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Abstract. The selection of appropriate proximity measures is one of the crucial success factors of content-based visual 

information retrieval. In this area of research, proximity measures are used to estimate the similarity of media objects by 

the distance of feature vectors. The research focus of this work is the identification of proximity measures that perform 

better than the usual choices (e.g. Minkowski metrics). We evaluate a catalogue of 37 measures that are picked from 

various areas (psychology, sociology, economics, etc.). The evaluation is based on content-based MPEG-7 descriptions 

of carefully selected media collections. Unfortunately, some proximity measures are only defined on predicates (e.g. 

most psychological measures). One major contribution of this paper is a model that allows for the application of such 

measures on continuous feature data. The evaluation results uncover proximity measures that perform better than others 

on content-based features. Some predicate-based measures clearly outperform the frequently used distance norms. 

Eventually, the discussion of the evaluation leads to a catalogue of mathematical terms of successful retrieval and 

browsing measures. 

Keywords: Content-based Visual Information Retrieval, Similarity Measurement, Distance Measurement, Visual 

Similarity Perception, MPEG-7. 

1. Introduction 

The research focus of the experimental study presented in this paper is the identification of proximity measures that can 

be successfully applied in visual information retrieval (VIR) environments. The term VIR refers to a scenario where 

content-based features are employed to represent the properties of visual media objects and where proximity measures 
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are utilised to represent human visual similarity perception by distance measurement of feature vectors (vector space 

model). It is commonly accepted that the careful definition/selection of features and proximity measures are paramount 

steps to successful VIR. However, so far only relatively few experimental studies on proximity measure selection have 

been conducted.  

This paper offers a number of contributions to the selection problem. We have collected a comprehensive set of 

similarity measures from various areas of research. These measures are evaluated on content-based features extracted 

from carefully designed media collections. We have decided on media representation by the visual MPEG-7 descriptors. 

MPEG-7 is a globally available standard and comprises a well-designed set of heterogeneous features. Unfortunately, 

some of the employed proximity measures are only defined on predicates (e.g. most psychological and sociological 

measures). A second major contribution of this paper is a quantisation model that allows for the application of such 

measures on continuous feature data. Since the quantisation model is defined in a very general context, it can be applied 

to arbitrarily shaped proximity measures and media descriptions. Eventually, a catalogue of important building blocks of 

successful similarity measures is derived from the evaluation results. The experiments reveal that particular elements of 

proximity measures have very specific impacts on the similarity measurement process. 

The paper is organised as follows. Section 2 gives background information on similarity measurement and the content-

based visual MPEG-7 descriptors. Section 3 introduces the distance measure catalogue. Section 4 sketches the 

evaluation set-up, including performance indicators and test data. Section 5 discusses the results and gives 

interpretations. Please note that the following naming conventions are used for mathematical symbols. Vectors (with 

subscripts, e.g. Xi) and constants (without subscripts, e.g. C) are written in Latin uppercase letters. Latin lowercase 

letters denote vector elements (e.g. xik) and variables (e.g. a). Greek lowercase letters are used for weights, thresholds 

and statistical moments (e.g. µ). 

2. Related work 

2.1 Similarity measurement for visual data 

Generally, similarity measurement on visual information aims at the imitation of human visual similarity perception. 

Unfortunately, human perception is much more complex than any of the existing similarity models. Human perception 

includes vision, recognition and subjectivity. The common approach in visual information retrieval is measuring 

dis-similarity as distance [17, 13, 8]. Both, query object and candidate object are represented by their corresponding 
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feature vectors. The distance between the media objects is measured by computing the distance between the two vectors. 

Consequently, the process is independent of the employed querying paradigm (e.g. query by example). The query object 

may be natural (e.g. a real object) or synthetic/artificial (e.g. properties of a group of objects).  

The goal of the measurement process is to express a relationship between the two objects by their distance. Iterating 

over multiple candidates allows to define a partial order over the media objects and to address those in a (to be defined) 

neighbourhood as being similar to the query object. For the sake of completeness, it has to be mentioned that in a multi-

descriptor environment – especially in MPEG-7-based retrieval – this is only half of the way towards a statement on 

similarity. If multiple descriptors are used (e.g. a description scheme), a rule is required that determines the way how 

distance values are combined to one global value per media object. However, distance measurement is the most 

important first step in similarity measurement. 

The main challenge for good distance measures is to reorganise the description space in a way that media objects with 

the highest similarity are in close proximity to the query object. If distance is defined minimal (≥0), the query object is 

always in the origin of distance space and similar candidates should form the largest possible clusters near the origin. 

Most of the frequently used distance measures are based on geometric assumptions of description space (for example, 

Euclidean distance is based on the metric axioms). Unfortunately, these measures do not fit ideally with human 

similarity perception (e.g. due to human subjectivity). Researchers from different areas have developed alternative 

models to overcome this shortcoming. Most approaches are predicate-based (descriptors are assumed to contain just 

binary elements, e.g. Tversky's Feature Contrast Model [35]) and fit better with human perception. We consider distance 

measures of both groups of approaches in the evaluation. 

2.2 The visual MPEG-7 descriptors 

The MPEG-7 standard defines – among others – a set of descriptors for visual media. Each descriptor comprises a 

normative description (in binary and XML format) and guidelines that define how to extract description data and to 

apply the descriptor to different types of media (e.g. temporal media). The MPEG-7 descriptors have been carefully 

designed to meet – partially complementary – requirements of different application domains: archival, browsing, 

retrieval etc. [20, 21]. In this study, we deal exclusively with the content-based visual MPEG-7 descriptors in the context 

of visual information retrieval and browsing (see [8, 33]).  

The visual part of the MPEG-7 standard defines several descriptors [21, 4]. Not all of them are really descriptors in the 

sense that properties are extracted from visual media. Some of them are just structures for description aggregation and 
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localisation. The basic descriptors are Color Layout, Color Structure, Dominant Color, Scalable Color (colour), Edge 

Histogram, Homogeneous Texture, Texture Browsing (texture), Region-based Shape, Contour-based Shape (shape), 

Camera Motion, Parametric Motion and Motion Activity (motion) [20, 2]. 

Other descriptors are based on low-level descriptors or semantic information: Group-of-Frames/Group-of-Pictures 

Color (based on Scalable Color), Shape 3D (based on 3D mesh information), Motion Trajectory (based on object 

segmentation) and Face Recognition (based on face extraction).  

