
APRIL: A High-level Framework for Creating Augmented Reality
Presentations

Florian Ledermann∗ and Dieter Schmalstieg†

Vienna University of Technology

ABSTRACT

While Augmented Reality (AR) technology is steadily maturing,
application development is still lacking advanced authoring tools –
even the simple presentation of information, which should not re-
quire any programming, is not systematically addressed by devel-
opment tools. Moreover, there is also a severe lack of agreed tech-
niques or best practices for the structuring of AR content. In this
paper we present APRIL, the Augmented Presentation and Inter-
action Languge, an authoring platform for AR presentations which
provides concepts and techniques that are independent of specific
applications or target hardware platforms, and should be suitable
to raise the level of abstraction on which AR content creators can
operate.

CR Categories: I.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques; D.2.2 [Software]: Soft-
ware Engineering—Design Tools and Techniques; D.2.11 [Soft-
ware]: Software Engineering—Software Architectures

Keywords: augmented reality, authoring, storytelling

1 INTRODUCTION

For Augmented Reality (AR) and Mixed Reality (MR) technolo-
gies to become exposed to a larger audience, we do not only need
to build systems that can be used intuitively by untrained people,
but also have to provide content that makes use of the special fea-
tures this new media provides. Without elaborating on possible or
sensible usage scenarios of AR systems, it can be said that the huge
potential of these systems lies in the presentation of information:
be it an outdoor tourist guide, a novel navigation system, a museum
installation or an educational setting (to mention a few of the more
common AR scenarios). The focus of these applications is on the
presentation of information in a temporally and spatially structured
manner, and on allowing the user to interact with this presentation
in order to browse, filter and search according to her needs and in-
terests. Obviously, the user interfaces to support these tasks should
be as simple and intuitive as possible.

However, we want to make use of the full range of devices, tools
and paradigms that AR research has produced and is continuing
to produce, to support these presentations. Presentations should
be able to address at least a large subset of established Mixed Re-
ality technologies, including classical head-mounted displays, but
also immersive projection technology or portable devices. Conse-
quently, we are dealing with complex hardware setups, using non-
standard displays, multi-modal input devices and customized inter-
action tools in networked multi-host setups, incorporating personal
computers running different operating systems, but also handheld
devices and even cellphones. And while part of this heterogeneity

∗e-mail: ledermann@ims.tuwien.ac.at
†e-mail: schmalstieg@ims.tuwien.ac.at

Figure 1: Two users with different AR platforms using the same ap-
plication, a “Magic Book” created with the APRIL authoring toolkit.

can be accounted to the transient nature of research prototypes, the
increased efforts to provide ubiquitous Augmented Reality services
and applications indicates that these hybrid systems will soon be
more common than any controlled, single-user single-host setups.

Providing facilities for non-programmers to create presentations
for such systems is a challenging task. The complexity of the under-
lying system should be hidden from the author, while at the same
time allowing her to make use of the unique properties of such a
system. Therefore, the first goal in the process of designing an au-
thoring framework was to identify the key concepts that are needed
by authors to create compelling AR presentations. These concepts
had then to be implemented on top of our existing systems to make
use of the technology already available.

The key contribution of this work is a set of high-level, AR spe-
cific concepts for authoring on hybrid, distributed projective AR
systems, and a working implementation of these concepts. We did
not concentrate on end-user support for a specific application (as
by providing a GUI for a specific authoring scenario), but on rais-
ing the level of abstraction for AR presentations. Our approach
(1) allows a description of content independent of a specific target
hardware platform, and (2) provides templates and best practices
that are independent of the actual presentation domain.

2 RELATED WORK AND CURRENT STATE OF THE ART

The first attempts to support authoring on early Virtual Reality sys-
tems were to provide ASCII-based file and scripting formats such
as Open Inventor [20], VRML [22] or X3D [23]. While scriptable
frameworks work well for programmers, who can create application
prototypes without the need to compile code, they do not offer the
necessary concepts and abstractions for controlling a presentation’s
temporal structure and interactive behaviour, and provide no built-
in support for Augmented or Mixed Reality setups. Platforms like
Avango [21] or Studierstube [18] add the necessary classes to such
frameworks to support the creation of Augmented Reality appli-

cations, potentially distributed across several computers, but from
the perspective of a presentation author this complicates matters
further rather than providing the level of abstraction needed. The
need for AR-specific authoring languages has been expressed by
researchers [12], but little work has been done in this area.

The Alice system [5] was designed as a tool to introduce novice
programmers to 3D graphics programming. Alice comes with its
own scene editor and an extensive set of scripting commands, but is
clearly targeted towards an educational setting. For creating “real
world” applications and presentations, the reusability and modu-
larity of Alice-based presentations is not sufficient. Also, Alice
focusses on animation and behaviour control of single objects and
does not offer any high-level concepts for presentation control.

An early system for the creation of presentations, the Virtual Re-
ality Slide Show system (VRSS) [6], provides a set of high-level
concepts for presentation authoring through a collection of Python
macros. VRSS draws inspiration from conventional slide shows,
and offers the necessary concepts to the user to create such slide
shows for a VR environment. While VRSS seems to be a feasible
solution for creating slide-show-like presentations, it was not devel-
oped further to allow a more complex structure of the presentation
or sophisticated user interaction.

The increasing awareness of researchers of the problem of struc-
turing narrative content led to more research activities that looked
at literature and drama theory and conventional storytelling tech-
niques to derive concepts suited for the creation of interactive and
spatially structured presentations. The Geist project [9] incorpo-
rates a detailed analysis of classical and interactive storytelling and
provides several runtime modules to support presentations based on
these concepts. Using Prolog, authors can create semiotic functions
that drive the story, and the virtual characters that appear are con-
nected to an expert system to provide compelling conversational
behaviour and emotional status.

