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Abstract – We propose a novel algorithm for the identification of faces from image samples. The algorithm uses the 

Kalman filter to identify significant facial traits. Kalmanfaces are compact visual models that represent the invariant 

proportions of face classes. We employ the Kalmanfaces approach on the Physics-based Face Database (provided by 

the University of Oulu), a collection of face images that were recorded under varying illumination conditions. 

Kalmanfaces show robustness against luminance  changes and outperform the classic Eigenfaces approach in terms 

of identification performance and algorithm speed. The paper discusses Kalmanfaces extraction, application, 

tunable parameters, experimental results and related work on Kalman filter application in face recognition. 
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1. INTRODUCTION 
 
Face recognition is one of the classic areas of pattern 

recognition [1]. Applications are manifold ranging 

from video surveillance to content-based retrieval. 

Research focuses on two problem areas: detection of 

faces in visual media streams and identification of 

detected faces. Face identification comprises of 

holistic approaches (e.g. Eigenfaces [2]), classification 

approaches (Linear Discriminant Analysis, etc.) and 

regression approaches (e.g. Neural Networks). 
We propose a novel holistic approach for face 

identification from image samples that uses a 

simplified Kalman filter [3]-[4] to detect luminance-
invariant face features. The Kalman filter is frequently 

employed in face recognition for face detection in 

videos. However, the author is not aware of proposals 

to use the powerful linear data processing capabilities 

of the Kalman filter for the extraction of face features.  
We employ the Kalman filter on a dataset of face 

images that were recorded under varying illumination 

conditions. These data are distinguished by high 

variations of the luminances of characteristic face 

elements (nose tip, eyes, etc.) and partial invisibility of 

the typically considered face features (eyes, mouth, 

etc.). The results for classic Eigenfaces confirm that 

face recognition under varying illumination is a hard to 

solve problem. The Kalman filter considers variances 

in the data analysis process. Hence, it should be an 

advantageous element of a model for robust face 

identification under such circumstances. The paper 

explains the extraction of Kalmanfaces in Section 2 

and discusses experimental results in Section  3. 
 

 
2. KALMANFACES APPROACH 
 
2.1. Kalmanfaces Extraction 
 
The Kalmanfaces approach identifies the most likely 

face class for an image by feature similarity. It expects 

every face class (person) to be represented by a 

sequence of image samples. The number of inputs 

should not be smaller than 3-5 for reasonable 

application of the Kalman filter. Each face class is 

represented by a single feature vector that is extracted 

as follows: 
1. Image normalization. All face images are 

transformed to luminance matrices of the same size (for 

example, just three by three pixels). Every pixel 

represents one face region. 
2. Averaging. An average face is computed from the 

normalized images by a Kalman filter (“Kalmanface”). 
3. Feature extraction. Only those regions of the 

Kalmanface are considered as features that are 

sufficiently invariant. The luminance variance of a 

region must not exceed a certain threshold. 
The Kalman filter is applied in the second step to 

compute a class average that represents the facial traits 

adequately. Fig. 1 shows an example. The face class 

consists of about ten images (a). Element b shows the 

mean image, element c shows the Kalman-averaged 

image. As can be seen, the Kalman-averaged image 

contains a large amount of the high-frequency 

information present in the examples. It is almost 

invariant against the varying lighting in the samples. 

The average image b is not able to capture relevant 

facial traits properly. It consists of very dark self-
similar pixel neighbourhoods. 

Kalmanface averaging is performed as follows. We 

assume the class samples to be a temporal sequence and 

compute the Kalman estimate for each pixel: 
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xt is the estimate of the pixel average at time t (the tth 

example image), lt is the luminance value and kt is the 

Kalman weight given in equation (2) (depending on the 

luminance variances at times t and t-1). 
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Weight kt is the crucial factor in this simplified 

version of the Kalman filter that does not consider 

complex noise models and weights for the 

measurements lt. kt approaches zero if the variance 

increases, i.e. if the luminance of a pixel changes from 

sample to sample. In this case, the Kalman filter trusts 

on the earlier estimate and disregards lt. kt approaches 1 

if the variance decreases. In this case, the Kalman filter 

trusts on the luminance. The short time behaviour of the 

Kalman filter is to eliminate variances. In the long term 

Kalman filtering results in an average that preserves the 

properties of the input sequence (see Fig. 1). It 

processes all information that is provided [3]. 
In the third step, features are extracted from the 

Kalman-averaged face. We select those pixels as face 

features that have a luminance variance σt below a 

certain threshold. Hence, the face feature vector 

consists only of those traits that are relatively invariant 

over the samples.  
 