Descriptors for spatio-temporal aggregation and localisation are: Spatial 2D Coordinates, Grid Layout, Region Locator 

(spatial), Time Series, Temporal Interpolation (temporal) and SpatioTemporal Locator (combined). Supplementary 

structures exist for colour space representation, colour quantisation and multiple 2D views of 3D objects. These 

additional structures allow for combining the basic descriptors in a number of ways and on different levels. They do not 

change the characteristics of the extracted information and therefore, aggregation and localisation structures are not 

considered in the work described in this paper. 

As pointed out above, rules are required for the application of features that define how to compute the similarity of two 

media descriptions. Unfortunately, the MPEG-7 standard does not include distance measures in the normative part, 

because it was not designed (and should not exclusively be understood) to be  retrieval-specific. Nevertheless, the 

MPEG-7 authors recommend distance measures for their descriptor. These recommendations are based on accurate 

knowledge of the descriptors' behaviour and the description structures. They are mostly based on L1 and L2 metrics 

(Manhattan distance and Euclidean distance). 

3. Distance measures 

The distance measures employed in this work have been collected from various areas of research (Subsection 3.1). 

Because they are defined on differently quantised data ranges, Subsection 3.2 sketches a model for unification on the 

basis of quantitative descriptions. Subsection 3.3 introduces the distance measures and sketches the original intention of 

their authors (if known). 

3.1 Sources 

Distance measurement is used in many research areas including psychology, sociology (e.g. for comparison of test 

results), medicine (e.g. for comparison of parameters of cases), economics (e.g. for comparison of balance sheet ratios) 

etc. Naturally, the characteristics of these data differs significantly from area to area. Essentially, there are two extreme 
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cases of data vectors (and distance measures): predicate-based (all vector elements are binary, e.g. {0, 1}) and 

quantitative (all vector elements are continuous, e.g. [0, 1]). 

Predicates express the existence of properties and represent high-level information. Quantitative values are mostly used 

for measurements and represent low-level information. Predicates are often employed in psychology, sociology and 

other human-related sciences. Therefore, most predicate-based distance measures were developed in these areas. Many 

visual information retrieval descriptions are defined in quantitative terms (as long as semantic enrichment is not 

involved). Hence, mostly quantitative distance measures are employed in visual information retrieval. 

One goal of this work is to compare the MPEG-7 distance measures with the most powerful distance measures 

developed in other areas. Since MPEG-7 descriptions are purely quantitative while some of the most sophisticated 

distance measures are exclusively defined on predicates, a model is required that allows for the application of predicate-

based distance measures on quantitative data. Such a model – developed for this study – is introduced in the next 

section. 

3.2 Quantisation model 

The purpose of the quantisation model is to extend the set operators that are employed in predicate-based distance 

measures to the continuous domain. The first in visual information retrieval to follow this approach were Santini and 

Jain, who tried to apply Tversky's Feature Contrast Model [35] to content-based image retrieval [30, 31]. They 

interpreted continuous data as fuzzy predicates and made use of fuzzy set operators. Unfortunately, their model suffered 

from several shortcomings they described in [30, 31]. For example, the quantitative model worked only for one specific 

version of the original Feature Contrast Model. 

The main idea of the presented quantisation model is that set operators are replaced by statistical functions. In [10] the 

authors show that this interpretation of set operators is a reasonable approach. The model offers a solution for the 

descriptors considered in the evaluation. It is not specific to one distance measure, but can be applied to any predicate-

based measure. Below, we show that the model does not only work for predicates but for quantitative data as well. Each 

measure that implements the model can be used as a substitute for the original predicate-based measure. 

Generally, the binary properties of two objects (e.g. media objects) may exist in both objects (the sum of these 

properties is denoted as a), in just one (b, c) or in none of them (d). The operator needed for these relationships are 

UNION, MINUS and NOT. In the quantisation model they are replaced as described in equation 1 (see [10] for further 

details). M, µ , σ are span, mean and variance of the elements of the data vectors Xi. By convention, xmax=1 and xmin=0. 
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(Please refer to the last paragraph of Section 1 for the naming conventions of mathematical symbols used in this paper.) 
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Term a stands for properties that are present in both data vectors (Xi, Xj representing media objects), b and c select 

properties that are present in just one of them and d sums those properties that are absent in both data vectors. Every 

property is selected/weighted by the extent to which it is present (a and d: mean, b and c: difference) and only if the 

amount to which it is present exceeds a certain threshold (depending on the mean and standard deviation of all elements 

of description space). 

The implementation of these operators is based on the assumption that all feature vector elements measure on interval 

scale. In simple words, each element has to express a property that is "more or less" present ("0": not at all, "M": fully 

present). This is true for most visual descriptors and all considered MPEG-7 descriptors. A natural origin, as it is 

assumed here ("0"), is not required. 

The quantisation model is solely controlled through parameter f (called discriminance-defining factor). Parameter f is an 

additional criterion for the behaviour of a distance measure and determines the thresholds used by the operators (ε1, ε2). 
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It expresses the accuracy of data items (quantisation) and therefore, how accurate they should be investigated. Parameter 

f can be set by the user or automatically. Interesting are the limits: 

 M,f →⇒∞→ 21 εε  (2) 

In this case, all elements (properties) are assumed to be continuous (high quantisation). All properties of a description 

are used by the operators. The distance measure is not discriminative for properties.  

 00 21 →⇒→ εε ,f  (3) 

Now, all properties are assumed to be predicates. Only binary elements (predicates) are used by the operators (1-bit 

quantisation). The distance measure is highly discriminative for properties.  

Between these limits, every distance measure that uses the quantisation model is – depending on f – more or less 

discriminative for properties. That is, it selects a subset of all available description vector elements for distance 

measurement. 

For both predicate data and quantitative data it can be shown that the quantisation model is reasonable. If description 

vectors consist exclusively of binary elements, f should be used as follows (for example, f can easily be set 

automatically): 

 ( )σµεε ,minf.g.e,,f ==⇒→ 00 21  (4) 

In this case, the measurements of a, b, c, d have the same characteristics as the set operators they replace. For example, 

Table 1 shows their behaviour for two one-dimensional feature vectors Xi and Xj. As can be seen, the statistical measures 

work like set operators. In fact, the quantisation model works accurately on predicate data for any f≠∞. 

