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Abstract. We propose to tackle the optical flow problem by a combina-
tion of two recent advances in the computation of dense correspondences,
namely the incorporation of image segmentation and robust global op-
timization via graph-cuts. In the first step, each segment (extracted by
colour segmentation) is assigned to an affine motion model from a set of
sparse correspondences. Using a layered model, we then identify those
motion models that represent the dominant image motion. This layer ex-
traction task is accomplished by optimizing a simple energy function that
operates in the domain of segments via graph-cuts. We then estimate the
spatial extent that is covered by each layer and identify occlusions. Since
treatment of occlusions is hardly possible when using entire segments as
matching primitives, we propose to use the pixel level in addition. We
therefore define an energy function that measures the quality of an as-
signment of segments and pixels to layers. This energy function is then
extended to work on multiple input frames and minimized via graph-cuts.
In the experimental results, we show that our method produces good-
quality results, especially in regions of low texture and close to motion
boundaries, which are challenging tasks in optical flow computation.

1 Introduction

The estimation of optical flow is one of the oldest, but still most active research
topics in computer vision. Major challenges are twofold. Firstly, matching often
fails in the absence of discriminative image features that can be uniquely matched
in the other view. This is the case in untextured regions and in the presence of
texture with only a single orientation (aperture problem). Secondly, a pixel’s
matching point can be occluded in the other view. Those occlusions often occur
at motion discontinuities, which makes it specifically challenging to precisely
outline object boundaries. In spite of its obvious importance, standard optical
flow approaches still tend to ignore the occlusion problem (e.g., [1,2,3]).

This paper proposes an algorithm that explicitly addresses these problems
by taking advantage of colour segmentation and robust optimization via graph-
cuts. Our contribution lies in that we show how to set up an energy function
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Fig. 1. The occlusion problem in segmentation-based matching and our proposed so-
lution. Explanation is given in the text.

that formulates segmentation-based motion with treatment of occlusions. The
advantage of this energy function is that it can be optimized via robust graph-
cut-based optimization. The motivation for using colour segmentation is that
energy minimization approaches often bias towards the reconstruction of simple
object shapes and consequently fail in the presence of complex motion discon-
tinuities. To explain the idea behind our energy function, let us consider the
two views illustrated in Fig. 1a. The images show two segments S1 and S2 at
different instances of time with segment S2 undergoing motion as indicated by
the arrows. As a consequence of the moving foreground object, occlusions occur
in both frames (coloured red in Fig. 1b). S1 is partially affected by occlusions,
which is problematic in the following sense. When using segments as matching
primitives, we can only state that the complete segment S1 has zero motion. How-
ever, we cannot express the fact that some pixels of S1 are affected by occlusion.
In other words, occlusions cannot be dealt with in the domain of segments.

In order to correctly model occlusions, we propose an energy function that
operates on two levels, one representing the extracted segments and the other
representing pixels. In addition to all segments (top layer of Fig. 1c), we as well
assign every pixel of the reference image to a motion model (middle layer of
Fig. 1c). The basic idea is to enforce that every (visible) pixel is assigned to the
same motion model as the segment to which it belongs. However, and this is
the important point, a pixel is also allowed to be occluded. Finally, we as well
include every pixel of the second image into our problem formulation (bottom
layer of Fig. 1c). We enforce that a (visible) pixel and its matching point in the
other image must both have identical motion model assignments. This constraint
serves to implement the uniqueness assumption [4]. This assumption is used to
identify occlusions symmetrically in both images.

In relation to prior work, using colour segmentation for the dense correspon-
dence problem does not represent a novel idea. Black and Jepson [5] propose a
colour segmentation-based motion algorithm that fits a variable order parametric
model to each individual segment using a precomputed flow field. Analogous to
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our approach, the basic idea behind this procedure is that the flow field is likely
to vary smoothly inside such a segment. However, the authors do not account for
the occlusion problem and miss to model smoothness across segments. Recently,
segmentation-based techniques have also gained attention in the stereo commu-
nity (e.g., [6,7]). Although quite different from each other, segmentation-based
stereo methods take benefit from increased robustness in untextured regions and
in areas close to disparity discontinuities. This is well reflected by the good ex-
perimental results of those algorithms. For the motion layer extraction problem,
segmentation-based techniques using clustering methods are proposed in [8,9].

