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ABSTRACT
We propose a new stereo algorithm which uses colour

segmentation to allow the handling of large untextured re-
gions and precise localization of depth boundaries. Each
segment is modelled as a plane. Robustness of the depth
representation is achieved by the use of a layered model.
Layers are extracted by mean-shift-based clustering of
depth planes. For layer assignment a global cost function
is defined. The quality of the disparity map is measured by
warping the reference image to the second view and com-
paring it with the real image. Z-buffering enforces visibility
and allows the explicit detection of occlusions. An efficient
greedy algorithm searches for a local minimum of the cost
function. Layer extraction and assignment are alternately
applied. Results obtained for benchmark and self-recorded
images indicate that the proposed algorithm can compete
with the state-of-the-art.

1. INTRODUCTION

In our work we propose a stereo algorithm that represents
the scene as a collection of planar layers. As a result we
obtain piecewise smooth surface reconstructions and real-
valued disparity estimates providing a high precision. Our
algorithm explicitly addresses major problems arising in
stereo computation. Large untextured regions are handled
by applying colour segmentation to the reference image.
Smoothness inside the derived segments is enforced by the
use of a planar model representing each segment’s disparity.
Colour segmentation also allows the accurate localization of
depth discontinuities. Occlusions in the reference and in the
second view are detected and handled in a layer assignment
step. Furthermore, we model smoothness across segments.

For a review of prior work we refer to [1], who give
an extensive survey on recent stereo algorithms. In the fol-
lowing, we summarize the works most relevant to our ap-
proach. A model of planar layers for stereo was used in
[2]. A surface fitting and a surface assignment step are al-
ternately applied until convergence. For assigning pixels
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to surfaces a graph-based method is used. The work was
extended in [3] with the most significant difference being
the strictly symmetrical treatment of input images. In [4]
the mean-shift algorithm was used for the extraction of pla-
nar layers in motion. Among prior work, the most simi-
lar to ours is the approach by Tao et al. [5]. We share the
ideas of image warping for measuring the quality of a depth
solution and hypothesizing depth from neighbouring seg-
ments. In contrast to Tao et al., we use a layered representa-
tion providing more robust depth solutions. A different cost
function accounts for occlusions in both views and smooth-
ness across segments. Furthermore, we compute new planar
models throughout the whole process and achieve a higher
amount of efficiency in our layer assignment step.

2. ALGORITHM

In the following, we describe the algorithm’s building
blocks and then show their integration into the overall algo-
rithm. The input to our algorithm is formed by two epipolar
rectified images. Throughout this paper, we refer to regions
of homogeneous colour as segments. Layers are groups
of segments that can be approximated by the same planar
equation.

2.1. Colour segmentation and planar model

We assume that for regions of homogeneous colour the dis-
parity varies smoothly and depth discontinuities coincide
with the boundaries of those regions [4, 5, 6], which holds
true for most natural scenes. This assumption is incorpo-
rated by applying colour segmentation to the reference im-
age and by using a planar model to represent the disparity
inside the derived segments. It is generally safer to overseg-
ment the image to ensure that this assumption is met. For
segmentation we use the algorithm proposed in [7]. The
resulting colour segmentation for a well-known stereo pair
from the University of Tsukuba is shown in figure 1c.

We compute a sparse initial disparity map using a win-
dow-based method which exploits the results of the image
segmentation. We calculate the sum of absolute differences
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Fig. 1. Colour segmentation and initial disparity map. (a)
Left image. (b) Ground truth provided with image pair. (c)
Computed colour segmentation. (d) Computed initial dis-
parity map. Invalid points are coloured black.

(SAD) with a small (3×3) window. Cross validation is ap-
plied to filter out occluded points and areas of low texture,
where disparity estimates tend to be unreliable. Similar to
[6], we label those segments that have a density of valid
points > 50% as reliable. For reliable segments we reduce
the search scope based on the minimum and maximum dis-
parity of valid points inside the segment. The reduction of
the search scope helps to propagate good disparity inside
the segment. The process can optionally be repeated with
increasing window sizes, leaving the already found valid
points unchanged. Using larger windows performs better
in less-textured regions, but also intensifies the well-known
foreground fattening effect. Figure 1d shows the initial dis-
parity map calculated for the Tsukuba image using only
a 3×3 window. A robust version of the method of least
squared errors is then used to derive a plane equation for
each segment. The plane is thereby fitted to all valid points
of the initial disparity map inside the segment. The com-
puted planes will be used in the layer extraction step.

2.2. Layer extraction

One single surface of the real world will usually be divided
into several segments by applying colour segmentation.
However, for segments of the same surface the planar mod-
els should be very similar, as long as the surface can be well
approximated as a plane. Following this idea, we project
each segment into a 5-dimensional feature space, consisting
of 3 plane parameters and 2 spatial parameters representing
the center of gravity. Segments of the same surface should
then naturally build a cluster in this feature space. We use a
modified version of the mean-shift algorithm [8] for extract-
ing clusters. Members of the same cluster build a layer. For
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Fig. 2. The warping operation. (a) Segments and corre-
sponding depth in the reference view. (b) Segments warped
to the second view according to their depth planes.

deriving a layer’s plane equation we use the initial disparity
map. Robust plane fitting is applied to the valid points of all
segments belonging to the layer.

