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Abstract

Until recently few research has been performed in the
area of animal sound retrieval. The authors identifv state-
of-the-art techniques in general purpose sound recognition
by a broad survey of literature. Based on the findings, this
paper gives a thorough investigation of audio features and
classifiers and their applicability in the domain of animal

sounds. We introduce a set of novel audio descriptors and

compare their qualitv to other popular features. The results
are encouraging and motivate further research in this do-
main.

1. Introduction

Recently. audio data gained importance in the field of
content-based retrieval. The rising number of audio and
video databases states the need for efficient retrieval. The
quality of retrieval depends on the features that represent
the signal. and on the classifiers that discriminate between
classes of signals. Animal sounds are a domain of envi-
ronmental sounds that has not been investigated yet in de-
tail. Some investigations consider animal sounds among
other classes of sound [7]. [6]. To the authors’ knowledge
there is no prior work analyzing the discrimination of an-
imal sounds from each other. Our contribution to this re-
search field is represented by a thorough investigation of
the applicability of state-of-the-art audio features in the do-
main of animal sound recognition. Additionally, we intro-
duce a set of novel features and compare their performance
with popular audio features. Besides. we present a survey
of state-of-the-art features and classifiers.

In this paper the authors try to identify an efficient
method for automatically distinguishing between sounds of
different animals. Such a technique could be part of a sup-
porting system for the deaf. providing information about
the surrounding environment. Automatic surveillance and
annotation of time-dependent media may employ animal
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sound recognition as well. Additionally, life logging appli-
cations could take advantage of such a technique. imagine a
visit to the zoo.

Audio data may be coarsely divided into three classes:
speech, music. and environmental sounds. Speech recog-
nition has a long tradition and is extensively surveyed by
Rabiner and Juang in [13]. Music analysis deals with the
identification of music genre, artist. instruments and struc-
ture [5].

The remainder of this paper is organized as follows: Sec-
tion 2 addresses the methodology considered in our exper-
iments. Results are discussed in Section 3. A survey of
related work is performed in Section 4. Finally. in Section 3
conclusions and future work are presented.

2. Experiments

Distinction of animal sounds has not been investigated
vet. In this paper we examine ways to distinguish between
animal sounds. We choose four animals, namely birds. cats,
cows, and dogs. Sounds by birds and cats respectively by
cows and dogs show significant similarity on a perceptual
level. That qualifies them to measure the quality of features
and classifiers. ,

There is no publicly available reference database of ani-
mal sounds. The authors built a custom database of sound
samples from an internet search. The database contains 383
samples (99 birds, 110 cats, 90 cows. 84 dogs). The data
have a sample rate of 11025 Hz. are quantized to 16 bit
and are single channel. A sound sample contains one or
more repeated sounds of an animal (e.g. repeated barks of a
dog). Additionally, some samples contain background noise
of other animals. File lengths and loudness levels vary over
the samples.

All experiments are conducted in MATLAB using an ex-
tensible framework. Our framework supports the definition
of experiment setups by configuration files. Configuration
files specify ground-truth. test data. features. classifiers. and



result output options. This enables efficient and consistent
tests of various features and classifiers.

2.1. Feature Extraction

The survey in this paper considers multiple state-of-the-
art features applied in speech recognition. music analysis
and environmental sound recognition. The goal is to iden-
tifv suitable features for the domain of animal sounds. The
authors examine different types of features. Time domain
features include Zero Crossing Rate (ZCR) and Short Time
Encrgy (STE). The following spectral features are investi-
gated: Linear Predictive Coding (LPC) coefficients, Rela-
tive Spectral Predictive Linear Coding (RASTA PLP) [4],
Pitch [15]. Sone [12], Spectral Flux (SF) and coefficients
from basic time to frequency transforms (FFT, DCT, DWT,
CWT and Constant Q-Transform). Cepstral domain fea-
tures are Mel Frequency Cepstral Coefficients (MFCC) and
Bark Frequency Cepstral Coefficients (BFCC). Addition-
ally. we introduce a set of novel time-based features that
describe characteristics of the waveform of the signal. We
call them Length of High Amplitude Sequence (LoHAS).
Length of Low Amplitude Sequence (LoLAS) and Area of
High Amplitude (AHA).

