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Abstract

Augmented Reality (AR) provides a natural interface to
the “calm” pervasive technology anticipated in large-scale
Ubiquitous Computing environments. However, the range
of classic AR applications has been limited by the scope,
range and cost of sensors used for tracking. Hybrid tracking
approaches can go some way to extending this range. We
propose an approach, called Ubiquitous Tracking, in which
data from widespread and diverse heterogeneous tracking
sensors is automatically and dynamically fused, and then
transparently provided to applications. A formal model
represents spatial relationships between objects as a graph
attributed with quality-of-service parameters. This paper
presents a software implementation, in which a dynamic
data flow network of distributed software components is
thereby constructed in response to queries and optimisation
criteria specified by applications. This implementation is
demonstrated using a small laboratory example, and larger
setups modelled in a simulation environment.

1 Introduction and Related Work

Augmented Reality (AR) has the potential to provide a natu-
ral interface to the “calm” pervasive technology anticipated
in large-scale Ubiquitous Computing [30] environments.
However, most AR applications have hitherto been con-
strained, by the working volumes of tracking technologies,
to static spaces of a few cubic metres, such as the Boeing
wire assembly [5] example. Systems aiming at mobility like
the Touring machine [7], Sentient AR [20], or Tinmith [22]
have relied on wide-area trackers, such as GPS, which pro-
vide modest levels of accuracy at low update rates. Fur-
thermore, they assume that sensors are deployed homoge-
neously throughout the area of interest, resulting in tedious

off-line calibration.
Significant work on sensor fusion has been done, in or-

der to improve tracking performance and extend operational
range, with pioneering work by Azuma [2] amongst others.
Höllerer, Hallaway et al. [9, 12] have shown the most com-
prehensive approach to integrating arbitrary sensors. How-
ever, heretofore no attempt has been made to automate this
integration process for distributed sensor networks.

Existing tracking middleware cannot dynamically adapt
to changes in sensor infrastructure. For example,
VRPN [25] implements a static network-transparent ab-
straction between applications and pre-defined trackers and
OpenTracker [23] implements a static “pipes & filters”
dataflow model for streams of sensor readings. In con-
trast, the initial Ubitrack software implementation is based
on middleware that allows mobile users to introduce their
own equipment into an AR-capable Ubicomp environment
at run-time.

We propose an approach, in which diverse and
widespread heterogeneous tracking sensors are automati-
cally discovered. The goal is then to obtain an optimal
estimate of arbitrary geometric relationships and their ac-
curacy at any time, in response to an application’s query
of environmental state for a given definition of optimality.
This estimate results from the spontaneous dynamic fusion
of appropriate sensors. We call this approachUbiquitous
Trackingor Ubitrack. Such a tracker abstraction can help
applications handle the varying levels of tracker uncertainty
that affects the registration of virtual objects when perceived
through a head-mounted display [4, 19].

Example Scenario A small example has been built to il-
lustrate the Ubitrack concepts and provide a suitable sce-
nario for testing implementations. A stationary tracker
combined with a mobile camera, delivering images to an
optical tracker, has an increased tracking range beyond that
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Figure 1. An ARToolkit marker tracked by a
mobile camera attached to an ART target. A
virtual sheep is projected onto the ARToolkit
marker relative to the ART coordinate system.

Figure 2. The example setup and its spatial
relationship graph.

of either sensor taken individually. Figure 1 shows a camera
tracked by an ART tracking system. Figure 2 shows both
a schematic of the hardware setup, and a graph describing
the corresponding spatial relationships. A ceiling-mounted
projectorP displays a pastoral landscape, populated by a
sheep, on a table. The projector is calibrated such that it
shares the same coordinate system as the ART trackerA;
therefore, a static relationship exists betweenP andA. A
mobile user is equipped with an ARToolkit [13] cameraC
on which an ART targetT is mounted, resulting in another
static relationship described by another edge in the graph.
The camera is attached to a user’s notebook with a wireless
network interface. The middleware is running on the lab
computers and on the notebook.

