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Summary

Image matting aims to extract a foreground object from a single natural image by recovering the

partial transparency and corresponding color of the foreground object at each pixel in the image.

The resulting transparency map is thereby denoted as alpha matte. The matting problem is severely

ill-posed, and in this thesis we focus on matting approaches that utilize user interaction to make the

problem tractable.

There are three fundamental challenges in interactive image matting research that are addressed

in this thesis: (i) Providing a fast and intuitive user interface; (ii) finding a good cost function for

matting; and (iii) providing a benchmark that allows a quantitative comparison of matting results.

In most previous approaches the user interacts with the algorithm by drawing an accurate trimap,

which is a partition of the image into foreground, background and unknown regions. An accurate

trimap is very tedious to create manually, hence we follow recent work and aim to automatically

generate a trimap from very little user input. The novelty of our approach lies in a new cost function

that describes the goodness of a trimap solution. Our cost function considers several image cues

and incorporates four different types of priors that are used to regularize the result. We show that

our method is fast and produces accurate results.

Given a trimap, the thesis then addresses the problem of extracting an alpha matte from a single

photograph. We improve on previous image matting approaches by assuming that the majority of

partial transparencies are induced by the imaging process. Hence we exploit a model where alpha

is the convolution of a binary segmentation with the camera’s point spread function. Based on this

model, we propose new matting algorithms that generate high-quality results even for images where

our assumption is not met completely.

Finally, we introduce a new benchmark test for image matting that enables a quantitative com-

parison of matting results. Our contributions are (i) a challenging, high-quality ground truth test

set that builds the basis of our evaluation; (ii) a dynamic online benchmark system that allows other

researchers to interactively analyze recent matting work and to complement the evaluation with new
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results; and (iii) perceptually motivated error metrics for image matting. We use this benchmark to

confirm that our proposed matting algorithms outperform the current state-of-the-art.
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Kurzfassung

Das Ziel von Image Matting ist es, ein Vordergrundobjekt aus einem Bild herauszulösen. Dabei

müssen der Transparenzwert und die Farbe des Vordergrundobjektes an jedem Pixel im Bild be-

stimmt werden. Die resultierende Transparenzkarte wird auch als Alpha Matte bezeichnet. Das

Matting-Problem ist mathematisch unterbestimmt, weshalb die meisten Algorithmen auf Benut-

zerinteraktion angewiesen sind, um das Problem einzuschränken.

Es gibt drei große Herausforderungen im Bereich Matting: (i) Die Entwicklung einer einfach

und schnell zu bedienenden Benutzerschnittstelle; (ii) die Modellierung einer geeigneten Kosten-

funktion, welche die Güte einer Alpha Matte beschreibt, und (iii) die Erstellung eines Benchmark-

Tests, der einen quantitativen Vergleich von Matting-Algorithmen ermöglicht. In dieser Arbeit wer-

den neue Ansätze in allen drei Bereichen präsentiert.

In den meisten vorangegangenen Arbeiten interagiert der Benutzer mit dem Algorithmus, indem

er eine sogenannte Trimap zeichnet. Die Trimap ist eine Unterteilung des Bildes in Vordergrund,

Hintergrund und einen unbekannten Bereich. Das händische Erstellen einer genauen Trimap ist je-

doch sehr zeitintensiv. Daher folgen wir jüngsten Forschungsarbeiten und berechnen eine exakte

Trimap anhand weniger Benutzereingaben. Die Neuheit in unserem Ansatz ist eine verbesserte Ko-

stenfunktion, welche die Güte einer Trimap beschreibt. Unsere vorgeschlagene Kostenfunktion ba-

siert auf Bildmerkmalen und a-priori Wissen über den Bildgebungsprozess, wodurch es ermöglicht

wird, präzise Resultate mit wenig Benutzeraufwand zu erzeugen.

Der zweite Teil dieser Arbeit beschäftigt sich mit dem Extrahieren einer Alpha Matte unter Zu-

hilfenahme einer vom Benutzer spezifizierten Trimap. Unser Ansatz basiert auf der Annahme, dass

die Transparenzen des Vordergrundobjektes vor allem durch den Bildgebungsprozess entstanden

sind. Aufgrund dieser Annahme verwenden wir ein Modell, welches die Alpha Matte als Faltung

einer binären Segmentierung mit der Punktspreizfunktion der Kamera beschreibt. Basierend auf

diesem Modell werden in dieser Arbeit Matting-Algorithmen vorgestellt, welche qualitativ hoch-

wertige Resultate erzeugen können, selbst wenn unsere Annahme nicht zur Gänze erfüllt wird.
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Im letzten Teil dieser Arbeit entwickeln wir einen Benchmark-Test für Image Matting, der einen

quantitativen Vergleich der Algorithmen ermöglicht. Der von uns entwickelte Benchmark umfasst

(i) einen Testdatensatz mit qualitativ hochwertigen Referenzlösungen; (ii) ein dynamisches Online

Benchmark System, welches für Forscher zugänglich ist, um bestehende Algorithmen zu analy-

sieren und die Evaluierung mit neuen Resultaten zu ergänzen; und (iii) Fehlermetriken für Image

Matting, welche auf der menschlichen Wahrnehmung basieren. Die Resultate des Benchmark-Tests

bestätigen die ausgezeichnete Leistung unserer Matting-Algorithmen im Vergleich zum State of the

Art.
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Chapter 1

Introduction

1.1 Motivation

Separating a foreground object in an image from its background is a fundamentally impor-

tant operation in image editing, with many applications in the entertainment industry. For

instance, once an object has been separated from its background, it may be blended with

another background scene.

To separate the foreground object, binary segmentation techniques like [BJ01, MB95]

may be applied to the image. Such algorithms assign each pixel in the image to either the

fore- or the background. The result is a binary mask, which defines the extent of the fore-

ground object. For instance, the mask of the foreground of the image crop in figure 1.1(a)

is depicted in figure 1.1(b). In the depicted mask, pixels which belong to the foreground

are encoded in white, whereas background pixels are shown in black. Using this binary

mask we blended the foreground of the image crop in figure 1.1(a) with a plain white back-

ground. The resulting image composition in figure 1.1(c) is imperfect, since the fine hair

strands do not look visually integrated with the white background. This is because the col-

ors at the boundary of the foreground object in figure 1.1(a) were mixed with the colors of

the background during the image acquisition. Such mixed pixels cannot be clearly assigned

to either the fore- or background, thus cannot be separated with a pure binary segmentation.

Hence, to achieve a more accurate separation of the foreground object, one has to infer

the partial coverage of the foreground at mixed pixels. This task is known as alpha matting

1
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(a) Crop of (d) (b) Binary foreground mask (c) Composite on white using (b)

(d) Image (e) Alpha matte (f) Composite on white using (e)

Figure 1.1: Why do we need matting? (a) The crop of the image in (d) shows purple
hair strands in front of a blue and green background. Pixels close to the foreground object
boundary in (a) were blended to the background during the image acquisition, hence only
partially belong to the foreground. Using a binary mask (b) to blend the foreground in (a)
with a white background gives a visually unpleasing image composition (c). An alpha matte
(e) can account for this fractional foreground coverage, resulting in a visually integrated
image composition (f).

and the resulting “soft segmentation” is referred to as the alpha matte. An example of an

alpha matte is shown in figure 1.1(e) for the image crop in figure 1.1(a). The gray values of

the alpha matte encode the fractional coverage of the foreground. Pixels which fully belong

to the fore- and background are encoded in white and black, respectively. Using the alpha

matte we can seamlessly blend the foreground object over an e.g. plain white background

as demonstrated in figure 1.1(f).

In the following we will explain the image matting and compositing task in more detail.
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= • + •

C = α • F + (1 − α) • B

Figure 1.2: Image compositing. The foreground F is blended to the background B, ac-
cording to the alpha matte α to give the composite C. Matting aims to reconstruct α, F and
B, given C as input. See the text for a more detailed discussion.

