false">

<complexContent>
<extension base="SpatialObjectType">
<sequence minOccurs="0" maxOccurs="1">
<element name="children" minOccurs="0" maxOccurs="1"

nillable="false">
<complexType mixed="false" abstract="false">
<sequence minOccurs="0" maxOccurs="unbounded">
<element ref="Object" minOccurs="1"

maxOccurs="1" nillable="false"/>
</sequence>

</complexType>
</element>

</sequence>
</extension>

</complexContent>
</complexType>

Subelement Description

children This subelement stores the list of children of the container type
node. It allows all elements in the same substitution group as
Object.

A.4 Global elements

The global elements are the definitions of the actual elements used in model
files that use the BAUML schema. Each of the elements described here
corresponds to a single entity in the model. The elements are based and
derived from on of the basic types described in the last section. To make
the derivation hierarchy accessible to automatic tools every element carries
an attribute baseType that identifies the basic type it is derived from. This
allows applications that do not know anything about the element type to
revert to some default behavior.

A.4 Global elements 152

Object

This element is derived from the basic type ObjectType and can represent
any object. It can be used everywhere.
Definition

<element name="Object" nillable="false" abstract="false">
<complexType mixed="false" abstract="false">
<complexContent>
<extension base="ObjectType">
<attribute name="baseType" type="xs:NCName" use="required"

fixed="ObjectType"/>
</extension>

</complexContent>
</complexType>

</element>

Attribute description

baseType Fixed value set to ObjectType

Example

<Object id="myObject" baseType="ObjectType">
<annotation>
a simple object without much more information.

</annotation>
</Object>

SpatialObject

This element describes a spatially located object with or without a spatial
representation. It can be used to represent any object with a shape or location
without any further information attached to it. It implements the basic type
SpatialObjectType.
Definition

<element name="SpatialObject" substitutionGroup="Object" nillable="false"
abstract="false">

<complexType mixed="false" abstract="false">
<complexContent>
<extension base="SpatialObjectType">
<attribute name="baseType" type="xs:NCName" use="required"

fixed="SpatialObjectType"/>
</extension>

</complexContent>
</complexType>

</element>

A.4 Global elements 153

Attribute description

baseType Fixed value set to SpatialObjectType

Example

<SpatialObject baseType="SpatialObjectType">
<representation>
<Vertex position="-16 -17 -22"/>
...
<Polygon vertices="0 6 7 12"/>
...

</representation>
<pose>
<Transformation translation="0 1 2" scale="0.5 0.5 0.5" />

</pose>
</SpatialObject>

SpatialContainer

This element describes a spatially located object that contains other objects
and is derived from SpatialContainerType. If these are spatial objects their
location is relative to this object. Thus, it allows to build models using
spatial hierarchies.
Definition

<element name="SpatialContainer" substitutionGroup="Object"
nillable="false" abstract="false">

<complexType mixed="false" abstract="false">
<complexContent>
<extension base="SpatialContainerType">
<attribute name="baseType" type="xs:NCName" use="required"

fixed="SpatialContainerType"/>
</extension>

</complexContent>
</complexType>

</element>

Attribute Description

baseType Fixed value set to SpatialContainerType.

Example

<SpatialContainer baseType="SpatialContainerType">
<representation>
<Vertex position="-16 -17 -22"/>
...

</representation>
<pose>
<Transformation ... />

</pose>

A.4 Global elements 154

<children>
...

</children>
</SpatialContainer>

Building

A building in the model. This element is a simple derivation from the Spa-
tialContainerType to only mark a certain entity as a building. It does not
add any further information and acts as a SpatialContainer element in every
other aspect.
Definition

<element name="Building" substitutionGroup="Object" nillable="false"
abstract="false">

<complexType mixed="false" abstract="false">
<complexContent>
<extension base="SpatialContainerType">
<attribute name="baseType" type="xs:NCName" use="required"

fixed="SpatialContainerType"/>
</extension>

</complexContent>
</complexType>

</element>

Attribute Description

baseType Fixed value set to SpatialContainerType.

Example

<Building id="csbuilding" baseType="SpatialContainerType">
<representation>
<Vertex position="-16 -17 -22"/>
...

</representation>
<children>
<Room id="Floor0">
...

</Room>
...