Although the Geist project uses a mobile AR system as its output
media, the focus lies clearly on the underlying storytelling frame-
work. Generally, Geist and similar approaches can only unfold their
potential in complex presentations, incorporating multiple real and
virtual actors, and hence require a correspondingly high effort in
content creation. At the same time, the possibilities of running the
Geist system on different or hybrid Augmented Reality setups re-
main unclear.

More pragmatic approaches have focussed on the tools used by
authors to create the content of their presentations. Powerspace [8]
allows users to use Microsoft Powerpoint to create conventional 2D
slides, which are then converted to 3D presentations by a converter
script. These slide shows can be further refined in an editor that al-
lows the adjustment of the spatial arrangement of the objects of the
presentation, as well as the import of 3D models into the slides.
Clearly, the Powerspace system is limited by the capabilities of
the Powerpoint software and the slideshow concept, but it offers
an interesting perspective on integrating already existing content
into the Augmented Reality domain. Other groups have presented
prototypes for AR authoring built on top of existing modeling pack-
ages [2].

The Designers Augmented Reality Toolkit (DART) [11] is also
built on top of existing software: DART extends Macromedia Di-
rector, an authoring tool for creating classical screen-based multi-
media presentations and desktop VR presentations. DART allows
design students who are already familiar with Director to quickly
create compelling AR presentations, often using sketches and
video-based content rather than 3D models as a starting point. Typ-
ical DART presentations are run in single-user video-see-through
setups, and to our knowledge there is no or very limited support
of distributed setups or non-standard display hardware. Supporting
these systems often requires concepts that are difficult or impossible
to implement as single extension classes, but require a modification

of the underlying model or paradigm.
The Mobile Augmented Reality System (MARS) [7], developed

at Columbia University, has also been extended by a visual editor
for creating situated documentaries. These hypermedia narratives,
located in outdoor environments, can be browsed by the user by
roaming the environment, wearing the MARS system. In contrast to
the projects mentioned so far, the MARS team has developed their
own visual editor for presentations from scratch, allowing them to
implement an authoring paradigm tailored to the needs of their sys-
tem. While the visual editor of MARS looks very promising, the
underlying hypermedia system is not sufficiently flexible to suit our
content creation needs and the support of non-standard AR setups.

The need for an additional abstraction layer to support hybrid
setups and AR-specific features has been recognized by some re-
searchers. AMIRE [24] provides a component model for authoring
and playback of AR applications. On top of the AMIRE system,
an authoring tool for AR assembly instructions has been created,
which is limited to the domain of step-by-step instructions for as-
sembly tasks. Sauer and Engels [17] propose to model multimedia
presentations using UML [13]. They use statecharts and sequence
diagrams to create a model of a (conventional) presentation’s be-
haviour, which can then be used as a basis for the implementation
of the presentation. The spatial arrangement of content or any spe-
cial aspects of VR or AR presentations are not considered in their
work.

The alVRed project [1] picks up these ideas and uses UML stat-
echarts to model the temporal structure of VR presentations. In
their model, a state represents a scene of the presentation, while
the transitions between states represent changes in the presentation
triggered by user interaction. However, aspects of AR authoring are
not considered in the alVRed project.

Recently, a discussion about design patterns for Augmented Re-
ality has been started [14]. Design patterns try to grasp concepts
that can not be easily modelled as entities or classes, but are rather
a careful arrangement of such entities and their concerted behav-
iour. Up to now, this discussion has been a purely theoretical one,
although some existing AR systems already make use of some of
the patterns that have been discussed.

3 OUR APPROACH

The first question we asked ourselves when designing our author-
ing solution was not how to author such presentations, but what we
want to allow users to author. This implies that we had to iden-
tify the key concepts and processes that presentation authors would
like to work with. The discussion about design patterns mentioned
above is a first step towards the identification of such key concepts,
but no implementation of an authoring system using these concepts
exists. We believe that high-level patterns should be made avail-
able to presentation authors, relieving them of the burden of cop-
ing with the (often non-trivial) implementation details, while at the
same time allowing them to use the very features that make Aug-
mented Reality a unique media form.

3.1 Requirements

From our own experience with students and external collaborators,
we could identify a set of requirements for our authoring solution.
The primary requirement is that the framework should support the
manifold combination possibilities of input and output peripher-
als found in the hybrid, distributed AR systems we are develop-
ing in our research. Presentations and their components should be
reusable in different setups, and a presentation developed for one
system should run on another setup, with little or no modification.

This also opens up the possibility of cross-platform develop-
ment. As most AR systems are prototypes, they are usually also a

scarce resource. It should therefore be possible to develop presenta-
tions in a (desktop-based) simulation environment, without having
to occupy the target system for the whole time of the development
process. In some cases, such as when working with mobile systems
or handheld devices, it is also much more convenient to develop the
application on a desktop PC and then run it on the target system
only for fine-tuning.

Concerning content-creation, our goal was to support industry
standards that are used by professionals, instead of providing our
own tools and file formats. Generally, we tried to follow the policy
to integrate available tools and practices wherever possible, instead
of re-inventing existing solutions. By doing so, we could focus on
the AR-specific aspects of the framework.

Finally, we did not want to start a new platform from scratch, but
build the authoring and playback facilities on top of our existing
Studierstube runtime system. However, it should be possible to use
other runtime platforms for playing back presentations created with
our framework.