1.2 Image Compositing and Matting

As we have seen in the previous section, the goal of image compositing is to combine

two or more images from (different) sources such that the resulting image looks visually

integrated [Bri99, Wri06]. One of the most useful operations in image compositing is

the over operation [PD84], which aims to seamlessly place a foreground object over a

background. The over operation is formalized in the compositing equation (see figure 1.2

for an illustration), which models the composite image C as a convex combination of the

foreground color F and background color B:

C = αF + (1 − α)B. (1.1)

Here, the alpha matte α defines the ratio to which the foreground object covers the back-

ground at each pixel. In regions where the foreground object fully covers the background,

the value of alpha will be 1 (shown in white in figure 1.2), and 0 in those regions where the

foreground object does not cover the background at all (shown in black in figure 1.2).

However, close to the object boundaries, the foreground may only partially cover the

background (an example is the hair of the soft toy in figure 1.2). Hence, the fore- and

background colors are mixed together, which is modeled by fractional alpha values (i.e.

0 < α < 1). In general, this partial foreground coverage (i.e. mixing of the fore- and

background colors) can be caused by multiple factors, such as translucent materials or the

imaging process itself. We will discuss these sources in detail in chapter 3.

Compositing an image C using eq. (1.1) is a straightforward process. In sharp contrast,
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alpha matting is the inverse process of compositing and attempts to extract the foreground

color F , background color B and alpha matte α, given only the observed color C of the

composite (input) image. Assuming that we are working in the RGB-color space, C, F

and B are three-dimensional vectors, with each dimension representing one color channel.

Given only the composite image C, this leaves us with seven unknowns in only three equa-

tions. Clearly, this is a severely ill-posed problem, and without any further constraints there

is an infinite number of solutions to the problem. For instance, one undesired solution that

perfectly fits the compositing equation (1.1) is to set the alpha matte α to 1 and the fore-

ground color F to the color of the input image C at each pixel in the image. Hence, the

extracted foreground image equals to the input composite.

Thus, to solve the matting problem, further constraints are necessary. In section 1.2.1

we will discuss algorithms that constrain the problem by using a specialized imaging setup.

However, such approaches cannot be used to derive alpha mattes for natural images that

were captured with a standard photo-camera. In this thesis we aim to infer alpha mattes

from such natural images, which in general requires the user to manually place constraints

on the image (see section 1.2.2 for details).

1.2.1 Matting Using Specialized Imaging Setups

To solve for the unknown variables, some matting approaches impose additional constraints

on the image setup. For instance, one approach that is extensively used in the film and

entertainment industry is Blue Screen Matting. Here, the problem is simplified by pho-

tographing or filming the foreground object in front a known (usually constant-colored

blue or green) background. Hence, the background color B in eq. (1.1) is known. Still the

problem remains under-constrained (4 unknowns in 3 equations) and the remaining am-

biguities are solved in practice by imposing ad-hoc assumptions on the foreground color

channels [SB96].

In [SB96] an extension to this approach has been presented, which allows to obtain the

true solution to the matting problem. This Triangulation Matting approach works by pho-

tographing the foreground object against at least two backgrounds, which differ in color at

each pixel. This yields an overdetermined set of linear equations (i.e. 6 equations with only
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4 unknown variables) that can be solved using a linear least squares method. Although the

strict studio requirements of this approach prevent it from being used as a general-purpose

matting system, it is very useful to derive reference solutions to the matting problem. In

particular, we will use this technique to create a ground truth dataset for the purpose of

evaluating matting algorithms in chapter 7.

Other previously proposed matting approaches have used additional information in the

form of flash/no-flash image pairs [SLKS06], multiple synchronized video streams with

different focus settings [MMP+05], camera arrays [JMA06, WFZ02] or stereo cameras

[BGRR09].

1.2.2 Natural Image Matting

The matting approaches described in section 1.2.1 can generate accurate results, but their

practical use is limited since they either rely on specialized imaging setups or require the

image to be captured in restrictive studio environments. In this thesis we will consider a

practically more interesting, but in general more difficult case, where we aim to infer all

unknown parameters in eq. (1.1) from a single natural image. In contrast to approaches that

rely on a specialized imaging acquisition, natural image matting approaches rely on input

by the user to restrict the space of possible solutions. Generally speaking, this is done by

indicating those parts in the image where the fore- and background can be easily distin-

guished by the user. We will review different kinds of user interaction in chapter 2.1. Even

after the user has placed constraints on the image, the matting problem remains ill-posed.

Hence, to infer the unknown variables for the unconstrained pixels, further assumptions are

necessary. One common assumption used in matting is local regularity on F and B, and

we will review related work in chapter 2.2.

1.3 Contributions

There are three fundamental challenges in natural image matting research: (1) To provide

a good way of user interaction; (2) to find a good objective function for matting; and (3) to

evaluate the matting results. This thesis makes contributions in all three areas.
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Most of our contributions rest upon the insight that a majority of mixed pixels (i.e. pix-

els where α ∈ ]0, 1[) are caused by the imaging process. During the imaging process, the

foreground can be mixed with its background due to defocus blur, motion blur or discretiza-

tion. These blurring effects can be described by the camera’s Point Spread Function (PSF).

Based on this fundamental observation, we advocate a model for alpha that had previously

been studied with respect to the super-resolution and deblurring tasks. In particular, we

model the alpha matte as the convolution of a binary segmentation with the camera’s PSF

that accounts for the fractional alpha values. (See chapter 3 for details.) In this thesis we

exploit this alpha model, based on a segmentation and the PSF, to overcome weaknesses of

previously proposed matting approaches.

In the following, the contributions of this thesis are discussed in more detail.

1.3.1 User Interaction

As we have seen in section 1.2, natural image matting is a severely ill-posed problem and

therefore user interaction is vital to solve it. The most common form of user interaction is

the trimap interface, where the user manually partitions the image into foreground, back-

ground and unknown regions (see e.g. [CCSS01, RT00, WC07a, WAC07, GSAW05]). The

matting problem is then solved for the pixels in the unknown regions only. If the unknown

region of the trimap is very small, the resulting matte is usually of very high-quality. How-

ever, drawing an accurate trimap is a tedious process, and therefore matting algorithms

have been developed that are also capable of working on very sparse trimaps, commonly

denoted as scribbles (see e.g. [WC05, GCL+06, LLW08, LRAL08]). These scribbles can

also be regarded as a trimap with a large unknown region. Although scribbles are easier to

create, the quality of the matting results is usually inferior to those obtained with a more ac-

curate trimap. Recently, an intermediate solution has been suggested by Juan and Keriven

[JK05] that aims to automatically generate an accurate trimap from sparse scribble input.

In this thesis we propose a novel method to extract an accurate trimap from only a

few user defined scribbles in chapter 4. This is done by formulating the task of trimap

segmentation as an energy minimization problem. The main contribution lies in a novel

energy function that considers several image cues and incorporates four different types
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of priors. These priors are directly motivated from the segmentation-based alpha model

(see above) and are used to regularize the result. We learn the parameters of the energy

function from training data and optimize the energy with the parametric maxflow technique

[KBR07]. This allows the user to interactively modify the size of the unknown trimap

region in real-time, once the optimization procedure is finished. After the user has adjusted

the size of the unknown trimap region, the matting algorithm of [WC07a] is invoked that

computes the final alpha matte. Our method is intuitive and fast, and we show that it

outperforms previous trimap extraction approaches.

1.3.2 Objective Function

Once the user has specified a trimap, the goal is to infer the alpha matte α and corresponding

fore- and background colors (F,B) for the unknown trimap region. In this thesis we derive

α by minimizing a cost function, subject to the user-defined constraints. One integral part of

this cost function is to accurately model the distributions of the unknown model parameters

(i.e. α, F and B).

To model the distributions of the fore- and background colors, several methods have

been proposed in the past, e.g. [RT00, CCSS01, WC07a]. In this thesis we introduce a

novel color modeling approach, which considerably improves the performance of matting

algorithms. Previous work, like [WC07a], models the fore- and background colors at each

pixel using nearby (local) estimates of F and B. The key idea of our approach is to exploit

information from global color models to find better local estimates of the true fore- and

background colors. In particular, we first gather a number of potential fore- and background

color samples from user marked regions which are close in geodesic space (defined on

the likelihood of a global color model). This is in contrast to previous approaches, like

[WC07a], which simply collect samples from spatially nearby regions. In the next step we

compute a confidence value for the sampled fore- and background colors. We present a

new paradigm to compute the confidence by assuming that most alpha values in the image

are either exactly 0 or 1 (this is a property of the segmentation-based alpha model). Finally,

alpha values are computed from the color samples with the highest confidence. Details of

this approach are given in chapter 5.
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The second major challenge is to model alpha. Previous matting approaches either

do not apply any prior on alpha or assume smoothness of the alpha matte. However, a

smoothness prior is oftentimes not sufficient to overcome ambiguities in the solution space.