</children>
</Building>

Room

A room in the BAUML part of the format. It is also derived from SpatialCon-
tainerType and in addition specifies portals. These are special polygons that
are connected to other polygons in other rooms. The portals are specified in

A.4 Global elements 155

a special Portal child element and reference polygons of the representation
by name.
Definition

<element name="Room" substitutionGroup="Object" nillable="false"
abstract="false">

<complexType mixed="false" abstract="false">
<complexContent>
<extension base="SpatialContainerType">
<sequence minOccurs="1" maxOccurs="1">
<element name="portals" minOccurs="0" maxOccurs="1"

nillable="false">
<complexType mixed="false" abstract="false">
<sequence minOccurs="1" maxOccurs="1">
<element name="Portal">
...
</element>

</sequence>
</complexType>

</element>
</sequence>
<attribute name="baseType" type="xs:NCName" use="required"

fixed="SpatialContainerType"/>
</extension>

</complexContent>
</complexType>

</element>

Attribute Description

baseType Fixed value set to SpatialContainerType.

Subelement Description

portals This subelement lists the portals of the room. It contains
Portal elements which are described next.

Example

<Room baseType="SpatialContainerType" id="HE0446">
<representation>
<Vertex position="-3 -1 -0"/>
...
<Polygon type="floor" vertices="0 6 7 12"/>
<Polygon name="HE0435" type="portal" vertices="14 15 16 17"/>
...

</representation>
<children>
<ARToolkitMarker baseType="SpatialObjectType" pattern="pattern12">
...

</ARToolkitMarker>
...

A.4 Global elements 156

</children>
<portals>
<Portal polygon="HE0435" polygonnb="HE0446" room="HE0435"/>

</portals>
</Room>

Portal

A Portal defines directed link to another room and a portal therein.
Definition

<element name="Portal" maxOccurs="unbounded" minOccurs="1"
nillable="false">

<complexType mixed="false" abstract="false">
<attribute name="room" type="xs:string" use="required"/>
<attribute name="polygon" type="xs:string" use="required"/>
<attribute name="polygonnb" type="xs:string" use="optional"/>

</complexType>
</element>

Attribute Description

room the id of the target room.
polygon the name of the polygon in this room.
polygonnb The name of the target polygon in the target room. This is not

required.

Example
See the Room element for an example of the use of the Portal element.

ARToolkitMarker

An ARToolkitMarker element represents explicitly a fiducial marker for op-
tical tracking using the ARToolkit library. It is specified by either a set of
corners or its pose and the size of the marker. If it is represented by a set
of corners, it must contain 3 or 4 vertices in this order: top-left, top-right,
bottom-left, and optional: bottom-right. In addition, it stores bookkeeping
information such as an identifying number and a pattern identifier.
Definition

<element name="ARToolkitMarker" substitutionGroup="Object"
nillable="false" abstract="false">

<complexType mixed="false" abstract="false">
<complexContent>
<extension base="SpatialObjectType">
<attribute name="number" type="xs:integer" use="required"/>
<attribute name="baseType" type="xs:NCName" use="required"

fixed="SpatialObjectType"/>

A.4 Global elements 157

<attribute name="pattern" type="xs:string" use="optional"/>
<attribute name="size" type="xs:float" use="required"/>
<attribute name="overrideTrigger" type="xs:boolean" use="optional"

default="false"/>
</extension>

</complexContent>
</complexType>

</element>

Attribute Description

baseType Fixed value set to SpatialObjectType.
number the number of the marker similar to the id but only for

ARToolkitMarker elements.
pattern an identifier of the pattern used. The interpretation of the

identifier depends on the implementation
size the size of the square pattern in meters.
overrideTrigger a flag to denote whether the marker can override any rela-

tive computation, if tracked by the system.

Example

<ARToolkitMarker baseType="SpatialObjectType" number="41"
pattern="pattern12" size="0.19">

<pose>
<Transformation rotation="-0.942051 0.008294 -0.335096 0.022247

0.999770 -0.015871 0.334732 -0.019795 -0.942018"
rotationType="matrix"
translation="-17.581115 -15.350913 -24.893107"/>

</pose>
</ARToolkitMarker>

Waypoint

A waypoint is a node in a street skeleton graph for outdoor navigation. It
has a pose and probably an empty representation. In addition it adds links
to all its neighbor nodes to build a navigation graph.
Definition

<element name="Waypoint" substitutionGroup="Object" nillable="false"
abstract="false">

<complexType mixed="false" abstract="false">
<complexContent>
<extension base="SpatialObjectType">
<attribute name="baseType" type="xs:NCName" use="required"

fixed="SpatialObjectType"/>
<attribute name="neighbors" type="xs:string" use="required"/>

</extension>
</complexContent>

A.4 Global elements 158

</complexType>
</element>

Attribute Description

baseType Fixed value set to SpatialObjectType.
neighbors This attribute stores a list of ids of the neighbor waypoints.

Example

<Waypoint id="P100" baseType="SpatialObjectType" neighbors="P12 P14 P68">
<pose>
<Transformation translation="197 0 -216"/>

</pose>
</Waypoint>

Bibliography

[1] NTP: The network time protocol. http://www.ntp.org/, February 16
2004.