2.2. Similarity Measurement 
 
Kalmanfaces querying is a straightforward application 

of the vector space model. We assume an Euclidean 

feature space. The query example is normalized to the 

same number of pixels as the face classes and 

compared to each of the Kalmanfaces. That is, one 

distance measurement operation per individual in the 

database has to be performed. We suggest a first order 

Minkowski distance for dissimilarity measurement. 
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The dissimilarity of a face f to a face class c 

(represented by a Kalmanface) depends on the first 

order distance normalized by the feature vector size nc 

of the face class. Only those pixels are considered for 

distance measurement that satisfy the variance 

condition stated above. This feature selection may (and 

usually will) change from face class to face class. 

2.3. Discussion 
 
We propose the Kalmanfaces approach as a solution 

for face detection in environments with high variance 

(e.g. varying camera angles, varying lighting). In 

particular, Kalmanfaces have the following 

advantages: 
1. Face class information is easily extensible. One 

further iteration of the Kalman filtering process is 

sufficient to add a new face image of an already 

registered person. 
2. The application of the variance condition leads to 

short feature vectors. Distance measurement of short 

vectors by a linear function allows for fast querying.  
3. The length of the feature vectors is generally 

independent of the number of individuals in the 

database. Effective discrimination will require longer 

feature vectors for larger databases. However, 

database size and feature vector length are not as 

closely linked as, for example, in the Eigenfaces 

approach. In classic Eigenfaces the number of weights 

equals the number of face classes [2]. 
The proposed Kalmanfaces approach does not try to 

influence the order of the images that are employed in 

the filtering process. If kt is assumed constant, then the 

Kalman filter tends to lay a higher weight on the last 

samples than on the first. However, we found that in 

practical application kt alone determines the extent to 

which samples are represented in Kalmanfaces. A 
technical report that describes these findings will be 
made available on the author's website by the time of 
the workshop.  

The Kalman filter weight (equation 2) and the 

variance threshold cause – to a certain extent – opposite 

effects. The application of kt leads to a maximum of 

entropy in the Kalmanfaces. However, only those 

pixels are picked by the variance condition that are 

sufficiently invariant (“trustworthy”). Hence, 

Kalmanfaces feature vectors represent face classes by a 

maximum of information at a controllable level of trust. 
 
 
3. EXPERIMENTS AND RESULTS 
 
Below, we compare the performance of Kalmanfaces 

to the Eigenfaces approach [2] on the Physics-based 

 

Fig. 1. Kalmanface example. Kalmanface c is constructed from face class a (b is the mean image). 



Face Dataset provided by the University of Oulu [5]. 

Every Eigenfaces class Ωi is averaged over all class 

members (highest quality). The Oulu dataset 

comprises of photographs showing individuals that 

were recorded with the same expression from slightly 

varying camera angles under highly variant lighting 

conditions. Kalmanface averaging is employed with 

the following approximation for all pixels of the first 

two faces (otherwise, k1 would always be zero): 
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3.1. Face Retrieval Performance 
 
Fig. 2 summarizes the face identification performance 

depending on the feature size, i.e. the frame length in 

pixels of the quadratic face images. Kalmanfaces that 

use all feature elements (variance threshold of 100%, 

depicted as “v=100%”) perform comparable to 

Eigenfaces. Interestingly, Eigenfaces and 

Kalmanfaces with a variance threshold of 50% or more 

(all features with at most 50% of the maximum variance 

are used) fail in reaching 100% face identification 

performance independently of feature size. Obviously, 

these parameterizations lead to feature vectors that 

contain partially misleading elements (those with high 

variance). Kalmanfaces with a variance threshold of 

50% perform already significantly better than 

Kalmanfaces with a threshold of 100% (a gap of about 

20% face identification performance).  
However, the best performance can be observed for 

Kalmanfaces with a variance threshold of 20%. At this 

level the relationship of entropy and invariance in the 

feature data leads to optimal results. The 

parameterization reaches a face classification 

performance of 100% for features of 14 by 14 pixels. 