In the following we describe features that performed best
for our data set. Linear predictive coding (LPC) represents a
signal processing technique applied in signal compression,
speech synthesis and speech recognition [17]. The goal of
LPC is to extract formants from a speech signal. Formants
describe the vocal tract (mouth. throat) of a speaker by its
resonances. The formants are extracted by a linear predic-
tor. The linear predictor tries to express the value of a sam-
ple by a linear combination of values of previous samples.
LPC estimates coefficients using linear prediction, that min-
imize the mean square error (MSE) between the original
signal and the predicted signal. The coefficients of the lin-
car predictor represent the formants of a speech signal. LPC
cocfficients are employed in speech recognition to distin-
guish between phonemes. It is beyond the authors’ knowl-
cdge that LPC coefficients have been introduced to environ-
mental sound recognition. In this paper LPC features are
successfully applied to animal sounds (see Section 3).

Cepstral Coefficients (CCs) are a popular feature in au-
dio retrieval [10]. [21]. The authors of [18] define the cep-
strum as the Fourier Transform (FT) of the logarithm (log)
of the spectrum of the original signal.

signal — FT — log — FT — cepstrum

In practice. CCs are derived from the FFT or DCT coeffi-
cients or linear predictive analysis [2]. CCs offer a compact
and accurate high order representation of signals. Peaks in
the cepstrum correspond to harmonics in the power spec-
lruin.
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Computation of MFCCs includes a conversion of the
logarithmized Fourier coefficients to Mel scale. After con-
version, the obtained vectors have to be decorrelated to re-
move redundant information. A DCT is applied to receive a
decorrelated, more compact representation. MFCCs are an
instance of CCs. In the following sequence the computation
of MFCCs is illustrated.

signal — FT — log — Mel — DCT — MECCs

A closely related group of features is BFCCs. BFCCs are
similarly computed as MFCCs. They differ in the applied
scale (Bark scale).

signal — FT — log — Bark — DCT — BFCCs

Bark scale and Mel scale are perceptually motivated acous-
tical scales that nonlinearly map the signal frequency. Both
nonlinear scales offer higher resolution for low frequencies
than for high frequencies. MFCCs and BFCCs are expected
to perform similarly.

Additionally to the features above. we introduce a set of
time-based low-level features. The features describe char-
acteristics of the waveform such as high and low amplitude.
The features are computed based on an adaptive threshold.
The threshold for a particular sound sample is the sum of
mean and standard deviation of the absolute sample values.
This threshold separates segments with high energy from
segments with low engery. Based on this threshold we com-
pute the length of high amplitude sequences (LoHAS). The
length of a high amplitude sequence represents the number
of consecutive samples that have a value greater or equal
to the threshold. LoHAS represents the distribution of the
lengths of high energy segments in the signal. Figure 1(a)
illustrates this feature. Analogously. we define the length of
a low amplitude sequence (LoLAS) as the number of con-
secutive samples that have a lower value than the threshold.
LoLAS describes the distribution of lengths of low energy
segments in the signal. Details are depicted in Figure 1(b).
Sequences with high amplitude can be further characterized
by the corresponding area below the waveform. We com-
pute the area of high amplitudes (AHA) as arca between the
threshold and the signal in a high amplitude sequence. In
other words the AHA feature represents the extent of high
energy segments in the signal. Figure 1(c) illustrates this
concept.

The authors consider statistical properties of LoHAS.
LoLAS. and AHA to build features that describe entire sam-
ple files. The final features comprise mean, standard de-
viation and median of LoHAS and LoLAS over the entire
signal. Additionally. we extract the mean of AHA. This re-
sults in a seven-dimensional feature vector which is used for
classification.
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Figure 1. LoHAS, LoLAS and AHA for signal
s(n) with threshold t(s(n)): (a) Length of High
Amplitude Sequence (LoHAS). (b) Length of
Low Amplitude Sequence (LoLAS). (c) Area
of High Amplitude (AHA).