[2] A. Aarsten, D. Brugali, and G. Menga. Patterns for three-tier
client/server applications. In Proc. PLoP’96, Allerton Park, Illinois,
USA, September 4–6 1996. Addison-Wesley.

[3] M. Addlesee, R. Curwen, S. Hodges, A. Hopper, J. Newman,
P. Steggles, and A. Ward. A sentient computing system. IEEE Com-
puter: Location-Aware Computing, August 2001.

[4] S. Adler et al. Extensible stylesheet language (XSL) 1.0.
http://www.w3.org/TR/xsl/, October 15 2001.

[5] J. Airey, J. Rohlf, and F. P. Brooks. Towards image realism with
interactive update rates in complex virtual building environments. In
Proceedings of the 1990 Symposium on Interactive 3D Graphics, pages
41–50, 1990. not read.

[6] AT&T. Graphviz. http://www.research.att.com/sw/tools/graphviz/,
visited February 20 2004.

[7] R. T. Azuma. A survey of augmented reality. Presence, Teleoperators
and Virtual Environments 6(4):355–385, August 1997.

[8] Y. Baillot, D. Brown, and S. Julier. Authoring of physical models using
mobile computers. In Proc. ISWC 2001 , pages 39–46.

[9] H. Bal, M. Kasshoek, and A. Tanenbaum. Orca: A language for parallel
programming of distributed systems. IEEE Transactions on Software
Engineering, 18(3):190–205, 1990.

[10] J. W. Barrus, R. C. Waters, and D. B. Anderson. Locales and beacons:
Efficient and precise support for large multi-user virtual environments.
Technical Report TR-95-16a, MERL, August 1995.

159

Bibliography 160

[11] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reichner,
S. Riss, C. Sandor, and M. Wagner. Design of a component-based
augmented reality framework. In Proc. ISAR 2001, pages 45–54, New
York, New York, USA, October 29–30 2001. IEEE and ACM.

[12] M. Bauer, O. Hilliges, A. MacWilliams, C. Sandor, M. Wagner,
G. Klinker, J. Newman, G. Reitmayr, T. Fahmy, T. Pintaric, and
D. Schmalstieg. Integrating Studierstube and DWARF. In Proc.
STARS 2003, pages 1–5, Tokyo, Japan, October 7 2003.

[13] J. Begole, M. Rosson, and C. Shaffer. Flexible collaboration trans-
parency: Supporting worker independence in replicated application-
sharing systems. ACM Transactions on Computer-Human Interaction,
6(2):95–132, 1999.

[14] J. Begole, C. Struble, C. Shaffer, and R. Smith. Transparent sharing
of java applets: A replicated approach. In Proc. ACM User Interface
Software and Technology (UIST’97), pages 55–64. ACM, 1997.

[15] B. Bell, S. Feiner, and T. Höllerer. View management for virtual and
augmented reality. In Proc. UIST’01, pages 101–110, Orlando, Florida,
USA, November 11–14 2001. ACM.

[16] B. Bell, T. Höllerer, and S. Feiner. An annotated situation-awareness
aid for augmented reality. In Proc. UIST’02, pages 213–216, Paris,
France, October 27–30 2002. ACM.

[17] K. A. Bharat and L. Cardelli. Migratory applications. In Proc.
ACM User Interface Software and Technology (UIST95), pages 133–
142. ACM, 1995.

[18] M. Billinghurst, J. Bowskill, J. Morphett, and M. Jessop. A wearable
spatial conferencing space. In Proc. ISWC’98, Pittsburgh, Penn., USA,
October 19–20 1998. IEEE and ACM.

[19] M. Billinghurst and H. Kato. Collaborative mixed reality. In Proc.
ISMR’99, pages 261–284, Yokohama, Japan, 1999. Springer Verlag.

[20] M. Billinghurst and H. Kato. Real world teleconferencing. In Proc.
CHI’99, Pittsburgh, PA, USA, May 15-20 1999. ACM.

[21] M. Billinghurst, S. Weghorst, and T. Furness. Shared space: An aug-
mented reality interface for computer supported collaborative work. In
Proc. of Collaborative Virtual Environments Workshop ’96, Notting-
ham, Great Britain, September 19–20 1996.

Bibliography 161

[22] O. Bimber and B. Fröhlich. Occlusion shadows: Using projected light
to generate realistic occlusion effects for view-dependent optical see-
through displays. In Proc. ISMAR 2002, pages 186–195, Darmstadt,
Germany, September 30 – October 1 2002. ACM and IEEE.

[23] T. Bray, J. Paoli, C. M. Sperberg-McQueen, et al. Extensible markup
language (XML) 1.0. http://www.w3.org/TR/REC-xml/, October 6
2000.