3.2 Practical Considerations

We decided to create an XML-based language for expressing all as-
pects needed to create compelling interactive AR content. This lan-
guage acts as the “glue-code” between those parts where we could
use existing content formats.

XML was chosen for three reasons: It is a widely used stan-
dard for describing structural data, allows the incorporation of other
ASCII- or XML-based file formats into documents, and offers a
wide range of tools that operate on XML data, such as parsers, val-
idators or XSLT, a technology to transform XML data into other
document formats. With the choice for XML as the base technology
for our content format, the next step was to design the vocabulary
of our intended AR authoring language.

4 THE APRIL LANGUAGE

APRIL, the Augmented Reality Presentation and Interaction Lan-
guage, covers all aspects of AR authoring defined in the require-
ments analysis. APRIL provides XML elements to describe the
hardware setup, including displays and tracking devices, as well as
the content of the presentation and its temporal organisation and
interactive capabilities.

Enumerating all elements and features that APRIL provides is
beyond the scope of this paper. Interested readers are referred
to [10], where detailed information and the APRIL schema spec-
ification can be found. In this paper, we focus on the illustration
of the main concepts of the APRIL language and an analysis of
the implications of our approach. Whenever references to concrete
APRIL element names are made, these will be set in typewriter
letters.

4.1 Overview

The five main aspects that contribute to a presentation – hardware
description, content description, temporal structure, dynamic be-
haviour and interaction – are encapsulated in four top-level ele-
ments – setup, cast, story, behaviors1 and interactions –
that can be easily exchanged, allowing for the customization of the
presentation for various purposes.

The story is an explicit representation of the temporal structure
of the presentation, composed of individual scenes. In each scene,
a predefined sequence of behaviours is executed by actors, which
are instances of reusable components which expose certain fields

1Note that in this paper, we use the British spelling (behaviour), while in
the APRIL Schema defining the names of the XML elements, the American
English spelling (behavior) is used.

for input and output. The transitions that advance the story from
one scene to the next are triggered by user interaction, possibly
provided by interaction components.

Interactions Behaviors

Story

Setup

Target Platform

Cast

Figure 2: The main components of APRIL.

The decision to have a central storyboard controlling the pre-
sentation was made well aware of other, agent-centric approaches,
where the overall behaviour of an application is the result of the
individual behaviours of more autonomous agents. In contrast to
other applications, for our AR presentations we want the results to
be predictable and easily controllable by a human author, therefore
having a single, central instance of a storyboard seemed best suited
to model such an application.

The hardware description provides a layer of abstraction that
hides away details of the underlying hardware setup from the user.
Using different hardware description files, presentations can be run
on different hardware setups without changing their content.

4.2 Of Stages, Scenes and Actors

The two fundamental dimensions along which a presentation is or-
ganized have already been mentioned: the temporal organization,
determining the visibility and behaviour of the objects of the pre-
sentation over time, and the spatial organization, determining the
location and size of these objects in relation to the viewer.

We call all objects that are subject to this organization, and there-
fore make up a presentation’s content, actors. An actor may have
a geometric representation, like a virtual object or a character that
interacts with the user, but it could also be a sound or video clip or
even some abstract entity that controls the behaviour of other ac-
tors. APRIL allows the nesting of actors, so one actor can represent
a group of other actors, that can be moved or otherwise controlled
simultaneously. Each actor is an instance of a component that has a
collection of input and output fields, which allow reading and writ-
ing of typed values. Details of the APRIL component model will
be explained in section 4.4.

By behaviour of an actor we mean the change of the fields of the
actor over time. Parts of the behaviour can be defined by the author
beforehand, by arranging field changes on a timeline, and parts of
it will be dynamic, determined by user interaction at runtime.

We decided to use UML statecharts to model presentations, a
tool that has been used successfully by other projects like alVRed.
UML statecharts can be hierarchical and concurrent, meaning that a
state can contain substates, and there might be several states active
at the same time. Each state represents a scene in the APRIL model,
and has three timelines associated with it: The enter timeline is
guaranteed to execute when the scene is entered, another one (the
do timeline) is executed as long as the scene remains active (this
means that behaviours on that timeline are not guaranteed to be
executed and can be interrupted whenever the scene is left), and the
exit timeline, which is executed as soon as a transition to the next

scene is triggered. On each of the timelines, field changes of actors
can be arranged by setting or animating the field to a new value.

introduction

running

enter

main

wizard

sh
ow_help

start

go

restart

go

leave

doenter exit

empty

help

idle

scene1 scene2

help_usershow_help

get_bored

Figure 3: The storyboard of a simple APRIL presentation, modelled
as a UML state diagram. For the “introduction” scene, the three
timelines enter, do and exit are emphasized.

While for the temporal organization of presentations we could
borrow an already existing concept previously used for virtual real-
ity content, the spatial organization of content in an AR application
differs from the approaches known so far. In VR applications, typ-
ically a single scene is rendered for all users, while one of the spe-
cific strengths of Augmented Reality systems is to provide multiple
users with different views on the world. Even for a single user of
an AR system, there may be several “realities” that are simultane-
ously viewed and used: besides the real world and the correspond-
ing registered computer generated overlays, there are several ways
to display user interface elements, like head up displays (HUDs)
or interaction panels, and there are possibilities to display worlds
within worlds like the world in miniature approach [19] for naviga-
tion or the possibility of rendering a complete scene to a texture to
be used as a 2D information display.

