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Abstract

Ul(htil recentlv fewv researchi has been performed in the
(orea of animal sounld retrieval. The authors identifP state-
O/-the-art techniques in gen1eral purpose sound recognition
h- a hr)ad scurvev of literatuire. Basecl on the findings, this
)oe/r gives thorough investigation of audio features and
claosifiers andci their applicabilitv in the cdomnain of animal
Sou/Ids. [I,e introduce a set ofnovel audcio descriptors and
conipare their qualityl to other popular features. The results
ore encouraging andndotivate further research in this do-
"ma{il) .

1. Introduction

Recently, audio data gained importance in the field of
contenit-based retrieval. The rising niumber of audio and
video databases states the need for efficient retrieval. The
qtualil! of retrieval depends oII the features tlhat represent
the signal. and on the classifiers tlhat discriminate betwveen
classes of signals. Animal sounds are a domain of emni-
ronmiiental sounds tlhat has niot been in7estigated yet in de-
tal Some investigations consider animal sounds among
olher classes of sound [7], [61. To the authors' knowledge
thlere is no prior work analyzing the discrinmination of an-
inal soulnds from each other. Our contribution to this re-
searclh field is represenited by a thorough investigation of
the applicabilitv of state-of-tle-art audio features in the do-
iimain of animiial sound recognition. Additionally, we intro-
duce a set of novel features and compare their performrance
witlh popular audio features. Besides. we presenit a survey
of state-of-tlhe-art features and classifiers.

In tliis paper the authors try to identify an efficient
imetlhod for automatically distinguishinig between sounds of
different animals. Such a teclhique could be part of a sup-
porting system for the deaf, providing information about
the surrouniding environment. Automatic surveillance and
annotation of time-dependent media may employ animal

sound recognition as well. Additionally, life logging appli-
cations could take advantage of such a technique. imagine a
visit to the zoo.

Audio data may be coarsely divided inlto three classes:
speech, music, and environmental sounds. Speech recog-
nition has a long tradition and is extensively surveyed by
Rabiner and Juang in [13]. Music analysis deals with the
identification of music genre. artist, instnmmenits and struc-
ture [5].

The remainder of this paper is organized as follows: Sec-
tion 2 addresses the methodology considered in our exper-
iments. Results are discussed in Section 3. A survev of
related work is performed in Section 4. Finally, in Section 5
coiiclusions and future work are presented.

2. Experiments

Distinction of animal sounds has not been irvestigated
yet. In this paper we examine ways to distinguish between
animal sounds. We choose four animals, namely birds, cats,
cows, and dogs. Sounds by birds and cats respectively bv
cows and dogs show significant sinilarity on a perceptual
level. That qualifies them to measure the quality of featLires
and classifiers.

There is no publicly available reference database of ani-
mal sounds. The autlhors built a custom database of sound
samples from an internet search. The database coiitains 383
samnples (99 birds, 110 cats. 90 cows, 84 dogs). The data
have a saimiple rate of 11025 Hz, are quantized to 16 bit
and are single channel. A sound sample contains one or
more repeated sounds of an animnal (e.g. repeated barks of a
dog). Additionally, some samiiples contain background noise
of other animals. File lengths and loudness levels van' over
the samples.

All experinments are conducted in MATLAB using an ex-
tensible framework. Our framework supports the definition
of experiment setups by configuration files. Configuration
files specify ground-truth test data, features, classifiers, a:nd
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resulll OLIptLIt optionls. This enables efficient and consistent
tests of various fcatures and classifiers.

2.1. Feature Extraction

The survey in this paper considers multiple state-of-the-
arl features applied in speech recognition. music analysis
alnd emnironmnental sound recognition. The goal is to iden-
ti f suitable features for the domain of anifmal sounids. The
atllhors examiine different types of features. Time domain
fe.atnires include Zero Crossing Rate (ZCR) anid Slhort Time
Encrgy (STE). The following spectral features are investi-
gakted: Linear Predictive Coding (LPC) coefficients, Rela-
tivle Spectral Predictive Linear Coding (RASTA PLP) [4],
Pitclh [15]1 Sone [12], Spectral Flux (SF) and coefficients
fromn basic time to frequency transfonns (FFT. DCT, DWT,
CWT and Constant Q-Transformi). Cepstral domain fea-
tures are Mel Frequency Cepstral Coefficients (MFCC) and
Bairk Frequency Cepstral Coefficients (BFCC). Addition-
allv. we introduce a set of novel time-based features that
describe characteristics of the wavefonr of the signal. We
call tlhem Length of High Aiiplitude Sequence (LoHAS),
Lenigtlh of Low Amplitude Sequence (LoLAS) and Area of
High.Amplitude (AHA).