[24] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture - A System of Patterns, vol-
ume 1. Wiley, Great Britain, 1996.

[25] A. Butz, C. Beshers, and StevenFeiner. Of vampire mirrors and privacy
lamps: Privacy management in multi-user augmented environments. In
Proc. UIST98, pages 171–172, San Francisco, CA, USA, November 2–4
1998. ACM.

[26] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and C. Beshers. Envelop-
ing users and computers in a collaborative 3d augmented reality. In
Proc. IWAR’99, pages 35–44, San Francisco, CA, USA, October 20–21
1999. IEEE.

[27] R. Carey and G. Bell. The Annotated VRML 2.0 Reference Manual.
Addison-Wesley, 1997.

[28] G. Chung and P. Dewan. A mechanism for supporting client migration
in a shared window system. In Proc. ACM User Interface Software and
Technology (UIST96), pages 11–20. ACM, 1996.

[29] G. Chung, K. Jeffay, and H. Abdel-Wahab. Accommodating late-
comers in shared window systems. IEEE Computer, 26(1):72–74, 1993.

[30] J. Clark. XSL transformations (XSLT) version 1.0.
http://www.w3.org/TR/xslt, 1999.

[31] S. Cox, A. Cuthbert, R. Lake, and R. Martell. Geography markup lan-
guage (GML) 2.0. http://opengis.net/gml/01-029/GML2.html, Febru-
ary 20 2001.

[32] D. Curtis, D. Mizell, P. Gruenbaum, and A. Janin. Several devils
in the details: Making an AR app work in the airplane factory. In
R. Behringer and G. Klinker, editors, Augmented Reality - Placing
Artificial Objects in a Real Scene, pages 47–60. A.K. Peters, 1998.

Bibliography 162

[33] A. Dearle, G. N. Kirby, R. Morrison, A. McCarthy, K. Mullen, Y. Yang,
R. C. Connor, P. Welen, and A. Wilson. Architectural support for
global smart spaces. In Lecture Notes in Computer Science 2574, pages
153–164. Springer, 2003.

[34] E. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[35] L. Dorffner and A. Zöchling. Das 3D modell von wien - erzeugung
und Fortführung auf basis der wiener mehrzweckkarte. In Proc. CORP
2003, pages 161 – 166, Vienna, Austria, February 25 – March 1 2003.

[36] F. Echtler, F. Sturm, K. Kindermann, G. Klinker, J. Stilla, J. Trilk,
and H. Najafi. The intelligent welding gun: Augmented reality for
experimental vehicle construction. In S. Ong and A. Nee, editors, Vir-
tual and Augmented Reality Applications in Manufacturing, Chapter
17, chapter 17. Springer Verlag, 2003.

[37] D. C. Fallside. XML schema part 0: Primer.
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/, Jan-
uary 5th 2004.

[38] S. Feiner, B. MacIntyre, and T. Höllerer. Wearing it out: First steps
toward mobile augmented reality systems. In Proc. ISMR’99, 1999.

[39] S. Feiner, B. MacIntyre, T. Höllerer, and A. Webster. A touring ma-
chine: Prototyping 3D mobile augmented reality systems for exploring
the urban enviroment. In Proc. ISWC’97, pages 74–81, Cambridge,
MA, USA, October 13–14 1997.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley, Read-
ing, MA, USA, 1995.

[41] N. Haala, J. Böhm, and M. Kada. Processing of 3d building models for
location aware applications. In International Archives on Photogram-
metry and Remote Sensing IAPRS, volume XXXIV, pages 157–162,
Xian, August 2002. ISPRS Commision II Symposium.

[42] T. He and A. Kaufman. Virtual input devices for 3D systems. In Proc.
IEEE Visualization’93, pages 142–148. IEEE, 1993.

[43] G. Hesina. Distributed Collaborative Augmented Reality. PhD thesis,
Vienna University of Technology, May 2001.

Bibliography 163

[44] G. Hesina, D. Schmalstieg, and W. Purgathofer. Distributed open
inventor : A practical approach to distributed 3D graphics. In Proc.
ACM VRST’99, pages 74–81, London, UK, December 1999.

[45] T. Höllerer, S. Feiner, D. Hallaway, B. Bell, M. Lanzagorta, D. Brown,
S. Julier, Y. Baillot, and L. Rosenblum. User interface management
techniques for collaborative mobile augmented reality. Computer &
Graphics, 25(25):799–810, 2001.

[46] T. Höllerer, S. Feiner, T. Terauchi, G. Rashid, and D. Hallaway. Explor-
ing MARS: developing indoor and outdoor user interfaces to a mobile
augmented reality system. Computer & Graphics, 23(6):779–785, 1999.

