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ABSTRACT

ABSTRACT H.264 as a new-generation video coding algorithm is becoming increasingly important for inter-
national broadcasting standards such as DVB-H and DMB. In comparison to its predecessors MPEG-2 and
MEPG-4 SP/ASP, H.264 achieves improved compression efficiency at the cost of increased computational com-
plexity. Real-time execution of the H.264 decoding process poses a large challenge on mobile devices due to
low processing capabilities. Multi-core systems provide an elegant and power-efficient solution to overcome this
performance limitation. However, efficiently distributing the video algorithm among multiple processing units
is a non-trivial task. It requires detailed knowledge about the algorithmic complexity, dynamic variations and
inter-dependencies between functional blocks. The objective of this paper is an investigation on the dynamic
behavior of the H.264 decoding process and on the interaction between the main decoding tasks in the context
of multi-core environments. We use an H.264 decoder model to investigate the efficiency of a decoding system
under various conditions (e.g. different FIFO buffer sizes, bitstreams, coding features and bitrates). The gained
insights are finally used to optimize the runtime behavior of a multi-core decoding system and to find a good
trade-off between core usage and buffer sizes.

Keywords: Multi-core, video, decoding, H.264/AVC, modeling

1. INTRODUCTION

Increasing the coding efficiency of video codecs with the common combination of temporal prediction and lossy
transform coding is basically a matter of reducing the remaining redundancy in the data streams. In the H.264
standard,1 this goal has been achieved by means of more advanced pixel processing algorithms (e.g. quarter-
pixel motion estimation) as well as using more sophisticated algorithms for predicting syntax elements from
neighboring macroblocks (e.g. context adaptive VLC). However, the advanced coding tools result in significantly
increased CPU and memory loads on the encoder as well as the decoder. The high computational demands
pose a challenge for practical H.264 implementations in environments of limited processing power such as mobile
devices. Understanding the runtime behavior of the H.264 decoder is therefore essential for meeting the desired
performance requirements on the underlying platform.

If the computational requirements of a video algorithm cannot be met with a single processing unit, multi-
core systems often provide an elegant and power-efficient alternative. Unfortunately, efficiently distributing the
video algorithm among multiple processing units is a non-trivial task. It requires detailed knowledge about the
algorithmic complexity and inter-dependencies between functional blocks. The most severe problem, however,
is that there are strong dynamic variations in runtime on the basic level of the H.264 decoding process, namely
the level of macroblocks. We go into more detail on this dynamic behavior in the following.

Roughly spoken, an H.264 stream can be regarded as a sequence of compressed macroblocks. In the de-
coding process, each macroblock is sent through the decoder pipeline one after the other in order to derive the
uncompressed video information. When looking at the computation time consumed by each macroblock, it is
observed that there are large variations. To illustrate this phenomenon, we have measured the runtime of indi-
vidual macroblocks in six standard sequences and plot corresponding histograms in Figure 1. (A more in-depth
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Figure 1. Dynamic variations in the execution times of individual macroblocks in the H.264 decoding process. Histogram
bins plot the number of macroblocks having similar runtimes. The colors indicate the contributions of I-, P- and B-
macroblocks to the overall bin counts. Histograms are shown for six IPB coded sequences of 100 frames with Group of
Pictures (GOP) sizes being 13. It is observed that the runtimes of macroblocks significantly vary within a sequence due
to different image content. This observation is also made when considering I-, P- and B-macroblocks separately.

interpretation of the histograms is given at a later point in this paper.) Not very surprisingly, the figure shows
that variations in execution times stem to a large extent from the coding mode that is used for the current video
frame. Macroblocks of an I-frame show different runtime characteristics from those of predicted P- or B-frames.
However, significant differences are also observed within these three classes due to the encoded video content. For
example, the execution times for macroblocks of predicted frames strongly depend on their partitioning modes
and sub-pixel motion vector positions. We can conclude that the overall runtime of the decoder strongly depends
on the content of the encoded video material.

