

Simple but Effective Tree Structures for Dynamic Programming-Based Stereo Matching

Michael Bleyer and Margrit Gelautz

Vienna University of Technology

Dense Stereo Matching

(Left Image)

(Right Image)

Dense Stereo Matching

(Left Image)

(Right Image)

(Disparity Map)

Structure

- Introduction
- Previous work
- The Simple Tree Method
 - Energy function
 - Energy optimization
- Results
- Conclusions

What stereo method to choose for a practical application?

- Local methods
 - Computationally efficient
 - Results often too poor
- Global methods
 - Good-quality results
 - Usually too slow
- Goal
 - Develop a stereo algorithm that delivers maximum accuracy at minimum computation time

• Find a disparity map *D* that minimizes

$$E(D) = E_{data}(D) + E_{smooth}(D).$$

• Find a disparity map *D* that minimizes

$$E(D) = E_{data}(D) + E_{smooth}(D).$$

Photo consistency assumption

• Find a disparity map *D* that minimizes

$$E(D) = E_{data}(D) + E_{smooth}(D).$$

Photo consistency assumption

Smoothness assumption

Ρ

• Find a disparity map *D* that minimizes

$$E(D) = E_{data}(D) + E_{smooth}(D).$$
hoto consistency assumption Smoothness assumption

 Definition of smoothness neighbourhood defines complexity of optimization problem

Optimization on 4-Connected Grid

Optimization on 4-Connected Grid

Optimization on 4-Connected Grid

(4-Connected Grid)

- Optimization NPcomplete (discontinuity preserving smoothness functions)
- Approximation via Graph-Cuts or Belief Propagation
- Good results, but computationally expansive

Disparity Map computed via Graph-Cuts (taken from the Middlebury website)

(Ground Truth)

(Graph-Cuts)

Dynamic Programming (DP)

(4-Connected Grid)

- Discard vertical smoothness edges
- Exact optimization via DP
- Computationally fast, but scanline streaking

Dynamic Programming (DP)

(4-Connected Grid)

- Discard vertical smoothness edges
- Exact optimization via DP
- Computationally fast, but scanline streaking

Dynamic Programming (DP)

(DP Neighbourhood Structure)

- Discard vertical smoothness edges
- Exact optimization via DP
- Computationally fast, but scanline streaking

Disparity Map computed using DP (taken from the Middlebury website)

(Ground Truth)

(Scanline Optimization)

(4-Connected Grid)

- Individual disparity computation at each pixel
- Aggregate DP costs computed from paths in various directions
- Computationally fast, almost no streaks, but poor performance in regions of low texture

(4-Connected Grid)

- Individual disparity computation at each pixel
- Aggregate DP costs computed from paths in various directions
- Computationally fast, almost no streaks, but poor performance in regions of low texture

(4-Connected Grid)

- Individual disparity computation at each pixel
- Aggregate DP costs computed from paths in various directions
- Computationally fast, almost no streaks, but poor performance in regions of low texture

(4-Connected Grid)

- Individual disparity computation at each pixel
- Aggregate DP costs computed from paths in various directions
- Computationally fast, almost no streaks, but poor performance in regions of low texture

(4-Connected Grid)

- Individual disparity computation at each pixel
- Aggregate DP costs computed from paths in various directions
- Computationally fast, almost no streaks, but poor performance in regions of low texture

(4-Connected Grid)

- Individual disparity computation at each pixel
- Aggregate DP costs computed from paths in various directions
- Computationally fast, almost no streaks, but poor performance in regions of low texture

SemiGlobal Matching in Untextured Regions

(Left Image)

(Right Image)

SemiGlobal Matching in Untextured Regions

(Left Image)

(Right Image)

SemiGlobal Matching in Untextured Regions

(Left Image)

- None of the DP paths captures texture at the correct disparity
- Disparity selection guided by noise

(Right Image)

Reimplementation of SemiGlobal Matching

(Left Image)

(Disparity Map)

Reimplementation of SemiGlobal Matching

(Left Image)

(Disparity Map)

Reimplementation of SemiGlobal Matching

Our Approach (Simple Tree Method)

(Simple Tree Structure)

- Perform a separate disparity computation for each pixel
- Root a tree on the pixel
- DP also works on trees
- Compute exact energy minimum on the tree
- Assign *p* to the disparity that lies on the energy minimum

Our Approach (Simple Tree Method)

(Simple Tree Structure)

- Perform a separate disparity computation for each pixel
- Root a tree on the pixel
- DP also works on trees
- Compute exact energy minimum on the tree
- Assign *p* to the disparity that lies on the energy minimum

Advantages of Simple Trees

(Simple Tree on the Previous Example)

- Tree structure spans all pixels (does not miss image features)
- Vertical and horizontal smoothness edges (against scanline streaks)
- We include all smoothness edges by using two different tree structures

Two Simple Tree Structures

Horizontal Tree

Vertical Tree

- Allow for incremental computation of optima
- Only 4 DP passes needed

Energy Function

$$E(D) = \sum_{p \in I} m(p, d_p) + \sum_{(p,q) \in \mathcal{N}} s(d_p, d_q).$$

Energy Function

$$E(D) = \sum_{p \in I} m(p, d_p) + \sum_{(p,q) \in \mathcal{N}} s(d_p, d_q).$$

BT-measurement on
RGB values

Energy Function $E(D) = \sum_{p \in I} m(p, d_p) + \sum_{(p,q) \in \mathcal{N}} s(d_p, d_q).$