In order to illustrate that the model is reasonable for quantitative data the following fact is used. It is easy to show that 

for predicate data some quantitative distance measures degenerate to predicate-based measures. For example, the L1 

metric (Manhattan distance) degenerates to the Hamming distance (from [20], without weights): 

 distanceHammingcbxxL
k

jkik =+≡−= ∑1  (5) 

If it can be shown that the quantisation model is able to reconstruct the quantitative measure from the degenerated 

predicate-based measure, the model is obviously able to extend predicate-based measures to the quantitative domain. 

This is easy to illustrate. For purely quantitative feature vectors, f should be used as follows (again, f can easily be set 

automatically): 
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 121 =⇒∞→ εε ,f  (6) 

In this situation, when f approaches infinity, a and d become continuous functions: 
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With f approaching infinity, b and c are continuous for the following expressions: 
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This means, for a sufficiently high value of f every predicate-based distance measure that either abandons b and c or uses 

just the terms b+c, b-c or c-b, can be transformed into a continuous quantitative distance measure. For example, the 

Hamming distance (again, without weights): 

 1Lxxxxswherescb
k

jkik
k

jkikkk =−=−==+ ∑∑  (9) 

The quantisation model successfully reconstructs the L1 metric without any distance measure-specific modifications to 

the model. This demonstrates the reasonability of the quantisation model. In the following evaluation it will be employed 

to extend successful predicate-based distance measures on the quantitative domain. 

In summary, the major advantages of the quantisation model are: (1) it is application domain-independent, (2) the 

implementation is straightforward, (3) the model is easy to use and (4) parameter f allows for controlling the similarity 

measurement process in a novel way (by discriminance on property level). However, the application of the quantisation 

model requires the identification of appropriate values for f. Apart from the suggestions above, it is not possible to give 

general rules for the optimal selection of f. The sensitivity of the parameter depends heavily on the characteristics of the 

feature data (distribution etc.). Fortunately, a simple algorithm solves the problem: 

1. Select sample vectors from the feature data set 
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2. Initialise parameter f=1 

3. For each pair of vectors from the sample: compute L1 metric, Hamming distance 

4. Aggregate the pair-wise distance values to two average distances 

5. If the average distances do not match: adapt f and return to 3.  

We make use of the equivalency of the Manhattan metric and the Hamming distance to identify f values that guarantee 

that the predicate-based distance measures are equally discriminative as the quantitative distance measures. The 

adaptation in step 5 should be performed as discussed above for the limits of f. 

3.3 Implemented measures  

For the evaluation described in this work we implemented predicate-based (based on the quantisation model), 

quantitative and the distance measures recommended in the MPEG-7 standard. In total, 37 different distance measures 

were evaluated.  

Table 2 summarises those predicate-based measures that performed best in the evaluation. Twenty predicate-based 

measures were investigated. For all measures, K is the number of predicates in the data vectors Xi and Xj. In P1, the sum 

is used for Tversky's f() (as Tversky himself does in [35]) and α, β are weights for elements b and c. In [10] the author's 

investigated Tversky's Feature Contrast Model and found α=1, β=0 to be the optimum parameters.  

Some of the predicate-based measures are very simple (e.g. P2-P6) but have been heavily exploited in psychological 

research. Goodall, for instance, investigated the behaviour of the simple match coefficient (P6) for independent 

predicates [14]. P9 was very successful in measurement of the similarity of multi-level variables. Sokal and Sneath and 

others developed several measures that stress co-presence of predicates (P7, P10-P12, P14, P16, P17) [17]. P13 is a 

further-developed version of P8. Pattern difference (P18) is used in the statistics package SPSS for cluster analysis. P20 

is a correlation coefficient for predicates developed by Pearson [27]. P18, P19, P20 are similar measures, since all of 

them make use of the term b*c. In our evaluations, the product of differences turned out to be a very powerful model for 

human similarity perception. 

Table 3 lists the quantitative distance measures that were investigated. Q1 and Q2 are metrics-based and were 

implemented as representatives for the entire group of Minkowski distances. Q3, the Canberra metric, is a normalised 

version of Q1. Similarly, Q4, Clark's divergence coefficient is a normalised version of Q2. In Q5, µi is the mean of the 

elements of description Xi. In Q6, m is 
2

M
 (=0.5). Q6 is a further-developed correlation coefficient that is invariant 

against sign changes. This measure is used even though its particular properties are of minor importance for this 
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application domain. In Q7, µ , σ are mean and standard deviation over all elements of Xi and Xj. In Q8, dij is the 

Euclidean distance as defined in Q2 (without weights). Q8 was developed by Catell to compare psychological profiles. 

Finally, Q10 is a measure that takes the differences between adjacent vector elements into account. This property makes 

it structurally different from all other measures.  

Obviously, one important distance measure is missing. The Mahalanobis distance was not considered, because different 

descriptors would require different covariance matrices and for some descriptors it is simply impossible to define a 

covariance matrix. If the identity matrix was employed, the Mahalanobis distance would degenerate to a Minkowski 

distance. 

Additionally, the recommended MPEG-7 distances were implemented with the following parameters. In the distance 

measure of the Color Layout descriptor all weights were set to "1" (as in all other implemented measures). For the 

distance measure of the Dominant Color descriptor the following parameters were used: w1=0.7, w2=0.3, α=1, Td=20 

(as recommended). In the Homogeneous Texture descriptor's distance function all α(t) were set to "1" and matching was 

performed rotation- and scale-invariant. It is important to notice that some of the measures presented in this section are 

distance measures while others are similarity measures. For the purpose of the evaluation all similarity measures were 

transformed to distance measures. 

4. Evaluation set-up 

Subsection 4.1 discusses the proposed performance indicators. Subsection 4.2 describes the descriptors and the 

collections (including ground truth information) that were used in the evaluation. Subsection 4.3 sketches the test 

environment implemented for the evaluation process. 