When implementing a multi-core system, a straightforward way for obtaining a functional splitting of the
H.264 decoder is to use the results of H.264 profilings such as presented in various papers.2–4 These benchmark
approaches decode whole video sequences and then report the execution time spent in each functional block of the
decoder as a percentage of the overall runtime. To determine a splitting point, for example, in a dual-core system,
one can exploit the benchmark results to identify a decoder function so that approximately 50% of the execution
time is consumed before and another 50% after this function. The problem of this strategy, however, is that it
does not account for the above described dynamics in runtimes of individual macroblocks. More precisely, there
will be macroblocks that consume significantly more time on the first processor than on the second one and vice
versa. Consequently, this strategy leads to unbalanced load distributions on the two processors. Investigating
profiling results on the macroblock level is therefore more promising.

A first step towards macroblock-based profiling of an H.264 decoder has recently been taken by Kalva and
Furht.5 The goal of the authors is to provide an accurate prediction of the overall execution time of a specific
video stream. The authors build a categorization of macroblocks and measure the frequency of occurrence for
each macroblock type in the profiled video stream. In a preceding paper,6 we have also suggested to perform
H.264 profiling on the macroblock level. We have presented a set of models that can accurately predict the
runtime of a macroblock in the decoder given a small set of the macroblock’s features as input.



Decoder Functions

f
1

mb
1

f
2

f
3

mb
2

mb
3

P
ro

fi
le

d
 M

a
c
ro

b
lo

c
k
s

1 CPU
st

2 CPU
nd

Buffer

(a) (b)

1 CPU
st

2 CPU
nd

Buffer

(c)

Figure 2. Concept of the simulator. (a) Profiling data. The amount of execution time is proportional to the sizes of
rectangles. (b) Underlying hardware. (c) Simulation of a splitting that maps f1 and f2 to the first core and f3 to the
second one. Explanation is given in the text.

In this paper, we present a high-level simulator for multi-core implementations of the H.264 decoder. The basic
idea behind this simulator is illustrated in Figure 2 and explained as follows. We generate profiling information
for each major functional block of the H.264 decoder on a macroblock level. This is illustrated in Figure 2a
where execution times for macroblocks are computed for various decoder functions. This profiling step extends
our work on macroblock profiles. In a previous paper,6 we have divided the decoder into two functions, namely a
parser and a reconstructor function. In this paper, we break down these two functions into their sub-components
in order to derive the profiling precision required for our simulator.

Our simulator operates on multi-core hardware configurations with an arbitrary number of processors. For
simplicity, we have chosen a dual-core system in Figure 2b as an example for the underlying hardware. In the
figure, the two CPUs are connected via a buffer in order to exchange data. In this configuration, the second CPU
has to wait for data written into the buffer by the first CPU. Once the buffer is full, the first CPU has to wait
for the second CPU to consume data. It is one goal of our simulator to allow for identifying decoder splittings
that minimize the times that the CPUs spend in the waiting mode.

The profiling information is then used to run simulations on the given hardware configuration. In Figure 2c,
we test the performance of a decoder partitioning that maps decoder functions f1 and f2 to the first core and
f3 to the second CPU. To measure the goodness of this splitting, we simulate the behavior of the resulting
multi-core system so that the first CPU stops if the buffer is full and the second one if the buffer is empty. Our
simulator then computes the total runtime of the multi-core system for a given video sequence. In this paper, we
use our simulator to compare the efficiency of two competing splitting methods of the decoder. In the example
of the figure, we can compare the efficiency of the illustrated splitting against a splitting that assigns function
f1 to the first CPU and f2 and f3 to the second processor. Moreover, as we will also show in the paper, our
simulator can be used for identifying hardware components required for meeting a given performance condition.
In this context, we use the simulator for finding an optimal size of the buffer that interconnects the CPUs.

Summarizing the above, our contributions are:

• We investigate the dynamic behavior of the H.264 decoding tasks in a systematic way.

• We develop a simulator for mapping the H.264 decoding process onto various hardware architectures in a
flexible way.
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• We estimate the required system resources in an accurate way and identify possible bottlenecks as well as
inefficient parts of the system.

• We demonstrate the possibilities of design space exploration with our simulator in two example case studies.

• We provide a systematic guideline on how our simulator can be used for describing additional video algo-
rithms.

The remainder of the paper is organized as follows. In Section 2, we provide a brief overview of the H.264
decoding process and explain how it can be mapped onto parallel hardware architectures. Section 3 focuses on
macroblock-based profiling of the H.264 decoder. We investigate the dynamic behavior of the decoding process
and the effects of these variations on the system’s performance. A high-level simulator is introduced in Section 4.
Section 5 describes two test scenarios for demonstrating the capabilities of this simulator. Finally, we present
our conclusions in Section 6.

