

Evaluation of Different Methods for Using Colour Information in Global Stereo Matching Approaches

<u>Michael Bleyer</u>¹, Sylvie Chambon², Uta Poppe¹ and Margrit Gelautz¹

¹Vienna University of Technology, Austria ²Laboratoire Central des Ponts et Chaussées, Nantes, France

Dense Stereo Matching

(Left Image)

(Right Image)

Dense Stereo Matching

(Left Image)

(Right Image)

(Disparity Map)

Structure

- Introduction
- Benchmark design
 - Evaluated energy functions
 - Applied optimization methods
 - Parameter estimation
- Results
- Conclusions

Introduction

- Evaluation of stereo energy functions.
- Two key questions:
 - Does colour help to improve the performance of global stereo methods?
 - What is the best method for using colour? (Colour system, Pixel difference)
- Observation:
 - Colour is expected to reduce matching ambiguities.
 - However, a lot of researchers do not want to use colour information.

LCPC Laboratoire Central des Ponts et Chaussées

Introduction

However, a lot of researchers do not want to use colour information.

LCPC Laboratoire Central des Ponts et Chaussées

Introduction

However, a lot of researchers do not want to use colour information.

Introduction

- Evaluation of stereo energy functions.
- Two key questions:
 - Does colour help to improve the performance of global stereo methods?
 - What is the best method for using colour? (Colour system, Pixel difference)
- Observation:
 - Colour is expected to reduce matching ambiguities.
 - However, a lot of researchers do not want to use colour information.

Energy Functions

$$E(D) = \sum_{p \in \mathcal{I}} m(p, p - d_p) + \sum_{(p, p') \in \mathcal{N}} s(d_p, d_{p'})$$

Laboratoire Central des Ponts et Chaussées

Energy Functions

$$E(D) = \sum_{p \in \mathcal{I}} m(p, p - d_p) + \sum_{(p, p') \in \mathcal{N}} s(d_p, d_{p'})$$

- Data term
 - Photo consistency assumption
 - Computes colour difference
 between corresponding pixels
 - Focus of this study

Laboratoire Central des Ponts et Chaussées

Energy Functions

$$E(D) = \sum_{p \in \mathcal{I}} m(p, p - d_p) + \sum_{(p, p') \in \mathcal{N}} s(d_p, d_{p'})$$

- Smoothness term
 - Smoothness assumption
 - Penalizes neighbouring pixels assigned to different disparities

Data Term – Colour Spaces

- 10 different choices evaluated:
 - Primary systems:
 - RGB, XYZ;
 - Luminance-chrominance systems:
 - *LUV*, *LAB*, *AC*₁*C*₂, *YC*₁*C*₂;
 - Perceptual systems:
 - *HSI;*
 - Statistical independent component systems:
 - $I_1 I_2 I_3, H_1 H_2 H_3;$
 - Use of intensity values only:
 - Grey;

Data Term – Difference Measurements

- 2 choices evaluated:
 - L1 distance (Sum-of-absolute-differences)

$$m^{L_1}(p,q) = \sum_{1 \le i \le 3} |p_i - q_i|$$

• L2 distance (Euclidean distance)

$$m^{L_2}(p,q) = \sqrt{\sum_{1 \le i \le 3} (p_i - q_i)^2}$$

- Special treatment for HSI and Grey.
- In total, 18 different energy functions evaluated in this study.

$$E(D) = \sum_{p \in \mathcal{I}} m(p, p - d_p) + \sum_{(p, p') \in \mathcal{N}} s(d_p, d_{p'})$$

$$E(D) = \sum_{p \in \mathcal{I}} m(p, p - d_p) + \sum_{(p, p') \in \mathcal{N}} s(d_p, d_{p'})$$
Modified Potts model

$$E(D) = \sum_{p \in \mathcal{I}} m(p, p - d_p) + \sum_{(p, p') \in \mathcal{N}} s(d_p, d_{p'})$$

$$Modified Potts model$$

$$s(d_p, d_q) = \begin{cases} 0 & : \quad d_p = d_q \\ P_1 & : \quad |d_p - d_q| = 1 \\ P_2 & : \quad \text{otherwise.} \end{cases}$$

$$\begin{split} E(D) &= \sum_{p \in \mathcal{I}} m(p, p - d_p) + \sum_{(p, p') \in \mathcal{N}} s(d_p, d_{p'}) \\ & \text{Modified Potts model} \\ s(d_p, d_q) &= \begin{cases} 0 & : \quad d_p = d_q \\ P_1 & : \quad |d_p - d_q| = 1 \\ P_2 & : \quad \text{otherwise.} \end{cases} \\ \end{split}$$

$$\begin{split} & \text{Weighted by intensity gradient} \\ & P_2 = \begin{cases} P_3 \cdot P_2' & : \quad |I_p - I_q| < T \\ P_2' & : \quad \text{otherwise} \end{cases} \end{split}$$