When the user enters the room, the two Ubitrack sys-
tems connect, and the description of an ARToolkit1 marker

1It is necessary to stress that the Ubitrack paradigm applies toall sen-
sors, not just ARToolkit or other fiducial-based trackers.

is transferred to the user’s notebook enabling the camera
to track it. As long as the marker remains in the view of
the camera, and the ART target attached to the camera is
tracked by the ART system, then the virtual sheep can still
be tracked in the coordinate frame of the ART system, even
if it is physically out of range. Consequently, when the
marker is moved the image of the sheep displayed by the
projector can be seen to move accordingly. If the sheep is
moved into a pen outside the range of the projector, it can
still be viewed using some other tracked or fixed display.

The combination of these two tracking technologies is
not novel in and of itself; however, this example focusses on
the inference of spatial relationships and the resultant spon-
taneous behaviour of the system as it reacts by combining
tracking sensors.

2 Formal Model

The goal of Ubiquitous Tracking is to provide, at any mo-
ment in time, an optimal estimate of the geometric relation-
ships between arbitrary objects. An overview of the formal
model is provided here, whilst further detail can be found in
previous work [21, 28].

Spatial Relationship Graph Spatial relationships can be
represented by a graph [3], in which objects are nodes,
and spatial relationships between objects are directed edges.
Each edge represents the spatial transformation between ob-
jects. A complete spatial relationship (SR) graph would rep-
resent environmental state in its entirety and could be used
to query relationships between two arbitrary objects.

We can only makeestimatesof geometric relationships
between real objects by takingmeasurements. Each mea-
surement is made at a discrete point in time, yielding a geo-
metric relationship that corresponds to the real relationship,
but is corrupted by noise. The quality of a measurement is
described using a set ofattributeswhich includes properties
such as latency, confidence values, or a standard deviation
in metres. Atracker is asensorthat takes measurements of
the spatial relationship between itself and other objects or
locatables. Thus, edges are added to the graph or attributes
updated in existing edges.

Example There are four objects of interest in the optical
shared tracking scenario [15] shown in figure 3, namely two
markers and two cameras. When viewed by an omniscient
observer, the real spatial relationships between these objects
are known at all times with perfect accuracy. A graph de-
picting this situation would be complete and all edges have
attributes determined solely by known spatial relationships.

CameraA detects markerB, whilst cameraD detects
markersB andC. The associated graph still has four nodes,



Figure 3. Example setup: Both cameras A and D detect fiducial marker B, but only camera D detects
marker C. However, the application is interested in marker C ’s geometric relation to camera A. On
the right, the graph containing all relevant inferred relations, as functions over time, is shown. Using
this inferred knowledge, we can compute the desired relation between the objects A and C.

but is far from being complete, having only three directed
edgesAB, DB and DC. Note that the attribute values
of these edges may differ significantly, as markerB may
be well illuminated and therefore detected reliably, while
markerC could be barely recognisable, leading to a low
confidence attribute associated with edgeDC.

Inference The goal is to obtain, at any point in time, an
estimate of the spatial relationship between cameraA and
markerC, i.e. the pose associated with edgeAC. We infer
knowledge from the measurements and every inference re-
sults in a new edge in the graph. In figure 3 it can be seen
that the pose ofAC can be calculated using those ofAB,
DB andDC. Note that two measurements can only be di-
rectly combined if they were made at exactly the same time.
A motion model and other knowledge is used to infer, new
edgesAB′, DB′ andDC ′ are created and their poses calcu-
lated over a continuous time domain, and their attributes de-
scribing the quality of these inferred relations are degraded
to reflect their poorer quality compared to those of the dis-
crete measurements. The next step is to infer the pose of
BD′ from DB′ by inverting the spatial relationship. If the
pose is represented using a4× 4 homogeneous matrix, the
matrix is just inverted. Additionally, an appropriate attribute
set for the edgeBD′ must be calculated, which may differ
significantly from that ofDB′. When pose is represented
by homogeneous matrices, the target geometric relationship
AC can be determined by multiplying the matrices from
edgesAB′, BD′ andDC ′. Similarly, the attribute set of
AC is obtained by propagating the attributes along the same
path.