4.1 Performance indicators 

Usually, retrieval and browsing evaluation are based on a ground truth and recall and precision indicators (see, for 

example, [8, 33]). In multi-descriptor environments this approach leads to a problem, since the recall and precision 

values are strongly biased by the method used to merge the distance values of media objects. Though it is nearly 

impossible to estimate the influence of a single distance measure on the final recall and precision values, the merging 

problem has been frequently ignored so far. In Subsection 2.1 it was stated that the major task of a distance measure is to 

put the relevant media objects as close to the origin (where the query object lies) as possible. Even in a multi-descriptor 

environment it is then simple to identify the similar objects in a large distance space. Hence, we decided to define 
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performance indicators that measure the distribution of objects in distance space instead of recall- and precision-like 

measures.  

Our performance indicator should measure two properties. Firstly, it should take the size of positive clusters into 

account (larger clusters are better). Positive clusters are clusters of objects similar to the query example. That is, they 

belong to the same ground truth group. We call this property browsing property, since for browsing applications it is 

important that similar objects are grouped in close proximity to each other. In fact, this measure may be best described 

as a browsing measure for retrieval results. It quantises the browsing qualities of retrieval results. 

Secondly, the performance indicator should consider the distance of similar objects to the origin of distance space. The 

query example lies in the origin, because its distance to itself is always zero. Similar objects should be positioned as 

close to the query example as possible. This property is called retrieval property, because for retrieval applications it is 

important that as many similar objects as possible are among the first results.  

The browsing property could be expressed as average cluster size by the following term, in which C is the number of 

clusters and ci is the size (in elements) of the i-th cluster. 
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Identifying clusters of similar objects (based on the given ground truth) is relatively easy, because the resulting distance 

space for one descriptor and any distance measure is always one-dimensional. Clusters are found by searching from the 

origin of distance space to the first object that belongs to the same group as the query example, grouping all following 

similar objects (same ground truth group) in the cluster, breaking off the cluster with the first un-similar object (different 

ground truth group) and so forth. See Figure 2 for an example with three clusters of similar objects. Equation 11 

expresses the retrieval property as the average distance of objects similar to the query example. Here, dij is the distance 

of the j-th element of the i-th cluster. The other symbols are defined as above. 
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pBROWSING* measures on [1, S], where S is the number of similar media objects in the evaluated collection (denominator 

of equation 11). Optimally, distance measures should maximise pBROWSING*. For distance measures defined on [0, 1], 
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pRETRIEVAL* measures on [0, 1]. The best measures should minimise the average distance. Since we want to use both 

measures in combination, we redefine pBROWSING* in the following way (using inversion, subtraction of 1/S and 

normalisation by (S-1)/S). pBROWSING measures on [0, 1]. The best values are near zero. 
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Note that pBROWSING is only defined for collections with at least two elements! Furthermore, in the presented form, 

pRETRIEVAL* can only be employed to compare distance measures that measure on the same interval. Since this is not the 

case for most of the measures used in this evaluation, we redefine pRETRIEVAL* in the following way. 
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All distance values are transformed to [0, 1] using the minimum distance value dmin and the maximum dmax.  

Eventually, we define the weighted sum of the two basic properties as the performance indicator (equation 14). It is 

important to notice that the browsing indicator and the retrieval indicator are interdependent measures, i.e. a good 

distance measure should optimise both measures. If just the browsing indicator is optimised by a distance measure it 

may not be able to identify relevant media objects as the best matches. Distance measures that optimise only the retrieval 

indicator may fail in distinguishing similar from unsimilar media objects. 

 10 =+∧≥+= βαβαβα ,withppp BROWSINGRETRIEVAL  (14) 

The value of p is independent of collection size and distance measure used. For the evaluations presented below, we use 

weights of 0,5 for α, β. We investigate mean and standard deviation of p, pBROWSING and pRETRIEVAL over series of test 

queries. It has to be noted that the combination of pBROWSING and pRETRIEVAL values would be questionable if these 

variables had different variances. However, as we found in the evaluation process, both measures come up with highly 

similar variances (over a sufficiently large number of tests). Therefore, overall performance results are not biased by the 

linear combination. In the evaluation process these measures turned out to provide valuable results and to be robust 

against parameter f of the quantisation model. 

4.2 Test data 

For the evaluation seven MPEG-7 descriptors were used. All colour descriptors: Color Layout, Color Structure, 
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Dominant Color, Scalable Color, two texture descriptors: Edge Histogram, Homogeneous Texture and one shape 

descriptor: Region-based Shape. Texture Browsing was not employed, because the MPEG-7 standard suggests that it is 

not suitable for retrieval. The other basic shape descriptor, Contour-based Shape, was not considered, because it 

produces structurally different descriptions that cannot be transformed to data vectors with elements measuring on 

interval scales. The motion descriptors were not employed, because they integrate the temporal dimension of visual 

media and would only be comparable, if the basic colour, texture and shape descriptors would be aggregated over time. 

Finally, no high-level descriptors were considered (Localisation, Face Recognition etc., see Subsection 2.2), because – 

to the author's opinion – the behaviour of the basic descriptors on elementary media objects should be evaluated before 

conclusions on aggregated structures can be drawn. 

Description extraction was performed using the MPEG-7 eXperimentation Model [23]. In the extraction process each 

descriptor was applied on the entire content of each media object and the following extraction parameters were used. 

Colour in Color Structure was quantised to 32 bins. The Dominant Color colour space was set to YCrCb, 5-bit default 

quantisation was employed and the default spatial coherency algorithm was applied. Homogeneous Texture was 

quantised to 32 components. Finally, Scalable Color values were quantised to sizeof(int)-3 bits and 64 bins.  

The descriptors were applied on several media collections with varying content (image libraries and video clips). For 

workflow optimisation we implemented a web interface for submission and evaluation of media descriptions. For the 

evaluations presented below, we selected three media collections with image content from the evaluated datasets: the 

Brodatz dataset (112 greyscale images of textures, 512x512 pixel), a subset of the Corel dataset (260 colour photos of 

humans, animals and flowers, 460x300 pixel, portrait and landscape) and a dataset with coats-of-arms images (426 

synthetic colour images, 200x200 pixel). Figure 1 depicts examples from the three collections. We used collections of 

this relatively small size, because the applied evaluation methods are invariant for collection size above a certain 

minimum size. Additionally, it is easier to define a high-quality ground truth for smaller collections. Still, the average 

ratio of ground truth size to collection size is at least 1:7. Coats-of-arms, Brodatz and Corel were chosen, because – to 

our experience – they reveal the characteristic properties of distance measures (see, for example, results in [9, 12]). The 

same characteristic properties were also identified using other collections, but with  less striking performance indicator 

values. These results may origin from the somewhat less differentiated visual content. For example, the evaluated video 

clips (news, advertisements, documentaries etc.) consist of groups of very similar frames. On the other hand, inter-group 

similarity hardly exists. In consequence, evaluation results have lower variance. 