The key idea is now to improve on previous matting approaches by modeling the matte as

a convolution of a binary segmentation with a PSF.

We then propose two novel algorithms that infer alpha using this segmentation-based

model. The first algorithm starts by computing an initial approximation of alpha based on

a matting algorithm that uses a standard smoothness prior. From this initial alpha matte we

infer the PSF and the binary segmentation using a novel Markov Random Field (MRF)-

based segmentation technique. Afterwards we blur the binary segmentation with the PSF

and use it to re-estimate the alpha matte. We show that this approach improves on the

current state-of-the-art on a dataset of real matting scenes with known ground truth.

However, there are some drawbacks of this approach, which we aim to overcome in

the second algorithm. First, we observed that the binary segmentation of thin structures is

oftentimes overestimated by the first algorithm (i.e. the binary segmentation of thin struc-

tures is too wide). This is presumably because the segmentation was computed in a reso-

lution where the underlying segmentation of thin structures is not yet binary. Therefore, in

our second algorithm we propose to work on the higher-resolution (upscaled) alpha matte,

where the underlying binary segmentation is more likely to be binary. Secondly, our im-

proved method estimates the binary segmentation directly from the alpha matte as opposed

to the first algorithm, where computationally expensive deconvolution methods were ap-

plied to alpha before binarization. Thirdly, we apply a different segmentation procedure,

which enforces connectivity of the binary segmentation.

1.3.3 Matting Evaluation

An integral part of research is to evaluate the goodness of a proposed method on a standard

benchmark. However, ground truth data for low-level vision benchmarks such as matting

or stereo can only be obtained with a lot of effort. As a consequence, no benchmark has

been so far developed for the task of image matting. In this thesis we present a new bench-

mark test that comprises three important contributions. First, we introduce a challenging,
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high-quality ground truth test set that builds the basis of our benchmark. Second, we estab-

lish a dynamic online benchmark system that provides all data and scripts, which enables

researchers to interactively analyze recent matting work and to complement the evaluation

with new results. Finally, we improve on the evaluation methodology for image matting by

proposing perceptually motivated error functions.

We use our benchmark to evaluate the quality of our new matting algorithms, presented

in this thesis. The benchmark confirms that our proposed algorithms perform favorably

compared to the state-of-the-art. Also, our challenging test set reveals problems of existing

algorithms that were not reflected in previously reported results.

1.4 Resulting Publications

Major parts of this thesis resulted in the following articles:

• C. Rhemann, C. Rother, P. Kohli, V. Lempitsky and M. Gelautz. Segmentation-based

Alpha Matting. Under review.

• C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P. Rott. A Perceptually

Motivated Online Benchmark for Image Matting. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 1826-1833, 2009.

• C. Rhemann, C. Rother, A. Rav-Acha, and T. Sharp. High Resolution Matting via In-

teractive Trimap Segmentation. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 1-8, 2008.

• C. Rhemann, C. Rother, and M. Gelautz. Improving Color Modeling for Alpha Mat-

ting. In British Machine Vision Conference, 2:1155-1164, 2008.

This thesis also inspired the following publications, whose contents are, however, not in-

cluded in this thesis:

• C. Rhemann, M. Gelautz, and B. Fölsner. An Evaluation of Interactive Image Mat-

ting Techniques Supported by Eye-Tracking. In SPIE Electronic Imaging, volume

7242, 2009.
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• M. Bleyer, M. Gelautz, C. Rother and C. Rhemann. A Stereo Approach that Handles

the Matting Problem via Image Warping. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 501-508, 2009.

• D. Singaraju, C. Rother and C. Rhemann. New Appearance Models for Image Mat-

ting. In IEEE Conference on Computer Vision and Pattern Recognition, pages 659-

666, 2009.

1.5 Thesis Outline

This thesis is organized into 8 chapters. In chapter 2 we discuss work related to user

interaction, the objective function and the evaluation of matting algorithms. In chapter 3

we investigate the alpha formation process and use the insights to develop a physically

motivated model for alpha. Based on our physical model, we introduce a new approach to

user interaction in chapter 4 and improve on the objective function for matting in chapters

5 and 6. In chapter 7 we present a new ground truth dataset and evaluation methodology

for image matting and use it to quantitatively compare our matting approaches to the state-

of-the-art. Finally, chapter 8 summarizes our contributions and highlights directions for

future research.



Chapter 2

Related Work

There are three main areas of related work, namely user interaction, the objective function

and the evaluation of matting algorithms. In section 2.1, we review previous user interac-

tion techniques. Recovering the alpha matte from the user-defined constraints according to

an objective function, is discussed in section 2.2. Finally, in section 2.3, we deal with work

related to the evaluation of matting methods.

2.1 User Interaction

As discussed in chapter 1, natural image matting is an ill-posed problem. Without any

further constraints there is an infinite number of solutions to the problem. Hence, user

interaction is vital to make the problem tractable. The most common forms of user interac-

tion used in previous work can be broadly classified into three categories, namely trimaps,

scribbles and scribble-based trimap extraction methods. In the remainder of this section,

we will review all three of them.

2.1.1 Trimap Interface

The first class of interfaces that we discuss is based on trimaps (e.g. [CCSS01, RT00,

WC07a, WAC07, GSAW05]). With the trimap interface the user manually assigns, as

accurately as possible, each pixel to one of three classes: foreground (F), background (B)

11
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(a) Input image (b) Trimap input (c) Scribble input

Figure 2.1: User input. For the input image (a) we show an example trimap (b) and
scribble input (c). For both types of user input, the user manually marks each pixel as either
foreground (shown in red), background (shown in blue) or unknown (shown in green).

or unknown (U). An example trimap for the input image in figure 2.1(a) is shown in 2.1(b).

The information from the known regions (F , B) is then used to predict for each unknown

pixel the values for F,B and α. We call a trimap “perfectly tight” if the α values in U are

above 0 and below 1 and the F and B regions comprise only α values which are exactly

1 and 0, respectively. It has been shown [WC07a] that, if the trimap is perfect (or nearly

perfect), the resulting matte is of very high-quality. However, manually drawing such an

accurate trimap is a very tedious and time-consuming process for the user.

To shift some of the burden from the user to the system, more sophisticated trimap

“paint tools” like the soft scissors approach [WAC07] have been proposed. It builds on the

intelligent scissors method [MB95], which computes a hard segmentation, i.e. α ∈ {0, 1}.
In soft scissors, the user marks the unknown region of the trimap by tracing the object

boundary with a wide brush as illustrated in figure 2.2. The brush size is adapted according

to the underlying data and intermediate results of the matte are shown, enhancing the user

experience. The main drawback of such a brush tool is that objects with a long boundary or

complicated boundary topology are very tedious to trace, e.g. a tree with many foreground

holes.
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Figure 2.2: Trimap painting with soft scissors. With the soft scissors approach, the user
creates a trimap by tracing the object boundary with a brush that automatically adapts to
the underlying data. Figure from [WAC07].

2.1.2 Scribble Interface

Mainly because tracing the boundary can be very time-consuming, the trend of hard seg-

mentation approaches has been to move from boundary selection tools like intelligent scis-

sors [MB95] to scribble-based region selection tools [BJ01, RKB04]. This second class of

interfaces is more user-friendly since only relatively few pixels have to be assigned to the

foreground or background, which can be far away from the object boundary. Figure 2.1(c)

shows a scribble input example for the image in figure 2.1(a). With scribble-based input,

impressive results were achieved for hard segmentation [BJ01, RKB04, BS07] and also to

some extent for matting [LLW08, WC05, LRAL08, GCL+06]. However, in general the

results obtained with an accurate trimap are qualitatively superior to those obtained with

sparse scribbles. Hence, for difficult examples an accurate trimap is vital to obtain good

results.

2.1.3 Scribble-based Trimap Extraction

To combine the accuracy of trimaps with the usability of scribbles, one can attempt to

automatically generate an accurate trimap from sparse scribble input. A straightforward

solution proposed in e.g. [RKB04, BS07] is to first obtain a binary segmentation of the

image into F and B using some interactive image segmentation technique, e.g. GrabCut
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[RKB04]. Figure 2.3(b) shows the segmentation obtained by [RKB04] using the scribbles

in figure 2.3(a). In a second step, the unknown region is defined as a narrow band of

uniform thickness, obtained by dilation of the segmentation boundary (see figure 2.3(c)).