Evaluation Function Besides describing the characteris-
tics of inferred geometric relationships, the main function
of relationship attributes lies in resolving multiple solutions
to a query. To this end, an evaluation function is defined

that maps attributes along a path in the graph corresponding
to a potential solution onto a real non-negative value. This
value serves as a distance metric and is used to discriminate
between alternative paths in the SR graph.

Error Model Each measurement describes a transforma-
tion from one coordinate system into another:

xnew = t + rxr∗

t denotes the translation component,r the rotation quater-
nion andr∗ its conjugated counterpart. All multiplications
are quaternion multiplications. Adding noise to both posi-
tion and orientation results in the following equation:

xnew = t + et + rerxe∗rr
∗

whereet = (etx , ety , etz )T is the positional error ander

is a quaternion representing a small rotation that can be ap-
proximated as:er ≈ (erx

, ery
, erz

, 1)
A 6× 6 covariance matrixC, associated with each mea-

surement, describes the joint normal distribution of posi-
tional and orientational errors:

(etx , ety , etz , erx , ery , erz )T ∼ N(0, C)

To infer arbitrary spatial relations in the spatial relation-
ship graph, multiple coordinate systems are concatenated,
while maintaining appropriate error statistics. The concate-
nation can thus be expressed:

xnew = tnew + etnew + rnewernewxe∗rnew
r∗new

where

tnew = t1 + r1t2r
∗
1

etnew = et1 + r1(er1(t2 + et2)e
∗
r1
− t2)r∗1

rnew = r1r2

ernew = r∗2er1r2er2



This formula expresses how the combined positional error
etnew depends not only onet1 andet2 , but also on the rota-
tional errorer1 and the positiont2.

In order to obtain a combined covariance matrixC, we
compute the JacobiansJ1 = ∂g/∂(et1 , er1)

T and J2 =
∂g/∂(et2 , er2)

T of g(et1 , er1 , et2 , er2) = (etnew, ernew)
T

evaluated at(et1 , er1 , et2 , er2)
T = 0 and apply the error

propagation law [14]:

C = J1C1J
T
1 + J2C2J

T
2

This approach is similar to that of Hoff [11]. It is possible
to apply this computation repeatedly for paths consisting of
more than two edges.

Application of Error Model As mentioned above, when
an application query could be resolved by multiple paths
through the SR graph, the one that best fulfills the appli-
cation’s request should be chosen. For this purpose, an
application-specifiedevaluation functionis evaluated for
each path and the path yielding the lowest value is returned.

In the current implementation, the covariance matrix for
each path is explicitly computed using an average of the
most recent measurements. The evaluation function then
takes the trace of the positional part of the matrix. Other
suitable evaluation functions exist, and we anticipate that
their specification and efficient implementation will be the
topic of future research.

The concepts of attributes and evaluation functions can
also be exploited by arbitrary filter schemes combining data
from multiple sensors. Each filter introduces new edges in
which tradeoffs (e.g. increased latency and improved accu-
racy) are reflected in new attribute sets.

Modelling Complex Behavior More complex sensor be-
haviour can also be incorporated. For example, inertial
trackers are treated as drifting orientation sensors. This drift
relationship is modelled as yet another edge between the in-
ertial tracker and world origin. Initially the extent of tracker
drift is unknown, but whenever an alternative path through
the graph from the inertial tracker to the world origin is de-
termined, such as when the bearer is detected by another
tracking system with an absolute reference frame, the drift
can be corrected. An error model determines how drift un-
certainty increases between corrections.