Even for very short feature vectors it is already superior 

over Eigenfaces. A Kalmanface of 6 by 6 pixels and a 

variance threshold of 20% lead to a feature vector of 

approximately 23 (6^2*0,65; see Subsection 3.2) 

elements. At a feature size of about 127 elements 

(14^2*0,65) the face identification performance 

reaches the ceiling. For more accurate Kalmanfaces 

performance remains almost constant at the optimal 

recognition level. 
The results reflect the seriousness of the 

investigated recognition problem in the relatively weak 

performance of the Eigenfaces. We have decided to 

compare Kalmanfaces to this approach, because they 

are structurally similar. Firstly, both are holistic 

approaches. That is, they derive face similarity from 

the entire image data and do not try to extract particular 

facial features. Secondly, both methods neglect 

semantic knowledge. In fact, both methods could be 

applied to arbitrary object recognition problems. 

Eventually, neither Kalmanfaces nor Eigenfaces 

require a training process for sample-based 

classification. Without doubt, a feature-based 

approach that makes use of kernel-based learning (e.g. 

a Support Vector Machine) would be able to 

outperform Eigenfaces (especially, on a small but well-
defined scientific database). However, it would be 

difficult to find a relation of such results to the 

performance gain achieved by Kalmanfaces with 

increasing feature size. 
Clearly, the variance threshold is the decisive 

parameter in the application of Kalmanfaces. At a 

threshold of 50% Kalmanfaces outperform Eigenfaces 

clearly, at 20% retrieval performance is soon optimal. 

At very small values (1% and lower) performance 

decreases. Precise judgement of the variance threshold 

is crucial for retrieval performance.  
 

3.2. Relevance of the Variance Condition 
 
The variance threshold determines which features are 

used for Kalmanfaces similarity measurement. Only 

 

Fig. 2. Performance of Eigenfaces and Kalmanfaces at different variance threshold levels (not smoothed). 
“v=50%” means that the Kalmanfaces variance threshold is set to 50%. 



those features of a face class are selected that have a 

variance σt below the threshold (given in percent of the 

maximum variance in the face class). That is, only 

sufficiently invariant features are considered. The 

application of variance thresholds causes no 

computational overhead, since the variances have to be 

calculated for Kalmanface averaging anyway. 
Fig. 3 shows a typical misclassification example 

(feature vector edge lengths of four pixels, face images 

from the Yale dataset [6]). If a threshold of 100% is 

used, face a is misclassified as member of face class b 

instead of c. If a threshold of 50% is employed, fewer 

regions are considered (depending on the face classes). 

Then, face d is correctly classified as a member of 

Kalmanface class f. 
However, it has to be mentioned that the reduction 

of the feature vector to just eleven elements in Fig. 3f is 

not typical. Fig. 4 gives the average relationship of 

variance threshold value and feature vector size (in 

percent to the Kalmanface class sizes). In average, a 

variance threshold of 50% leads to the elimination of 

just 3-5% of the features with highest variance. 
 
 
4. CONCLUSION 
 
We propose a novel approach for face identification 

that uses the Kalman filter for face class averaging. 

Experimental evaluation shows that Kalmanfaces 

perform excellently on face images that were recorded 

under varying lighting conditions. Classic Eigenfaces 

are outperformed by up to 65%. The Kalmanfaces 

approach scales well with increasing numbers of 

individuals and face examples. In future work, we will 

investigate its sensitivity to more/less-variant face 

classes and its performance on other face identification 

problems (e.g. aging) and databases (e.g. FERET).  
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Fig. 3. Misclassification example (images from [6]). If all features (bottom line, a-c) are considered, then face a 
is misclassified as element of b instead of c. If only features with a variance of at most 50% of the maximum are 
considered (colored rectangles in elements d-f), then the face is classified correctly. 
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Fig. 4. Variance and feature size. Feature size depends on the threshold. The graph uses two log scale at the 
intervals [0, 0.1] and [0.1, 1]. 
 