[47] T. Höllerer, D. Hallaway, N. Tinna, and S. Feiner. Steps toward accom-
modating variable position tracking accuracy in a mobile augmented
reality system. In Proc. AIMS’01, pages 31–37, Seattle, WA, USA,
Aug 4. 2001.

[48] T. Höllerer and J. Pavlik. Situated documentaries: Embedding multi-
media presentations in the real world. In Proc. ISWC’99, pages 79–86,
San Francisco, CA, USA, October 18–19 1999.

[49] IBM. Xeena XML editor. http://www.alphaworks.ibm.com/tech/xeena,
visited February 20 2004.

[50] Icon Information Systems GmbH. XMLSpy. http://www.xmlspy.com,
visited February 20 2004.

[51] ISO. Graphical kernel system (GKS). IS 7942, 1985.

[52] S. Julier, M. Lanzagorta, Y. Baillot, L. Rosenblum, S. Feiner, and
T. Höllerer. Information filtering for mobile augmented reality. In
Proc. ISAR 2000, pages 3–11, Munich, Germany, October 5–6 2000.
IEEE and ACM.

[53] S. Julier, M. Livingston, D. Brown, Y. Baillot, and E. Swan. Adaptive
user interfaces for augmented reality. In Proc. STARS 2003, pages
35–42, Tokyo, Japan, October 7 2003.

[54] H. Kato and M. Billinghurst. Marker tracking and HMD calibration for
a video-based augmented reality conferencing system. In Proc. IWAR
99, San Francisco, USA, October 1999.

Bibliography 164

[55] H. Kato and M. Billinghurst. Marker tracking and HMD calibration
for a video-based augmented reality conferenencing system. In Proc.
IWAR’99, pages 85–94, San Francisco, CA, USA, October 21–22 1999.
IEEE CS.

[56] H. Kaufmann and D. Schmalstieg. Mathematics and geometry edu-
cation with collaborative augmented reality. Computer & Graphics,
27(3):339–345, June 2003.

[57] G. Klinker, O. Creighton, A. H. Dutoit, R. Kobylinski, C. Vilsmeier,
and B. Brgge. Augmented maintenace of powerplants: A prototyping
case study of a mobile AR system. In Proc. ISAR 2001, pages 124–133,
New York, New York, USA, October 29–30 2001. IEEE.

[58] U. Kretschmer. Using mobile systems to transmit location based in-
formation. In Proc. of the ISPRS Commission III Symposium, Graz,
Austria, 2002.

[59] U. Kretschmer, V. Coors, U. Spierling, D. Grasbon, K. Schneider, I. Ro-
jas, and R. Malaka. Meeting the spririt of history. In Proc. VAST 2001,
Glyfada, Athens, Greece, November 28–30 2001. Eurographics.

[60] M. A. Livingston, J. E. Swan II, J. L. Gabbard, T. H. Höllerer, D. Hix,
S. J. Julier, Y. Baillot, and D. Brown. Resolving multiple occluded
layers in augmented reality. In Proc. ISMAR 2003, pages 56–65, Tokyo,
Japan, October 7–10 2003. IEEE.

[61] B. MacIntyre and S. Feiner. Language-level support for exploratory
programming of distributed virtual environments. In Proc ACM
UIST’96, pages 83–94, Seattle, WA, USA, Nov. 6–8 1996. ACM.

[62] B. MacIntyre and S. Feiner. A distributed 3D graphics library. In
Proc. ACM SIGGRAPH ’98, pages 361–370, Orlando, Florida, USA,
July 19–24 1998.

[63] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer, G. Klinker, and
B. Bruegge. Herding sheep: Live system development for distributed
augmented reality. In Proc. ISMAR 2003, pages 123–132, Tokyo,
Japan, October 7–10 2003. IEEE.

[64] F. Manola and E. Miller. Rdf primer. http://www.w3c.org/TR/rdf-
primer/, May 3 2003.

Bibliography 165

[65] D. L. McGuinness and F. van Harmelen. OWL web ontology language
overview. http://www.w3.org/TR/2004/REC-owl-features-20040210/,
February 11th 2004.

[66] W. Meier. eXist: An open source native XML database. In A. B. Chau-
dri, M. Jeckle, E. Rahm, and R. Unland, editors, Web, Web-Services,
and Database Systems. NODe 2002 Web- and Database-Related Work-
shops, Springer LNCS Series, page 2593, Erfurt, Germany, October
2002. Springer.

[67] J. Newman, D. Ingram, and A. Hopper. Augmented reality in a wide
area sentient environment. In Proc. ISAR 2001, pages 77–86, New
York, New York, USA, October 29–30 2001. IEEE and ACM.

[68] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosen-
feld, and M. Pignol. Generating remote control interfaces for complex
appliances. In Proc. UIST 2002, pages 161–170, Paris, France, October
27–30 2002. ACM.