In the following w;e describe features that perfonred best
lfor our data set. Linear predictiv e coding (LPC) represents a
siglnal processing teelmiqute applied in signal compression,
sl)eecl synthesis and speech recogniition [17]. The goal of
LPC is to extract fonnants from a speech signal. Fonnants
deseribe the vocal tract (mouth. throat) of a speaker by its
resonanices. The fonnants are extracted by a linear predic-
tor. The linear predictor tries to express the value of a sani-
ple by a linear combination of values of previous samples.
LPC estiiiates coefficients using linear prediction, that mmiin-
iimize the mean square error (MSE) between the original
signal and the predicted signal. The coefficienits of the lin-
ear predictor represenit the fonnants of a speech signal. LPC
coefficients are employed in speech recognition to distin-
gutish between phoneiiies. It is beyond the authors' knowl-
edge that LPC coefficients have been introduced to erniron-
niental sound recogniition. In this paper LPC features are
successfully. applied to animal sounids (see Section 3).

Cepstral Coefficients (CCs) are a popular feature in au-
clio retrieval [ 101. [2 1]. The authors of [18] define the cep-
strum as the Fourier Tranisform (FT) of the logarithm (log)
of the spectrum of the original signal.

.tig(al FT.P' - log - FT - cq)strom

In p,ractice. CCs are derived from the FFT or DCT coeffi-
cients or liniear predictive analysis [2]. CCs offer a compact
and accurate high order representation of signals. Peaks in
hlie cepstnln correspond to hannoniics in the power spec-
mI'ill.

Computation of MFCCs includes a conwersion of the
logarithnmized Fourier coefficients to Mel scale. After con-
version. the obtained vectors have to be decorrelated to re-
move redundant information. A DCT is applied to receive a
decorrelated,. more compact representation. MFCCs are an
instmance of CCs. In the following sequence the computation
of MFCCs is illustrated.

sig,n.al -- FT - l Ale-l - DCOT ! MIFC'(-Ds

A closely related group of features is BFCCs. BFCCs are
siimiilarly computed as MFCCs. They differ in the applied
scale (Bark scale).

signal -- FT ! log - Bark - DCT - BFCC:s

Bark scale and Mel scale are perceptually motivated acous-
tical scales that nonilinearlv map the signal frequencv. Both
nonlinear scales offer higher resolution for low frequencies
than for high frequencies. MFCCs and BFCCs are expected
to perform similarly.

Additionally to the features above, we introduce a set of
time-based low-level features. The features describe char-
acteristics of the waveform such as high and low amplitude.
The features are computed based on an adaptive threshold.
The tlreshold for a particular sound samnple is the sum of
mean and standard deviation of the absolute sample values.
This threshold separates segments with hiigh energy from
segments with low engerv. Based on this threshold we com-
pute the length of high amnplitude sequences (LoHAS). The
length of a high amplitude sequence represents the number
of consecutive samples that have a value greater or equal
to the threslhold. LoHAS represents the distribution of the
lengths of high energy segments in the signal. Figure 1(a)
illustrates this feature. Analogously, we define the length of
a low amplitude sequence (LoLAS) as the number of con-
secutive samples that have a lower value thai the threslhold.
LoLAS describes the distribution of lengtlhs of low energy
segmnents in the signal. Details are depicted in Figure 1(b).
Sequences with high amplitude can be further characterized
by the corresponding area below the waveform. We com-
pute the area of high amiplitudes (AHA) as area between the
threslhold and the signal in a higlh amplitude sequence. In
other words the AHA feature represents the extent of high
energy segments in the signal. Figure 1(c) illustrates tllis
concept.

The autlhors consider statistical properties of LoHAS.
LoLAS. and AHA to btuild features that describe enitire sam-
ple files. The final features comprise mean, standard de-
viation and median of LoHAS and LoLAS over the entire
signal. Additionally, we extract the mean of AHA. This re-
sults in a seven-dimensional feature vector whlich is used for
classification.
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3. Results
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Figure 1. LoHAS, LoLAS and AHA for signal
s(n) with threshold t(s(n)): (a) Length of High
Amplitude Sequence (LoHAS). (b) Length of
Low Amplitude Sequence (LoLAS). (c) Area
of High Amplitude (AHA).