2. MULTI-PROCESSOR DECODING

Due to its high complexity, especially for higher bitrates and resolutions, parallel decoder implementations of the
H.264 standard have evolved.7,8 In our implementation, a functional splitting of the decoding task for a dual-
core processor architecture is chosen. The simulation results presented in this paper are based on the functional
mapping shown in Figure 3. While the parser processor performs all functions related to bitstream parsing,
the reconstructor processor handles all pixel-based operations. Roughly spoken, the parsing processor expands
the compressed stream information into an intermediate representation which is subsequently interpreted by the
reconstructor.

Parsing and interpreting the compressed bitstream is basically a sequential task, since bits can only be
removed from the input stream in sequential order of their appearance in the stream. Although the parsing
process is sequential, a large amount of data loads and stores can be performed in parallel. Besides the basic
entropy decoding of picture data such as motion vectors and DCT residuals (Entropy Decoding), the parser also
has to consider the context of neighboring macroblocks (Context Calc.). This context calculation includes the
prediction step of context adaptive VLC coding for residuals as well as motion vector prediction and prediction of
other syntax elements. In an optimized embedded implementation of the H.264 decoder, also the non-algorithmic
tasks such as the memory initialization of macroblock data structures as well as DMA descriptor set-ups become
a relevant runtime-factor (Init).

For pixel-based operations, the reconstructor can make efficient use of data parallelism by parallel instruction
execution and SIMD instructions. Especially the intra and inter prediction (Intra/Inter Prediction) routines and
the inverse residual transformation (IDCT), which are based on multiples of the 4× 4 pixel block size, allow for
efficient usage of 32-bit RISC architectures with SIMD extensions. In H.264, filter strength coefficients for the
deblocking process are calculated (Strength Calc.) before applying the deblocking filter (Deblocking) as the last
step in the macroblock decoding process.

3. MACROBLOCK-BASED H.264 DECODER PROFILING

In this section, we describe the test sequences used in this work and provide details on the applied profiling
methodology as well as on the hardware and software architectures of our system. Furthermore, we show the
dynamics of the video decoding process for the described test sequences.



Table 1. Six test sequences with normalization to 35 dB. For three sequences (Foreman, Flowergarden, Barcelona) addi-
tional profiles at 30/32/38 and 40 dB are generated. Columns 2 and 3 show the PSNR values used for normalizing the
sequences and the resulting bitrates. The quantization values used for the coding of I-, P- and B-frames are given in
columns 4 to 6. A short description of the sequences’ characteristics is provided in the last column.

Sequence PSNR Bitrate@25Hz QPI QPP QPB Remarks
(in dB) (in kbit/s)

Foreman

30 105 41 39 37

Little texture, strong motion activity
32 137 38 36 36
35 250 33 31 31
38 480 28 26 26
40 750 25 23 23

Flowergarden

30 610 36 34 33
Strong differences between top half of
slice (sky, poorly textured) and bottom
half (meadow, strongly textured)

32 848 33 32 31
35 1350 30 28 28
38 2080 27 25 24
40 2650 25 22 22

Barcelona

30 600 34 33 33

Complex texture, complex motion
32 1200 32 30 28
35 2250 28 26 25
38 3525 25 23 22
40 4500 22 21 20

Paris 35 600 31 28 28 Little texture, simple motion activity
Bus 35 1000 29 28 28 Highly textured, high motion activity
Mobile 35 1750 29 27 26 Highly textured

3.1 Test sequences

The runtime behavior of the decoder is profiled using six standard image sequences listed in Table 1. In compiling
the test set, we focused on reaching a high diversity in the test sequences’ contents and on covering the whole
complexity range of typical H.264 sequences at CIF resolution. The test sequences are encoded in H.264 main
profile with a GOP size of 13 frames using the JM12.2 encoder9 (CIF, IPB, VLC, deblocking active, all prediction
modes allowed, SR +/–16 pixels, 3 reference frames, 1 slice per frame).

To avoid impacts of the encoder rate control algorithm as well as coding quality effects on the decoder runtime,
all sequences are coded with constant quantization parameters at an average SNR of 35 dB. We therefore adjust
the values of parameters QPI, QPP and QPB that are responsible for quantization of I-, P- and B-frames so that
each individual frame of the sequence exhibits an SNR of approximately 35dB. The corresponding settings for
the quantization parameters as well as resulting bitrates are found in Table 1. In addition to these streams, we
include three sequences normalized to a PSNR of 30, 32, 38 and 40 dB in order to provide the same sequence at
different quality levels.