In APRIL, the top-level spatial containers for the content of a
presentation are called stages. For each stage, authors can not only
define the spatial relationship to the world and to other stages, but
also the rendering technique used (e.g. three-dimensional or as a
texture on a flat surface) and the association of stages with cer-
tain displays (to provide “private” content for particular users). Per
default, actors appear on the main stage, the area that is aligned
with and equally scaled as the real world. Interaction objects can
be placed on interaction stages, where they will, depending on the
setup the presentation is run, be rendered as a HUD or interaction
panel.

Stages are one example of the concepts that require a coupling
between the individual hardware setup and the presentation – the
available stages are different for each setup, and therefore have to
be defined in the hardware description section (which will be de-
scribed in section 4.3). If these stages would simply be referenced
in the presentation (e.g. by name), the portability of the presen-
tation would be reduced, because the presentation could then only
be run on similar setups, that provide the same number of stages
with equal names. To overcome this problem, the concept of roles
has been introduced: Each stage is assigned one (or multiple) out
of a predefined set of roles, that describe the function of this stage.
These roles are tokens, like, for example MAIN would identify the
world stage that is visible to all users, UI ALL the user interface
stage for all users, UI1 the user interface of the primary user and so
on. Actors can then be assigned to a list of stages, and the runtime
system would look for the first stage on the list that is available on
the target platform. If none of the substitution possibilities is avail-
able, a warning message is generated and the corresponding content
is not displayed.

Another type of content specific to AR presentations is the real
world. Usually, for more advanced presentations, some sort of
world model is required, for calculating occlusions between real

objects and virtual ones, or to be able to render content that is pro-
jected onto real world objects correctly. APRIL provides the world
element as a container for geometry of the real world. The geome-
try can be obtained by careful modelling or by scanning the objects
with a 3D-scanner.

4.3 Hardware abstraction

An important consequence of the requirements that have been ana-
lyzed is to separate the content of the presentation from all aspects
that depend on the actual system that the presentation will run on.
At the same time, a powerful yet flexible coupling mechanism be-
tween the hardware dependent layer and the presentation had to be
found, to allow the presentation to make use of the individual fea-
tures of a hardware setup, like tracking devices or displays.

APRIL allows to put all hardware description aspects into a sep-
arate file, and supports running a presentation on different setups
with different setup description files. Each of these files contains
XML code that describes the arrangement of computers, displays,
pointing- and other interaction devices that the system is composed
of, and the definition of stages and input devices that will be avail-
able in the presentation.

Each computer that is part of the setup is represented by a cor-
responding host element, that defines the name and IP-address of
that host, and the operating system and AR platform that runs on
that machine. Inside the host element, the displays and tracking
devices that are connected to that host are specified by correspond-
ing elements. For each display, a display element carries infor-
mation about its size and the geometry of the virtual camera gener-
ating the image, amongst others. For configuring tracking devices,
we use the already existing OpenTracker XML-based configuration
language [15], that is simply included in the APRIL file by using a
namespace for OpenTracker elements. OpenTracker allows the de-
finition of tracking sources and a filter graph for transforming and
filtering tracking data, and instead of reinventing a similar technol-
ogy, we decided to directly include the OpenTracker elements into
the APRIL setup description files.

OpenTracker only defines tracking devices and their relations,
but not the meaning of the tracking data for the application. In
APRIL, OpenTracker elements are used inside appropriate APRIL
elements to add semantics to the tracking data: headtracking
or displaytracking elements inside a display element contain
OpenTracker elements that define the tracking of the user’s head or
the display surface for the given display, pointer elements define
pointing devices that are driven by the tracking data, and station
elements define general-purpose tracking input that can be used by
the presentation.

Pointing at objects and regions in space plays a central role in
Augmented Reality applications, and several techniques have been
developed to allow users to perform pointing tasks under various
constraints. APRIL provides the pointer element to define a
pointing device, allowing the author to choose from several pointing
techniques. The simplest case would be a pointing device that oper-
ates in world space. Other applications have used a technique called
ray-picking, using a “virtual laserpointer” to select objects at a dis-
tance. Some techniques work only in combination with a display,
such as performing ray-picking that originates from the eye point
of the user, effectively allowing her to use 2D input to select ob-
jects in space. These pointers can only be used in conjunction with
a specific display and are placed inside the corresponding display
element.

Stages, the top-level spatial containers for the presentation’s con-
tent, are also defined in the setup description file. A stage can be
defined inside a display element, in which case the content of the
stage will only be visible on that specific display. Content placed
in stages that are defined at the top level of the configuration file is

publicly visible for all users. As already mentioned, a stage can be
assigned one or multiple roles to determine the type of content it is
intended for – currently, supported roles include MAIN for the main
content of the presentation, UI for user interface stages and WIM for
world-in-miniature style overviews. In addition to assigning roles,
for each stage it is possible to choose whether the content should
be rendered in 3D or as a 2-dimensional texture, and whether it
should be positioned relative to the global world coordinate system
or located at a fixed offset from the display surface.

Figure 4 lists an example hardware configuration file for a single-
host setup using a pointer and four stages.

