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Structure

• Introduction
• Previous work
• The Simple Tree Method

• Energy function
• Energy optimization

• Results
• Conclusions
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What stereo method to choose for a practical 
application?
• Local methods

• Computationally efficient
• Results often too poor

• Global methods
• Good-quality results
• Usually too slow 

• Goal
• Develop a stereo algorithm that delivers maximum 

accuracy at minimum computation time
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Global Stereo Methods

• Find a disparity map D that minimizes

• Definition of smoothness neighbourhood defines complexity of 
optimization problem

Photo consistency assumption Smoothness assumption
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Optimization on 4-Connected Grid

(4-Connected Grid)

• Optimization NP-
complete (discontinuity 
preserving smoothness 
functions)

• Approximation via 
Graph-Cuts or Belief 
Propagation

• Good results, but 
computationally 
expansive
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Disparity Map computed via Graph-Cuts
(taken from the Middlebury website)

(Ground Truth) (Graph-Cuts)
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Dynamic Programming (DP)

(4-Connected Grid)

• Discard vertical 
smoothness edges

• Exact optimization via 
DP

• Computationally fast, 
but scanline streaking
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Dynamic Programming (DP)

(DP Neighbourhood Structure)

• Discard vertical 
smoothness edges

• Exact optimization via 
DP

• Computationally fast, 
but scanline streaking
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Disparity Map computed using DP
(taken from the Middlebury website)

(Ground Truth) (Scanline Optimization)
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SemiGlobal Matching [Hirschmüller05]

(4-Connected Grid)

• Individual disparity 
computation at each 
pixel

• Aggregate DP costs 
computed from paths in 
various directions

• Computationally fast, 
almost no streaks, but 
poor performance in 
regions of low texture 

p
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SemiGlobal Matching in Untextured Regions

(Left Image)

p

(Right Image)
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SemiGlobal Matching in Untextured Regions

(Left Image)

p

(Right Image)

• None of the DP paths 
captures texture at the 
correct disparity

• Disparity selection 
guided by noise



SIMPLE BUT EFFECTIVE TREE STRUCTURES FOR DYNAMIC PROGRAMMING-BASED STEREO MATCHING

Reimplementation of SemiGlobal Matching

(Left Image) (Disparity Map)
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Our Approach (Simple Tree Method)

(Simple Tree Structure)

• Perform a separate 
disparity computation for 
each pixel

• Root a tree on the pixel
• DP also works on trees
• Compute exact energy 

minimum on the tree
• Assign p to the disparity 

that lies on the energy 
minimum 

p
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Our Approach (Simple Tree Method)

(Simple Tree Structure)

p

• Perform a separate 
disparity computation for 
each pixel

• Root a tree on the pixel
• DP also works on trees
• Compute exact energy 

minimum on the tree
• Assign p to the disparity 

that lies on the energy 
minimum 
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Advantages of Simple Trees

(Simple Tree on the 
Previous Example)

• Tree structure spans all 
pixels (does not miss 
image features)

• Vertical and horizontal 
smoothness edges 
(against scanline streaks)

• We include all smoothness 
edges by using two 
different tree structures

p
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Two Simple Tree Structures

Horizontal Tree

• Allow for incremental computation of optima 
• Only 4 DP passes needed

p p

Vertical Tree
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RGB values
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Energy Optimization on Simple Trees

• Extremely large amount of different trees
• Tree DP on every tree is extremely slow
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Incremental Computation of Horizontal Trees
• Optimize horizontal scanlines only
• Compute DP path costs for reaching each pixel p at each disparity d 

from left and right-most pixels of the scanline
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Incremental Computation of Horizontal Trees

p

(Forward pass)

• Optimize horizontal scanlines only
• Compute DP path costs for reaching each pixel p at each disparity d 

from left and right-most pixels of the scanline



SIMPLE BUT EFFECTIVE TREE STRUCTURES FOR DYNAMIC PROGRAMMING-BASED STEREO MATCHING

Incremental Computation of Horizontal Trees

p

p

(Forward pass)

(Backward pass)

• Optimize horizontal scanlines only
• Compute DP path costs for reaching each pixel p at each disparity d 

from left and right-most pixels of the scanline



SIMPLE BUT EFFECTIVE TREE STRUCTURES FOR DYNAMIC PROGRAMMING-BASED STEREO MATCHING

Incremental Computation of Horizontal Trees

p

p

p

(Forward pass)