2.2. Classification

This section offers a brief discussion of the classifica-
tion metlhods and the parameters used. We emnploy three
supenrised classifiers: SVM is a sophisticated kemel based
ifiachinle learning teclhique introduced by Vapnik in [191.
The SVM is applied with a linear kemel and an RBF ker-
nel. Furthennore. we apply the MATLAB impl,mentation
of Linear Vector Quantization (LVQ) by Kohonen [9]. LVQ
is a classification metlhod closely related to Self Organizing
Maps (SOMs) [8]. The third classifier is Nearest Neigh-
bor (NN) with Euclidean distance measure. NN is consid-
ered to indicate the quality of the features. Features that
discriminate classes well, provide disjoint partitions of the
feat-Lre space. Satisfactory results with the NN algorithmn
imply such a partitioniing in the feature space.

In this section we present the results of our experiments.
The sample database is split iilto a test set and a training
set. The training set comprises 12 sanples per class. The
remaining samples foni the test set: 87 bird samples. 98 cat
samples. 78 cow samples. and 72 dog samples.

Multiple featurcs perfonned poorly for our tcst data.
The first few transform coefficients of FFT. DCT. DWT.
CWT and Q-Transfonn insufficiently discriminate the an-
imal sounds. The selected coefficients do not express the
high frequencies well. In the case of animnal sounds. high
frequencies contain significant infonnation (e.g. for cats
and birds). Perfornance of low-dimensional features. such
as ZCR. SF. and Pitch is below that of high-dimensional fea-
tures. Low-dimensional features usually are not able to suf-
ficiently represent the samples. In combination with other
features ZCR. SF. and Pitch may improve results. STE is
only useful in classification based on frames. When STE is
computed for entire files, it represents the average energy
of the sound sample, which does not provide meaningful
information in our case.

In the following we consider the best performiing features
in detail, which are LPC, MFCC, BFCC. and the Amplitude
Descriptor (AD). The AD consists of LoHAS (mean. stan-
dard deviation, median). LoLAS (mean. stanidard deviation.
median), and AHA (mean).
LPC coefficients may be represented in many different

ways [2]. For the data set used, the representation as im-
pulse response is the best choice. 20 LPC coefficients are
extracted from each sound sample. We consider the first
20 MFCCs and BFCCs [2]. [4]. Delta and Double Delta
Cepstrum features perform poorly and are not considered.
At first the selected features are tested in isolation. After-
wards we try to identify an optimal solution to the recogni-
tion problem by combining features.

For each feature we compute recall and precision per
class. Calculations of recall and precision depend on the
number of retrieved documents for a given query. In our
case recall and precision are computed for the complete test
set. Table 1 shows mean recall and mean precision over
all classes for selected features. More detailed results are
presented in [22].
MFCCs and BFCCs perfonn nearly identically. This is

due to the fact that both are cepstral domain features that
only differ in the psycho-acoustical scaling. MFCCs deliver
the best results using the NN classifier (recall=0.81). That
indicates that MFCCs cluster in feature space according to
the classes. The SVM with a linear kemel yields similar
results for MFCCs and BFCCs. LVQ provides slightly less
performance for these features.
LPC coefficients discriminate the classes well. Best re-

sults are gained by the SVM with an RBF kemel shown in
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Table 1. The NN classifier suboptiiinally explains the data.
The distribution of the LPC coefficienits appears to be too
comiiplex for the simple NN decision nile. LVQ demon-
strates similar perfonrance as NN for LPC.

SVM K-NN LVQ
R P R P R P

MFCC 0.79 0.81 0.81 0.83 0.77 0.77
BFCC 0.80 0.81 0.82 - 0.82 0.77 0.78
LPC 0.80 0.82 0.72 0.71 0.73 0.73
AD 0.79 0.79 0.75 0.75 0.71 0.74
('onibin. 0.90 0.9 1 0.85 .86 0.83 0.84

Table 1. Recall (R) and precision (P) values
for selected features and classifiers. The last
row summarizes the results of the combined
feature.

In conitrast to MFCC. BFCC. and LPC. AD is a time-
baised feature. Classification with the SVM and a linear
kerniel yields a recall and a precision of 0.79. This is compa-
rable to the otlher features. For the NN classifier recall and
precision of AD lie between those of LPC and MFCC. The
rcsults of AD aind LPC are similar using the LVQ classifier.
AD perfonrs comparably to the more complex spectral fea-
tulres miienitionied above.

The features in our tests aclhieve satisfactory recall and
precision witlh all classifiers (between 0.7 and 0.8). The
classifiers do not perforn equally well. The SVM is able to
iaintainhliglher precision and recall values than LVQ and
NN for the selected features.

