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Abstract —We propose a novel algorithmfor theidentification of facesfromimage samples. Thealgorithmusesthe
Kalman filter toidentify significant facial traits. Kalmanfacesarecompact visual model sthat represent theinvariant
proportionsof face classes. Weemploy theKal manfacesappr oach on the Physi cs-based Face Database (provided by
the University of Oulu), a collection of face images that were recorded under varying illumination conditions.
Kalmanfacesshowrobustnessagainst luminance changesand outperformtheclassic Eigenfacesapproachinterms
of identification performance and algorithm speed. The paper discusses Kalmanfaces extraction, application,
tunableparameters, experimental resultsandrelated work on Kalman filter applicationinfacerecognition.
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1. INTRODUCTION

Face recognition is one of the classic areas of pattern
recognition [1]. Applications are manifold ranging
from video surveillance to content-based retrieval.
Research focuses on two problem areas: detection of
faces in visual media streams and identification of
detected faces. Face identification comprises of
holistic approaches(e.g. Eigenfaces[2]), classification
approaches (Linear Discriminant Analysis, etc.) and
regressionapproaches(e.g. Neural Networks).

We propose a novel holistic approach for face
identification from image samples that uses a
simplified Kalman filter [3]-[4] to detect luminance-
invariant facefeatures. The Kalman filter isfrequently
employed in face recognition for face detection in
videos. However, the author is not aware of proposals
to use the powerful linear data processing capabilities
of theKamanfilter for theextraction of facefeatures.

We employ the Kalman filter on a dataset of face
images that were recorded under varying illumination
conditions. These data are distinguished by high
variations of the luminances of characteristic face
elements(nosetip, eyes, etc.) and partia invisibility of
the typically considered face features (eyes, mouth,
etc.). The results for classic Eigenfaces confirm that
facerecognition under varyingilluminationisahardto
solve problem. The Kalman filter considers variances
in the data analysis process. Hence, it should be an
advantageous element of a model for robust face
identification under such circumstances. The paper
explains the extraction of Kalmanfacesin Section 2
and discussesexperimental results in Section 3.

2. KALMANFACES APPROACH
2.1. Kalmanfaces Extraction

The Kalmanfaces approach identifies the most likely

face classfor animage by feature similarity. It expects
every face class (person) to be represented by a
sequence of image samples. The number of inputs
should not be smaller than 3-5 for reasonable
application of the Kalman filter. Each face class is
represented by a single feature vector that is extracted
asfollows:

1. Image normalization. All face images are
transformed to luminance matricesof thesamesize (for
example, just three by three pixels). Every pixel
representsonefaceregion.

2. Averaging. An averagefaceiscomputed fromthe
normalizedimagesby aKa manfilter (“Kamanface”).

3. Feature extraction. Only those regions of the
Kamanface are considered as features that are
sufficiently invariant. The luminance variance of a
region must not exceed acertainthreshol d.

The Kalman filter is applied in the second step to
compute aclassaveragethat representsthefacial traits
adequately. Fig. 1 shows an example. The face class
consists of about ten images (a). Element b shows the
mean image, element ¢ shows the Kalman-averaged
image. As can be seen, the Kalman-averaged image
contains a large amount of the high-frequency
information present in the examples. It is almost
invariant against the varying lighting in the samples.
The average image b is not able to capture relevant
facial traits properly. It consists of very dark self-
similar pixel neighbourhoods.

Kamanface averaging isperformed asfollows. We
assumethe classsampl esto beatemporal sequenceand
computethe Ka man estimatefor each pixel:
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X istheestimate of the pixel averageattimet (thetth
exampleimage), |, is the luminance value and k; is the
Kamanweight giveninequation (2) (dependingonthe
luminancevariancesat timestandt-1).
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Fig. 1. Kalmanface example. Kalmanface c is constructed from face class a (b is the mean image).
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Weight k; is the crucia factor in this simplified
version of the Kalman filter that does not consider
complex noise models and weights for the
measurements |,. k; approaches zero if the variance
increases, i.e. if theluminance of apixel changesfrom
sampleto sample. In this case, the Kalman filter trusts
ontheearlier estimateand disregardsl,. k; approaches1
if thevariance decreases. Inthiscase, the Kalmanfilter
trustsontheluminance. Theshorttimebehaviour of the
Kamanfilter isto eliminatevariances. Inthelongterm
Kamanfiltering resultsinan averagethat preservesthe
properties of the input sequence (see Fig. 1). It
processesall informationthatisprovided[3].