<april xmlns="http://www.studierstube.org/april"
 xmlns:ot="http://www.studierstube.org/opentracker">
 <setup>
 <host name="mobile" ip="10.0.0.77" hwPlatform="Linux">
 <screen resolution="1280 1024"/>
 <screen resolution="1024 768"/>
 <display screen="1" screenSize="fullscreen" stereo="true"
 worldSize="-0.4 0.3" worldPosition="0.098 0.162 0"
 worldOrientation="-0.1856 0.9649 0.1857 1.6057" mode="AR">
 <headtracking>
 <ot:EventVirtualTransform translation="0.00 0.20 0.01">
 <ot:NetworkSource number="1" multicast-address="10.0.0.7"
 port="12345"/>
 </ot:EventVirtualTransform>
 </headtracking>
 <stage role="WIM1" type="3D" location="DISPLAY" scaleToFit="true"
 translation="0 -0.5 0" scale="0.5 0.5 0.5"/>
 <stage role="UI1" type="2D" location="DISPLAY" scaleToFit="true"/>
 <pointer mode="2D-RAY"/>
 </display>
 <station id="tool">
 <ot:NetworkSource number="2" multicast-address="10.0.0.7"
 port="12345"/>
 </station>
 </host>
 <stage role="WIM_COMMON" type="3D" location="WORLD" scaleToFit="true"
 translation="1.3 2.9 0.75" size="0.5 0.5 0.5"/>
 <stage role="MAIN" type="3D" location="WORLD"/>
 </setup>
</april>

Figure 4: Example hardware description file.

4.4 Component model

As stated in the requirements section, the content of APRIL pre-
sentations should be assembled from reusable components. Com-
ponents should be defined outside the presentation, in individual
files, to allow for re-use across presentations and setups.

As these components constitute the content of our presenta-
tions, sophisticated means to express geometry and multimedia
content will be needed. Instead of creating a new XML-based
syntax for defining these objects, another approach has been cho-
sen. An APRIL-component is basically a template, using any exist-
ing, ASCII-based “host language” to express the intended content,
plus additional XML-markup to define the interface of the com-
ponent, a collection of inputs and outputs that will be accessible
from the APRIL presentation. The chosen content format has to be
supported by the target runtime platform, therefore it is necessary
to provide multiple implementations, sharing the same interface,
in different formats to support different runtime platforms. The
APRIL component mechanism itself is platform independent and
can make use of any host language.

Using a platform specific language for content definition reduces
portability of components, but makes all features and optimizations
of a given platform available to developers. The alternative would
have been to create a platform-neutral content definition language,
that could only use a set of features supported by all platforms,
which would preclude the creation of sophisticated content that uses
state-of-the-art real time rendering features.

An APRIL component definition file contains two main parts:
the components interface definition, and one or multiple implemen-
tations. A component’s interface is composed of the available input
and output fields, and the specification of possible sub-components
(called parts) that can be added to the component. This interface
definition is shared scross all implementations, and defines the fea-
tures of the component that are available for scripting in APRIL.

A component can have multiple implementations in different
host languages – the software used for playing the APRIL presen-
tation will choose the implementation that is best suited. Therefore,
authors can provide different implementations for different runtime
systems, for example to provide a simpler implementation to be run
on handheld computers. Each implementation contains the code
to implement the component’s behaviour in the chosen host lan-
guage, where the inputs and outputs used in the interface defin-
ition are marked with special XML marker elements, to indicate
the (language-specific) entry points for setting and retrieving values
from the component’s fields. As the usage of these marker elements
depends on the runtime platform that the presentation will be exe-
cuted on, no general rules can be given for using them. Figure 5
shows a simple example component, containing the interface defi-
nition and a single implementation section for Open Inventor based
frameworks (such as Studierstube).

<component id="model" xmlns="http://www.studierstube.org/april">
 <interface>
 <field id="position" type="SFVec3f" default="0.0 0.0 0.0"/>
 <field id="visible" type="SFBool" default="TRUE"/>
 <input id="src" type="SFString" const="true"/>
 <part id="children"/>
 </interface>
 <implementation swPlatform="OpenInventor">
DEF <id/> Separator {
 DEF <id/>_Switch Switch {
 whichChild = DEF <id/>_Bool BoolOperation { # convert from Bool to Int32
 a <in id="visible"/>
 operation A
 }.output
 Group {} # Dummy Child for switching off
 Group { # actual content
 DEF <id/>_Transform Transform {
 translation <in id="position"/>
 }
 Separator {
 SoFileSubgraph { fileName <in id="src"/>}
 }
 <sub id="children"/>
 }
 }
}
<out id="position"><id/>_Transform.translation</out>
<out id="visible"><id/>_Bool.a</out>
 </implementation>
</component>

Figure 5: Definition of the ”model” component, used to load geom-
etry from an external file (Simplified for demonstrational purposes).

4.5 Presentation Control and Interaction

As explained previously, each scene of the storyboard contains
three timelines, that are executed upon entering, execution and leav-
ing the scene, respectively. On these timelines, commands can be
arranged to change the inputs of the presentation’s actors. The
two fundamental commands to change a field value are set and
animate, that allow the author to set a field to a predefined value
or to interpolate the value of the field over a given timespan.

For more dynamic behaviour of the presentation, the input of
an actor can be connected to the output of another actor, or the
control over a field value can be given to the user. In this case,
either a pointing device can be referenced to provide the input, or
a suitable user interface element is generated to control the value
of the field. The connection or control possibility lasts as long as
the state in which these behaviours are specified is active, so no
disconnect or uncontrol elements are provided.

The transitions between scenes are mapped to user interactions.
APRIL provides built-in high-level user interactions, such as dis-
playing a button on user interaction stages, that triggers a transi-
tion when clicked (defined by the buttonaction element), or de-
tecting the intersection of a pointer with the geometry of an actor
(by using the touch element). APRIL also provides the “pseudo-
interactions” timeout, always and disabled, to automatically
trigger or disable certain transitions.

Customized user interaction can be realized by defining a condi-
tion that must be met to trigger the transition with the evaluator
element. For these conditions, an output field of an actor can be

compared to a constant value, or to another output. With this ele-
ment, it is possible to realize complex user interactions by providing
a component that encapsulates the user interface and the necessary
calculations to trigger a transition.

