
Development of Multi-Core Video Decoding Platforms based on
High-Level Architecture Simulations

Florian Seitner, Michael Bleyer (Faculty Mentor) and Margrit Gelautz (Faculty Mentor)
Institute of Software Technology and Interactive Systems

Vienna University of Technology
Vienna, Austria

Email: {seitner, bleyer, gelautz}@ims.tuwien.ac.at

Abstract — The high computational demands of state-of-the-
art video coding standards pose serious challenges on strongly
resource-restricted architectures. For reaching the perfor-
mance specifications, specialized multi-core architectures for
video processing are becoming more and more popular. In this
work, we introduce an high-level simulator for supporting the
development of such decoding platforms. Our system combines
all available information such as hardware measurements, pro-
filings and human expertise. Based on this input, the behaviour
of the final architecture running a parallel video decoder is
estimated. Using this information, adaptations of the current
hardware or software design can be done. The simulator shall
aid in developing efficient and application-optimized decoding
systems.

I. INTRODUCTION

The H.264 video standard [1] is currently used in a wide
range of video-related areas such as video content distri-
bution and television broadcasting. Compared to preced-
ing standards such as MPEG-2 and MPEG-4 SP/ASP,
improved coding efficiency is reached by introducing
more advanced pixel processing algorithms (e.g. quarter-
pixel motion estimation) as well as by the use of more
sophisticated algorithms for predicting syntax elements
from neighbouring macroblocks (e.g. context-adaptive
VLC). These new coding tools result in significantly in-
creased CPU and memory loads required for decoding
the video stream. In environments of limited process-
ing power such as embedded systems, the high compu-
tational demands pose a serious challenge for practical
H.264 implementations. Multi-core systems provide an
elegant and power-efficient solution to overcome these
performance limitations.

The design of such a specialized multi-processor de-
coding architecture is a non-trivial task. For exploiting
the processing power of a multi-core system most effi-
ciently, an equal workload between the cores must be
achieved. Apart from the system’s usage this also in-
fluences the required buffer sizes between the cores for
compensating differences in the workload. However, the
significant workload differences in typical video decod-
ing systems make this balancing a challenging task.

Figure 1 visualizes the structure of the H.264 decod-

ing process. The computational complexity of a mac-
roblock’s parsing and deblocking functions is strongly
bitrate dependent. While the parsing complexity typi-
cally raises with the macroblock’s number of bits and
syntax elements, the deblocking filter is applied more ag-
gressively for low bitrates. For the pixel-based decoding
tasks (e.g. intra prediction and motion compensation) a
large variety of possible macroblock coding modes ex-
ists. The coding options such as the prediction type
(i.e. for H.264 skipped, intra and inter prediction) and
the macroblock partitioning influence the decoding com-
plexity significantly.

For multi-core video decoding systems, predicting the
run-time behaviour is not straight forward. Differences
in the workload, algorithmic dependencies and stalls due
to resource limitations (e.g. size restrictions of communi-
cation buffers) must be considered. Furthermore, video
decoding platforms are often based on heterogeneous ar-
chitectures for addressing the execution behaviour of the
individual decoding tasks more efficiently. For exam-
ple, the highly conditional parsing and entropy decoding
functions require processors with efficient branch execu-
tion. Depending on which processor a decoding task is
executed, differences in the decoder run-time will occur.

The dynamics and heterogeneity of video decoding
systems often result in the following questions:

– Can we reach the specified decoding requirements
on a specified multi-core architecture?

– Which architecture is required to handle a certain
set of videos (i.e. a set of streams that represents
the common input characteristics of an application
such as DVB-T)?

– What is the optimal decoder hardware and software
partitioning for this architecture?

These questions have a major impact on the archi-
tecture decisions and should be addressed before imple-
menting a video decoding system.

For solving these questions, assumptions about the ar-
chitecture requirements regarding the computational de-
coding complexity are typically made. They allow us
to decide on the hardware components and the software

71



Entropy

Decoder

IDCT

Spatial

Prediction

Motion

Compensation

Deblocking+
Stream

Parsing

Reference

Frames

Decoded

Frame

Encoded

Bitstream

Figure 1: The H.264 decoding process. After parsing and entropy decoding the syntax elements of a macroblock, a
spatial or temporal prediction of this macroblock is computed. This prediction is added to the inverse transformed
(IDCT) residual information and a deblocking filter removes blocking artefacts introduced during the quantisation
step.

structure of our decoder. Complexity estimation tech-
niques are therefore of prime importance. In recent years,
advanced techniques for estimating the run-time of a pro-
gram have evolved.

Static algorithm analysis and path analysis techniques
have been introduced in [2]. These techniques analyse
an algorithm’s definition (e.g. its source code) for esti-
mating the upper and lower run-time bounds of a pro-
gram. For considering the impact of the input data on
the program execution, dynamic profiling methods [3]
have been developed. These methods observe the pro-
gram’s execution behaviour during the run-time. This
allows us to measure the complexity of the decoding
functions for individual input data. Hardware simula-
tions and HW/SW-Codesign methods [4] provide accu-
rate run-time information but require labour intensive
adaptation of the hardware and decoder software before
first run-time estimations are possible.

All these approaches above can provide us with infor-
mation about the complexity requirements of our video
decoding system. However, interpretation of the com-
plexity information in the context of a multi-core sys-
tem is not straight-forward. Algorithmic dependencies
and resource limitations result in run-time constraints be-
tween the processing units. For highly dynamic multi-
core decoder systems, making predictions about the par-
allel decoding system’s behaviour is hardly possible.

In our work, we introduce a simulator for supporting
the development process of multi-core video decoding
systems. It estimates the basic parameters such as the
execution time, the memory transfers and the power con-
sumption of the decoder system. Instead of running the
partitioned decoding tasks and using exactly specified in-
terfaces for connecting them together, only an abstract
information about the macroblocks’ runtime (e.g. decod-
ing complexity) is required. This is a major advantage of

our system, since the system designer typically gets this
information without building the complete hardware ar-
chitecture or without partitioning the software of the de-
coder. Architecture evaluations are possible before the
decoder architecture is effectively built. Additionally,
the Partition Assessment Tool (PAT) allows software de-
sign explorations for supporting the partitioning of the
decoder software.

ACKNOWLEDGMENTS

This work has been supported by ON DEMAND Micro-
electronics AG [5] and the Austrian Federal Ministry of
Transport, Innovation, and Technology under the FIT-IT
Project 812429.

REFERENCES

[1] ITU-T and ISO/IEC. Advanced video coding for
generic audiovisual services (ITU Rec. H.264 —
ISO/IEC 14496-10). ITU-T and ISO/IEC, March
2005.

[2] Peter P. Puschner and Christian Koza. Calculating
the maximum execution time of real-time programs.
Journal of Real-Time Systems, 1(2):159–176, 1989.

[3] Susan L. Graham, Peter B. Kessler, and Marshall K.
McKusick. gprof: a call graph execution profiler.
In SIGPLAN Symposium on Compiler Construction,
pages 120–126, 1982.

[4] Peter Voigt Knudsen and Jan Madsen. Pace:
A dynamic programming algorithm for hard-
ware/software partitioning. In Proceedings of the Int.
Workshop on Hardware-Software Co-Design, pages
85–92, 1996.

[5] ON DEMAND Microelectronics.
http://www.odmsemi.com, 2008.

72