Clearly, such an approach will fail for images where the foreground object has a compli-

cated boundary. An example is shown in figure 2.3(d), where a band of uniform thickness

(figure 2.3(e)) cannot cover all mixed pixels. Hence, a method is necessary which computes

an adaptive band that respects the underlying data (see figure 2.3(f) for an example).

Recently, such a method has been suggested by Juan and Keriven [JK05]. In contrast to

binary segmentation algorithms (e.g. GrabCut [RKB04]), the method in [JK05] segments

the image into three classes (i.e. F , B and U) by minimizing the energy

E(x) =
∑

i

D(xi) +
∑

(i,j)∈N
V (xi, xj), (2.1)

where xi ∈ {F ,B,U} denotes the label of pixel i and N is the set of neighboring pixels.

(For simplicity, sets and labels have the same name, e.g. F). The vector x encodes the

assignment of all pixels in the image. The term data D for pixel xi is modeled as

D(xi) =

{
−logP (ci|θF) if xi ∈ F
−logP (ci|θB) if xi ∈ B.

Here θF and θB are the Gaussian Mixture Models (GMM) of the fore- and background,

respectively. In the unknown region the color distribution of D(xi), with xi ∈ U , is rep-

resented by a third GMM θU that is constructed by blending all combinations of fore- and

background mixtures of the respective GMMs with the mixture coefficient α. In [JK05], it

is assumed that α follows a uniform distribution, hence the blending coefficient is assumed

to be linear.

The smoothness term V is defined as

V (xi, xj) = λ
δ(xi = xj)

1 + dist (i, j)
, (2.2)

where δ is the Kronecker delta, dist(i, j) is the distance between pixels i and j, and λ

weights the smoothness term against the data term. The optimal labeling of the energy in
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(a) Input image & scribbles
(object with simple boundary)

(b) Binary segmentation using
scribbles from (a)

(c) Trimap by dilation of the
segmentation boundary from (b)

(d) Input image & scribbles
(object with complex boundary)

(e) Trimap from eroded binary
segmentation using scribbles

from (d)

(f) Trimap extracted using the
scribbles from (d)

Figure 2.3: Scribble-based trimap extraction. The image in (a) shows a soft toy with a
rather simple object outline. In (b) we show the binary segmentation obtained with GrabCut
[RKB04] using the user scribbles in (a). Dilation of the segmentation boundary gives a
trimap where the unknown region is a band of uniform thickness (c). The trimap in (e)
shows that a uniform band cannot capture the complex boundary (i.e. hair) of the object in
(d). In contrast, trimap-extraction techniques infer a very accurate trimap (f) from only a
few user scribbles (d).
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eq. (2.1) can be obtained by computing a single minimum cut in a special graph [Ish03].

Motivated by [JK05] we present an improved trimap segmentation approach in chapter

4. A result of our method is depicted in figure 2.3(f), where we can see that the band of the

unknown region adapts nicely to the complex object boundary.
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2.2 Objective Function

As we have seen in the previous section, most natural image matting algorithms start by

having the user place some constraints on the input image. Unfortunately, even with user

input the matting problem remains underconstrained. Thus most matting algorithms addi-

tionally exploit the strong correlations between nearby pixels to estimate an alpha matte.

Following [WC07a], we can roughly classify previous natural image matting methods into

two classes according to how they model these correlations:

Propagation-based approaches exploit the correlation between nearby pixels by mod-

eling that either the fore- and background colors or the alpha values are smooth within a

small local neighborhood.

Color-model-based approaches use the correlation of neighboring pixels to first esti-

mate the fore- and background color at each pixel. The optimal alpha value is then esti-

mated individually for each pixel by evaluating the compositing equation (1.1) using the

estimated color values. This pixel-wise estimate of alpha forms the data term of the ob-

jective function. The probably best state-of-the-art approaches, e.g. [WC07a], combine a

propagation term with a color-model based data term in a single objective function.

In the remainder of this chapter we will briefly summarize previous approaches that are

most relevant for this thesis. For a more detailed review, the interested reader is referred to

the recent survey by Wang et al. [WC07b].

2.2.1 Propagation-based Approaches

Some matting methods are purely “propagation-based”. This means that the given fore-

and background regions define the boundary conditions for the alpha matte (i.e. 1 and 0)

and the alpha values are propagated into the unknown region according to an objective

function.

Poisson Matting

Poisson Matting [SJTS04] is based on the assumption that the foreground colors F and

background colors B are locally smooth, hence the gradient of the fore- and background is

relatively small. If this assumption is met, it has been shown in [MYT95, SJTS04] that the
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gradient field of the alpha matte can be approximated as:

∇α ≈ 1

F −B
∇C, (2.3)

where ∇C denotes the gradient of the input image C. Using this approximation, the final

alpha matte α can be obtained by minimizing the following variational problem by solving

Poisson equations subject to user constraints:

α = arg min
α

∫ ∫
i∈U

∥∥∥∥∇αi − 1

Fi −Bi

∇Ci

∥∥∥∥2

di, (2.4)

where the fore- and background colors F and B for each pixel i of the unknown trimap

region U are simply obtained by extrapolation from the fore- and background regions of a

user marked trimap.

Although Poisson Matting is capable of producing impressive results, the quality de-

creases if the foreground or background colors are highly textured or if the fore- and back-

ground colors are locally very similar.

Random Walk Matting

In [GSAW05] the alpha value at a pixel in the unknown trimap region is defined as the

probability that a “random walker”, starting from the pixel under consideration, will first

reach the user-defined foreground constraints before reaching the background constraints.

Formally, these probabilities can be computed for all pixels in the unknown trimap region

by minimizing a quadratic cost function defined on a weighted graph. In the graph, each

pixel corresponds to a node and neighboring pixels are connected by edges (in [GSAW05]

a pixel is connected to its four neighbors in the cardinal directions). The weight of an edge

between two nodes i and j is defined by an affinity function Wi,j . An affinity function

defines to which extent neighboring nodes are coupled (i.e. should have the same value

for alpha). In other words, the affinity Wi,j corresponds to the probability that a random

walker transitions from node i to node j. Grady et al. [GSAW05] used an affinity function

under which neighboring pixels are highly coupled if they have a similar color, and loosely

coupled otherwise. Such affinities that enforce smoothness of the alpha matte in homoge-

neously colored regions are commonly used in image segmentation (e.g. [SM00, RKB04])
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and can be formalized as

Wi,j = exp

(
‖Ci − Cj‖2

σ2

)
, (2.5)

whereCi andCj are the RGB color vectors at neighboring pixels i and j, and σ is a constant.

For a better discrimination of the object boundary, this affinity was modified in [GSAW05]

by applying a linear transformation to the RGB colors in eq. (2.5) using Locality Preserving

Projections [HN04]. Finally, the alpha matte is computed by minimizing the cost function

J(α) = αTLα, (2.6)

where α is a column vector of lengthN (whereN is the number of pixels in the image). The

matrixL is anN×N graph Laplacian matrix given byL = D−W . Here,W is a symmetric

matrix whose off-diagonal entries are given by eq. (2.5) (after linear transformation of the

RBG colors). The diagonal matrix D is given by D(i, i) =
∑

j

Wi,j . The cost in eq. (2.6)

is quadratic, hence can be solved by minimizing a system of linear equations.

Closed-form Solution

The Random Walk algorithm builds on an affinity function that was originally devel-

oped for binary segmentation. However, segmentation and matting are problems of differ-

ent complexity. For matting very accurate models of the matte are necessary, whereas for

segmentation color-based image features are oftentimes sufficient for extracting an object

from its background. The main contribution of [LLW08] was a novel affinity function that

is better suited to the matting problem and which can be solved in closed form. It builds on

the observation that images can be locally described by as few as only two colors [OW04].

Based on this observation, the authors of [LLW08] assume that inside a small patch the

colors of the fore- and background layer can be modeled by lines in the RGB color space.