3.2 Profiling and complexity mapping

A single-core simulator for the very long instruction word (VLIW) multimedia processor CHILI10 provides the
profiling results used in this work. The simulator’s accuracy has been verified with an ASIC implementation
of this processor. The CHILI is a RISC processor. It can process four instructions in parallel which can be
any combination of 32-bit arithmetic instructions and load-store operations. For parallel pixel operations, 16-bit
SIMD instructions are provided. Each processor has a dedicated 64 Kbyte local memory for fast data access
and a 64 Kbyte instruction cache. Data is transferred via DMA or direct access between the processor’s local
memory and 64 Kbyte shared on-chip SRAM as well as up to 64 Mbyte external memory. The processor can be
programmed in C/C++ with intrinsic SIMD functions as well as in low-level assembly language for time-critical
routines.

In order to obtain detailed profiling results for the analysis, the simulator of the VLIW media processor
and its data memory system (DMS) is extended to enable function profiling on a macroblock level. Hence, the



simulator provides very detailed records of program execution from which the call graph as well as individual
execution times for each function call can be extracted. This allows measuring the effects of coding modes on the
computational complexity with very fine granularity. The exact execution time for each macroblock is measured
by accumulating the function cycle-counts of all sub-functions for each functional block. The functions called
during the decoding process of a macroblock are mapped to the functional blocks of Figure 3.

The profilings are based on a commercial H.264/AVC main profile decoder for embedded architectures that
has been optimized in terms of memory usage and support of DMA transfers. Additionally, the regular pixel-
based processing functions of the decoder (e.g. interpolation, prediction, IDCT) have been assembly optimized
to make use of the SIMD processor commands. Macroblock-based runtime measurements for all test sequences
of Table 1 are computed for each decoder function.

3.3 Complexity variations in H.264 decoding

Based on the discussed profiling environment, we have measured the macroblock execution times for the six
presented test sequences. The results of Figure 1 show the dynamic variations by histogram classification of the
execution times. It can be well observed that execution times vary significantly between different video sequences
and frame types within the same video sequence.

Several classes of sequences can be distinguished by their histograms in Figure 1. Sequences with homogeneous
texture and small motion activity such as Barcelona and Mobile show almost Gaussian distributions for all three
macroblock types. In contrast to this, the Flowergarden sequence shows a large spread of execution times caused
by the fact that the untextured sky in the top half of the images exhibits significantly different characteristics in
comparison to the highly textured flowers in the bottom half of the frames. For this test sequence, the execution
times vary by significant factor, even if only macroblocks of the same type are considered. Furthermore, the
Flowergarden and Paris sequences show relatively different execution time distributions for P- and B-macroblocks,
while all other sequences have more similar distributions throughout different coding modes.

An interesting effect occurs for skipped macroblocks with bi-directional prediction. These macroblocks cause
the significant peak at 7 × 104 clock cycles in all six histograms. The sharp characteristics of this peak can be
explained by the fact that the largest portion of runtime for these macroblocks is consumed by the two sub-pixel
interpolation functions for forward and backward temporal prediction and the rather complex filter strength
calculation. Apart from that, the skipped macroblocks have no residual information resulting in negligible
runtime variations in the entropy decoder.

Regarding the effects of an increased data rate, it is observed that the average runtime increases from less
than 5 × 104 clock cycles for the Foreman sequence coded at 250 kbit/s to approximately 8 × 104 clock cycles
for the Barcelona sequence coded at 2.5 Mbit. Hence, an increase of a factor of 10 in data rate roughly doubles
the execution time per macroblock.

4. HIGH-LEVEL SIMULATION

Using the macroblock-based profiling results described in Section 3, we are able to describe the complexity of
each macroblock in the decoder pipeline with a high accuracy. However, in a multi-core environment various
approaches for splitting an H.264 decoder are possible. The efficiency and speed-up of such a parallel decoding
system strongly depends on an accurate distribution of the decoding tasks. Additionally, buffering between the
hardware blocks is required to compensate the workload variations.