Since all interactions are defined within the interactions top-
level element, they can be easily exchanged. This process, called
interaction mapping, can be used to derive different versions of the
same presentation, suiting different needs. For example, a non-
interactive version of a presentation, using only timeout transi-
tions to linearly step through the presentation, can be provided for
demo purposes, while a fully interactive version of the same pre-
sentation is run in user sessions.

5 IMPLEMENTATION

While it would theoretically be possible to implement a runtime
platform that reads APRIL files directly and supports the APRIL
concepts by a corresponding architecture, our goal was to make use
of our existing systems and transform the APRIL presentation files
into the necessary configuration files for the two frameworks we
currently use: the Studierstube Augmented Reality system, and a
lightweight AR system that runs on PDAs, called StbLight. From
this approach, we get support for the high-level concepts of APRIL
for both of our platforms, with very little need to actually imple-
ment these features natively in C++.

In some areas the two runtime systems, which are both based on
Open Inventor, had to be extended to support APRIL presentations.
An implementation of a generic state-engine that controls the pre-
sentation at runtime according to the storyboard was implemented
as an extension node, and a few utility classes were added to the
Studierstube API. Most of the high-level concepts were however
implemented by introducing a pre-processing step of the APRIL
files, implemented in XSLT [4].

Configuration

Studierstube Runtime Environment

APRIL

Studierstube API
OpenTracker

Device Drivers

Open Inventor

Open GL

I/O

APRIL Extensions

Figure 6: The overall architecture of the Studierstube system, using
APRIL as a high-level authoring language.

XSLT is a template-based language for transforming XML doc-
uments into other, ASCII-based document types. One or multiple
input files can be processed in a non-linear fashion, generating arbi-
trary numbers of output files. XSLT is used most often to generate
HTML pages from XML specification documents, or to transform
and aggregate a collection of XML documents into other XML doc-
uments.

A typical Studierstube application consists of a number of in-
put files – the application’s content, tracking configuration, display
configuration and user information are all stored in separate files,
even for single user setups. One of the motivations that led to the
development of APRIL is that, even in moderately complex setups,
these files get quite large, and it is increasingly hard for the applica-
tion developer to keep the information in the files consistent. In the
APRIL preprocessing step, these files are generated by the XSLT

transformation, using the information that is stored in the APRIL
file in a well-designed and consistent manner.

A schematic overview of this transformation process is shown
in figure 7. The story specification together with the correspond-
ing interaction and behaviour definitions constitutes the core of
the APRIL presentation. Components, defined in separate files for
reusability, are included in the presentation, and content like geom-
etry or sound samples are included in their native file formats. At
the time of the XSLT processing, the setup description file of the tar-
get platform is loaded, and the set of associated files is transformed
into the necessary Open Inventor and OpenTracker files that serve
as input for the Studierstube runtime.

Figure 7 also shows the places of human intervention in the
APRIL authoring process. APRIL transforms the view on AR ap-
plication authoring from a technology-oriented workflow that can
only be performed by programmers – implementing extensions in
C++ and scripting the application logic on a low level of abstraction
– to an authoring-centric view, allowing a smooth workflow and the
distribution of tasks between different domain experts contributing
to the presentation. This workflow is also much more scalable from
single individuals who create a whole presentation to entire teams
of collaborating professionals, using the storyboard as a central ar-
tifact for communication to contribute at different levels to the final
result.

Com-
Ponent

(XML)

Com-
ponents

(XML)

Com-
Ponent

(XML)

Component
Impl.

Content

APRIL Studierstube

Creation

OIV
Scripting

C++
Extension

Story
Authoring

Open
Inventor

(ASCII)

Open
Tracker

(XML)

Story
(UML)

Interaction
Mapping

Behavior
Binding

APRIL
File
(XML)

Setup
(XML)

Studierstube
Runtime

(C++)
XSLT

Con-
tent
(OIV)

... Process, Task

... Document
Setup

Description

Figure 7: Schematic view of the APRIL transformation process.

<display
screenSize="800 600“
stereo="false“
mode="VR“
worldSize="0.4 0.3“
worldPosition="0 0.3 0.5“
debug="true">
<headtracking otsource="head1"/>

</display>

SoStereoCameraKit {
eyeOffsetLeft 0 0 0 eyeOffsetRight 0 0

0
camLeft SoOffAxisCamera {
viewportMapping LEAVE_ALONE
position 0 0.3 0.5
size 0.4 0.3

}
[…]

display SoDisplayKit {
[…]

decoration FALSE windowBorder FALSE
xoffset 0 yoffset 0
width 800 height 600
stereoCameraKit File { name

"../setups/aprildemo/config/user1Camera.iv" }
cameraControl SoTrackedViewpointControlMode {}
station 2 # head1
displayMode SoMonoDisplayMode {}

}
DEF HUD1 Separator {
Transform {
translation 0 0.3 0.5
rotation 0 0 1 0
scaleFactor 0.4 0.3 0.4

}
Separator {
Transform {

[…]

<StbSink station="2"><Ref USE="head1"/></StbSink>

Tracker.xml

Demo_stb.iv

user1Camera.iv

Userkits.iv

Figure 8: This figure illustrates which files in the output are affected
by a single element in the hardware description file. Using conven-
tional tools, authors would have to keep the information of these files
in sync manually.