Using this assumption, [LLW08] derived a new “matting affinity” as

Wi,j =
∑

k(i,j)∈wk

1

|wk|

(
1 + (Ci − μk)

(
Σk +

ε

|wk|I3
)−1

(Cj − μk)

)
. (2.7)

Here, Σk is a 3 × 3 covariance matrix, μk is the mean vector of the colors in a local
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window wk, centered around pixel k. Ci and Cj denote the color vectors at pixels i and j

in this local window wk and I3 denotes the 3 × 3 identity matrix. The constant ε weights a

regularization term that enforces local constancy of the alpha mattes. This matting affinity

has been shown to perform considerably better than the affinity used in [GSAW05].

Similar to Random Walk Matting [GSAW05], the final alpha matte can be derived by

minimizing the cost J(α) = αTLα. In contrast to the cost used in Random Walk Matting

(see eq. (2.6)), L denotes the Matting Laplacian, which is given by L = D−W , where the

entries of W are given by eq. (2.7).

The Matting Laplacian has been shown to give impressive results and is commonly

used in state-of-the-art matting approaches.

New Appearance Models for Matting

The Closed-form Matting approach [LLW08], reviewed in the previous paragraph,

models the color distributions of the fore- and background layers as locally linear. It was

observed in [SRR09] that if the colors of the fore- or background layer are locally constant

(i.e. are a point in color space), the color line model is an over-fit and the quality of the

generated alpha mattes decreases. The main contribution of [SRR09] was to extend the

color line appearance model of [LLW08] such that it can handle any combination of point

and line color models.

Similar to [LLW08], the authors of [SRR09] derived the alpha matte in a closed-form

fashion. The closed-form solution derived in [SRR09] has a bias towards alpha values of 0

(or 1). This is in contrast to the approach by [LLW08], which has a bias towards constant

solutions. The bias of [SRR09] is preferable for those parts of the unknown trimap region

which are solely bounded by foreground constraints (this is a common case for objects

with many holes, e.g. a tree). For such trimaps, the constant bias of [LLW08] tends to

oversmooth the alpha matte, whereas the approach of [SRR09] has no such problems. On

the other hand a bias towards constant solutions is preferable, if the user-defined constraints

are very sparse. In such situations the approach of [SRR09] tries to fit fractional alpha even

though the true alpha matte might be completely opaque or transparent in large parts of the

image. In general this problem can be fixed by providing more accurate user constraints.
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Spectral Matting

Spectral Matting extends spectral segmentation algorithms like [SM00, Wei99, YS03]

that attempt to derive a fully automatic segmentation of the image into a collection of hard

segments. Spectral segmentation techniques do this by finding the smallest eigenvectors

of a symmetric semidefinite graph Laplacian matrix. The Matting Laplacian L used in

[LLW08] for the task of interactive (supervised) image matting is of the same form as a

graph Laplacian matrix, but builds on an affinity function that is better suited for matting.

The key idea of Spectral Matting [LRAL08] is now to obtain an unsupervised segmen-

tation of the image into K soft “matting components” αk (in contrast to the “hard” seg-

mentations components that would result from spectral segmentation techniques) which

are spanned by the smallest eigenvectors of the Matting Laplacian. More precisely, the

matting components are derived from the smallest eigenvectors of the Matting Laplacian

by a linear transformation which ensures that (i) the resulting components sum up to an

alpha value of 1 at each pixel; and (ii) as many pixels as possible are assigned to an alpha

value of either 0 or 1. The second property of the transformation yields matting compo-

nents that are mostly binary valued. This is motivated by the empirical observation that in

most alpha mattes the majority of pixels is either opaque or completely transparent. This

empirical observation can be manifested by the alpha formation process which we discuss

in chapter 3.

Formally, given the N ×K matrix E = [e1, . . . , eK ] comprising the K smallest eigen-

vectors of the Matting Laplacian L, the goal is to find the K transformation vectors yk that

minimize the following function over all pixels i and eigenvectors k

∑
i,k

|αk
i |γ + |1 − αk

i |γ (2.8)

subject to
∑

k α
k
i = 1, where αk = Eyk. By using 0 < γ < 1 (a typical value is γ = 0.9),

the alpha values inside each matting component are encouraged to be distributed sparsely

(i.e. as many pixels as possible are assigned to an alpha value of 0 or 1). The cost function

in eq. (2.8) is a non-linear system and can be solved with re-weighted least squares.

The matting components obtained from the input image in figure 2.4(a) are depicted

in figure 2.4(b). We can see that the matting components are an oversegmentation of the
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(a) Input image.
Dashed lines indicate
components in (b)

(b) Matting components from (a) (c) Alpha matte by
grouping

components in (b).

Figure 2.4: Matting components. Given an input image (a), the Spectral Matting approach
automatically computes soft matting components (b) that are grouped to a final alpha matte
(c). Figure modified from [LRAL08].

image. To obtain the desired alpha matte in figure 2.4(c), the matting components have to

be grouped together in a second step. In [LRAL08] this is done in a completely automatic

fashion by selecting the grouping that gives the lowest cost under the Matting Laplacian

of [LLW08]. However, this automatic grouping might fail if the fore- or background ob-

ject comprises several visually distinct components. Therefore, the authors of [LRAL08]

propose to use an interactive scribble-based grouping approach or suggest a simple manual

assignment of each matting component to the fore- or background.

Geodesic Matting

In [BS07] an alpha value for a pixel is computed based on its weighted (geodesic)

distance to the user-defined fore- and background constraints. The geodesic distance D

between two pixels is defined as the shortest path on a weighted graph with edge weight

Wx,y:

Di,j = min
γi,j

∑
x,y

Wx,y, (2.9)

where γi,j is a path connecting the pixels i and j, and x and y are two neighboring pixels

on the path (x, y ∈ γi,j). The weight Wx,y of the edge connecting two nodes x and y is

defined as
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Wx,y = |PF(x) − PF(y)|, (2.10)

where PF(x) is the likelihood that pixel x belongs to the foreground. This foreground

likelihood is obtained by

PF(x) = p(Cx|θF)/ (p(Cx|θF) + p(Cx|θB)) , (2.11)

where p(Cx|θF) is the probability that the color C, at pixel x, was generated by the Gaus-

sian Mixture Model θF of the foreground, which is constructed from all pixels in the user-

marked foreground region. The probability p(Cx|θB) is computed likewise.

LetDi,F denote the geodesic distance of pixel i to the foreground user constraints. Then

the alpha matte is computed by

α =
ωF(i)

ωF(i) + ωB(i)
, (2.12)

where ωF(i) = D−r
i,F · PF(i) and ωB(i) are computed similarly. The parameter r controls

the smoothness of the matte and is typically set to 0 ≤ r ≤ 2.

Fuzzy Matting

Similar to Geodesic Matting, the Fuzzy Matting approach [ZKY+08] is based on a

weighted distance computation, denoted as fuzzy connectedness. The fuzzy connectedness

FC between pixels i and j is defined as the strongest path on a weighted graph with edge

weights Wx,y:

FCi,j = max
γi,j

(
min
x,y

Wx,y

)
. (2.13)

Here γi,j denotes a path connecting the pixels i and j, and x and y are two neighboring

pixels on that path (x, y ∈ γi,j). The “strength” of a path is defined by the weakest edge

weight along the path (min in eq. (2.13)). The fuzzy connectedness FC between two

pixels is the strength of the strongest path among all possible paths (max in eq. (2.13)).

The min/max metric in eq. (2.13) is independent of the length of the path, which is in

contrast to the geodesic distance where the weights are summed up over the path (see eq.



CHAPTER 2. RELATED WORK 24

(2.9)). In Fuzzy Matting, the edge weights (affinities) in eq. (2.13) are defined as

Wi,j = λψi,j + (1 − λ)φi,j, (2.14)

where λ ∈ [0, 1] weights the terms ψ and φ. The term ψi,j measures the color similarity

between pixels i and j, and the function φi,j measures the color distance of pixels i and j to

the colors of the user-marked fore- and background scribbles. The colors of those scribbles

are thereby modeled by Gaussian Mixtures Models. Finally, [ZKY+08] computes a matte

as

α =
FCi,F

FCi,F + FCi,B
, (2.15)

where FCi,F and FCi,B denote the fuzzy connectedness of a pixel i to the user-marked

foreground or background scribbles, respectively.