For estimating the runtime behavior and buffer requirements of a program in a multi-core environment, we
create a high-level simulator. Figure 4 shows a schematic description of the structure of this simulator. The user
has to define a hardware architecture, the algorithm (e.g. H.264 decoding) and how the algorithm is mapped to
this platform.

Defining a hardware architecture works via a simple description language. The language serves to describe
the hardware blocks of the architecture (e.g. arithmetic units, memory entities) and the hardware characteristics
such as core frequency, memory size or memory latency.
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Clearly separated from this hardware description, the simulation environment provides a compact and flexible
language to define algorithms at an arbitrary level of detail. This language describes an algorithm by a set of
processes and process dependencies. Each process describes a sub-task of the algorithm (e.g. motion compen-
sation in the H.264 decoding algorithm). The dependencies define the temporal processing order between the
processes. This corresponds to the program flow.

The relation between hardware model and algorithm description is defined via process mappings. A process
is always bound to a single arithmetic processing unit which provides the computational resources for executing
the process. First-In First-Out (FIFO) buffers must be defined which serve as communication channels between
dependent processes. A FIFO buffer has a predetermined and constant size and is located at a single memory en-
tity. This memory entity characterizes the FIFO’s properties such as read/write access behavior, size limitations
or latency. Each process receives its input via an input FIFO and writes its output to an output FIFO.

Apart from the hardware layout and the algorithm’s structure and flow, additional information on the runtime
behavior and the algorithm’s resource requirements (e.g. memory requirements, buffers) must be provided. This
information represents the characteristics of a program on a specific hardware architecture and is implemented via
resource packages. Each resource package represents a data entity (e.g. a macroblock) which enters the system
and is processed by a set of algorithmic tasks and according to the algorithm flow. The package describes the
runtime and resource requirements for each processing step. The description of the algorithm and the physical
structure of the system define the processing order of each resource package. Based on this processing flow and
the package’s resource requirements, the simulator updates time and size information for the processing units,
memories and buffers.

The runtime information for the resource packages is provided by the profiling results described in Section 3.
In a previous publication,6 we have also demonstrated the feasibility of runtime estimation based on macroblock
characteristics which can be extracted directly from the compressed data stream. By combining this method with
the simulator environment presented in this publication, the dynamic runtime behavior of the H.264 decoding
process can be explored without time-extensive hardware simulations. This is a topic that could be addressed
in further work.

In case of the H.264 decoder as described in Figure 3, hardware blocks for the parser and the reconstructor,
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Figure 5. Two methods for partitioning the H.264 decoder on a dual-core system. (a) Scenario 1: The function Strength

Calc. is part of the parsing module. (b) Scenario 2: The function Strength Calc. is part of the reconstructor.

memory units and FIFOs are defined. In the next step, processes for all decoding tasks are defined and mapped
to the two processors. The program flow is uniquely determined by defining the input and output FIFO for
each process and the process dependencies. For each macroblock, a resource package is created and initialized
according to the macroblock’s runtime measured in the profiling stage.

Accurate values for the memory and buffer requirements of each task are extracted analytically from the
source code of the decoder implementation. Although the simulator supports dynamic memory allocations
during program execution, we can neglect this issue for this decoding application. In our H.264 decoding system,
dynamic memory allocation is only done during the decoder start-up phase. This improves the runtime efficiency,
since no memory is freed or re-allocated and guarantees the availability of sufficient memory during program
execution. Except for small structures which are stored on the stack, no additional memory is allocated during
runtime. However, buffer transfers for the communication between the cores must be considered. For the
buffer communication between the two cores, a macroblock sending structure with constant size is used for each
macroblock transfer. This size is used as buffer requirement for each package.

5. RESULTS

This section introduces two case studies for the high-level simulator. The first case study demonstrates the
simulator’s ability to flexibly describe various software mappings in a multi-core environment. We investigate
the system’s efficiency for two splitting approaches. In the second case study, we focus on estimating the buffer
size requirements in a multi-core decoding system.

5.1 Case study 1: Variation of partitioning

In the following, we examine the effects on the overall system performance when changing the multi-processor
splitting approach. As illustrated in Figure 5a, for our experiment, the deblocking filter operation is split into two
sub-functions. While the filter strength calculation (Strength Calc.) is a mostly context related and sequential
task, the actual filtering (Deblocking) of pixel data can exploit data parallelism on neighboring pixels. The initial
algorithm mapping illustrated in Figure 5a assigns all stream parsing related tasks as well as the filter strength
calculation for the deblocking to the parser processor. This splitting has the advantage that all context related
functions are implemented exclusively on one processor. The aim of this case study is to analyze this splitting
approach with our high-level simulator.