2.2. Classification

This section offers a brief discussion of the classifica-
tion methods and the parameters used. We employ three
supervised classifiers: SVM is a sophisticated kernel based
machine learning technique introduced by Vapnik in [19].
The SVM is applied with a lincar kernel and an RBF ker-
nel. Furthermore. we apply the MATLAB implementation
of Linear Vector Quantization (LVQ) by Kohonen [9]. LVQ
is a classification method closely related to Self Organizing
Maps (SOMs) [8]. The third classifier is Nearest Neigh-
bor (NN) with Euclidean distance measure. NN is consid-
cred to indicate the quality of the features. Features that
discriminate classes well. provide disjoint partitions of the
feature space. Satisfactory results with the NN algorithm
imply such a partitioning in the feature space.
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3. Results

In this section we present the results of our experiments.
The sample database is split into a test set and a training
set. The training set comprises 12 samples per class. The
remaining samples form the test set: 87 bird samples. 98 cat
samples. 78 cow samples. and 72 dog samples.

Multiple featurcs performed poorly for our test data.
The first few transform coefficients of FFT. DCT. DWT.
CWT and Q-Transform insufficiently discriminate the an-
imal sounds. The selected coefficients do not express the
high frequencies well. In the case of animal sounds. high
frequencies contain significant information (e.g. for cats
and birds). Performance of low-dimensional features. such
as ZCR. SF. and Pitch is below that of high-dimensional fea-
tures. Low-dimensional features usually are not able to suf-
ficiently represent the samples. In combination with other
features ZCR. SF. and Pitch may improve results. STE is
only useful in classification based on frames. When STE is
computed for entire files, it represents the average energy
of the sound sample, which does not provide meaningful
information in our case.

In the following we consider the best performing features
in detail. which are LPC, MFCC. BFCC. and the Amplitude
Descriptor (AD). The AD consists of LoHAS (mean. stan-
dard deviation. median). LoLAS (mean. standard deviation.
median). and AHA (mean).

LPC coefficients may be represented in many different
ways [2]. For the data set used. the representation as im-
pulse response is the best choice. 20 LPC coefficients are
extracted from each sound sample. We consider the first
20 MFCCs and BFCCs [2]. [4]. Delta and Double Delta
Cepstrum features perform poorly and are not considered.
At first the selected features are tested in isolation. After-
wards we try to identify an optimal solution to the recogni-
tion problem by combining features.

For each feature we compute recall and precision per
class. Calculations of recall and precision depend on the
number of retrieved documents for a given query. In our
case recall and precision are computed for the complete test
set. Table 1 shows mean recall and mean precision over
all classes for selected features. More detailed results are
presented in [22].

MFCCs and BFCCs perform nearly identically. This is
due to the fact that both are cepstral domain features that
only differ in the psycho-acoustical scaling. MFCCs deliver
the best results using the NN classifier (recall=0.81). That
indicates that MFCCs cluster in feature space according to
the classes. The SVM with a linear kernel yields similar
results for MFCCs and BFCCs. LVQ provides slightly less
performance for these features.

LPC coefficients discriminate the classes well. Best re-
sults are gained by the SVM with an RBF kernel shown in



Table 1. The NN classifier suboptimally explains the data.
The distribution of the LPC coefficients appears to be too
complex for the simple NN decision rule. LVQ demon-
strates similar performance as NN for LPC.

SVM K-NN LVQ
R|P|R|P|R]|P

MFCC | 079 | 081 | 081 | 083 | 0.77 | 0.77

BFCC | 0.80 | 081 | 082 | 0.82 | 0.77 | 0.78

LPC 080 ]082]072]071]073]073

AD 079079075 ] 075|071 0.74

Combin. | 0.90 | 0.91 | 0.55 | 0.86 | 0.83 | 0.54

Table 1. Recall (R) and precision (P) values
for selected features and classifiers. The last
row summarizes the results of the combined
feature.

In contrast to MFCC. BFCC. and LPC, AD is a time-
based feature. Classification with the SVM and a linear
kernel vields a recall and a precision of 0.79. This is compa-
rable to the other features. For the NN classifier recall and
precision of AD lie between those of LPC and MFCC. The
results of AD and LPC are similar using the LVQ classifier.
AD performs comparably to the more complex spectral fea-
tures mentioned above.

The features in our tests achieve satisfactory recall and
precision with all classifiers (between 0.7 and 0.8). The
classifiers do not perform equally well. The SVM is able to
maintain higher precision and recall values than LVQ and
NN for the selected features.