2.2.2 Color-model-based Approaches

Propagation-based approaches, presented in section 2.2.1, widely ignore the color distribu-

tion within the known fore- and background regions of the user-defined trimap. Addition-

ally modeling these distributions can considerably improve propagation-based methods.

Using the color model, for each pixel the optimal α value is then estimated individually

and, ideally, also associated with a confidence value. The pixel-wise estimate for α forms

the data term of the objective function that is oftentimes combined with a propagation term.

Different approaches to color modeling have been suggested in the past and we will review

the ones that are most relevant for our work in the following.

Bayesian Matting

Similar to the approach of [RT00], Bayesian Matting [CCSS01] models the local distri-

butions of the foreground and background colors with a spatially varying set of Gaussians.

More precisely, fore- and background color samples are gathered for each pixel from known

trimap regions (that is, fore- and background) that lie within a radius r around the pixel un-

der consideration (see figure 2.5 for illustration). Then a Gaussian model is fitted to the

collected color samples at each pixel.
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BackgroundBackground

Unknown

Foreground

Computed

Figure 2.5: Collecting color samples in Bayesian Matting. Color samples are collected
from known trimap regions and from previously computed colors that lie within a certain
radius around a pixel. Figure modified from [CCSS01].

In order to make the color sampling more robust, the pixels are processed in an onion-

peel fashion: First, the samples for pixels close to the user-marked trimap regions are

estimated, hence previously computed colors are used as additional color samples for pixels

which are further away from the user constraints (see figure 2.5). Finally, an alpha matte is

obtained in a well defined Bayesian framework by iteratively estimating F , B and α.

Iterative Matting

In the Iterative Matting algorithm [WC05] a non-parametric color modeling approach

is taken. This means that the collected color samples are directly used for alpha estimation.

This is in contrast to, e.g., Bayesian Matting [CCSS01], where parametric models are fitted

to the collected samples before the matte is estimated.

The sample set is obtained by selecting spatially close pixels in the user marked regions.

However, these local color samples may not match the true fore- and background colors for

pixels which are far away from the user-marked region (a common case when using sparse

scribble input). In such cases the authors of [WC05] resort to a global color model. More

precisely, they train a Gaussian Mixture Model on the fore- and background colors of the

user scribbles and obtain color samples by randomly sampling each Gaussian.

Once the sample set is collected, each pair of fore- and background color samples is

used to determine a likelihood for a set of k discretized alpha values (in [WC05] k is set to

25) at each pixel. This pixel-wise likelihood is combined with a pairwise smoothness term



CHAPTER 2. RELATED WORK 26

in an objective function. The alpha matte is then obtained by minimizing this objective

function using Belief Propagation.

Easy Matting

In [GCL+06] an “Easy Matting” approach was presented that is very similar to the

Iterative Matting method of [WC05]. The main difference is that the authors of [GCL+06]

formulate the problem with a quadratic cost function which can be minimized by solving

a set of linear equations. This formulation has the advantage that it allows to solve for a

continuously valued alpha matte. Thus they can avoid the discretization of the alpha values

necessary in the algorithm of [WC05]. Another difference is that in [GCL+06] a dynamic

weighting of the smoothness term is employed. The authors start the optimization with

a large smoothness weight and decrease the weight during subsequent iterations of their

algorithm. This is done in order to avoid that the algorithm gets stuck in a local minimum

in early iterations.

Robust Matting

The before mentioned color modeling approaches, for instance [CCSS01], use either

parametric models or take into account all color samples regardless of their reliability (e.g.

[WC05, GCL+06]). The key insight of [WC07a] is that better results can be achieved by

selecting the “best” samples from the initial sample set. In the following, this approach is

described in detail.

In Robust Matting [WC07a], an initial set of color samples is collected by spreading

the sample set along the boundaries of the fore- and background regions of the user de-

fined trimap. An example is illustrated in figure 2.6, which shows the foreground samples

(yellow dots) and background samples (red dots) for the pixel marked in green.

In the next step the most confident samples are selected from this initial set. In [WC07a]

a confident foreground/background sample pair (F i, Bj) should meet the following two

criteria: (i) F i and Bj should fit the compositing equation (1.1); and (ii) F i and Bj should

be widely separated in color space, to allow for a robust estimation of α. In [WC07a] these

two criteria are encoded in a distance ratio R:
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Figure 2.6: Collecting color samples in Robust Matting. The color samples are spread
along the boundary of the user-defined fore- and background regions of the trimap.

R(F i, Bj) =
||C − (α̂F i + (1 − α̂)Bj)||

||F i −Bj|| , (2.16)

where α̂ is estimated by projecting the observed color C onto the line spanned by the

sample pair (F i, Bj) under consideration. Then a confidence value f for a sample pair is

computed as

f(F i, Bj) = exp

{
−R(F i, Bj)2 · w(F i) · w(Bj)

σ2

}
, (2.17)

where σ is a constant which was fixed to 0.1. In [WC07a] the two weights w(F i) and

w(Bj) are defined such that the confidence in eq. (2.17) is low, if the sample colors are

close to the mixed color C:

w(F i) = exp
{−||F i − C||2/maxs

(‖F s − C‖2)}
w(Bj) = exp

{−||Bj − C||2/maxs

(‖Bs − C‖2)} , (2.18)

where the function maxs return the maximum squared difference between the mixed color

C and all corresponding fore- or background color samples, respectively. The confidence

is computed for every pair of fore- and background samples, and the pairs with the highest

confidences are used to compute a pixel-wise estimate of α. In [WC07a] it is assumed

that pixels whose color is close to the color of the fore- and background samples are more

likely to be fully foreground or background themselves. Thus in [WC07a] the alpha value

of pixels with a low confidence value (i.e. those with a color similar to the samples) are
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biased towards 0 or 1.

This bias is encoded in an objective function, where the pixel-wise estimated alpha

defines the data term that is combined with the smoothness term of [LLW08]. The final

alpha matte is obtained by minimizing this objective function by solving a set of linear

equations.

In chapter 5 we present an algorithm which improves on the algorithm of [WC07a]

by using a new way to obtain the initial sample set and a new paradigm to compute the

confidence value.
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2.3 Matting Evaluation

We have seen in the previous section that many approaches to matting exist. Thus a quanti-

tative benchmark for these methods becomes vital to reveal their strengths and weaknesses,

thus providing the ground for novel research directions. A benchmarking system requires:

1. A challenging, high-quality ground truth (GT) test set.

2. An online evaluation repository that is dynamically updated with new results.

3. Perceptually motivated error functions.

In the following we will review related work in these areas.

2.3.1 Ground Truth Data

Recently, ground truth datasets for image matting have been published by Levin et al.

[LRAL08] and Wang et al. [WC07a]. Levin et al. [LRAL08] captured three different soft

toys in front of a computer monitor which displayed seven different (natural) background

scenes. The ground truth alpha mattes for these images were then obtained with triangula-

tion matting (see section 1.2.1 for details about triangulation matting). Unfortunately, the

ground truth alpha mattes of [LRAL08] are considerably affected by noise, which might

lead to unreliable evaluation results.

Another ground truth dataset was proposed by Wang et al. [WC07a]. In contrast to

Levin et al. [LRAL08], which captured the ground truth data in a restricted studio envi-

ronment, Wang et al. [WC07a] obtained ground truth information for real-world (outdoor)

images. This was done by applying existing matting methods to the natural images, and

their resulting alpha mattes were manually combined to a reference solution. Clearly, such

reference solutions are biased towards the matting algorithms that were used to create the

ground truth. A biased dataset might be not be suitable for a fair comparison of matting

algorithms.

In chapter 7, we will propose a new dataset of 35 natural images whose reference so-

lutions are of very high-quality (i.e. have a very high signal to noise ratio) and that were

generated independently of previous matting approaches.
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2.3.2 Online Evaluation Repository

Recently proposed benchmarks for computer vision problems such as stereo [SS02] or opti-

cal flow [BSL+07], have been made freely available on the web. Such an online benchmark

allows other researchers to interactively analyze recent work and to extend the evaluation

with new results.

Unfortunately, no such online benchmark has been developed so far for the task of im-

age matting. Thus we establish a dynamic online benchmark (described in chapter 7) that

provides the ground truth data and scripts that enable the research community to comple-

ment our evaluation with new results.