Energy Optimization

- Computing energy minimum is known to be NP-hard.
- 2 methods for approximation:
 - Graph-cuts (Alpha-expansion framework):
 - Standard method for energy functions of this type
 - Dynamic programming-based method:
 - Optimizes energy function on a tree structure via DP
 - Two spanning trees generated for each pixel

Computation time less than a second

Parameter Estimation

- Two important parameters (*P*₁ and *P*₂) in the energy function:
 - Balance data and smoothness terms
 - Balance affected by the use of different data terms
 - For fairness, optimize parameter settings for each of the 18 energy functions separately
 - Approximately, 100 combinations of P_1 and P_2 tested

Laboratoire Central des Ponts et Chaussées

The 2003 Sets

Currently used in the Middlebury Stereo Vision Benchmark

LCPC Laboratoire Central des Ponts et Chaussées

The 2003 Sets

LCPC Laboratoire Central des Ponts et Chaussées

The 2003 Sets

(Graph-Cut Method - L1 Distance)

The 2003 Sets

(Graph-Cut Method - L1 Distance)

The 2003 Sets

LCPC Laboratoire Central des Ponts et Chaussées

The 2003 Sets

LCPC Laboratoire Central des Ponts et Chaussées

The 2003 Sets

The 2003 Sets

The 2005 Sets

Art Books Dolls Laundry Moebius Reindeer

• More complex in terms of geometry, occlusions and untextured regions

LCPC Laboratoire Central des Ponts et Chaussées

The 2005 Sets

Laboratoire Central des Ponts et Chaussées

The 2005 Sets

(Dynamic Programming Method - L1 Distance)

Laboratoire Central des Ponts et Chaussées

The 2006 Sets

 Bowling1 Lampshade2
 Plastic
 Midd1
 Monopoly
 Wood2
 Cloth1
 Cloth2
 Cloth3
 Cloth4

Interactive Media Systems Group Software Technology & Interactive Systems Vienna University of Technology Laboratoire Central des Ponts et Chaussées

The 2006 Sets

Interactive Media Systems Group Software Technology & Interactive Systems Vienna University of Technology

Laboratoire Central des Ponts et Chaussées

The 2006 Sets

(Dynamic Programming Method - L1 Distance)

LCPC Laboratoire Central des Ponts et Chaussées

The 2006 Sets

Colour	All Sets	
Space	Avg. Avg. Rank↓ Error	
LUV	$3.3_1 13.8_1$	
AC_1C_2	3.3 ₁ 14.6 ₂	
YC_1C_2	3.5 ₃ 15.0 ₃	
$I_1I_2I_3$	4.1 ₄ 15.1 ₄	
RGB	5.5_{5} 16.2_{5}	
$H_1H_2H_3$	5.7 ₆ 16.8 ₇	
XYZ	6.1 ₇ 16.5 ₆	
LAB	7.2 <mark>8</mark> 18.4 <mark>8</mark>	
Grey	8.0 ₉ 18.5 ₁₀	
HSI	8.2 ₁₀ 18.4 ₉	

(Graph-Cuts)

Colour	All Sets
Space	Avg. Avg.
	Rank↓ Error
LUV	2.8 ₁ 13.7 ₁
AC_1C_2	3.4 ₂ 14.8 ₃
YC_1C_2	3.4 ₂ 14.7 ₂
$I_1I_2I_3$	4.7_4 15.3_4
RGB	4.8 ₅ 16.5 ₅
XYZ	5.9_{6} 16.5_{6}
$H_1H_2H_3$	6.1 ₇ 17.7 ₇
LAB	7.4 ₈ 18.8 ₉
HSI	8.0 ₉ 18.2 ₈
Grey	8.6 ₁₀ 19.3 ₁₀

(Dynamic Programming)

Colour Space	All SetsAvg.Avg.Rank↓Error	 Error percentage in unoccluded regions (averaged over all test sets)
$\begin{array}{c} LUV\\ AC_1C_2\\ YC_1C_2\\ I_1I_2I_3\\ RGB \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
H ₁ H ₂ H ₃ XYZ LAB Grey HSI		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
(Grap	h-Cuts)	(Dynamic Programming)

Colour	All Sets	
Space	Avg. Rank↓	Avg. Error
LUV	3.3 ₁	13.8
AC_1C_2	3.3 <mark>1</mark>	14 .6 ₂
YC_1C_2	3.5 <mark>3</mark>	15.0 <mark>3</mark>
$I_1I_2I_3$	4.14	15.1_{4}
RGB	5.5 ₅	16.2 ₅
$H_1H_2H_3$	5.7 ₆	16.8 ₇
XYZ	6.1 ₇	16.5_{6}
LAB	7.2 <mark>8</mark>	18.4_{8}
Grey	8.0 <mark>9</mark>	18.5_{10}
HSI	8.2 ₁₀	18.4 <mark>9</mark>

(Graph-Cuts)

- Relative rank in comparison against competing colour systems (averaged over all test sets)
- Table sorted according to this error measurement