Generally, designing appropriate test sets for visual evaluation is a highly sophisticated task (for example, see [26, 1]). 
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Almost every selection of media objects can be argued against. We are aware that for our goal, identifying the best 

distance measure for descriptors, the distance measures should be tested on a large number of media objects. In order to 

support the reader in evaluating his own media descriptions, we decided to open the evaluation website – described in 

the next subsection – to the public. It can be accessed from [24] and readers are invited to use it.  

For the distance evaluation – next to media descriptions – human similarity judgement is needed. For the coats-of-arms, 

Brodatz and Corel datasets we defined twelve groups of similar images (four for each dataset). Group membership was 

selected by human testers based on semantic criteria. Table 4 summarises the twelve groups and the underlying 

descriptions. It has to be noted, that some of these groups (especially 5, 7 and 10) are much harder to identify by low-

level descriptions than others, because they are defined on a semantically higher level. 

4.3 Test environment 

The distance measure evaluation framework was implemented with a website front-end. Figure 3 illustrates the 

workflow for submission and evaluation. After submission, the entered data are inspected by the website administrator: 

If the data do not contain illegal content (e.g. copyright-protected media objects), evaluation is performed in a 

background process. Evaluation results are published on a second webpage.  

The submission procedure parses the description elements from the XML descriptions and transforms them into a data 

matrix with one line per media object and one column per description element (e.g. 318 columns for all seven evaluated 

MPEG-7 descriptors). The elements of this data matrix have to be normalised in order to be usable with general-purpose 

distance measures. We perform a simple column-wise min-max-normalisation. 

 
jj

jij

ij minmax

minx
x

−
−

=′  (15) 

minj is the minimum and maxj is the maximum of column j. The resulting values x'ij are normalised to [0, 1]. The 

distribution of elements is not affected by this operation. The data matrix and the rest of the submission data (including 

ground truth information) are stored in a database. 

The evaluation procedure runs 100 queries for each distance measure. Each iteration is a sequence of the following 

steps: (1) random selection of a ground truth group, (2) random selection of a query object from this group, (3) distance 

measurement to all other objects in the dataset, (4) clustering of the resulting distance space based on the ground truth 

and finally, (5) computation of performance indicators. Mean and standard deviation of p, pBROWSING and pRETRIEVAL for 

each descriptor are published on the results webpage. Data tables for the coats-of-arms, Brodatz and Corel datasets can 
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be found in the web appendix [36]. 

5. Results 

In the results presented below, the performance indicators from Subsection 4.1 are used to evaluate distance measures. 

Weights α, β of performance indicator p (equation 14) are set to 0,5 each. Parameter f of the quantisation model is set to 

f=1, because – as we found in experiments – in this case predicate-based and quantitative distance measures are 

approximately equally discriminative (please refer to Section 3.2 for details). The results section is organised as follows. 

Subsection 5.1 compares the best-performing distance measures to the MPEG-7 recommendations and Subsection 5.2 

analyses the terms frequently occurring in successful distance measures. Please note that the results presented below are 

based on the evaluation results that can be found in the web appendix [36]. 

5.1 Best distance measures for MPEG-7 descriptions 

Table 5 summarises the performance of the best measures in comparison to the distance measures recommended by the 

MPEG-7 group. The results are averaged over the coats-of-arms, Brodatz and Corel datasets. Tests on other collections 

confirm these results. As can be seen, the best measures are always predicate-based. This fact supports our 

argumentation in Subsection 3.2 that the quantisation model represents a reasonable approach. Overall, for most 

descriptors the p values of the best measures are between 60% and 70% of the respective MPEG-7 measures (smaller is 

better). Exceptions are Edge Histogram and Homogeneous Texture, where P19 (Yule coefficient) and P18 (pattern 

difference measure) perform substantially better. Looking at pRETRIEVAL (retrieval quality) and pBROWSING (browsing 

quality) we can see that the major difference is in the retrieval quality. The best distance measures put similar media 

objects significantly closer to the origin of distance space than the MPEG-7 recommendations. The best pBROWSING values 

are not bad, but significantly higher than the pRETRIEVAL values.  

In Figures 4-6 we have a closer look at the best- and worst-performing distance measures. The figures are summarised 

over the three considered media collections and all seven descriptors. Diagrams a, b, c depict the numbers of 

appearances among the top three, top ten and worst ten distance measures for the p, pRETRIEVAL, pBROWSING values, 

respectively. Several observations can be made. P1, P19, P20 (Pearson coefficient) seem to be the best measures in 

terms of retrieval quality. For all descriptors (except Color Layout, as will be shown below) these measures outperform 

the other measures and the MPEG-7 recommendations. Since all of these measures make use of description elements 

that are present in both media objects (a property), a seems to be important for minimising the distance of similar media 
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objects in distance space. On the contrary, P18 (pattern difference) optimises the browsing quality. This is not 

unexpected as P18 is widely used in cluster analysis algorithms. Data clustering and visual media browsing follow the 

same optimisation criterion. Interestingly, P18 does not make use of a, the most prominent term is b*c. It seems that a is 

counterproductive for maximising cluster sizes. Together, P18, P19 and P20 are the most robust distance measures that 

outperform most other measures in both retrieval and browsing scenarios. All three utilise the term b*c (product of 

differences in two media objects) that appears superior in many situations over alternative formulations of the same 

aspect (especially, b+c, e.g. used in P1). Below, we have a closer look on this phenomenon. Parameter K (number of 

considered predicates, K=a+b+c+d), even though being variant (determined by parameter f of the quantisation model), 

does not seem to have an influence on retrieval quality or browsing quality. 