2.3.3 Perceptually Motivated Error Functions

To quantitatively evaluate the performance of matting algorithms, their resulting alpha mat-

tes have to be compared to the ground truth using an error metric. Ideally, we should use

error metrics that correlate to the visual quality as perceived by humans. Although in other

areas of computer vision, specialized perceptual distance measures exist for the task of im-

age segmentation [PV08, CDGE02] or color constancy [GGL08], we are not aware of any

perceptual distance metrics far for the task of image matting. Thus previous matting evalu-

ations have been tied to simple pixel-wise error measures that are not necessarily correlated

to the human perception.

In this thesis we go beyond these simple evaluation methodologies and develop quanti-

tative error measures that are based on subjective human perception.



Chapter 3

Alpha Formation Process

In the last chapter we reviewed state-of-the-art approaches to matting. As we have seen,

they usually exploit the local correlations between nearby pixels to infer alpha. However,

ambiguities in the solution space are oftentimes not resolved correctly by these approaches.

For instance, it has been observed (e.g. [LRAL08]) that a major problem is that for

insufficient user input (i.e. large trimap) the cost function used in [LLW08] has a large

space of (nearly) equally likely solutions1. The resulting matte of [LLW08] is shown in

figure 3.1(c), given the image and trimap in figure 3.1(b). The result is imperfect, since

some hairs are cut-off.

To overcome this ambiguity in the cost function, e.g. Wang et al. [WC07a] additionally

modeled the colors of the fore- and background regions of the trimap in the framework

of [LLW08] 2. However, the result is even worse, as shown in figure 3.1(d). In this case

the problem is that some dark-green areas in the image background are explained as semi-

transparent layers, i.e. dark-green is a mix of dark foreground with green background. The

solution in figure 3.1(d), which shows large semi-transparent regions in the background, is

plausible given the color observations. However, it is a solution which is physically very

unlikely.

Hence, a physically valid model for alpha is necessary to restrict the solution space.

Therefore, the goal of this chapter is (i) to analyze the physical sources that can cause a

1Another problem is that the color line model of [LLW08] does not hold for highly textured patches. From
our experience, however, this seems less important.

2The framework of Levin et al. [LLW08] was originally introduced in [LLW06].

31



CHAPTER 3. ALPHA FORMATION PROCESS 32

(a) Ground truth alpha
matte

(b) Input image with
trimap

(c) Result of [LLW08] (d) Result similar to
[WC07a]

Figure 3.1: Matting ambiguities. Ambiguities in alpha matting are often not resolved
correctly by state-of-the-art algorithms (c,d). Hence, modeling the prior probability of the
alpha matte is necessary to restrict the solution space.

mixing of layer colors (i.e. fractional α values: 0 > α < 1) and (ii) to derive a physically

motivated model for alpha, based on this analysis.

Generally speaking, there are two sources that cause the colors of the fore- and back-

ground layers to be blended:

• Translucent materials (e.g. window glass) and

• The imaging process (e.g. defocus blur).

In the following, we will analyze both sources in more detail. Afterwards, we will focus

on fractional alpha values caused by the imaging process.

3.1 Translucent Materials

A mixing of the layer colors can be caused by a foreground object that is made up by

translucent materials which only partially block the light from the background (i.e. they

let the background “shine through”). In order to understand why certain objects appear

translucent, we have to consider how light interacts with matter. Therefore, let us consider

figure 3.2, which illustrates this process. We can see that light which impinges an ob-

ject is (partially) reflected from its surface and the remaining light propagates through the
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propagation throughpropagation through 
the mediumincident light I0 transmitted light I

reflected light

Figure 3.2: Interaction of light with matter. See the text for a detailed description. This
figure is modified from [Fox01].

medium. During propagation through the medium, the light can be attenuated by scattering

or absorption. Finally, if some remaining light reaches the back-surface of the medium, the

light is either reflected again or transmitted.

A material appears opaque (i.e. α = 1) to the human eye if it only absorbs, scatters

or reflects all visible light (i.e. does not transmit any light) [Kat02]. On the other hand, a

material is transparent if it transmits all light (i.e. α = 0), and translucent (also denoted

as semi-transparent) if it partially transmits light (i.e. 0 < α < 1). In this thesis we will

use both the terms semi-transparency and translucency, to denote a mixing of layer colors

caused by either light-transmitting materials or the imaging process.

The fraction of the incident light that is transmitted through a material is commonly

denoted as transmissivity and is inversely proportional to α. Formally, the transmissivity T

for a medium of thickness l is a function of the reflection and propagation properties of the

object’s material [Fox01]:

(1 − α) ≈ T = (1 −R1)e
−μl(1 −R2). (3.1)

Here, R1 and R2 denote the fractions of light that are reflected from the front- and back

surface of the object, respectively. If the reflection coefficients R1 or R2 are 1, then the

corresponding surface reflects all light, whereas a coefficient of 0 means that no light is

reflected. The middle term of eq. (3.1) accounts for the exponential attenuation of the light

due to absorption and scattering, according to Beer’s law (see e.g. [Fox01]). Thereby, the

attenuation coefficient μ measures the fraction of light that is absorbed or scattered in a
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unit length of a medium. Materials with a small attenuation coefficient let more light be

propagated through the medium, whereas larger values cause a blocking of the light.

3.2 Imaging Process

Apart from material properties, fractional alpha values can be induced by the imaging pro-

cess. When taking a picture, the light rays emanating from the scene are captured with an

imaging system, which basically comprises a lens and a camera sensor. The Point Spread

Function (PSF) models how an imaging system projects a point in the scene to the final

image. In other words, the PSF describes how a point in the scene is spread over the image

due to the deformations induced by the imaging process. The PSF is governed by blurring

effects that are caused by motion of the camera or scene objects (motion blur), the camera

lens (defocus blur) and the limited resolution of the camera sensor (resolution blur). In the

following, we examine how these blurring effects cause a blending of the image layers and

thus generate fractional alpha values.

3.2.1 Motion Blur

When capturing a digital photograph, the light travels through the lens and finally reaches

the sensor plane. For simplicity, let us assume the lens to be an idealized pinhole, which

projects all light rays through a common center of projection. Hence, each point in the

scene is mapped to exactly one point in the image (i.e. there is no defocus blur). The

light is exposed to the sensor for a certain time period, which is controlled by a shutter

mechanism. In practice, this exposure time is a finite time period (e.g. 1/60 second) and its

choice depends on the lighting conditions. If the camera or a scene object is moving during

exposure time, a point in the scene may be mapped to multiple points on the sensor, which

causes a blending of colors. This is especially true for long exposure times (e.g. longer than

1/60 second) and for fast moving objects (e.g. moving cars).

To illustrate the effect of motion blur, let us consider figure 3.3(a). It shows a 1-D

scene with a red-colored solid (opaque) layer, which is photographed in front of a gray

background (the background is not visualized here). While the scene is exposed to the
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Figure 3.3: Fractional alpha values originating from motion blur. A red-colored solid
layer is photographed. In (a) the foreground layer moves along the x-axis, hence occludes
the background for a fraction of the full exposure time. Therefore, the layer colors are
mixed around the boundary of the foreground layer. In (b) the foreground layer is static,
thus fully occludes the background during the whole exposure time. As a consequence,
the foreground colors did not mix with the background and a binary alpha matte αb is
generated. This figure is modified from [Jia07].

camera, the red layer is moving to the right along the x direction. The resulting image is

shown directly below the scene. We can see that in between the dotted lines the color of

the red foreground layer is mixed with the gray background. The mixing factor α at image

point p is thereby determined by the percentage of time that the foreground layer occludes

the background at point p:

α(p) = tocc(p)/ttotal. (3.2)

Here, ttotal denotes the total exposure time and tocc(p) refers to the time span where the

foreground layer occluded the background at point p. The alpha matte computed using eq.

(3.2) is illustrated in the bottom row of figure 3.3(a).

Now let us consider figure 3.3(b). It shows the image resulting from a static (non-

moving) layer. In contrast to the moving layer, the fore- and background colors did not

mix. As a consequence, the corresponding alpha matte αb is binary (i.e. αb ∈ {0, 1}).



CHAPTER 3. ALPHA FORMATION PROCESS 36

sensor plane
lens

circle of confusion

focal plane

depth
v u

Figure 3.4: Relation of defocus to image blur. Points in the scene are projected to circular
shapes on the camera sensor. The size of this circle depends on the distance of the scene
point to the focal plane. (Figure after [FS07].)