In the context of energy minimization approaches, our technique is most
closely related to various motion segmentation algorithms. Ayer and Sawhney
[10] employ the minimum description length (MDL) encoding principle in or-
der to derive the smallest set of layers necessary to describe the image motion.
They formulate statistical cost functions that are optimized by an expectation
maximization algorithm. Willis et al. [11] present a graph-cut-based approach to
achieve a dense and piecewise smooth assignment of pixels to layers. They do,
however, not explicitly model the occlusion problem. In contrast to this, Xiao
and Shah [12] embed occlusion detection into a graph-cut-based method in a
very recent work. They claim to be the first ones to deal with the explicit identi-
fication of occluded pixels for the motion segmentation task. The most obvious
difference to those approaches is that none of them uses image segmentation.

Among prior work, the closest related one originates from literature on the
simpler stereo correspondence problem. Hong and Chen [7] combine colour seg-
mentation-based matching with graph-cut optimization. They heuristically iden-
tify occlusions in a preprocessing step, which then allows them to model the
correspondence problem on the segment level only. However, the results of this
method depend on the success of this preprocessing step, and it is not clear how
well an a-priori identification of occlusions can work, especially in the presence of
large motion. In contrast to this, our energy function knows about the existence
of occlusions. Flow vectors and occlusions are computed simultaneously, which
we believe results in a more accurate reconstruction of both.

2 Our Approach

2.1 Colour Segmentation and Initial Models

In the first step, we apply colour segmentation to the reference image. Since
our basic assumption states that the flow values inside a colour segment vary
smoothly, it is important that a segment does not overlap a motion discontinuity.
It is therefore safer to use oversegmention (Fig. 2b). In the current implementa-
tion, we apply the mean-shift-based segmentation algorithm described in [13].

The optical flow inside each segment is modelled by affine motion, which is

Vx(x, y) = ax0 + axxx + axyy
Vy(x, y) = ay0 + ayxx + ayyy

(1)
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with Vx and Vy being the x- and y-components of the flow vector at image
coordinates x and y and the a’s denoting the six parameters of the model.
However, our approach could easily be extended to a more sophisticated model.
To initialize the motion of each segment, a set of sparse correspondences is
computed using the KLT-tracker [14]. A segment’s affine parameters are then
derived by least squared error fitting to all correspondences found inside this
segment. We apply the iterative plane fitting algorithm described by Tao et al.
[6] to reduce the sensitivity of the least squared error solution to outliers.

2.2 Layer Extraction

When using a layered representation [15], the first questions one has to answer
are: How many layers are present in the sequence and what are their motion
parameters? Initially, the set of our layers L is built by all motion models found
in the previous step. In order to extract a small set of layers out of L, we minimize
a simple energy function E(f), which measures the optimality of an assignment
f of segments to layers, in the form of

E(f) = Edata(f) + Esmooth(f). (2)

The data term Edata calculates how well f agrees with the input images and is
defined by

Edata(f) =
∑

S∈R

∑

p∈S

d(p, m[f(S)](p)) (3)

with R being the set of all segments of the reference view and f(S) being the
index of the layer to which segment S is assigned. We write m[k](p) to denote the
matching point of a pixel p in the other view according to the kth layer. More
precisely, m[k](p) is derived by computing the displacement vector at p using
the affine parameters of the layer at index k (equation (1)) and adding it to the
coordinates of p. The function d(·, ·) measures the dissimilarity of two pixels,
which is the sum-of-absolute-differences of RGB values in our implementation.
The second term Esmooth of the energy function measures to which extent the
current assignment f is spatially smooth. Esmooth is defined by

Esmooth(f) =
∑

(S,S′)∈N

{
λsmooth · b(S, S′) : f(S) �= f(S′)

0 : otherwise (4)

with N being all pairs of neighbouring segments, b(·, ·) computing the border
length between such and λsmooth being a constant user-defined penalty.

We approximate the minimum of the energy function in equation (2) using
the α-expansion algorithm of Boykov et al. [16]. Starting from an arbitrary con-
figuration, we iteratively change this configuration by computing the optimal
α-expansion move for each layer until convergence. The graph built for calcu-
lating the optimal α-expansion consists of nodes that correspond to segments.
Since the number of segments is significantly lower than the number of pixels,
minimization of equation (2) via graph-cuts is quite efficient.
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(a) (b) (c)

Fig. 2. Colour segmentation and layer extraction. (a) Original image. (b) Result of the
colour segmentation step. Segment borders are shown. (c) Result of the layer extraction
step. Pixels of the same colour belong to the same layer.