3 Implementation Concepts

An implementation of a Ubitrack system is proposed that
can efficiently provide applications with estimates of spatial
relationships in response to queries.

Data Flow Graphs At runtime, the Ubitrack framework
builds a data flow graph that is distinct from the spatial rela-
tionship (SR) graph. The SR graph is an abstract model of
the knowledge we have, or can infer, and is independent of
the specific Ubitrack implementation. In contrast, data flow
graphs are constructed at runtime by the Ubitrack imple-
mentation and combine tracker data, that is in constant flux,
such that spatial relationships requested by an application
can be delivered.

We have the key assumption that both the SR graph’s
topology and the attributes describing measurements’ and
inferences’ qualities change less frequently than the spatial
data. Thus, we can set up a static and efficient data flow
graph once a path search in the graph has been performed
and only occasionally have to double check the path’s opti-
mality.

Layered Architecture The Ubitrack architecture consists
of three layers that are independent of the underlying imple-
mentation.

Sensor Layer incorporates all hardware devices and soft-
ware components that deliver raw spatial data. A
genericSensor APIprovides an abstraction from the
specific hardware devices while providing sufficient
information to make full use of existing AR trackers.

Ubitrack Layer represents the formal model described
earlier: aggregating tracking data, inferring knowledge
of spatial relationships, and building runtime data flow
graphs from the abstract spatial relationship graph. A
Query API incorporating the desired spatial relation-
ship defined by a source and target object, and the
specification of the evaluation function is provided to
applications.

Application Layer contains components that need spatial
information, such as interaction controllers or displays.
By accessing the Ubitrack layer, applications are re-
lieved from details of sensor fusion or which trackers
to choose, as everything is handled transparently by the
Ubitrack layer.

3.1 Mapping onto DWARF

New users typically introduce their own equipment into the
Ubitrack environment, which should interact with the whole
AR environment without manual intervention. This equip-
ment usually consists of wearable computers running AR
applications, tracking devices and locatables. The integra-
tion of these components by the Ubitrack system should oc-
cur spontaneously, shielding the developer from the details
of specific tracking technologies. Hence, DWARF was cho-
sen to provide the middleware for dynamic integration of
distributed components.



DWARF Basics Every DWARF system consists of
network-transparent distributed components calledser-
vices. Each service hasabilities and needsstored inser-
vice descriptions. An ability describes the type of infor-
mation that can be delivered and which communication
protocol is used. Additionally, each ability can have ar-
bitrary attributes2 that describe characteristics of the data.
Needs can havepredicatesthat constrain the range of possi-
ble partners to those whose DWARF attributes have desired
values. DWARF services communicate via remote CORBA

method calls, and an event-based CORBA Notification Ser-
vice, among other protocols. On each host there is a sin-
gleservice managerthat collects and exchanges service de-
scriptions between network hosts. When a match is found
between a need and an ability, the desired communication
channel is established by the service manager and services
are started. This leads to an ad-hoc formation of chains of
interdependent services that contribute to the application as
a whole.

Mapping Ubitrack queries are issued by an AR appli-
cation, and modelled as DWARF needs, of typePoseData,
with DWARF attributes that specify the desired source and
target nodes within the SR graph. An evaluation function,
andconnectorsdescribing the desired communication pro-
tocol are also specified. Currently, an asynchronous push
mechanism based on CORBA events is used in our track-
ing scenarios; however, other interfaces for synchronous
and asynchronous pull mechanisms, as well as integration
with OpenTracker, are planned. A new distributed middle-
ware component, theUbitrack Middleware Agent(UMA)
described in section 3.2), searches the spatial relationship
graph for the source and target node. Both nodes and edges
of the SR graph are modelled as DWARF services.

• Nodes in the SR graph correspond to either active sen-
sors such as cameras, or passive locatables such as
markers and targets. Each object has a unique object
identifier and is represented byhardware servicesthat
store these identifiers together with additional config-
uration data in their service descriptions (e.g. camera
lense focal lengths or ARToolkit marker patterns).