2.3. Layer assignment

In a hypothesis testing framework we assign each segment
to a layer. The optimality of the assignment is measured
by a global cost function. The basic idea behind the cost
function is that if we warp the reference image to the sec-
ond view according to the correct disparity map, the warped
image should be very similar to the real image from this
viewpoint. Translated to our cost function, we calculate the
colour dissimilarity between the warped and the real view
for all pixels visible in the warped image. The implemented
warping operation is illustrated in figure 2. Visibility is nat-
urally enforced using a Z-buffer that represents the second
view. If a Z-buffer cell contains more than one pixel, only
the pixel with the highest disparity is visible and the others
are occluded in the second view. Empty Z-buffer cells repre-
sent occlusions in the reference image. In our cost function
we have to penalize every detected occlusion, since other-
wise declaring all pixels as occluded would be a trivial op-
timum. The last term accounts for modelling smoothness
across segments. We introduce a discontinuity penalty that
is given if two neighbouring pixels (in 4-connectivity) are
assigned to different layers in the reference image. Sum-
marising the above, we define the cost function

C =
∑

p∈V

d(W (p), R(p)) + Noccλocc + Ndiscλdisc (1)

with V being the set of visible pixels, d(W (p), R(p)) be-
ing the dissimilarity function of the pixel p in the warped
image W (p) and in the real second view R(p), which is im-
plemented as the summed up absolute differences of RGB



Fig. 3. Hypothesis testing. The segment S1 has 5 neigh-
bouring segments assigned to the layers 1, 2 and 3 which we
call the neighbouring layers of S1. We avoid testing layer
1 on S1, since this is the current assignment. The layer hy-
potheses of layer 2 and 3 need to be checked. We point out
that although there may be a large number of neighbouring
segments, the layer neighbourhood is usually very small,
which is a major argument for the algorithm’s efficiency.

values, Nocc and Ndisc being the number of detected oc-
clusions and discontinuities and λocc and λdisc are constant
penalties for occlusion and discontinuity.

Unfortunately finding the layer assignment with mini-
mum value for C is np-complete. We therefore use a greedy
search strategy to find a local optimal solution. In the initial
solution we use the layer assignment derived in the clus-
tering step. We then hypothesize a segment’s depth from
a neighbouring layer. In hypothesis testing we replace the
segment’s current plane with the plane equation of the
neighbouring layer and evaluate the cost function. The main
idea is to propagate correct depth to untextured and oc-
cluded regions. For each segment we therefore test the plane
equations of all neighbouring layers as shown in figure 3,
keeping the other segments fixed. If there are layers which
generate smaller costs than the current solution, we record
the one giving the largest improvement. Otherwise we store
the current assignment. After all segments have been tested,
the segments are assigned to their corresponding recorded
layers simultaneously. The algorithm therefore propagates
depth independent of the order of applied operations. This
process is then iterated and terminates if there has not been
an improvement of the costs for a fixed number of iterations.
The generated solution with lowest costs is returned. Since
in hypothesis testing only a small portion of the warped im-
age is changed, we employ an incremental warping proce-
dure as suggested in [5], which also works for our cost func-
tion. Furthermore, we only need to test segments if their
neighbourhood has changed in the previous iteration.

2.4. Integration

Figure 4 shows the algorithmic integration of the previously
described steps. Layer extraction and assignment are itera-
tively applied. The algorithm terminates if the costs could
not be improved for a fixed number of iterations and returns
the solution which had the lowest costs.

two epipolar
rectified images

colour segmentation
of the reference image

calculate initial disparity map via
window-based method

create initial plane representation
via robust plane fitting

layer extraction

create plane models for extracted
layers via robust plane fitting

layer assignment

final disparity map

Fig. 4. Algorithmic outline.

3. EXPERIMENTAL RESULTS

We evaluated our algorithm using the test bed proposed by
the authors of [1], who compare the performance of 29 dif-
ferent stereo algorithms in the online version of their pa-
per. They provide 4 stereo pairs with corresponding ground
truth. For quantitative evaluation the percentage of unoc-
cluded pixels whose absolute disparity error is greater than
1 is used. We applied our algorithm to the test images and
submitted the results to the online version of the test bed. At
the time of writing this paper our algorithm was ranked as
having the second best overall performance among the al-
gorithms tabulated, which demonstrates the high quality of
the achieved matching results. The depth maps computed
for 3 evaluation pairs are presented in figures 5, 6 and 7.
For the computed disparity map in figure 5 the percentage
of obtained bad pixels in unoccluded regions is 1.53. For
the depth maps in figures 6 and 7 we derive 0.16 and 0.22
percent of wrong pixels. We further tested our algorithm
on self-recorded data. Figure 8 shows results for a scene
taken in our lab. Since we do not have the ground truth for
this image pair, we show a 3D reconstruction of the scene to
demonstrate the good quality of the obtained disparity map.

4. CONCLUSION

We proposed a new stereo algorithm that uses planar layers
to describe the scene. Layers are extracted by a mean-shift-
based clustering algorithm. The assignment of segments to
layers is made in a hypothesis testing framework. Hypothe-
ses are accepted if they improve the cost function which
penalizes occlusions in both views and discontinuities be-
tween segments. We demonstrated the performance of the
proposed algorithm on images taken from [1] and on self-
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Fig. 5. Results for the Tsukuba dataset. (a) Left image. (b)
Final layer assignment. (c) Computed disparity map.
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Fig. 6. Results for the Venus dataset. (a) Left image. (b)
Ground truth. (c) Computed disparity map.

recorded ones. A second rank obtained in the online evalu-
ation on the Middlebury Stereo Vision website confirms the
high quality of the achieved results.
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Fig. 7. Results for the Sawtooth dataset. (a) Left image. (b)
Ground truth. (c) Computed disparity map.
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Fig. 8. Results for the self-recorded lab scene. (a) Left im-
age. (b) Reconstructed view. (c) Computed disparity map.
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