Those layers that are not present in the computed configuration f∗ are re-
moved from the set of layers L, which drastically decreases the number of layers.
However, it is quite likely that the correct layer was not contained in our ini-
tial set, due to the small spatial extent over which the motion parameters were
initially computed. We therefore refit the layers over their new spatial extents
according to the assignment of segments to layers in f∗ to derive a set of refined
layers L′. We then update L by L := L∪L′. Starting from the configuration f∗,
we apply the α-expansion algorithm using our refined layer set L to obtain the
new configuration f∗∗. We again remove those layers from L that do not occur
in f∗∗. If the costs of f∗∗ are not lower than those of f∗, L represents our final
set of layers. Otherwise, this procedure is iterated.

We show results of the layer extraction step in Fig. 2c. Since the proposed
algorithm operates on the segment level only, it is not capable of handling oc-
clusions. It therefore produces artefacts in regions close to motion boundaries.
Although there are only small occluded areas in the sequence shown in Fig. 2
such artefacts are visible in the proximity of the rotating ball.1 However, this
strategy works well enough to deliver the dominant image motion and it is com-
putationally efficient.

2.3 Layer Assignment

Knowing the set of layers, the task of the assignment step is to estimate which
parts of the images are covered by which layers as well as to identify occlu-
sions. As stated in the introduction, the segment level alone is not sufficient for
treatment of occlusions. In the following, we therefore design an energy function
involving both, the segment and the pixel level. Minimization of the derived ob-
jective function via the α-expansion algorithm is not discussed in this paper for
space limitations, but is thoroughly described in [17].

Energy Function. In contrast to the previous section, a configuration f is
no longer an assignment of segments to layers, but an assignment of segments
1 We will present an example where this effect is more severe in the experimental

results.
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and pixels to layers. Moreover, a pixel can be assigned to a dedicated label 0
expressing the fact that the pixel’s matching point is occluded in the other view.
We define the energy function E′(f) measuring the quality of a configuration f ,
which assigns segments and pixels to layers, by

E′(f) = E′
data(f) + E′

segment(f) + E′
mismatch(f) + E′

smooth(f). (5)

The individual terms of E′(f) are described one after the other in the following.
The first term E′

data measures the agreement of f with the input data and is
defined by

E′
data(f) =

∑

p∈I

{
d(p, m[f(p)](p)) : f(p) �= 0

λocc : otherwise (6)

with I being the set of all pixels of the reference image IR as well as of the second
view IS and λocc denoting a constant predefined penalty. While E′

data measures
the pixel dissimilarity for visible pixels, it imposes a penalty on occluded ones.
This penalty is necessary, since otherwise declaring all pixels as occluded would
result in a trivial minimum of E′(f). To allow for a symmetrical identification of
occlusions, E′

data operates on both images. The matching point m[k](p) ∈ IR of a
pixel p ∈ IS is thereby computed using the inverse motion model of the kth layer.
The second term E′

segment(f) of the energy function enforces the segmentation
information on the pixel level and is defined by

E′
segment(f) =

∑

p∈IR

{∞ : f(p) �= 0 ∧ f(p) �= f(seg(p))
0 : otherwise (7)

with seg(p) being a function that returns the segment to which pixel p belongs.
The basic idea is that a pixel is either occluded or assigned to the same layer as
all other visible pixels of the same segment. Solutions that violate this constraint
generate infinite costs. The third term E′

mismatch accounts for a consistent layer
assignment across the reference and the second images. It is defined by

E′
mismatch(f) =

∑

p∈I

{
λmismatch : f(p) �= 0 ∧ f(p) �= f(m[f(p)](p))

0 : otherwise (8)

with λmismatch being a user-set penalty. This penalty is imposed for each pixel
p whose matching point is assigned to a different layer than that of p. Finally,
we apply the smoothness assumption on the segment level. E′

smooth is identical
to the smoothness term of the previous section. For completeness, we write:

E′
smooth(f) = Esmooth(f). (9)

Extension to Multiple Input Frames. The energy function of equation (5)
is designed to be used with only two input images. However, oftentimes frames
in between these two images are available as well and can be used to improve
the matching results. Let I1 and In be the first and last views of a short video
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Fig. 3. Conceptual view of the energy function E′(f)

clip of n frames. For computing the optical flow between I1 and In, we do not
only match I1 against In, but also match I1 against any intermediate view Ik

with 1 < k < n. The basic idea behind this is that a pixel of the reference
frame I1, which is occluded when matching I1 and In, might be visible (and
therefore matchable) when computing the correspondences between I1 and Ik.
This concept was originally used by Xiao and Shah [12,18].