6 RESULTS

An early version of APRIL was used by the students of our Aug-
mented Reality lab lecture to create different presentations for a
broad spectrum of AR setups. There were 25 undergraduate stu-
dents participating, organized in 9 groups, each assigned a differ-
ent task. The setups for presentations included a virtual showcase
system [3], a mobile AR backpack system for indoor and outdoor
use [16] and desktop-based AR setups. The setup description files
were provided by the lecturers, and for the virtual showcase and
mobile AR setups an additional desktop emulation setup file was
provided, to allow students to develop their presentations on a desk-
top computer. For the mobile AR setups, this simulation environ-
ment contained a component to simulate tracking data, so that walk
through scenarios could be tested without the need for physical
roaming.

Following the APRIL workflow, students first had to come up
with a storyboard for their presentation, accompanied by research
concerning the subject of their presentation and the gathering of
raw and inspirational content. This encouraged the participants to
think about the intended presentation early and come up with a pro-
posal of its temporal structure in the form of a storyboard. For mod-
elling the storyboard, a third party UML tool was used, which could
save the diagrams in an XML format that would later be converted
automatically to the APRIL syntax. Mapping all interactions to
buttonaction interactions, the storyboard immediately gave stu-
dents an executable prototype of their presentation, that could be
used for testing the consistency of the story.

The raw content found in the research phase was then added to
the presentation to give a first impression of the content of the indi-
vidual scenes. MacIntyre et. al. [11] underline the important role of
informal, “sketchy” content for exploring a design space, which al-
lowed our students to experiment with variations of the storyboard
and different interactions to trigger the transitions. From then on,
students would also specialize to be able to make use of their indi-
vidual skills – some students focusing on implementing new com-
ponents, while others specialized in content modelling or the script-
ing of animations and interactions.

The results of the students work was impressive. In previous
years, students would typically implement small, usually stateless
applications with little content, using Open Inventor scripting and
C++ to create custom extension nodes. With APRIL, they could
implement much more complex application logic, while at the same
time focusing more on content creation to fill their application with
life. Results ranged from AR-enhanced Lego-robots and interactive
furniture assembly instructors over multimedia presentations for the
virtual showcase to indoor and outdoor tourist guide applications of
near-professional quality. Some images of the students results are
presented in Figures 9-11.

From the experience of these early application results, some of
the concepts of APRIL were refined. Originally, we planned more
“built-in” interaction techniques (similar to the buttonaction el-
ement), but in practice we discovered that a lot of the requirements
for interactive presentations could be fulfilled with the very simple
basic interactions APRIL provides. More sophisticated interaction
techniques can always be added by implementing or reusing a cus-
tom component, and the attempt to categorize these interactions in
advance and attempting to provide a generic set of hardcoded inter-
actions needlessly limits creativity.

Another improvement that emerged from our initial experiences
was the concept of stages to structure the spatial arrangement of
actors. Originally, the only alternatives provided were the insertion
of content in the world or in the HUD of all users. The demands
of the users soon indicated that a more flexible concept for spatial
structuring of the presentation was needed.

During the development and refinement of APRIL, we also ver-

ified the feature set that we developed against existing projects that
were scripted manually, to see if similar things could be imple-
mented with APRIL. It was interesting to observe that, especially
in museum applications and other scenarios involving public expo-
sure of AR technology, most discussions and prototyping sessions
focussed on details that are supported by and much easier to re-
alize and change with APRIL (“Instead of making the user click
on this object, we want a timeout to trigger the animation”). In
these scenarios, APRIL can support the rapid prototyping of differ-
ent ideas, shortening the delay between conception and implemen-
tation, hence allowing more user study to take place.

Figure 9: An archaeological ruin inside the Virtual Showcase. In
this setup, a raypicker is used to select parts of the real object for
retrieving further information. A projector is used to cast shadows
onto the object.

Figure 10: An indoor tour guide application, running on the desktop
developer setup. A world-in-miniature view on the model of the
building is shown in the background, and location-dependent HUD
overlay graphics is presented to the user as she roams the building.

7 CONCLUSIONS AND FUTURE WORK

With our work on APRIL we hope to have provided a starting
point for identifying key concepts, patterns and techniques for Aug-
mented Reality authoring. By focusing on the requirements of au-
thors and developers and the properties of the target systems rather
than starting with the creation of a GUI for specific authoring tasks,
we could consequently introduce and refine the features needed for
sophisticated applications, without being constrained by an existing
framework or practice.

Figure 11: Interactive furniture construction with APRIL. The con-
struction process is modelled with the state engine, and possible parts
for the next step are shown to the user.

The XSLT-based reference implementation, based on our
Studierstube runtime system, provides templates for the implemen-
tation of the APRIL features on top of the widely used Open Inven-
tor scripting API. These templates do not only provide a working
implementation of APRIL, but implicitly document best practices
for implementing common AR patterns on top of that framework.

Having developed the set of features to cover our authoring
needs, we will now focus on providing tools for the interactive vi-
sual creation of presentations. Such a visual authoring tool would
provide the user with an intuitive interface to the APRIL concepts,
without limiting the possibilities for collaborative work and distri-
bution of authoring tasks that are the key features of the workflow
developed.

Another interesting perspective is the automatic generation of
APRIL files for automated presentation creation. While this would
previously require detailed knowledge of the target application
framework to be able to create the complex, interdependent files
for a presentation, APRIL provides the high level of abstraction
that allows the content for a presentation to be auto-generated by
software. This would open up possibilities to use large amounts of
existing content (e.g. in museums) in a Augmented Reality context
with little manual effort.