In the third step, features are extracted from the
Kaman-averaged face. We select those pixels as face
features that have a luminance variance o; below a
certain threshold. Hence, the face feature vector
consistsonly of thosetraitsthat arerelatively invariant
over thesamples.

2.2. Similarity M easur ement

Kamanfaces querying isastraightforward application
of the vector space model. We assume an Euclidean
feature space. The query example is normalized to the
same number of pixels as the face classes and
compared to each of the Kamanfaces. That is, one
distance measurement operation per individua in the
database hasto be performed. We suggest afirst order
Minkowski distancefor dissimilarity measurement.
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The dissmilarity of a face f to a face class ¢
(represented by a Kamanface) depends on the first
order distance normalized by the feature vector sizen,
of the face class. Only those pixels are considered for
distance measurement that satisfy the variance
condition stated above. Thisfeature selection may (and
usually will) changefromfaceclasstofaceclass.

2.3. Discussion

We propose the Kalmanfaces approach as a solution
for face detection in environments with high variance
(e.g. varying camera angles, varying lighting). In
particular, Kamanfaces have the following
advantages:

1. Face classinformation is easily extensible. One
further iteration of the Kalman filtering process is
sufficient to add a new face image of an aready
registered person.

2. Theapplication of thevariance conditionleadsto
short feature vectors. Distance measurement of short
vectorsby alinear functionallowsfor fast querying.

3. The length of the feature vectors is generally
independent of the number of individuals in the
database. Effective discrimination will require longer
feature vectors for larger databases. However,
database size and feature vector length are not as
closely linked as, for example, in the Eigenfaces
approach. In classic Eigenfacesthe number of weights
equal sthenumber of faceclasses[2].

Theproposed Ka manfacesapproach doesnot try to
influence the order of theimages that are employedin
thefiltering process. If k; isassumed constant, then the
Kaman filter tends to lay a higher weight on the last
samples than on the first. However, we found that in
practical application k; alone determines the extent to
which samples are represented in Kalmanfaces. A
technical report that describes these findings will be
made available on the author's website by the time of
the workshop.

The Kaman filter weight (equation 2) and the
variancethreshold cause—to acertainextent—opposite
effects. The application of k; leads to a maximum of
entropy in the Kalmanfaces. However, only those
pixels are picked by the variance condition that are
sufficiently  invariant  (“trustworthy”).  Hence,
Kamanfacesfeaturevectorsrepresent faceclassesby a
maximum of information at acontrollablelevel of trust.

3. EXPERIMENTSAND RESULTS

Below, we compare the performance of Kalmanfaces
to the Eigenfaces approach [2] on the Physics-based
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Fig. 2. Performance of Eigenfaces and Kamanfaces at different variance threshold levels (not smoothed).
“v=50%" means that the Kalmanfaces variance threshold is set to 50%.

Face Dataset provided by the University of Oulu [5].
Every Eigenfaces class @, is averaged over all class
members (highest quality). The Oulu dataset
comprises of photographs showing individuals that
were recorded with the same expression from dlightly
varying camera angles under highly variant lighting
conditions. Kalmanface averaging is employed with
the following approximation for all pixels of the first
two faces(otherwise, k; would alwaysbezero):

X1=|0+|1 (4)

3.1. Face Retrieval Performance

Fig. 2 summarizesthe face identification performance
depending on the feature size, i.e. the frame length in
pixels of the quadratic face images. Ka manfaces that
use all feature elements (variance threshold of 100%,
depicted as “v=100%") perform comparable to
Eigenfaces. Interestingly, Eigenfaces  and
Kamanfaceswith avariancethreshold of 50% or more
(al featureswith at most 50% of themaximumvariance
are used) fail in reaching 100% face identification
performanceindependently of featuresize. Obviously,
these parameterizations lead to feature vectors that
contain partially misleading elements (those with high
variance). Kalmanfaces with a variance threshold of
50% perform already significantly better than
Kamanfaceswith athreshold of 100% (agap of about
20%faceidentification performance).