To implement this idea, we split up a sequence of n images into n − 1 view
pairs. Each view pair consists of the reference frame I1, on which we apply colour
segmentation, and a second image Ik �= I1, i.e. we derive the view pairs I1 − I2,
I1−I3,· · ·, I1−In. From the layer extraction step, we have the dominant motion
models of the view pair I1−In. For simplicity, we assume that within a very short
image sequence the motion is linear, so that the motion models for the other view
pairs can be linearly interpolated from those. To propagate the layer assignments
of the individual view pairs between each other, we connect the reference frame
I1 of each view pair to the segment level using the term E′

segment (Fig. 3). From
its definition in equation (7), E′

segment enforces a pixel of the reference view to
have the same layer assignment as its corresponding segment, unless the pixel is
occluded. Since the reference frames of all view pairs are now connected to the
segment level, a pixel p of I1 in view pair V P that is assigned to layer l has to
be assigned to l in any other view pair V P ′ or carry the occlusion label. This is
what Xiao and Shah refer to as the General Occlusion Constraint [18], which is
integrated into our energy function without additional effort.

3 Experimental Results

We have tested our algorithm on a standard test set (Fig. 4) as well as on a self-
recorded one (Fig. 5). Throughout our test runs, we set λocc := λmismatch − 1.
The effect of this is that every view inconsistent pixel is labelled as occluded on
the pixel level. More precisely, if two pixels assigned to different layers project
to the same pixel of the other view, one of them is view inconsistent and has to
be declared as occluded. Therefore, the uniqueness constraint is enforced.

As a first test sequence, we have picked five frames from the Mobile & Cal-
endar sequence (Fig. 4a). Within this sequence, there is translational motion
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(a) (b)

(c) (d) (e)

Frames 1-2 Frames 1-3 Frames 1-4 Frames 1-5
(f)

Frame 1 Frame 6 Frame 11 Frame 16 Frame 21
(g)

Fig. 4. Results for the Mobile & Calendar sequence. (a) Frames 1 and 5 of five in-
put frames. (b) Flow vectors with layer boundaries outlined. (c) Absolute x- and
y-components of the computed flow vectors. (d) Assignment of segments to layers.
(e) Layer boundaries coloured in red superimposed on input frame 1. (f) Absolute x-
components of the flow vectors on the pixel level. The top row shows the reference view
(frame 1), while the match images (frames 2 – 5) are presented at the bottom. Pixels
carrying the occlusion label are coloured in red. (g) Motion segmentation for each fifth
frame of the complete sequence.
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(a) (b)

(c) (d) (e)

Fig. 5. Results for a self-recorded sequence. (a) Frames 1 and 3 of three input frames.
(b) Results of the layer extraction step. (c) Assignments of segments to layers. (d)
Absolute x-components. (e) Layer borders superimposed on view 1.

on the train and the poster, while rotational motion originates from the ball.
Furthermore, the camera zooms out. Results computed by our method (Figs.
4b–g) indicate that the algorithm is well suited to precisely delineate motion
discontinuities. Moreover, our technique can equivalently be regarded as a mo-
tion segmentation method, since the layer assignment result (Fig. 4d) divides the
image into homogeneously moving regions. In Fig. 4g, we apply our algorithm
to segment the complete sequence into video objects that undergo homogeneous
motion. A more detailed explanation of this process is, however, found in [17].

In addition to the standard test set, we tested the proposed method on a
self-recorded sequence (Fig. 5a). The sequence shows a train moving from right
to left in front of a static background. Although the motion is relatively sim-
ple, the scene contains complex motion boundaries (e.g., the link connecting the
wagons) and large occluded areas. These occlusions are the reason why the layer
extraction step delivers poor results in the proximity of the motion discontinu-
ities (Fig. 5b). In contrast to this, the assignment step that explicitly models
occlusions seems to be able to outline the motion boundaries correctly (Fig. 5c).

4 Discussion

We have presented a layered segmentation-based algorithm for the estimation
of dense motion correspondences. In the layer extraction step, we optimize a
simple energy function on the segment level. Since the segment level alone is not
sufficient to handle occlusions, we define an energy function that operates on the
segment and on the pixel level in the assignment step. This energy function is
extended to allow for the computation of the motion between multiple images.
Our method determines correct flow information in traditionally challenging
regions such as areas of low texture and close to motion discontinuities.
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Further research will concentrate on overcoming two limitations of our ap-
proach. The algorithm currently describes the image motion using the affine
model. This may result in an oversimplification of the real motion, especially in
the presence of large motion. However, the affine model could easily be replaced
by a more sophisticated one without major changes in our implementation. A
more severe problem is that the segmentation assumption is not guaranteed to
hold true. Our current remedy to this is to apply a strong oversegmentation.
However, since this does not completely overcome this problem, our algorithm
could take benefit from an operation that allows splitting segments.
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