[69] U. of North Carolina at Chapel Hill. VRPN - virtual reality peripheral
network. http://www.cs.unc.edu/Research/vrpn/, visited February 20
2004.

[70] C. Pavlakos, R. Frank, A. McPherson, G. Humphreys, M. Eldridge,
A. Finkelstein, and A. Heirich. Commodity-based scalable visualiza-
tion. SIGGRAPH 2001 course notes # 37, 2001.

[71] W. Piekarski, B. Gunther, and B. H. Thomas. Integrating virtual
and augmented realities in an outdoor application. In Proc. IWAR’99,
pages 45–54, San Francisco, CA, USA, October 21–22 1999. IEEE CS.
early tinmith II, nice description of the system comprised of individual
components connected via tcp. almost like dwarf.

[72] W. Piekarski, D. Hepworth, V. Demczuk, B. H. Thomas, and B. Gun-
ther. A mobile augmented reality user interface for terrestrial naviga-
tion. In Proc. of the 22nd Australasian Computer Science Conference,
pages 122–133, Auckland, NZ, January 18–21 1999.

[73] W. Piekarski and B. H. Thomas. Tinmith-ev5 - an architecture for
supporting mobile augmented reality environments. In Proc. ISAR
2001, pages 177–178, New York, New York, USA, October 29–30 2001.
IEEE and ACM. short description of new system design, not corba like
but more data flow graph of between objects.

Bibliography 166

[74] W. Piekarski and B. H. Thomas. Tinmith-metro: New outdoor tech-
niques for creating city models with an augmented reality wearable
computer. In Proc. ISWC 2001, pages 31–38, Zurich, Switzerland, 8–9
October 2001. IEEE.

[75] W. Piekarski and B. H. Thomas. The tinmith system - demonstrat-
ing new techniques for mobile augmented reality modelling. In Proc.
AUIC2002, Melbournce, Vic, Australia, January 2002. ACS.

[76] W. Piekarski and B. H. Thomas. An object-oriented software architec-
ture for 3D mixed reality applications. In Proc. ISMAR 2003, pages
247–256, Tokyo, Japan, October 7–10 2003. IEEE.

[77] W. Piekarski, B. H. Thomas, D. Hepworth, B. Gunther, and V. Dem-
czuk. An architecture for outdoor wearable computers to support aug-
mented reality and multimedia applications. In Proc. Third Interna-
tional Conference on Knowledge-Based Intelligent Information Engi-
neering Systems, Adelaide, Australia, August 1999. IEEE.

[78] T. Reicher, A. MacWilliams, and B. Bruegge. Towards a system of
patterns for augmented reality systems. In Proc. STARS 2003, pages
6–11, Tokyo, Japan, October 7 2003.

[79] T. Reicher, A. MacWilliams, B. Bruegge, and G. Klinker. Results of
a study on software architectures for augmented reality systems. In
Proc. ISMAR 2003, Tokyo, Japan, October 7–10 2003. IEEE.

[80] G. Reitmayr and D. Schmalstieg. Mobile collaborative augmented re-
ality. In Proc. ISAR 2001, pages 114–123, New York, New York, USA,
October 29–30 2001. IEEE.

[81] G. Reitmayr and D. Schmalstieg. Location based applications for mo-
bile augmented reality. In R. Biddle and B. Thomas, editors, Proc.
AUIC 2003, volume 25 (3) of Australian Computer Science Commu-
nications, pages 65 – 73, Adelaide, Australia, February 4 – 7 2003.
ACS.

[82] J. Rekimoto. Transvision: A hand-held augmented reality system for
collaborative design. In Proc. VSMM’96, pages 18–20, Gifu, Japan,
September 1996.

[83] J. Rekimoto. Pick-and-drop: A direct manipulation technique for mul-
tiple computer environments. In Proc. UIST’97, pages 31–39. ACM,
1997.

Bibliography 167

[84] J. Rekimoto. Matrix: A realtime object identification and registration
method for augmented reality. In Proc. APCHI’98, 1998.

[85] J. Rekimoto and M. Saitoh. Augmented surfaces: A spatially continu-
ous workspace for hybrid computing. In Proc. CHI’99. ACM, 1999.

[86] M. Roseman and S. Greenberg. Building real-time groupware with
groupkit, a groupware toolkit. ACM Transactions on Computer-
Human Interaction, 3(1):66–106, 1996.

[87] K. Rothermel and A. Leonhardi. Maintaining world models for context-
aware applications. In W. R. Wells, editor, Proceedings of the 8th
International Conference on Advances in Communication and Control
(COMCON-8), 2001.