• Edges in the SR graph are software components that
provide the actual spatial measurements. Thesetrack-
ing serviceshave abilities of type PoseData. The abil-
ity attributes contain the object identifiers of the source
and target node of the SR graph edge.

Merging SR graphs When a mobile client is connected
to a Ubitrack environment at the network level, the two

2these are distinct from spatial relationship edge attributes described
in section 2, although SR graph edge attributes are mapped onto ability
attributes

systems exchange a description of their respective hard-
ware services and reconfigure their tracking services ac-
cordingly [27]. The reconfigured mobile setup may now
track new objects and update its SR graph with the new
nodes. The edges connecting these new nodes correspond
to new measurements.

If both setups have common locatables with identical ob-
ject identifiers in their respective SR graphs, then the nodes
corresponding to these locatables can be merged resulting
in a single larger graph. This behaviour is demonstrated in
the example described in the next section.

If no hardware descriptions of locatables are available,
such as when performing markerless tracking, the mobile
system addsanonymous object nodesinto the SR graph.
The two graphs cannot be merged, as the object identifiers
are distinct. However, the mobile client can query its own
Ubitrack instance to obtain all objects which are at or near
the position of the anonymous one. If an object is found
the identifier is replaced and the graph updated accordingly.
This mechanism only works if the object has already been
included in the SR graph.

If no result is returned to a query, the Ubitrack frame-
work attempts to discover correlations between objects by
monitoring the motion behaviour of potential candidates.
By using an approach based on Lester et al. [16], veloc-
ity patterns of objects are compared. Objects that have dif-
ferent identifiers but nevertheless exhibit similar patterns of
movement, are likely to correspond to the same object. In-
termediate results from this approach are being evaluated.

3.2 Ubitrack Middleware Agent

TheUbitrack Middleware Agent(UMA) focusses on three
aspects of the Ubitrack concept:

• Aggregation of object information and their inter-
related measurements in order to build a distributed
representation of the spatial relationship graph.

• Distributed path search in the spatial relationship graph
depending on the properties specified in the applica-
tion query.

• Dataflow setup for providing requested spatial infor-
mation to an application.

SR Graph Modelling Each host in the network has a sin-
gle UMA which periodically updates the local spatial rela-
tionship subgraph. Nodes in the SR graph represent real or
virtual objects, and thus are associated with the computer
where information about them is stored. Edges in the SR
graph are associated with the abilities of local tracking ser-
vices to provide spatial relationships. Changes in the at-
tribute set of the measurements are updated periodically by



the tracking services, as changes to their abilities’ attributes,
and propagated to the local UMA.

An inference process determines appropriate inverse re-
lationships for specific edges, as inverse edges may have
significantly different attributes as explained in section 2.
This leads to a new set of inferred relationships, that result
in an undirected SR graph.

Scalability Most tracking events will be generated and
consumed by devices that are physically in close proximity
to one another, that is, in the samelocale. Thus, in general,
devices whose nodes are close together in the distributed SR
graph will also be logically close to one another at the net-
work level. Hence, network communication can be reduced
and spatial cues for integration of mobile and stationary
clients exploited. The full range of AR and Ubicomp appli-
cations can be facilitated by also supporting global queries.
For example a “God’s eye view” of the world in the form
of a map-browser would not require the high-performance
associated with a traditional AR application, but would in-
volve communication with every world object, or the enti-
ties responsible for them.

Path Search In order to execute a distributed path search,
edges between arbitrary objects stored by two different
UMAs require a direct connection between them in the
form of a bidirectional communication channel. Therefore
a UMA has an ability to provide an event channel for each
local object (tracker or locatable). When an edge is found
whose target object is not one of the local objects, a need
for an appropriate event channel emerges. Matching needs
and abilities are connected by the DWARF middleware.