(Backward pass)

(Combining forward and backward passes)

• Optimize horizontal scanlines only
• Compute DP path costs for reaching each pixel p at each disparity d 

from left and right-most pixels of the scanline
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Incremental Computation of Horizontal Trees

p

• Compute path costs for reaching pixel p at disparity d 
from all leaf nodes
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Incremental Computation of Horizontal Trees

p

• Compute path costs for reaching pixel p at disparity d 
from all leaf nodes

• Forward Path
• Backward Path
• Combination gives 

energy minima of all 
Horizontal Trees on 
this scanline
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What I do not discuss in this talk (but in the 
paper)

• How are Horizontal and Vertical Trees combined 
in the algorithm?

• How are occlusions handeled?
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Results on the Middlebury Evaluation Set

(Ground truth disparities)

(Our results [Parameters kept constant])
(Tsukuba)

1.86% wrong unoccluded pixels
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Results on the Middlebury Evaluation Set

(Ground truth disparities)

(Our results [Parameters kept constant])
(Venus)

0.42% wrong unoccluded pixels
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Results on the Middlebury Evaluation Set

(Ground truth disparities)

(Our results [Parameters kept constant])
(Teddy)

7.31% wrong unoccluded pixels

Large error 
due to poor
texture and

noise
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Results on the Middlebury Evaluation Set

(Ground truth disparities)

(Our results [Parameters kept constant])
(Cones)

4.00% wrong unoccluded pixels
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Middlebury Ranking

• Rank 8 of ~30 algorithms in online table
• Computationally more efficient than better-ranked methods
• Best-performing non-segmentation-based algorithm 
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Why we did not use Colour Segmentation

(Left image)

• Segmentation is 
computationally 
expensive

• Works fine for 
Middlebury set, 
but not in general

(Ground truth)

(SegGlobVis
[Bleyer04])

(SimpleTree)
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Why we did not use Colour Segmentation

(Left image)

• Segmentation is 
computationally 
expensive

• Works fine for 
Middlebury set, 
but not in general

(Ground truth)

(SegGlobVis
[Bleyer04])

(SimpleTree)

(SegGlobVis
[Bleyer04])

Errors due 
to wrong

segmentation



SIMPLE BUT EFFECTIVE TREE STRUCTURES FOR DYNAMIC PROGRAMMING-BASED STEREO MATCHING

Why we did not use Colour Segmentation

(Left image)

• Segmentation is 
computationally 
expensive

• Works fine for 
Middlebury set, 
but not in general

(Ground truth)

(SegGlobVis
[Bleyer04])

(SimpleTree)

(SimpleTree)
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Computational Performance [given in sec]

• Potential for real-time performance



SIMPLE BUT EFFECTIVE TREE STRUCTURES FOR DYNAMIC PROGRAMMING-BASED STEREO MATCHING

The new Middlebury Data Sets

(30 ground truth image pairs)
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Comparison against Graph-Cuts

• Simple Tree outperforms Graph-Cuts on 20 of 30 
stereo pairs

• Simple Tree is significantly faster.
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The Dolls Test Set

(Left image)

(Ground truth)

(Disparity Graph-Cuts) (Disparity Simple Tree)

(Error Graph-Cuts) (Error Simple Tree)
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The Dolls Test Set

(Left image)

(Ground truth)

(Disparity Graph-Cuts) (Disparity Simple Tree)

(Error Graph-Cuts) (Error Simple Tree)

(Error Graph-Cuts) (Error Simple Tree)

Problems with
slanted
surfaces
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The Midd1 Test Set

• Graph-Cuts perform better on images with extremely low 
texture

(Left Image) (Ground Truth) (Simple Tree)(Graph-Cuts)
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Conclusions
• Compute disparity map by solving an optimization problem 

for each pixel
• Approximation of 4-connected grid via a tree
• Horizontal and Vertical Trees allow for fast computation 
• Results almost free of scanline streaks
• Best-performing method in the Middlebury ranking that 

does not use colour segmentation
• Can represent a fast alternative to Graph-Cuts when speed 

matters
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The End

Thank You
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