In Figure 6a, it is seen that the described splitting (Figure 5a) results in very unbalanced processor usages
for P- and B-macroblocks. The runtime of intra-coded macroblocks is centered around a balanced 50% processor
usage with a slight shift towards parser processor usage for higher bitrates. In the case of intra macroblocks,
the parser runtime for a macroblock is defined by the significant amount of residual data which is compensated
by a low-complexity filter strength calculation. In contrast to this, the P- and B-macroblocks have significantly
less residual data, but the filter strength calculation becomes significantly more complex. Therefore, the P-
macroblocks result in the highest parser processor usage whereas the B-macroblocks are slightly better balanced
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Figure 6. The Foreman sequence at different bitrates. Macroblocks are classified based on the percentage of the overall
time that is spent in the parsing module of the decoder. A percentage of 80 means that 80% of the runtime is spent in the
parser, while 20% are consumed in the reconstructor. A value of 50% indicates a perfect balance. (a) The filter strength
calculation is assigned to the parser module. (b) filter strength calculation is assigned to the reconstructor module.

due to the additional (second) sub-pixel interpolation in the reconstructor. The effects of unbalanced work load
can also be observed in the idle time analysis shown in Figure 7a. With the original algorithm splitting, the
reconstructor processor’s idle time is approximately 40% in all three test sequences and for all data rates.

Based on the above observations a modified algorithm mapping is examined using the high-level simulator.
In this splitting, the filter strength calculation is moved from the parser processor to the reconstructor processor
as illustrated in Figure 5b. The simulation results for the Foreman sequence in Figure 6b now indicate that the
work load balancing between the two processors is significantly improved. For the B-macroblocks, an almost
symmetrical CPU usage can be achieved, while the P-macroblocks still show a significant overhead in the parser.
One consequence of this insight could be to separate the code for strength calculation for B- and P-macroblocks
and optimize the less complex calculations for P-macroblocks separately.

The improvement of CPU usage can also be observed in Figure 7b. In the case of the Foreman sequence,
which is coded with 105 kbit/s (30dB) to 750 kbit/s (40dB), the reconstructor idle time can be reduced below
15%. For the test sequences with higher data rates, namely Flowergarden (610 kbit/s to 2.650 kbit/s) and
Barcelona (600 kbit/s to 4500 kbit/s), the reconstructor idle time increases with the higher quality. Hence, the
higher amount of residual information still causes a significant unbalance in processor usages when using higher
data rates.

5.2 Case study 2: Variation of buffers

It is a well-known fact that the sizes of transfer buffers in parallel systems have a high impact on the system’s
overall performance. The buffers compensate workload differences and improve the cores’ usages. However,
choosing accurate buffer sizes is challenging and typically represents a trade-off between computational perfor-
mance and monetary costs that go along with larger memory sizes. In order to find a good trade-off, it requires
knowledge about the system’s performance at various buffer sizes, which is the issue addressed in this case study.
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Figure 7. Idle time for parser and reconstructor core for three test sequences. (a) Filter strength calculation is done at
the parser side. (b) Filter strength calculation is performed at the reconstructor side.

One major advantage of the functional splitting approach investigated in this work is that the parser as well
as the reconstructor can work autonomically and no feedback information from the reconstructor to the parser
is required. However, the system’s performance in the context of this two-core environment is limited by the
transfer rate between parsing and reconstruction core. If the parser cannot deliver macroblocks at an adequate
speed, the reconstructor runs out of data and has to wait until new macroblocks arrive. This results in read
stalls at the reconstructor side. On the other hand, if the reconstructor processes macroblocks more slowly than
the parser, the system’s transfer buffer will fill up. If the buffer size is too small to compensate this unequal
workload, write stalls at the parser will occur.

Figure 8 visualizes the average idle time of the two decoder cores at different PSNR values. The calculation
of the filter strength is mapped to the reconstructor core as shown in Figure 5b. We run simulation for three
test sequences. The size of the buffer is thereby varied. We test buffer sizes of one and five macroblocks. Since
the core usage is different for each frame type, separate plots for intra- and inter-coded frames are provided.