However, the best performance can be observed for
Kamanfaceswith avariance threshold of 20%. At this
level the relationship of entropy and invariance in the
feature data leads to optimal results. The
parameterization reaches a face classification
performance of 100% for features of 14 by 14 pixels.
Evenfor very short featurevectorsitisalready superior
over Eigenfaces. A Kalmanface of 6 by 6 pixelsand a

variance threshold of 20% lead to a feature vector of
approximately 23 (6"2*0,65; see Subsection 3.2)
elements. At a feature size of about 127 elements
(1472*0,65) the face identification performance
reaches the ceiling. For more accurate Kalmanfaces
performance remains almost constant at the optimal
recognitionlevel.

The results reflect the seriousness of the
investigated recognition problemintherel atively weak
performance of the Eigenfaces. We have decided to
compare Kalmanfaces to this approach, because they
are dtructurally similar. Firstly, both are holistic
approaches. That is, they derive face similarity from
the entireimage dataand do not try to extract particular
facial features. Secondly, both methods neglect
semantic knowledge. In fact, both methods could be
applied to arbitrary object recognition problems.
Eventualy, neither Kalmanfaces nor Eigenfaces
require a training process for sample-based
classification. Without doubt, a feature-based
approach that makes use of kernel-based learning (e.g.
a Support Vector Machine) would be able to
outperformEigenfaces (especially, onasmall but well-
defined scientific database). However, it would be
difficult to find a relation of such results to the
performance gain achieved by Kamanfaces with
increasingfeaturesize.

Clearly, the variance threshold is the decisive
parameter in the application of Kalmanfaces. At a
threshold of 50% Ka manfaces outperform Eigenfaces
clearly, at 20% retrieval performance is soon optimal.
At very small values (1% and lower) performance
decreases. Precisejudgement of thevariancethreshold
iscrucial for retrieval performance.

3.2. Relevance of the Variance Condition

The variance threshold determines which features are
used for Kalmanfaces similarity measurement. Only
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Fig. 3. Misclassification example (images from [6]). If all features (bottom line, a-c) are considered, then face a
is misclassified as element of b instead of c. If only features with a variance of at most 50% of the maximum are
considered (colored rectangles in elements d-f), then the face is classified correctly.
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Fig. 4. Variance and feature size. Feature size depends on the threshold. The graph uses two log scale at the

intervals [0, 0.1] and [0.1, 1].

those features of a face class are selected that have a
variance o bel ow thethreshold (givenin percent of the
maximum variance in the face class). That is, only
sufficiently invariant features are considered. The
application of variance thresholds causes no
computational overhead, sincethevarianceshaveto be
calculated for Kalmanfaceaveraging anyway.

Fig. 3 shows a typical misclassification example
(feature vector edgelengthsof four pixels, faceimages
from the Yale dataset [6]). If a threshold of 100% is
used, face a is misclassified as member of face classb
instead of c. If athreshold of 50% is employed, fewer
regionsare considered (depending onthefaceclasses).
Then, face d is correctly classified as a member of
Kamanfaceclassf.

However, it has to be mentioned that the reduction
of thefeaturevector tojust eleven elementsinFig. 3fis
not typical. Fig. 4 gives the average relationship of
variance threshold value and feature vector size (in
percent to the Kalmanface class sizes). In average, a
variance threshold of 50% leads to the elimination of
just 3-5% of thefeatureswith highest variance.

4. CONCLUSION

We propose a novel approach for face identification
that uses the Kalman filter for face class averaging.
Experimental evaluation shows that Kalmanfaces
perform excellently on face imagesthat were recorded
under varying lighting conditions. Classic Eigenfaces

are outperformed by up to 65%. The Kalmanfaces
approach scales well with increasing numbers of
individuals and face examples. | n future work, we will
investigate its sensitivity to more/less-variant face
classesand itsperformance on other faceidentification
problems(e.g. aging) and databases(e.g. FERET).
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