Only Q7 (Webster’s intra-class coefficient) and Q8 (Catell’s measure) of the quantitative distance measures are able to 

compete with the predicate-based measures. Both perform well in retrieval and browsing scenarios. Q8 has an especially 

high browsing performance for the Dominant Color and the Edge Histogram descriptors. On Color Layout and 

Homogeneous Texture descriptions it performs poorly. Since the elements of the first two descriptors generally have a 

high variance (as we found in [12]) while Color Layout and Homogeneous Texture elements have a very low variance, it 

seems that Q8 is sensitive to data variance. Indeed, the main component of the measure is a square-rooted Euclidean 

distance that measures distance as the average difference of data values. Another interesting point is that Q7 and Q8 

perform unsatisfactorily on colour descriptions of monochrome content (Brodatz dataset). Since these data vectors 

contain mostly zero values (and, in consequence, have low variances), quantitative measures are unable to fulfill 

retrieval and browsing tasks properly. Besides, the sensitivity of Q7 and Q8 explains, why both measures appear 

frequently among the top three measures (for some descriptors) and among the worst ten measures (for other, less 

suitable descriptors). The most stable quantitative measure is Q10 that measures differences of differences in 

neighbouring data values. Q10 is hardly ever among the best distance measures but performs average in retrieval and 

browsing scenarios. P9 is the only predicate-based measure that performs as bad as the quantitative distance measure. 

Combining a+d, b+c and K as in P9 results in a measure with similar properties as the quantitative distance measures 

have. 

Figures 7-13 depict the best five distance measures per descriptor and the MPEG-7 recommendations. For the three 

performance indicators, mean and standard deviation (averaged over the three considered media collections) are shown. 

These diagrams allow for more detailed analysis of the best distance measures. For Color Layout, Color Structure and 

Region-based Shape P19 performs best. P19 is especially good in optimising the retrieval quality. P6 is the best measure 



 17 

for Scalable Color and second best for Color Layout. As pointed out above, these descriptors have low variance and 

contain many zero values. In consequence, P6 is (despite high variance) a suitable measure. P18 performs best on 

Homogeneous Texture and well on most other descriptors. This is due to its outstanding browsing performance. P1 

(Feature Contrast Model) performs best on Dominant Color and Edge Histogram. The major strength of the P1 measure 

is outstanding retrieval performance (similar to P19). It is interesting to notice that the MPEG-7 distance measures, even 

though performing worse, mostly have a lower standard deviation than the best measures. The reason may be the 

integration of domain knowledge in the MPEG-7 distance measures (e.g. weights in Color Layout descriptor) that make 

them more robust against variances in the description elements. 

Looking at distance terms used in the measures, we can confirm that b*c is the most important term for browsing 

quality. Especially if the variance in the data elements is low, building the product of differences helps distinguishing 

clusters of similar objects from the remaining objects. Psychological research on human visual perception has revealed 

that in many situations differences between the query object and a candidate weigh much stronger than common 

properties. The pattern difference measure, that exclusively relies on b*c, implements this aspect in the most consequent 

manner. In comparison, b+c is a valuable term for both retrieval and browsing that performs well independently of the 

investigated media collection type (low standard deviation for performance indicators). But, in contrast to b*c, b+c 

reaches its highest performance only for description elements with high variance. For others, e.g. Homogeneous Texture, 

it falls behind b*c-based measures (especially, in browsing performance). The term a+d performs well for browsing 

purposes (independently of variance in the data). The term a*d performs poorly. Clusters are small and retrieval 

performance is only average. It seems that for properties that are present/not present in both media objects, using the 

product of a and d gives too much power to d. In the next subsection we will see that d can play an important role to 

improve distance measurement performance. However, employing it to weight a may go too far. 

In conclusion of this subsection, selected predicate-based measures (based on the quantisation model) clearly 

outperform the MPEG-7 recommendations. Remarkably, even though the MPEG-7-recommended distance measures 

make use of domain knowledge and the meaning of description elements, general-purpose measures exist that are able to 

compute distance spaces of higher retrieval and browsing quality. For example, the Feature Contrast Model performs 

better on Dominant Color descriptions than the tailor-made MPEG-7 distance measure. It would be a promising piece of 

future work to further optimise the best distance measures by integrating the same MPEG-7 domain knowledge. 

Additionally, we identified patterns in the best measures that appear to be important success factors. In the next 

subsection we will have a closer look on these "ingredients" of successful distance measures.  
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5.2 Analysis of successful distance measures 

In Subsection 5.1 we saw that b*c (P18) appears to be the best browsing term, while using b+c (P1, P12) leads to better 

retrieval results than b*c alone. It would be interesting to identify the variation of b+c that performs best: b (as in P1, 

weight β is zero!) or b+c (as in P12, P3 etc.). Investigating the data tables (please see the web appendix [36]) we find 

that in about 75% of all cases that b outperforms b+c. The major difference is in retrieval quality. The browsing quality 

is about the same. The superiority of b and earlier findings in [10] justify eliminating the β*c term in P1. 

In browsing scenarios we find that a+d (P6, P12 etc.) and a (P1) are patterns that perform well. It would be interesting 

to know, under which circumstances it makes sense to employ a alone and when to use it in combination with d (d stands 

for properties present in neither of the compared media objects). From closer analysis we can see that a+d is superior 

over a in about 66% of all cases. This term performs sometimes better than others in terms of browsing quality. If d is 

helpful, it usually improves performance to excellent values. Additionally, using a+d performs better than a if the 

investigated data contain many zero values (e.g. Scalable Color descriptor, Figure 13). Then, it makes the distance 

measure more sensitive if absent properties are explicitly included.  

Distance measurement for sparsely populated descriptions is a problem of general interest. We would like to see whether 

terms exist (next to a+d) that perform better than average. Analysing the Brodatz dataset we can see that the best 

measures are P6 and P4. Structurally similar measures, like P7 and P10, perform better as well. However, frequently P6 

outperforms P4, because of the usage of K (number of considered predicates/description elements). Elements with zero 

variance are never considered in the quantisation model and reduce the value of K. P6 is a similarity measure. For 

distance measurement we use the inverse form. Then, a lower K reduces the distance value and therefore, has a 

discriminating effect. Interestingly, P1 performs relatively poor on sparsely populated descriptions. The terms a and b 

alone may not have enough variance to distinguish similar objects successfully. The same is true for Q8. We already saw 

that quantitative measures depend on high variance in the descriptions. P18, P19, P20 (using b*c) perform as well as for 

content with higher variance. 