The path search between the UMAs is implemented
using a distributed asynchronous Bellman-Ford algo-
rithm [18]. Each new search request specifies four quanti-
ties: a search identifier, the source node, the target node, and
an evaluation function that computes edge weights from at-
tribute sets. If the evaluation function is evaluated along the
path from the source node to another node, we obtain a cost
or distancevalue on which Bellman-Ford is based. When a
node is visited during a path search, the distance of this node
from the source node is updated. Each node must know the
distance of each of its neighbors’ minimum-cost path to the
source node. Hence, when a search computes a new mini-
mum distance between a node and a source node, the node’s
neighbours must be informed of this value. Therefore a par-
ticipation identifier is stored additionally for each distance
update that is sent out. When a search event is received by
the UMA, the distance associated with the current path is
compared with those from earlier participations. If the new
distance is less than that of the current candidate path, then
paths to all outgoing edges are computed and new search
events are sent to relevant UMAs. If the distance is greater

than that of the current or target node is found, an acknowl-
edgement event is sent back. Each time a UMA participates
in a path search, it must wait for acknowledgement events or
a timeout before sending back acknowledgement events to
the source. After all search messages, sent out by the UMAs
containing the source node, have been acknowledged, the
UMA chooses the path that best matches the requirements
specified in the application query using the evaluation func-
tion. The UMA then configures the data flow graph accord-
ingly by creating new DWARF inference services and let-
ting them connect them to the running tracking services, as
shown in figure 4.

In order to combine measurements along a path in the
spatial relationship graph, the UMA instantiates a data flow
graph that performs the actual computations. As the au-
thors have been working on both the DWARF andStudier-
stube[24] AR frameworks, two data flow graph architec-
tures were designed to fit on top of their respective frame-
works and enabling straightforward integration of Ubitrack
concepts into existing setups. Future work will include fur-
ther integration of these two approaches.

DWARF Data Flow Inference components are realised as
individual services each with a single ability for sending
combined measurements to applications, and an arbitrary
number of needs. The needs and abilities are automatically
set by the UMA in order to connect tracking services that
form the chosen path.

Thus far, there has been an implicit assumption that all
measurements occur simultaneously, which is rarely the
case in real systems. To solve this problem, inference com-
ponents perform interpolation and extrapolation to compute
valid estimates for specified moments in time. In order to
calculate position, a simple linear interpolator is used, while
orientation is calculated using the SLERP algorithm [6].
Extrapolation results in greater uncertainty in position and
orientation. In future implementations, we plan to include
Kalman filters with different motion models for each track-
ing device.

OpenTracker Data Flow The original OpenTracker li-
brary [23] implements the well known “pipes & filters”
dataflow pattern, in which pose data is modelled as a se-
quence of synchronous objects of the same time referential
that is then transported across a network of interlinked pro-
cessing filters. In order to support the dynamic dataflow re-
quirements of Ubitrack, we extended OpenTracker by spec-
ifying a runtime reconfiguration API. Every instance of an
OpenTracker network is governed by a UMA that issues ex-
plicit reconfiguration commands to create, delete or mod-
ify dataflow paths within the network. Results from spa-
tial relationship queries always yield the addressable in-
stance of participating sensors, which enables the UMA
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Figure 4. DWARF services structured in the three layer Ubitrack model.

to set up peer-to-peer communication channels between
OpenTracker contexts to acquire and cache remote mea-
surements. The process of inverting and interpolating mea-
surements is handled by a set of specialised filters that are
inserted into dataflow paths by the UMA as required.

Comparison between both data flow systems Open-
Tracker dataflow paths are periodically pre-computed, and
consist of peer-to-peer event streaming channels and a se-
quence of single-threaded processing functions. The details
of OpenTracker dataflow are explicity managed by a UMA,
whereas DWARF services implicitly establish CORBA com-
munication channels based on their needs and abilities. Due
to its underlying middleware, DWARF cannot adapt to en-
vironmental change as rapidly as OpenTracker, but behaves
more spontaneously requiring less intervention on the part
of UMA components during the dataflow reconfiguration
procedure.