The first row (Figure 8a) shows the average idle time when decoding intra-coded frames. Increasing the
PSNR value (and the bitrate) mainly raises the macroblock processing complexity at the parsing core. At a
buffer size of one macroblock the Foreman sequence performs best at 35 dB. For lower PSNR values the parser
is faster than the reconstructor and write stalls occur when the transfer buffer is full. For higher PSNR values
in the Foreman sequence, the parser is the performance bottleneck and the higher idle time is mainly due to
read stalls in the reconstructor. For sequences with typically higher bitrates than the Foreman sequence, we can
observe a continuous performance decrease with increasing PSNR values. For these sequences, the parser is the
main bottleneck and only few write stalls at the parser side occur.

Inter-coded P- and B-frames (Figure 8b and c) show a different behavior than intra-coded frames. Mac-
roblocks in inter-coded frames are coded more efficiently and typically have a lower number of syntax bits. This
results in lower parsing complexity. Furthermore, the complexity in the reconstructor raises due to the compu-
tationally more complex motion compensation and deblocking processes. Intuitively, one would assume that this
should lead to a higher amount of write stalls at the parser side. For the Foreman sequence, this assumption
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Figure 8. Average idle times of all system cores while decoding (a) intra-coded, (b) inter-coded P- and (c) inter-coded B-
frames of three test sequences. For the simulations the calculation of the filter strength was assigned to the reconstructor
core. The idle time changes for different buffer sizes and PSNR values.

can be confirmed, since for P- and for B-frames the idle time stays nearly constant for all PSNR values. This
indicates that the parsing core is faster than the reconstructor, since with raising bitrate (and parser complexity)
nearly no changes in the overall system usage can be seen. For P-frames in the two more complex sequences, a
raising idle time for higher PSNR values indicates a significant higher amount of read stalls.

When raising the transfer buffer to five macroblocks buffer size, a continuous performance decrease with
increasing PSNR values can be observed for the Foreman sequence. Compared to single-macroblock buffering, a
strong idle time reduction for PSNR values lower than 35 dB of nearly 13% is achieved. This is mainly due to
a reduction of the write stalls at the parser side. For higher PSNR ranges, less reduction is achieved and at 40
dB the parser starts to exclusively reduce the systems performance.

The intersection point where the average idle time of a system is equal for low and high buffering sizes
indicates at which PSNR range the parser becomes the exclusive bottleneck. Buffering between the cores does
not improve the system’s performance at this quality level. This can be seen for I- and P-frames in the highly
textured Flowergarden and the Barcelona sequences (Figures 8a and b). For these sequences, the higher parsing
complexity results in typically higher idle times and less performance improvements at higher buffer sizes.



6. CONCLUSION AND FUTURE WORK

In this work, we have measured the runtime complexity of an H.264 decoder on the level of macroblocks.
A high-level simulator for mapping the H.264 decoding process onto various hardware architectures has been
introduced. The proposed simulation environment can describe parallel algorithm implementations in a flexible
way and simulate their behavior on various hardware architectures. Based on the profiling information and the
simulator results, we have gained insights into the dynamic behavior of the H.264 decoding process. In two
case studies, we have demonstrated the simulators abilities to analyze the efficiency of a multi-core architecture
under various conditions. The resulting idle time curves provide a powerful tool for extracting optimal buffer
sizes and for estimating PSNR values where the decoder performs most efficient. Our simulation results allow
for optimizing a decoding system for specific application aspects such as quality, memory requirements or core
usage.

In the first case study, we have tested two competing splitting methods for the H.264 decoder. We have
found strong indications that moving the filter strength calculation to the reconstruction core of our system
improves the system’s efficiency significantly. In the second case study, we have tested various buffer sizes in
a dual-core decoder system. Our results reveal that buffering has a high impact on the decoding process for
inter-coded slices and for sequences with low coding complexity. In these cases, a significant amount of write
stalls is removed. For sequences of high quality (high PSNR values), increasing the buffer sizes does not lead to
significant improvement in the system’s performance.

Further work will focus on the following aspects. Apart from algorithm mappings that apply a functional
splitting, also data-parallel processing can easily be modeled in our simulator. For data-parallel processing, we
can define multiple instances of the same process and map these instances to different hardware units. These
parallel approaches and further implementation aspects such as power consumption or latency will also be
addressed in future work.
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