Summarising our findings so far, we attempt building a hierarchy of successful distance measure patterns. Since most 

terms have a particular strength, we try to order patterns according to their retrieval and browsing performance. Of 

course, this order cannot be absolutely correct for any type of media and descriptor. We do not claim it being generally 

true. It should only help to distil and illustrate our experiences. Below, an expression "A >> B" means, that if pattern A 

is used in a distance measure, then this measure is in average superior over a second measure using pattern B. We find 

the following hierarchies being appropriate: 
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 Retrieval: a*d-b*c >> a-b >> a*d >> b+c >> b*c >> a+d >> a (16) 

 Browsing: b*c >> a+d >> b >> b+c >> a*d (17) 

In equations 16, 17, similarity and distance terms are mixed. Parameter K is not considered, as it is only relevant for 

descriptions with many zero elements. It can be seen that using a (common properties) is of highest importance for 

retrieval purposes. For browsing, using b (properties that appear in the query example) is crucial. One could argue that 

an optimal distance measure could simply be created by employing the best patterns from above and combining them 

appropriately. Some measures show the opposite. P9, for example, combines a+d and b+c, but appears among the worst 

performing distance measures. Instead, (predicate-based) distance measures should still be derived from qualitative 

considerations on the tackled problem domain. 

Furthermore, it would be interesting to identify why some patterns perform better than others. Specifically, we compare 

b*c to b+c and a*d to a+d. In the quantisation model (defined in equation set 1), b, c are defined as the sums of 

non-negative differences xik-xjk over some description elements. The conditions are not relevant here, since they are the 

same for b*c and b+c. The span of xik is M. Therefore, b*c is defined on [0, k*M2] while b+c is defined on [0, 2.k*M] 

only. Variable k is the number of considered elements (k≤K). In consequence, b*c is more discriminative, i.e. it has 

more power for distributing data vectors with low variance on a wider range. Since the operators of the quantisation 

model take care that only relevant description elements are selected, it is more likely that similar elements (low b, c) are 

positioned close to each other. The same argumentation is true for a*d and a+d. The major difference is that a and d 

measure properties existing in both/none of the descriptions. Therefore, a*d is a better retrieval term than a+d (bringing 

descriptions close to the origin of distance space) while b*c is a better browsing term than b+c (bringing similar 

descriptions close to each other). 

In conclusion of this subsection, Table 6 summarises some noteworthy results. For the argumentation we make use of 

the hierarchies defined in equations 16, 17. On Edge Histogram descriptions (high variance, see [12]) P1 outperforms 

P3 and P8 in retrieval quality. P3 does not employ a, P8 uses c in addition. As we found above, the best combination is 

to use a and b. On the same data, Q8 performs better than Q2 (Euclidean distance), even though it uses the Euclidean 

distance. The difference of these two measures is that Q8 uses K and reduces the influence of the Euclidean distance by 

taking the squared root. On Homogeneous Texture descriptions (low variance) P20 outperforms P16. Since the only 

difference between P16 and P20 is the usage of b*c, this finding illustrates the positive influence of this term. For 

Scalable Color descriptions (very low variance) it can be observed that P18 performs much better than P1 (especially, in 

terms of browsing quality). In our opinion this is due to the usage of the b*c pattern. Since b*c is worse than b+c in 
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retrieval quality, P18 performs worse than P1 for pRETRIEVAL. 

5.3 Summary 

Below, the major findings of this section are summarised. 

 Type of descriptors used, characteristics of the queried media set and the properties of human similarity 

perception determine the selection of suitable distance measures. 

 Proximity measures can be identified that outperform the distance measure recommendations of the content-

based visual descriptors proposed in the MPEG-7 standard. The best predicate-based and quantitative distance 

measures achieve 30%-40% better results than the MPEG-7 measures.  

 The predicate-based distance measures perform in average better than the quantitative measures. In particular, the 

measures P18 (pattern difference), P19 (Yule coefficient) and P20 (Pearson coefficient) achieve the highest 

performance. Retrieval quality is maximised by measures Tversky’s Feature Contrast Model P1, the Yule 

coefficient P19 and the Pearson coefficient P20. The pattern difference measure P18 delivers the highest 

browsing quality.  

 Of the quantitative measures, only Q7 (Webster’s intra-class coefficient) and Q8 (Catell’s measure) achieve 

results comparable to the best predicate-based measures. In average, Meehl's index Q10 is the quantitative 

measure that produces the most reliable results. It can be observed that the performance of the quantitative 

measures depends on the existence of high variance in the descriptions.  

 Equations 16 and 17 establish a rough order of successful distance expressions. The term b*c is the paramount 

term for browsing quality. The term b+c maximises the retrieval quality.  

6. Conclusions 

The study presented in this paper evaluates a set of distance measures for their suitability for feature-based visual 

information retrieval. Additionally, we suggest a model for the unification of predicate-based and continuous distance 

measures and derive successful distance patterns from the evaluation results. There are 37 proximity measures utilised 

on seven MPEG-7 descriptors and three media collections. Performance indicators are defined and more than 75000 

tests are performed.  

In the evaluation the best overall distance measures for visual content – as extracted by the visual MPEG-7 descriptors – 
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turn out to be the pattern difference measure, the Feature Contrast Model, the Pearson and the Yule coefficient. Since 

these four measures perform significantly better than the MPEG-7 recommendations, we recommend to examine them in 

more detail (e.g. on media collections from [26]) and to use them for content-based retrieval and browsing applications.  

The major performance gap of proximity measures is often in the retrieval quality. In browsing-like scenarios, the best 

measures are usually only slightly better than the distance measures recommended in the MPEG-7 standard. Generally, 

we found that predicate-based distance measures perform significantly better than quantitative measures (e.g. Euclidean 

distance). This finding supports the introduction of the quantisation model. The quantisation model opens an entirely 

new range of possibilities for similarity measurement in content-based visual information retrieval and browsing. 