4 Simulation Environment

Only a small number of people and trackers can feasibly
participate in repeatable large-scale experiments due to re-
source constraints. Consequently, we have developed a Ubi-
track simulator that makes it possible to test the contribu-
tion of specific tracking technologies in different configu-
rations before purchasing, deploying or extending a Ubi-

track environment. Furthermore, it is possible to exper-
iment with trackers that are currently unavailable such as
scarce, or nascent positioning technologies based on ultra-
sound [10] or ultra-wideband [26] (UWB) signals that de-
liver 3 DOF position estimates of potentially thousands of
objects throughout entire buildings. This base level of track-
ing coverage enables diverse Sentient Computing [1] appli-
cations as well as the introduction of many new artifacts
into the AR environment.

The simulator was designed such that distributed pro-
cesses modelling different sensors can connect to the simu-
lation engine and generate events. Figure 5 shows a screen-
shot from a GUI tool that can determine the paths and speed
of virtual people throughout a building using splines. Each
person is equipped with different sensors, trackers and lo-
catables. The interactions of these personal devices with
one another and the building infrastructure can be observed.

Active tracker regions are cross-hatched and coloured
according to whether locatables are detectable or not. Simi-
larly, fiducial markers attached to the walls and other locat-
ables can also change colour when detected. The envelopes
of static trackers are displayed as rectangles while camera
frustums are displayed as triangular regions. Figure 7 shows
a 3D visualisation, corresponding to the viewpoints of these
cameras, that can be used to send images to be analysed by
an ARToolkit instance to generate tracking events.



5 Results

The implementation of the example described in section 1
uses two computers: one stationary system running an ART-
Tracker service, and the other a mobile system running the
ARToolkit service. The ARTTracker service has an ability
measuring the relationship from the ART DTrack coordi-
nate system to the ARTMarker1 object. The video output
of this computer is connected to a projector, showing an
image on a table. An ARToolkit marker description service
provides the configuration necessary to detect the marker on
the table.

In addition to running the ARToolkit service, the mobile
system also stores information concerning the fixed geomet-
ric relationship between the ART target and the camera co-
ordinate frame. When the mobile computer enters the AR
lab, its ARToolkit tracker is reconfigured such that it can
create a new ability for the measurements between the cam-
era and the marker [27].

The UMA services on both the stationary and the mobile
systems query locally available abilities in order to build the
local spatial relationship subgraph. This information is then
exchanged to construct the final graph depicted in figure 2.

In order to render a virtual sheep onto the ARToolkit
marker, we start a 3D Viewer service on the stationary com-
puter, with a need for the relation between the ART tracker
and the Marker1 object. The local UMA triggers a dis-
tributed path search and finally instantiates a new inference
component that computes the combined measurements and
delivers them to the Viewer. The virtual sheep on the marker
is shown in figure 1.

Simulation Environment Figure 5 shows four individu-
als: Bonnie, Clyde, Jack and Jill. Bonnie, Clyde and Jill
all have cameras, and all four are depicted at a moment
when they are inside the active regions of fixed trackers.
Figure 6 shows the instantaneous SR graph, obtained from
the UMA, resulting from a query of the spatial relation-
ship of all four individuals with respect to the world ori-
gin “Root”. Figure 7 shows an image from the camera
worn by Bonnie. A closer study of the spatial relation-
ship graph in figure 6 shows that this camera “firefly4”
is being used to calculate orientation relative to the AR-
Toolkit marker “floor494”. Bonnie’s position is being de-
termined by the “HallwayUWBTracker” which is only a 3
DOF tracker. Note that, although each person has similar
equipment, different solutions have been inferred from their
respective contexts.

