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Abstract 

 
We propose a novel algorithm for the identification 

of faces from image samples. The algorithm uses the 
Kalman filter to identify significant face features. We 
employ the Kalmanfaces approach on a database of 
face images that show a variety of different expressions 
and were recorded under varying lighting conditions. 
Kalmanfaces show robustness against distortion and 
outperform the classic Eigenfaces approach in terms of 
identification performance and algorithm speed. 
 

1. Introduction 
 

Face recognition is one of the classic areas of 
pattern recognition [6]. Applications are manifold 
ranging from video surveillance to content-based 
retrieval. Face recognition research focuses on two 
problem areas: detection of faces in visual media 
objects and identification of detected faces. 

We propose a novel approach for face identification 
from image samples that uses a simplified Kalman 
filter [2, 4] to detect invariant face features. The 
Kalman filter is frequently employed in face 
recognition for face detection in video sequences. 
However, the author is not aware of proposals to use 
the powerful linear data processing capabilities of the 
Kalman filter for the extraction of face features.  

We employ the Kalman filter on a dataset of face 

images that were recorded under varying lighting 

conditions and show a variety of facial expressions. These 

data are distinguished by a high variance of location and 

shape of the typically considered face features (eyes, 

mouth, etc.). The Kalman filter considers variances in the 

data analysis process. Hence, we expect it to be an 

advantageous element of an algorithm for robust face 

identification under such circumstances. 
The paper is organized as follows. Section 2 explains 

the Kalmanfaces extraction process. Section 3 discusses 
experiments and results. Section 4 sketches related 

work in face recognition and Kalman filter application. 
 

2. The Kalmanfaces Approach 
 
2.1 Kalmanfaces Extraction 
 

The Kalmanfaces approach identifies the most likely 
face class for an image by feature similarity. It expects 
every face class (person) to be represented by a 
sequence of examples. The number of inputs should not 
be smaller than 3-5 for reasonable application of the 
Kalman filter. Each face class is represented by a single 
feature vector that is extracted as follows: 

1. Image normalization. All face images are 
transformed to luminance matrices of the same size (for 
example, just three by three pixels). 

2. Averaging. An average face is computed from the 
normalized images by a Kalman filter (“Kalmanface”). 

3. Feature extraction. Only those regions (pixels) of 
the Kalmanface are considered as features that are 
sufficiently invariant. The luminance variance of a 
region must not exceed a certain threshold. 

The Kalman filter is applied in the second step to 
compute a class average that represents the facial traits 
adequately. Figure 1 shows an example. The face class 
consists of the ten images on the left (a). Element b 
shows the mean image, element c shows the Kalman-
averaged image. As can be seen, the Kalman-averaged 
image contains more of the high-frequency information 
of the examples than the average image. The properties 
of the Kalman filter cause that variances in expression 
are preserved and varying lighting conditions are almost 
absorbed (the mean image has a light grey background). 

Kalmanface averaging is performed as follows. We 
assume the class samples to be a temporal sequence 
and compute the Kalman estimate for each pixel: 
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xt is the estimate of the pixel average at time t (the 
tth example image), lt is the luminance value and kt is 



the Kalman weighting factor (depending on the 
luminance variances at times t and t-1): 
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Weight kt is the crucial factor in this simplified version 

of the Kalman filter that does not consider complex noise 

models. kt approaches zero if the variance increases, i.e. if 

the luminance of a pixel changes from sample to sample. 

In this case, the Kalman filter trusts on the earlier estimate 

and disregards lt. In contrast, kt approaches 1 if the 

variance decreases. In this case, the Kalman filter trusts on 

the luminance. The short time behaviour of the Kalman 

filter is to eliminate variances. In the long term Kalman 

filtering results in an average that preserves the properties 

of input sequence (see Figure 1). It processes all 

information that is provided [2]. 
In the third step, features are extracted from the 

Kalman-averaged face. We select those pixels as face 
features that have a luminance variance σt below a 
certain threshold. Hence, the face feature vector 
consists only of those traits that are relatively invariant 
over the samples. The threshold is an endogenous 
variable (Section 3 discusses approximations). 
 
2.2 Similarity Measurement 
 

Kalmanfaces querying is a straightforward application 

of the vector space model. We assume an Euclidean 

feature space. The query example is normalized to the 

same number of pixels as the face classes and compared to 

all Kalmanfaces. That is, one distance measurement 

operation per individual in the database has to be 

performed. We suggest a first order Minkowski distance 

(city block distance) for dissimilarity measurement. It has 

to be noted that only those pixels are considered for 

distance measurement that satisfy the variance condition 

stated above. This feature selection may (and usually will) 

change from face class to face class. 
 
2.3 Discussion 
 

We propose the Kalmanfaces approach as a solution 

for face detection in environments with high variance 
(e.g. varying facial expressions, varying lighting). In 
particular, Kalmanfaces have the following advantages: 

1. Face class information is easily extensible. One 

further iteration of the Kalman filtering process is 

sufficient to add a new face image of an already 
registered person. 

2. The application of the variance condition leads to 
short feature vectors. Distance measurement of short 
vectors by a linear function allows for efficient querying.  

3. The length of the feature vectors is generally 
independent of the number of individuals in the 
database. Effective discrimination will require longer 
feature vectors for larger databases. However, database 
size and feature vector length are not as closely linked 
as, for example, in the Eigenfaces approach. In classic 
Eigenfaces, the number of weights equals the number 
of face classes in the database [3]. 
 