In summary, the choice of the most suitable distance function for similarity measurement depends on the descriptors 

used, on the queried media collection and on the level of the user's similarity perception. In this work we endeavour to 

offer suitable distance measures for various situations. In future work, we will implement the distance measures 

identified as the best in the open MPEG-7-based visual information retrieval framework VizIR [11].  
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Xi Xj a b c d 

(1) (1) 1 0 0 0 

(1) (0) 0 1 0 0 

(0) (1) 0 0 1 0 

(0) (0) 0 0 0 1 

Table 1: Application of quantisation model on one-dimensional predicate vectors. The values of a, b, c, d depend on the 

predicate vectors Xi and Xj. 
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No. Measure Comment 
P1 cba βα −−  Feature Contrast Model, Tversky 1977 [35] 

P2 a  No. of co-occurrences  

P3 cb +  Hamming distance 

P4 da +  Complement of Hamming distance [14] 
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Table 2: Predicate-based distance measures. See Subsection 3.3 for details. 
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No. Measure Comment 
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Table 3: Quantitative distance measures. See Subsection 3.3 for details. 
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Collection No. Images Description 

1 19 Regular, chequered patterns 

2 38 Dark white noise 

3 33 Moon-like surfaces 

Brodatz 

4 35 Water-like surfaces 

5 73 Humans in nature (difficult) 

6 17 Images with snow (mountains, skiing) 

7 76 Animals in nature (difficult) 

Corel 

8 27 Large coloured flowers 

9 12 Bavarian communal arms 

10 10 All Bavarian arms (difficult) 

11 18 Dark objects / light un-segmented shield 

Coats-of-arms 

12 14 Major charges on blue or red shield 

Table 4: Ground truth information for Brodatz, Corel and coats-of-arms dataset. 
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 p pRETRIEVAL pBROWSING 

Descriptor Best Ratio to MP7 Best Ratio to MP7 Best Ratio to MP7 

Color Layout P19 67,1% P19 29,6% P6 67,3% 

Color Structure P19 61,2% P19 18,5% P18 66,1% 

Dominant Color P19 72,5% P1 30,4% P18 84,4% 

Edge Histogram P19 31,6% P20 3,7% P18 48,7% 

Homogeneous Texture P18 48,6% P20 10,1% P18 43,7% 

Region-based Shape P19 62,2% P19 23,0% P18 73,1% 

Scalable Color P6 65,5% P19 48,6% P4 59,6% 

Table 5: Average relative performance indicator values of best distance measures related to MPEG-7 recommendations. 

Ratios are defined as performance indicator value for best measure / value for MPEG-7 distance measure (percent). 
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Descriptor Measure 1 Measure 2 Ratio (p) Ratio (pRETRIEVAL) Ratio (pBROWSING) 

Edge Histogram P1 P3 44,1% 12,4% 51,9% 

Edge Histogram P1 P8 46,3% 17,4% 51,4% 

Edge Histogram Q8 Q2 49,4% 39,8% 55,8% 

Homogeneous Texture P20 P16 89,7% 35,8% 98,5% 

Scalable Color P18 P20 84,5% 84,3% 84,6% 

Table 6: Relative performance indicator values of selected distance measures for selected descriptors. Ratios are defined 

as in Table 5. 
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Figure 1: Test datasets. Left two columns: Brodatz dataset, middle: Corel dataset, right: coats-of-arms dataset. 
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Figure 2: Example for clusters in distance space. The query example is positioned in the origin. Since distance measures 

map feature vectors to scalar values, distance space is always one-dimensional. 
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Figure 3: Workflow in public evaluation system. The user enters XML MPEG-7 descriptions in a web form. A server 

procedure computes the normalised data matrix and notifies the site manager. The site manager decides whether or not 

the submitted collection is acceptable. If yes, evaluation is performed and evaluation results are added to the results 

website. 
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Figure 4: Best/worst ten distance measures ranked by performance indicator p (a: percentage of top 3 occurrences over 

all collections and descriptors, b: percentage of top 10 occurrences, c: percentage of occurrences among the worst 10 

distance measures).
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Figure 5: Best/worst ten distance measures ranked by performance indicator pRETRIEVAL (a: percentage of top 3 

occurrences over all collections and descriptors, b: percentage of top 10 occurrences, c: percentage of occurrences 

among the worst 10 distance measures).
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Figure 6: Best/worst ten distance measures ranked by performance indicator pBROWSING (a: percentage of top 3 

occurrences over all collections and descriptors, b: percentage of top 10 occurrences, c: percentage of occurrences 

among the worst 10 distance measures). 
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Figure 7: Performance of the best five distance measures and MPEG-7 recommendation on Color Layout descriptions 

(left: performance indicator p, middle: pRETRIEVAL, right: pBROWSING). The vertical axis shows the indicator values averaged 

over the three considered collections (diamond: mean, line: standard deviation). 
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Figure 8: Performance of the best five distance measures and MPEG-7 recommendation on Color Structure descriptions 

(left: performance indicator p, middle: pRETRIEVAL, right: pBROWSING). The vertical axis shows the indicator values averaged 

over the three considered collections (diamond: mean, line: standard deviation). 
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Figure 9: Performance of the best five distance measures and MPEG-7 recommendation on Dominant Color 

descriptions (left: performance indicator p, middle: pRETRIEVAL, right: pBROWSING). The vertical axis shows the indicator 

values averaged over the three considered collections (diamond: mean, line: standard deviation). 
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Figure 10: Performance of the best five distance measures and MPEG-7 recommendation on Edge Histogram 

descriptions (left: performance indicator p, middle: pRETRIEVAL, right: pBROWSING). The vertical axis shows the indicator 

values averaged over the three considered collections (diamond: mean, line: standard deviation). 
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Figure 11: Performance of the best five distance measures and MPEG-7 recommendation on Homogeneous Texture 

descriptions (left: performance indicator p, middle: pRETRIEVAL, right: pBROWSING). The vertical axis shows the indicator 

values averaged over the three considered collections (diamond: mean, line: standard deviation). 
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Figure 12: Performance of the best five distance measures and MPEG-7 recommendation on Region-based Shape 

descriptions (left: performance indicator p, middle: pRETRIEVAL, right: pBROWSING). The vertical axis shows the indicator 

values averaged over the three considered collections (diamond: mean, line: standard deviation). 
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Figure 13: Performance of the best five distance measures and MPEG-7 recommendation on Scalable Color 

descriptions (left: performance indicator p, middle: pRETRIEVAL, right: pBROWSING). The vertical axis shows the indicator 

values averaged over the three considered collections (diamond: mean, line: standard deviation). 

 