BT-measurement on RGB values

Energy Function

$$E(D) = \sum_{p \in I} m(p, d_p) + \sum_{(p,q) \in \mathcal{N}} s(d_p, d_q).$$
BT-measurement on
RGB values
Modified Potts model
$$s(d_p, d_q) = \begin{cases} 0 & : \ d_p = d_q \\ P_1 & : \ |d_p - d_q| = 1 \\ P_2 & : \ otherwise. \end{cases}$$

Energy Function $E(D) = \sum_{p \in I} m(p, d_p) + \sum_{(p,q) \in \mathcal{N}} s(d_p, d_q).$ BT-measurement on Modified Potts model **RGB** values $s(d_p, d_q) = \begin{cases} 0 & : & d_p = d_q \\ P_1 & : & |d_p - d_q| = 1 \\ P_2 & : & \text{otherwise.} \end{cases}$

Weighted by intensity gradient

Energy Optimization on Simple Trees

- Extremely large amount of different trees
- Tree DP on every tree is extremely slow

- Optimize horizontal scanlines only
- Compute DP path costs for reaching each pixel *p* at each disparity *d* from left and right-most pixels of the scanline

- Optimize horizontal scanlines only
- Compute DP path costs for reaching each pixel *p* at each disparity *d* from left and right-most pixels of the scanline

(Forward pass)

- Optimize horizontal scanlines only
- Compute DP path costs for reaching each pixel *p* at each disparity *d* from left and right-most pixels of the scanline

(Forward pass)

(Backward pass)

- Optimize horizontal scanlines only
- Compute DP path costs for reaching each pixel *p* at each disparity *d* from left and right-most pixels of the scanline

 Compute path costs for reaching pixel p at disparity d from all leaf nodes

 Compute path costs for reaching pixel p at disparity d from all leaf nodes

 Compute path costs for reaching pixel p at disparity d from all leaf nodes

 Compute path costs for reaching pixel p at disparity d from all leaf nodes

 Compute path costs for reaching pixel p at disparity d from all leaf nodes

- Forward Path
- Backward Path
- Combination gives energy minima of all Horizontal Trees on this scanline

What I do not discuss in this talk (but in the paper)

- How are Horizontal and Vertical Trees combined in the algorithm?
- How are occlusions handeled?

(Ground truth disparities)

(Our results [Parameters kept constant])

Middlebury Ranking

Algorithm	Rank	Tsukuba		Venus		Teddy		Cones	
rigonum		nocc	all	nocc	all	nocc	all	nocc	all
C-SemiGlob (Hirschmüller, 2006)	5	2.61	3.29	0.25	0.57	5.14	11.8	2.77	8.35
RegionTreeDP (Lei et al., 2006)	6	1.39	1.64	0.22	0.57	7.42	11.9	6.31	11.9
SimpleTree	8	1.86	2.56	0.42	0.76	7.31	12.7	4.00	9.74
SegTreeDP (Deng and Lin, 2006)	10	2.21	2.76	0.46	0.60	9.58	15.2	3.23	7.86
SemiGlob (Hirschmüller, 2005)	12	3.26	3.96	1.00	1.57	6.02	12.2	3.06	9.75
RealTimeGPU (Wang et al., 2006)	19	2.05	4.22	1.92	2.98	7.23	14.4	6.41	13.7
ReliabilityDP (Gong and Yang, 2005)	21	1.36	3.39	2.35	3.48	9.82	16.9	12.9	19.9
TreeDP (Veksler, 2005)	22	1.99	2.84	1.41	2.10	15.9	23.9	10.0	18.3
DP (Scharstein and Szeliski, 2002)	24	4.12	5.04	10.1	11.0	14.0	21.6	10.5	19.1
SO (Scharstein and Szeliski, 2002)	27	5.08	7.22	9.44	10.9	19.9	28.2	13.0	22.8

- Rank 8 of ~30 algorithms in online table
- Computationally more efficient than better-ranked methods
- Best-performing non-segmentation-based algorithm

- Segmentation is computationally expensive
- Works fine for Middlebury set, but not in general

(Left image)

(Ground truth)

(SegGlobVis [Bleyer04])

(SimpleTree)

- Segmentation computation expensive
- Works fine for Middlebury s but not in ge

(Left image)

(Ground truth)

(SegGlobVis [Blever04]) (SimpleTree)

- Segmentati computatio expensive
- Works fine Middlebury but not in o

Computational Performance [given in sec]

Data Set	Size	Range	1 CPU	4 CPUs
Tsukuba	384 × 288	0–15	0.45	0.18
Venus	434×383	0–19	0.70	0.23
Teddy	450×375	0–59	1.54	0.57
Cones	450×375	0–59	1.54	0.57

Potential for real-time performance

The new Middlebury Data Sets

Comparison against Graph-Cuts

- Simple Tree outperforms Graph-Cuts on 20 of 30 stereo pairs
- Simple Tree is significantly faster.

(Left image)

(Disparity Graph-Cuts) (Disparity Simple Tree)

(Ground truth)

(Error Graph-Cuts)

(Error Simple Tree)

The Midd1 Test Set

(Left Image)

(Ground Truth)

(Graph-Cuts)

(Simple Tree)

Graph-Cuts perform better on images with extremely low texture

Conclusions

- Compute disparity map by solving an optimization problem for each pixel
- Approximation of 4-connected grid via a tree
- Horizontal and Vertical Trees allow for fast computation
- Results almost free of scanline streaks
- Best-performing method in the Middlebury ranking that does not use colour segmentation
- Can represent a fast alternative to Graph-Cuts when speed matters

 Interactive Media Systems Group

 Software Technology & Interactive Systems

 Vienna University of Technology

The End

Thank You