[88] K. Satoh, K. Hara, M. Anabuki, H. Yamamoto, and H. Tamura.
TOWNWEAR: An outdoor wearable MR system with high-precision
registration. In Proc. IEEE Virtual Reality 2001, pages 210–211, Yoko-
hama, Japan, March 13–17 2001.

[89] D. Schmalstieg and G. Eibner. Hybrid user interfaces using seamless
tiled displays. submitted for publication, 2004.

[90] D. Schmalstieg, A. Fuhrmann, and G. Hesina. Bridging multiple user
interface dimensions with augmented reality. In Proc. ISAR 2000, pages
20–29, Munich, Germany, October 5–6 2000. IEEE and ACM.

[91] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari, L. M. Encarnao,
M. Gervautz, and W. Purgathofer. The Studierstube augmented reality
project. PRESENCE - Teleoperators and Virtual Environments, 11(1),
2002.

[92] D. Schmalstieg, A. Fuhrmann, Z. Szalavari, and M. Gervautz. Studier-
stube – an environment for collaboration in augmented reality. In Proc.
of Collaborative Virtual Environments Workshop ’96, Nottingham, UK,
September 19–20 1996.

[93] D. Schmalstieg and G. Hesina. Distributed applications for collabora-
tive augmented reality. In Proc. IEEE VR 2002, pages 59–66, Orlando,
Florida, USA, March 24–28 2002. IEEE.

[94] D. Schmalstieg, H. Kaufmann, G. Reitmayr, and F. Ledermann. Ge-
ometry education in the augmented classroom. In Proc. ISMAR 2002,
Darmstadt, Germany, September 30 – October 1 2002. IEEE.

Bibliography 168

[95] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented
Software Architecture - Patterns for Concurrent and Networked Ob-
jects, volume 2. Wiley, Great Britain, 2000.

[96] R. Schönfelder, G. Wolf, M. Reeßing, R. Krüger, and B. Brüderlin.
A pragmatic approach to a VR/AR component integration framework
for rapid system setup. In Proceedings of the 1. Paderborner Workshop
”Augmented und Virtual Reality in der Produktentstehung”, pages 67–
79, Paderborn, Germany, June 11–12 2002. Heinz Nixdorf Institut.

[97] C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled simulation in
virtual reality with the MR toolkit. ACM Transactions on Information
Systems, 11(3):287–317, July 1993.

[98] S. Shekhar, M. Coyle, B. Goyal, D.-R. Liu, and S. Sarkar. Data mod-
els in geographic information systems. Communications of the ACM,
40(4):103–111, 1997.

[99] Software AG. Tamino XML server.
http://www.softwareag.com/tamino/, January 5th 2004.

[100] J. C. Spohrer. Information in places. IBM Systems Journal, 38(4):602–
628, 1999.

[101] T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey, D. Kirsch, R. Pi-
card, and A. Pentland. Augmented reality through wearable comput-
ing. Presence, Special Issue on Augmented Reality(4):386–398, 1997.

[102] P. Strauss and R. Carey. An object oriented 3D graphics toolkit. In
Proc, ACM SIGGRAPH’92. ACM, 1992.

[103] Z. Szalavári and M. Gervautz. The personal interaction panel — A two-
handed interface for augmented reality. Computer Graphics Forum,
6(13):335–346, 1997.

[104] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and
A. T. Helser. VRPN: A device-independent, network-transparent VR
peripheral system. In Proc. VRST 2001, pages 55–61, Banff, Alberta,
Canada, November 15–17 2001. ACM.

[105] The Apache Software Foundation. Apache Xindice.
http://xml.apache.org/xindice/, January 5th 2004.

Bibliography 169

[106] The Apache Software Foundation. Xerces XML parser.
http://xml.apache.org/xerces-c/index.html, visited February 20
2004.

[107] B. Thomas, B. Close, J. Donoghue, J. Squires, P. D. Bondi, M. Morris,
and W. Piekarski. Arquake: An outdoor/indoor augmented reality
first person application. In Proc. ISWC2000, pages 139–146, Atlanta,
Georgia, USA, October 16–17 2000. IEEE.

[108] B. H. Thomas, V. Demczuk, W. Piekarski, D. H. epworth, and B. Gun-
ther. A wearable computer system with augmented reality to support
terrestrial navigation. In Proc. ISWC’98, pages 168–171, Pittsburgh,
USA, October 19–20 1998. IEEE and ACM.

[109] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
schema part 1: Structures. http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/, January 8th 2004.

[110] H. Tramberend. Avocado: A distributed virtual reality framework. In
Proc. IEEE VR 1999, pages 14 – 21, Houston, Texas, USA, March 13
– 17 1999. IEEE.

[111] J. Tsao and C. Lumsden. CRYSTAL: Building multicontext virtual
environments. PRESENCE - Teleoperators and Virtual Environments,
6(1):57–72, 1997.