Up to now we concentrated on individual features. In
order to imiiprove retnreval quality, we combine several fea-
tUres inlto onie featuire vector. This makes sense because
thle combinationl aggregates infonration present in separate
features. The featire vector comprises 26 components: 3
componenits (mean. standard deviation, median) ofLoHAS
respectiVely LoLAS. 4 LPC coefficients. 13 MFCCs. the
mean SF. the imean Pitclh, the first RASTA PLP coefficient
and the mean of Sonie. Classification based on this feature
X ectorvields an average precision and recall above 0.9 usinig
the SVM with a linear kernel. This is a significant improve-
mieCnlt over results witlh the individual features. LVQ and NN
profit from the combined feature vector as well. Table I lists
recall anid precision values of the combined feature vector
for different classifiers.

4. Related Work

Environmental sound recognition concerns the identi-
fication of sounds that do not originate from speech or
ImluSic. The range of environmnental sounds is extremely

wide. Hence. most investigations concentrate on a re-
stricted domain. Pioneering work in ervironmuental sound
recognition is performed in [20]. The authors develop a
colntent-based audio retrieval system (Muscle Fish) that dis-
tinguislhes classes, such as animals. machines. musical in-
struments, telephonie. etc. Tlhey extract features such as
loudness, pitch, brightness and bandwidth. Similarity is
measured using a weighted Euclidean distance.

A popular research field is audio recognition in broad-
casted video. In [II] the authlors recognize the scenie con-
tent of TV programs (e.g. weather reports. advertisement.
basketball and football games) by analyzing the audio track
of the video. They extract Pitch, Volume Distribution. Fre-
quency Centroid and Bandwidth to characterize TV pro-
grams. Classification is performed by neural networks. The
authors of [16] retrieve crucial scenes in soccer games by
analyzing play-breaks. Whistles, that often refer to play-
breaks in sports. are detected using Spectral Energy within
an appropriate frequency band. Anotlher indicator for hligh-
lights is the audience. Excitement is quantified bv Loud-
ness, Silence and Pitch. A simiilar approach is followed
in [21]. The authors analyze keywords in commentator
speech and audience which are relevant to importanit actions
of the gamie. They apply a Hidden Markov Model trained
with low level features (Energyv, and MFCCs including delta
and double delta features) to recognize the keywords. Im!es-
tigations presented in [14] address extraction of higlhliglhts
in baseball games. Beside visual features, the authors ex-
tract audio features (e.g. MFCC. Pitch. Entropy). An SVM
detects excitement of the audience. Template matching is
applied for baseball hit detection. These two audio cues are
combined to improve quality of hiighlight detection. An-
other area of interest is surveillance and intnider detection.
A broad survey of audio features and classification tech-
niques. in context of automatic surveillance is givenl in [3].

In [23] multilevel classification is proposed. First the au-
thors apply a coarse level segmentation to separate speech.
music and environinental sotmd. In a second step anl HMM
is considered to analyze enwirounmelntal sounds (e.g. foot-
step, laughter, rain. windstonn). The authors of [7] present
an audio indexing system using MPEG-7 features. They
apply Audio Spectrum Basis (ASB) and Audio Spectrum
Projection (ASP) descriptors to distinguish classes such as
"Dog". "'Bell"'. "'Water"'. and "'Baby" with HMMs. They
show that MPEG-7 descriptors perform similarly to MFCC.
SVMs are applied successfully to environmental sound
recognition in [6].

A challenging area of retrieval is life logging [1]. Tlis
research field is concerned with continuously analyzing the
emniromnental soulnds surrotunding a human user. From this
information a diarv is built where major events and the
user's activities are stored.
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5. Conclusions & Future Work

Discrimiination of aniimlial sounds is a rarely considered
area of envirornmental sound recognition. In this paper we
presented a surey of widely used audio features and clas-
sifiers. Our research focus was the inwestigation of their
applicability in the domain of animal sound recognition.
We initroduced a set of novel time-based audio featuLres that
are ecasy to compute. Despite their simplicity, they perfonn
comniparably to muclh more complex features, such as MFCC
or LPC. We have shown that a comlbination of state-of-the-
art features with our feature set is able to successfully clas-
sift- more than 90% of the animal sounds in our database
(using SVM). Beside SVM. we employed NN and LVQ
classifiers in outr experiments. All classifiers yielded sat-
isfactorv. results. The SVM slightly outperfonrs NN and
LVQ.

FuLture w!ork will include comparison of the features dis-
cuLssed in tlhis paper with MPEG-7 features for environmen-
tal soutnd recognition. Additionally. we will ex-armine con-
text sensitive classifiers such as Hidden Markov Models and
Artificial Neural Networks. Animial sotnd recognition will
be incorporated inlto life logging applications. A fiture goal
is the distinction of different sounids from the same species
understanding aniimals').
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