3. Results 
 

Below, we compare the performance of Kalmanfaces 
to the Eigenfaces approach [3] on the Yale dataset [5]. 
Every Eigenfaces class Ωi is averaged over all class 
members (highest quality). The Yale dataset comprises 
of photographs showing individuals with varying facial 
expressions and under varying lighting conditions. The 
nearest neighbour function is used for image resizing. 
Kalmanfaces and Eigenfaces are implemented as Matlab 
function and can be downloaded from [1]. Kalmanface 
averaging is employed with the following approximation 
for all pixels of the first two faces (k1 is always zero): 
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3.1 Face Retrieval Performance 
 

Figure 2 summarizes the face identification 
performance depending on the feature size, i.e. the 
frame length in pixels of the quadratic face images. 
Kalmanfaces that use all feature elements (variance 
threshold of 100%, depicted as “v=100%”) outperform 

 

Figure 1. Kalmanface example. Kalmanface c is constructed of face class a (b is the mean image). 



Eigenfaces slightly. Especially for very small feature 
vectors such Kalmanfaces are superior over 
Eigenfaces. (A feature size of 2 results in a feature 
vector of four elements.)  Interestingly, Eigenfaces and 
Kalmanfaces with a variance threshold of 50% or more 
(all features with at most 50% of the total variance are 
used) fail in reaching 100% face identification 
performance independently of feature size. Obviously, 
these parameterizations lead to feature vectors that 
contain partially misleading elements (those with high 
variance). Kalmanfaces with a variance threshold of 
50% perform already significantly better than 
Kalmanfaces with a threshold of 100% (a constant gap 
of about 10% face identification performance).  

However, the best performance can be observed for 
Kalmanfaces with a variance threshold of 10%. This 
parameterization soon reaches a face classification 
performance of 100%. Except for very short feature 
vectors it is always superior over Eigenfaces. Clearly, 
the variance threshold is the decisive parameter in the 
application of Kalmanfaces.  

 
3.2 Relevance of the Variance Condition 
 

The variance threshold determines which features 
are used for Kalmanfaces similarity measurement. Only 
those features of a face class are selected that have a 
variance σt below the threshold (given in percent of the 
maximum variance in the face class). That is, only 
sufficiently invariant features are considered. The 
application of variance thresholds causes no 
computational overhead, since the variances have to be 
calculated for Kalmanface averaging anyway. 

Figure 3 shows a typical misclassification example 
(feature vector edge lengths of four pixels). If a 
threshold of 100% is used, face a is misclassified as 
member of face class b instead of c. If a threshold of 
50% is employed, fewer regions are considered 
(depending on the face classes). Then, face d is 
correctly classified as a member of Kalmanface class f. 

However, it has to be mentioned that the reduction 
of the feature vector to just seven elements in Figure 3f 

 

Figure 2. Performance comparison of Eigenfaces and Kalmanfaces at different variance threshold 
levels (not smoothed). “v=50%” means that the Kalmanfaces variance threshold is set to 50%. 

 

Figure 3. Misclassification example. If all features (bottom line, a-c) are considered, then face a is 
misclassified as element of b instead of c. If only features with a variance of at most 50% of the 
maximum are considered (d-f), then the face is correctly classified. 



is not typical. Figure 4 gives the average relationship of 
variance threshold value and feature vector size (in 
percent to the Kalmanface class sizes). In average, a 
variance threshold of 50% leads to the elimination of 
just 3-5% of the features with highest variance. 

We would like to close this section with a few 
considerations on the relationship of performance and 
feature vector length. A variance threshold of 10% 
means that approximately 50% of the features of each 
Kalmanface class are considered for similarity 
measurement. Hence, the best-performing Kalmanfaces 
in Figure 2 (v=10%) use feature vectors with 50% of 
the total feature size. The feature vectors of Eigenfaces 
are proportional to the number of face classes (Yale 
dataset: 15). A feature vector length of 15 elements is 
reached by Kalmanfaces of edge length 5 and v=10% 
(5²*0.5~13). At this level, Kalmanfaces with a 
threshold of 10% outperform Eigenfaces by 20%. 
 

4. Related Work 
 

Face detection and face recognition have applications 

in a large number of domains (visual retrieval and 

surveillance, to name a few). Hence, it is not surprising 

that hundreds of new approaches are suggested every year 

(see, for example, [6]). The Kalman filter [2] is employed 

in a number of approaches to identify face locations in 

video streams. However, its beneficial properties are 

hardly exploited for face class description. This is 

surprising, since a large number of approaches depend on 

face class averaging (Principal Component Analysis, 

Linear Discriminant Analysis, Machine Learning 

approaches, etc.). Most of these approaches rely on the 

statistical mean, though the mean is for two reasons 

disadvantageous for this task. Firstly, it does not conform 

structurally to the original population. The mean can only 

under certain assumptions be interpreted with respect to 

the underlying data. Secondly, the application of the mean 

function has a blurring effect. Fragile high-frequency 

information (as the facial traits important for 

identification) gets lost. 
 

5. Conclusions and Future Work 
 

We propose a novel approach for face identification 
that uses the Kalman filter for face class averaging. 
Experimental evaluation shows that Kalmanfaces 
perform excellently on face images with a high fidelity 
of content. Classic Eigenfaces are outperformed by up 
to 20%. The Kalmanfaces approach scales well with 
increasing numbers of individuals and face examples. 
In future work, we will investigate its sensitivity to 
more/less-variant face classes and its performance on 
other face identification problems (e.g. camera angles) 
and databases (e.g. FERET).  
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Figure 4. Variance and feature size. The feature size depends on the threshold value. The graph 
uses a double log scale at the intervals [0, 0.1] and [0.1, 1]. 