[112] B. Ullmer, H. Ishii, and D. Glas. mediablocks: Physical containers,
transports, and controls for online media. In Proc. SIGGRAPH98,
pages 379–386, 1998.

[113] VRCO. Trackd. http://www.vrco.com/products/trackd/trackd.html,
visited March 2nd 2004.

[114] S. L. Weibel and T. Koch. The dublin core metadata initiative: Mis-
sion, current activities, and future directions. D-Lib Magazine, 6(12),
December 2000.

[115] M. Weiser. The computer of the twenty-first century. Scientific Amer-
ican, 1991.

[116] J. Wernecke. The Inventor Mentor: Programming Object-Oriented 3D
Graphics with Open Inventor. Addison-Wesley, 2nd edition, November
1993.

Bibliography 170

[117] J. Wernecke. The Inventor Toolmaker: Extending Open Inventor.
Addison-Wesley, 2nd edition, April 1994.

[118] L. Wood, A. L. Hors, V. Apparao, S. Byrne, M. Champion, S. Isaacs,
I. Jacobs, G. Nicol, J. Robie, R. Sutor, and C. Wilson. Doc-
ument object model (DOM) level 1 specification (second edition).
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/, January
19th 2004.

Curriculum Vitae

Gerhard Reitmayr

Bleichergasse 13/9
A-1090 Vienna
Austria
reitmayr@ims.tuwien.ac.at

1974 Born on the 25th of November in Vienna, Austria

1981 – 1985 Primary School (Volksschule) at the Schulzentrum Maria En-
zersdorf (SMZ), Maria Enzersdorf, Austria

1985 – 1989 Secondary School at the Bundesgymnasium Bachgasse,
Mödling, Austria

1989 – 1993 Secondary School at the Bundesrealgymnasium Keimgasse,
Mödling, Austria

June 1993 Graduation (Matura) from the Bundesrealgymnasium Keim-
gasse

1993 – 1999 Studies in engineering mathematics at the Vienna University
of Technology

January 2000 Graduation ”Diplom-Ingenieur der Technischen Mathe-
matik” from the Vienna University of Technology
Thesis ”Changing Stability of the Closed loop System by
Modifying the Cost Function”

2000 – 2004 Doctoral program in computer science at the Vienna Uni-
versity of Technology

March 2004 Dissertation ”On Software Design for Augmented Reality”

171

	Abstract
	Kurzfassung
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Augmented Reality -- a ubiquitous user interface
	Software design for AR applications
	Problem statement
	Contribution

	Related work
	Mobile augmented reality
	Collaborative augmented reality
	Software frameworks for augmented reality
	Software frameworks for tracking
	Overview of Studierstube
	Open Inventor
	3D event system
	Widget system
	Dynamic application loading
	Single-host multi-user Studierstube
	Distributed Inventor

	Data flow engine
	Tracking for Augmented Reality
	Related work
	Concepts
	Multiple Input Ports and References
	Edge types

	Implementation
	Source Nodes
	Filter Nodes
	Sink Nodes
	Time
	Software architecture
	Software engineering with XML
	Data flow implementation

	Results
	Distributed tracking
	Mobile Augmented Reality setup
	Indoor wide area tracking

	Summary

	Context sensitive scene graph
	Concepts
	Scene graph model for data storage
	Context sensitive scene graph

	Implementation
	Decoupling of model and control
	Results
	System management in Studierstube
	Signpost - attributing of a general model tree

	Summary

	Data management
	Related work
	Concepts
	Modelling
	Data handling

	Implementation
	Schema definition
	Transformations

	Results
	Indoor navigation
	Information browsing

	Summary

	Managing collaboration
	Related work
	Locale framework
	Requirements
	Concepts
	Definition of locales
	Managing applications with locales

	Implementation
	Using Distributed Inventor for applications
	Shared applications
	Locales in the scene graph
	Session manager

	Results
	Basic stationary multi user setup
	Application migration
	Augmented Classroom

	Summary

	AR application design
	Principles
	Tracking
	User Interface
	3D presentation
	Application core
	Data management
	Collaboration

	Design work-flow
	Summary

	A collaborative tourist guide application
	Requirements
	The mobile augmented reality setup

	Applying the work-flow
	Tracking configuration
	Navigation application
	User interface
	Application core
	Data management
	Collaboration

	Information browsing
	User interface
	Data management
	Collaboration

	Annotation
	User interface
	Application core
	Collaboration

	Data acquisition
	Summary

	Conclusions
	Data flow network
	Context sensitive scene graph
	Data management
	Managing Collaboration

	BAUML definition
	Global simple types
	Global complex types
	Basic types
	Global elements

	Bibliography
	Curriculum Vitae