8 ACKNOWLEDGEMENTS

The authors would like to thank Daniel Wagner for his work on our
AR framework for handheld devices, Gerhard Reitmayr for valu-
able suggestions throughout the development of APRIL and Joe
Newman for proofreading this paper. Licenses of the Maya soft-
ware were donated by Alias Systems. This research was funded in
part by EU contract #IST-2000-28610, FWF contract #Y193 and
the bm:bwk contract #TUWP16/2001.

REFERENCES

[1] S. Beckhaus et al. alVRed – Tools for storytelling in virtual environ-
ments. Technical report, Fraunhofer IMK, Sankt Augustin, 2002.

[2] Rodney Berry, Naoto Hikawa, Mao Makino, Masami Suzuki, and
Takashi Furuya. Authoring augmented reality: A code-free approach.
In Proceedings of ACM SIGGRAPH 2004. ACM, August 8–12 2004.

[3] O. Bimber, B. Fröhlich, D. Schmalstieg, and L. M. Encarnação.
The virtual showcase. IEEE Computer Graphics and Applications,
21(6):48–55, November 2001.

[4] James Clark. XSL transformations (XSLT) version 1.0 – W3C recom-
mendation. http://www.w3.org/TR/xslt, 1999.

[5] Matthew Conway, Randy Pausch, Rich Gossweiler, and Tommy Bur-
nette. Alice: A rapid prototyping system for building virtual environ-
ments. In Proceedings of ACM CHI’94 Conference on Human Factors
in Computing Systems, volume 2, pages 295–296, April 1994.

[6] A. Fuhrmann, J. Prikryl, R. Tobler, and W. Purgathofer. Interactive
content for presentations in virtual reality. In Proceedings of the ACM
Symposium on Virtual Reality Software & Technology, 2001.

[7] Sinem Güven and Steven Feiner. Authoring 3D hypermedia for wear-
able augmented and virtual reality. In Proceedings of the 7th Inter-
national Symposium on Wearable Computers, pages 118–126, White
Plains, NY, October 21-23 2003. IEEE.

[8] Matthias Haringer and Holger T. Regenbrecht. A pragmatic approach
to Augmented Reality authoring. In Proceedings of ISMAR 2002,
Darmstadt, Germany, 2002. IEEE.

[9] Ursula Kretschmer, Volker Coors, Ulrike Spierling, Dieter Grasbon,
Kerstin Schneider, Isabel Rojas, and Rainer Malaka. Meeting the spirit
of history. In Proceedings of VAST 2001, Glyfada, Athens, Greece,
November 28–30 2001. Eurographics.

[10] Florian Ledermann. An authoring framework for augmented reality
presentations. Diploma thesis, Vienna University of Technology, May
2004.

[11] Blair MacIntyre and Maribeth Gandy. Prototyping applications with
DART, the designer’s augmented reality toolkit. In Proceedings of
STARS 2003, pages 19–22, Tokyo, Japan, October 7 2003.

[12] U. Neumann and A. Majoros. Cognitive, performance, and systems
issues for augmented reality applications in manufacturing and main-
tenance. In Proceedings of the Virtual Reality Annual International
Symposium, page 4. IEEE Computer Society, 1998.

[13] Object Management Group. Unified
modeling language (UML), version 1.5.
http://www.omg.org/technology/documents/formal/uml.htm, June
2003.

[14] Thomas Reicher, Asa MacWilliams, and Bernd Bruegge. Towards a
system of patterns for Augmented Reality systems. In Proceedings
of the International Workshop on Software Technology for Augmented
Reality Systems (STARS 2003), October 2003.

[15] Gerhard Reitmayr and Dieter Schmalstieg. OpenTracker – an open
software architecture for reconfigurable tracking based on XML. In
Proceedings of IEEE Virtual Reality 2001, pages 285–286, Yoko-
hama, Japan, March 13–17 2001.

[16] Gerhard Reitmayr and Dieter Schmalstieg. Collaborative augmented
reality for outdoor navigation and information browsing. In Proceed-
ings of the Symposium on Location Based Services and TeleCartogra-
phy, Vienna, Austria, January 2004.

[17] S. Sauer and G. Engels. Extending UML for modeling of multime-
dia applications. In Proceedings of the IEEE Symposium on Visual
Languages (VL’99), pages 80–87, 1999.

[18] Dieter Schmalstieg, Anton Fuhrmann, Gerd Hesina, Zsolt Szalavári,
L. Miguel Encarnação, Michael Gervautz, and Werner Purgathofer.
The Studierstube augmented reality project. PRESENCE - Teleopera-
tors and Virtual Environments, 11(1), 2002.

[19] Richard Stoakley, Matthew J. Conway, and Randy Pausch. Virtual
reality on a WIM: interactive worlds in miniature. In Conference
proceedings on Human factors in computing systems, pages 265–272,
Denver, Colorado, USA, 1995. ACM Press, Addison-Wesley.

[20] P. Strauss and R. Carey. An object oriented 3D graphics toolkit. In
Proceedings of ACM SIGGRAPH ’92. ACM, 1992.

[21] H. Tramberend. Avocado: A distributed virtual reality framework. In
Proceedings of IEEE Virtual Reality 1999. IEEE, IEEE Press, 1999.

[22] VRML Consortium. VRML97 specification. Specification 14772-
1:1997, ISO/IEC, 1997.

[23] Web3D Consortium. X3D specification website.
http://www.web3d.org/x3d/specifications/.

[24] Jürgen Zauner, Michael Haller, and Alexander Brandl. Authoring of a
mixed reality assembly instructor for hierarchical structures. In Pro-
ceedings of ISMAR 2003, pages 237–246, Tokyo, Japan, October 7–10
2003. IEEE.