6 Future Work

We anticipate a genuine commercial demand for middle-
ware that can seamlessly integrate tracking hotspots, with

Figure 5. Simulation Environment

Figure 6. Spatial Relationship Graph

Figure 7. Image from camera worn by the
character, Bonnie, shown in Figure 5



personal sensors and wide-area trackers. The Ubitrack
framework can deliver the tracking quality of service where
a client actuallyneedsit, using the equipment the client can
afford. We are currently working with industrial partners
to investigate the deployment of the Ubitrack framework in
real settings such as interactive collaborative museum ex-
hibits, and airport security.

Sensors Currently, the bulk of sensors supported by Ubi-
track are limited to a handful of devices which all measure
position and/or orientation. However, there are many other
sensors that provide useful information concerning environ-
mental state.

To accomodate more general measurements, we will ex-
tend the Ubitrack formalism in two ways. First, we will re-
place the current state space model that can be represented
by a 4 × 4 homogeneous matrix by something more gen-
eral. Further research is required concerning which sets of
attributes can be used to describe measurements, e.g. by pa-
rameterising non-gaussian error models. We would then be
able to use other sensors commonly used in the Ubicomp
community. Accelerometers are very cheap, low power and
increasingly embedded in mobile devices. Cell-based track-
ers such as the Active Badge [29] commonly track to the
granularity of a single room and can be modelled as posi-
tion measurements whose error distributions are uniformly
spatially distributed throughout the room. Similarly, RFID
tags can indicate proximity of a tag worn by a user at a
given point in time. Range sensors can be based on many
quantities such as time-of-flight, time-of-arrival, or received
signal strength of ultrasonic, 802.11 or UMTS signals.

Computer Vision techniques can be used to determine
pose based on natural features in an uninstrumented envi-
ronment. Consequently, these trackers have the greatest po-
tential to affordably increase the quality and range of AR
environments. However, these trackers are currently very
brittle, as they will lose track when unable to detect any
suitable features (e.g. when looking at a monochrome wall).
By using the Ubitrack framework as a bootstrapping mech-
anism it should be possible to integrate these trackers such
that they can be reasonably deployed in real environments.

Environmental Constraints Given knowledge of the en-
vironment such as the locations of walls and other obsta-
cles, it is possible to create new inferences that exploit the
constraint that objects cannot generally pass through walls.
Hightower et al. [8] employ Bayesian filters, particle filters
and Voronoi graphs [17], while Ḧollerer et al. [12] use a
combination of spatial maps and accessibility graphs. These
techniques should be incorporated into the Ubitrack Layer
so that inferences can be made on the basis of environmen-
tal knowledge, not solely on measurements.

Autocalibration The process of deploying and maintain-
ing sensor infrastructure is very time-consuming, tedious
and expensive. For example, when a sensor is installed or
accidentally moved, the Ubitrack framework should use re-
dundant tracking information to check that the sensor is cal-
ibrated in a way that is consistent with its environmental
knowledge. This is similar to the treatment of inertial drift
in section 2. The calibration should then either be changed
automatically, or a technician alerted.

7 Conclusion

We have developed a formal model for Ubiquitous Track-
ing that allows us to construct graphs, from distributed in-
formation sources, of 6 DOF spatial relationships and their
attributes. We have tested an initial implementation, in
a small laboratory setup, combining two different optical
trackers. Hence, the fundamental feasibility of our approach
has been demonstrated. To test the scalability of this ap-
proach we have developed a simulation environment for
modelling building-scale AR scenarios.

Important future work includes the extension of the
model to accommodate other types of sensors, and deploy-
ment in large-scale environments.

The Ubitrack approach to integration of arbitrary track-
ing sensors promises greater user mobility in rich AR en-
vironments capable of scaling to building, campus or city
orders of magnitude. The dynamic nature of the middle-
ware allows adaption to changes in infrastructure and users’
devices, while optimally meeting varying quality-of-service
demands of diverse AR and Ubicomp applications.

Ubiquitous Tracking can make large-scale tracking fea-
sible, both technically and economically, thus greatly en-
hancing the utility of Augmented Reality.
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