$I_1I_2I_3$	4.7_4 15.3_4
RGB	4.8_5 16.5 ₅
XYZ	5.9_{6} 16.5_{6}
$H_1H_2H_3$	6.1 ₇ 17.7 ₇
LAB	7.4 ₈ 18.8 ₉
HSI	8.0 ₉ 18.2 ₈
Grey	8.6 ₁₀ 19.3 ₁₀

(Dynamic Programming)

(Dynamic Programming)

(Graph-Cuts)

(Dynamic Programming)

(Graph-Cuts)

(Dynamic Programming)

Colour	All Sets		Colour	All Sets
Space	Avg. Avg. Rank↓ Error	• 0.7% le	ss errors	for DP ^{vg.} ror
LUV	3.3_1 13.8_1		LUV	2.8 13.71
AC_1C_2	3.3 ₁ 14.6 ₂		AC_1C_2	3.4_2 14.8_3
YC_1C_2	3.5 ₃ 15.0 ₃		YC_1C_2	3.4 ₂ 14.7 ₂
$I_1I_2I_3$	4.1_4 15.1_4		$I_1I_2I_3$	4.7_4 15.3_4
RGB	5.5_{5} 16.2_{5}		RGB	4.8_5 16.5 ₅
$H_1H_2H_3$	5.7 ₆ 16.8 ₇		XYZ	5.9 ₆ 16.5 ₆
XYZ	6.1 ₇ 16.5 ₆		$H_1H_2H_3$	6.1 ₇ 17.7 ₇
LAB	7.2 <mark>8</mark> 18.4 <mark>8</mark>		LAB	7.4_8 18.8 ₉
Grey	8.0 ₉ 18.5 ₁₀		HSI	8.0 <mark>9</mark> 18.2 <mark>8</mark>
HSI	8.2 ₁₀ 18.4 ₉		Grey	8.6 ₁₀ 19.3 ₁₀
(Grap	n-Cuts)	(Dyn	amic Pr	ogrammi

(Dynamic Programming)

(Dynamic Programming)

Quantitative Results – L1 vs L2

Colour	All Sets	
Space	Avg. Avg.	
•	Rank↓ Error	
LUV	3.3 ₁ 13.8 ₁	
AC_1C_2	3.3 ₁ 14.6 ₂	
YC_1C_2	3.5 ₃ 15.0 ₃	
$I_1I_2I_3$	4.1 ₄ 15.1 ₄	
RGB	5.5 ₅ 16.2 ₅	
$H_1H_2H_3$	5.7 ₆ 16.8 ₇	
XYZ	6.1 ₇ 16.5 ₆	
LAB	7.2 <mark>8</mark> 18.4 <mark>8</mark>	
Grey	8.0 ₉ 18.5 ₁₀	
HSI	8.2 ₁₀ 18.4 ₉	

(Graph-Cuts – L1)

Colour	All Sets
Space	Avg. Avg.
Space	Rank↓ Error
LUV	3.2 ₁ 14.5 ₁
YC_1C_2	3.8 ₂ 15.6 ₃
AC_1C_2	4.0 ₃ 15.5 ₂
$I_1I_2I_3$	4.8_4 16.2_5
RGB	5.1_{5} 16.7_{6}
XYZ	5.4_{6} 16.0_{4}
$H_1H_2H_3$	6.6 ₇ 17.9 ₇
LAB	6.8 ₈ 18.3 ₉
Grey	7.6 ₉ 18.5 ₁₀
HSI	7.7 ₁₀ 17.9 ₈

(Graph-Cuts – L2)

Quantitative Results – L1 vs L2

(Graph-Cuts – L1)

(Graph-Cuts – L2)

(Left Image)

Example: Dolls Test Set – Graph-Cuts

(Grey - Disparity) (LUV - Disparity)

Example: Dolls Test Set – Graph-Cuts

(Left Image)

(Grey - Errors)

(LUV - Errors)

Example: Dolls Test Set – Graph-Cuts

(Left Image)

(Grey - Errors)

(LUV - Errors)

(Left Image)

Example: Dolls Test Set – Dynamic Programming

(Grey - Disparity) (LUV - Disparity)

Example: Dolls Test Set – Dynamic Programming

(Left Image)

(Grey - Errors)

(LUV - Errors)

Example: Dolls Test Set – Dynamic Programming

(Left Image)

(Grey - Errors)

(LUV - Errors)

Conclusions (1)

- Investigation of the role of colour in global stereo methods
- 18 energy functions tested with 2 optimization algorithms on 30 ground truth images
- Colour does not always improve results. (Current Middlebury evaluation set)
- Performance improvement of 25% achieved by using the best-performing colour system instead of greyscale matching

Conclusions (2)

- Luminance-chrominance systems have shown the best results. (relationship to human perception)
- RGB only gives average results. (most popular colour system)
- Choice of colour system is probably more important than difference method or optimization. (It is worth paying more attention to data term.)

The End

Thank You