Up to now we concentrated on individual features. In
order (o improve retrieval quality, we combine several fea-
tures into one feature vector. This makes sense because
the combination aggregates information present in separate
features. The feature vector comprises 26 components: 3
components (mean. standard deviation, median) of LoHAS
respectively LoLAS. 4 LPC coefficients, 13 MFCCs. the
mean SF. the mean Pitch. the first RASTA PLP coefficient
and the mean of Sone. Classification based on this feature
vectoryields an average precision and recall above 0.9 using
the SVM with a linear kernel. This is a significant improve-
ment over results with the individual features. LVQ and NN
profit from the combined feature vector as well. Table 1 lists
recall and precision values of the combined feature vector
for different classifiers.

4. Related Work

Environmental sound recognition concerns the identi-
fication of sounds that do not originate from speech or
music. The range of environmental sounds is extremely
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wide. Hence, most investigations concentrate on a re-
stricted domain. Pioneering work in environmental sound
recognition is performed in [20]. The authors develop a
content-based audio retrieval system (Muscle Fish) that dis-
tinguishes classes. such as animals. machines, musical in-
struments, telephone. etc. They extract features such as
loudness, pitch, brightness and bandwidth. Similarity is
measured using a weighted Euclidean distance.

A popular research field is audio recognition in broad-
casted video. In [11] the authors recognize the scene con-
tent of TV programs (e.g. weather reports. advertisement.
basketball and football games) by analyzing the audio track
of the video. They extract Pitch, Volume Distribution, Fre-
quency Centroid and Bandwidth to characterize TV pro-
grams. Classification is performed by neural networks. The
authors of [16] retrieve crucial scenes in soccer games by
analyzing play-breaks. Whistles. that often refer to play-
breaks in sports. are detected using Spectral Energy within
an appropriate frequency band. Another indicator for high-
lights is the audience. Excitement is quantified by Loud-
ness, Silence and Pitch. A similar approach is followed
in [21]. The authors analyze keywords in commentator
speech and audience which are relevant to important actions
of the game. They apply a Hidden Markov Model trained
with low level features (Energy and MFCCs including delta
and double delta features) to recognize the keywords. Inves-
tigations presented in [14] address extraction of highlights
in baseball games. Beside visual features. the authors ex-
tract audio features (e.g. MFCC, Pitch. Entropy). An SVM
detects excitement of the audience. Template matching is
applied for baseball hit detection. These two audio cues are
combined to improve quality of highlight detection. An-
other area of interest is surveillance and intruder detection.
A broad survey of audio features and classification tech-
niques. in context of automatic surveillance is given in [3].

In [23] multilevel classification is proposed. First the au-
thors apply a coarse level segmentation to separate speech.
music and environmental sound. In a second step an HMM
is considered to analyze environmental sounds (e.g. foot-
step, laughter, rain. windstorm). The authors of [7] present
an audio indexing system using MPEG-7 features. They
apply Audio Spectrum Basis (ASB) and Audio Spectrum
Projection (ASP) descriptors to distinguish classes such as
“Dog”. "Bell”, "Water”. and "Baby” with HMMs. They
show that MPEG-7 descriptors perform similarly to MFCC.
SVMs are applied successfully to environmental sound
recognition in [6].

A challenging area of retrieval is life logging [1]. This
research field is concerned with continuously analyzing the
environmental sounds surrounding a human user. From this
information a diary is built where major events and the
user’s activities are stored.



5. Conclusions & Future Work

Discrimination of animal sounds is a rarely considered
area of environmental sound recognition. In this paper we
presented a survey of widely used audio features and clas-
sifiers. Our research focus was the investigation of their
applicability in the domain of animal sound recognition.
We introduced a set of novel time-based audio features that
are easy to compute. Despite their simplicity, they perform
comparably to much more complex features, such as MFCC
or LPC. We have shown that a combination of state-of-the-
art features with our feature set is able to successfully clas-
sif: more than 90% of the animal sounds in our database
(using SVM). Beside SVM. we employed NN and LVQ
classifiers in our experiments. All classifiers yielded sat-
isfactory results. The SVM slightly outperforms NN and
LVQ.

Future work will include comparison of the features dis-
cussed in this paper with MPEG-7 features for environmen-
tal sound recognition. Additionally. we will examine con-
text sensitive classifiers such as Hidden Markov Models and
Artificial Neural Networks. Animal sound recognition will
be incorporated into life logging applications. A future goal
is the distinction of different sounds from the same species
(“understanding animals™).
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