Assuming planar front-to-parallel fore- and background layers with constant layer col-

ors, we can derive the blurred image by convolving the unblurred (sharp) image with a

spatially invariant motion blur kernel Kmotion
σ [AFM98]. The spatial extent σ of the blur

kernel thereby depends on the motion of the camera or scene object during the exposure

time. Similarly, we can consider the alpha matte as a blurring of two constantly colored

layers (i.e. a white foreground layer in front of a black background layer), thus we can

model the alpha matte α as a convolution of the binary (unblurred) matte αb (see figure

3.3(b)) with a spatially invariant motion blur kernel Kmotion
σ (Kmotion

σ is induced by the

motion of the foreground layer) as α = αb ⊗Kmotion
σ .

3.2.2 Defocus Blur

In the previous section, we assumed an idealized pinhole camera in order to analyze motion

blur. However, in practical imaging systems, a lens is used to map the light of the scene

onto the camera sensor. The simplest model of a lens is the thin lens model, which is

illustrated in figure 3.4. It shows an illustration of a lens at distance v from the camera

sensor plane. The plane at distance u, which satisfies the thin lens law 1/u + 1/v = 1/F
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with focal length F , is called the focal plane3. A scene point that lies on the focal plane

is projected to a single point on the camera sensor plane [BW80]. Other scene points will

appear blurred, since they are projected onto a circular area on the sensor which is known

as the circle of confusion (COC)4. The diameter of this circle is growing proportionally

with the distance of the scene point to the focal plane.

In order to better see the relationship between defocus blur and the alpha matte, we

will now reintroduce the lens model from a different viewpoint. Instead of constructing the

image by projecting scene points onto the sensor plane, we can equivalently consider the

intensity observed at each image point as being constructed by a mixture of the light that

all scene points project to it.

This model can be considered as reversion of the model introduced in figure 3.4 and

therefore it is called the Reversed Projection Blurring Model [AFM98]. An illustration of

the reversed model is depicted in figure 3.5(a). It shows a 1-D scene with a red-colored solid

layer in front of a gray background layer. The focal plane lies in between the two layers

and therefore both are defocused. For every point on the sensor plane we define a chief ray,

which is a straight line that starts at the sensor point and passes through the center of the

lens (figure 3.5(a) shows the chief ray corresponding to image point p). The intersection

of the chief ray with the focal plane defines the apex of a double cone (assuming a circular

shaped aperture) that has its base at the lens. In figure 3.5(a) this double cone is illustrated

by the green dashed lines.

The key observation is now that the color at a sensor point p is a linear blend of the

colors5 of the layers that intersect this double cone [MLS06]. The blending factor (which

corresponds to the alpha value of the foreground layer) is thereby given by the degree that

the foreground layer occludes the background inside the double cone. More precisely, the

blending factor α at point p is defined by the areaAfgd(p) occupied by the foreground (fgd)

layer after projecting it to the base of the double cone:

3The focal length F depends on the shape and material properties of the lens.
4In practice the circle of confusion is not perfectly circular, but its blur pattern is governed by the shape

of the aperture.
5For simplicity we assume constant layer colors, which is sufficient to derive the relationship to the alpha

matte.
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Figure 3.5: Fractional alpha values originating from defocus blur. A red foreground
layer is photographed in front of a gray background. In (a) the foreground layer is out-of-
focus, which results in a mixing of the foreground colors with the background. In (b) the
scene is captured through a pinhole. Hence, all pixels are in focus and a sharp image is
generated.

α(p) = Afgd(p)/Abase, (3.3)

where Abase is the area of the cone’s base (i.e. the area of the lens cross section). In the

example in figure 3.5(a), the foreground layer projected to the lens occupies exactly half of

the lens area, hence α(p) = 0.5.

Given the above analysis we can reconstruct the final image and alpha matte α, which

we depict in the lower part of figure 3.5(a). We can see that in between the dotted lines

the color of the red foreground layer is mixed with the gray background, hence there are

fractional alpha values. The size of this blurred region (i.e. the distance between the dotted
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lines) corresponds to the diameter σ of the circle of confusion at the distance of the fore-

ground layer. In contrast, figure 3.5(b) shows the image and alpha matte αb that result from

photographing the same scene with an idealized pinhole camera (i.e. without defocus blur).

We can see that in this case the alpha matte αb is a binary function (i.e. αb ∈ {0, 1}).
Similar to the motion blur case (discussed in section 3.2.1), we can derive the alpha

matte α by convolving the unblurred αb with the defocus blur kernel (circle of confusion)

Kdefocus
σ with diameter σ: α = αb ⊗Kdefocus

σ .

3.2.3 Resolution Blur

When taking a digital photograph, the light travels through the lens and finally reaches

the imaging sensor where the incident photons are converted to an electrical signal. In

the above analysis we assumed an idealized imaging sensor that has an infinitely high-

resolution. However, real-world digital cameras compute the intensity at each image point

by integrating the incident light (i.e. photons) over a finite sized sensor area, called a pixel.

The larger the pixel area, the more photons will reach it during exposure time. As a conse-

quence, larger pixels can use more photons to estimate the intensity and thus have a better

signal-to-noise ratio [CCGW00]. A typical pixel size used in high-end digital cameras (e.g.

Canon 1D MarkIII) is 7.2 x 7.2 μm [Inc08].

The integration of light over a sensor pixel is illustrated in figure 3.6. It shows a 1-D

scene of a red layer in front of a gray background. The scene is projected through a pinhole

onto the sensor plane, which consists of three pixels. The light rays which reach the middle

sensor pixel originate from both of the two scene layers. Thus the color of the middle pixel

is a linear combination of the two layer colors. The mixing factor α(p) at pixel p is given

by the area Afgd that the foreground layer occupies after projecting the scene onto pixel p.

α(p) = Afgd(p)/Atotal, (3.4)

where Atotal is the total area of a sensor pixel.

Thus the observed (low-resolution) alpha matte α can be obtained by spatial integration

of the binary segmentation αb that would result from an idealized sensor with infinite high-

resolution. Following [BK00] this spatial integration can be modeled by a convolution of
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Figure 3.6: Fractional alpha values originating from resolution blur. The colors of the
fore- and background layer are blended because of the limited sensor resolution.

this binary segmentation with a box filter Kbox
σ :

α = αb ⊗Kbox
σ , (3.5)

where the width σ of the box function corresponds to the size of the sensor pixel. This con-

volution can also be regarded as downsampling of a high-resolution binary segmentation

with a box filter.

3.3 Segmentation-based Model for Alpha

In the previous sections we have seen that fractional alpha values can either originate from

light-transmitting materials or from the imaging process. Accurately modeling fractional

alpha values caused by light-transmitting materials is hard, because they depend on nu-

merous parameters of the scene (e.g. thickness and material properties of the foreground
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object) which are hard to predict.6

In contrast, the fractional alpha values that are induced by the imaging system can be

modeled by a simple convolution of a binary (unblurred) matte with the system’s PSF.

Solving for the model parameters (i.e. binary segmentation and PSF) is a well known

problem in image deblurring and a large body of literature exists on that topic (see e.g.

[LWDF09, JSK08, Jia07, FSH+06]).

Although the sources of the fractional alpha values depend on the photographed scene,

the fractional alpha values in typical images (e.g. portraits of a humans) are mainly induced

by the imaging process. It is also worth noting that almost all recent work on image matting

was tested on images where the fractional alpha values where mainly caused by the imaging

process. Therefore, the goal of this section is to introduce a model for the alpha matte that

is based on the imaging process.

For the derivation of the blurring effects in section 3.2, we have so far assumed that

the scene consists of only two planar front-to-parallel layers (i.e. foreground and back-

ground). We have seen that in this case the alpha matte of the foreground layer can be

modeled as a convolution of a two-dimensional binary segmentation (i.e. the unblurred

sharp scene as observed through a pinhole) with a spatially invariant PSF. However, in real

world scenes, the foreground object may vary in depth and might be self-occluding (e.g.

overlapping hair strands or overlapping legs). As a consequence, the PSF varies with the

depth, and multiple PSFs contribute to pixels around occlusion boundaries. One can po-

tentially account for depth-dependent blur by making the PSF spatially varying. Asada et

al. [AFM98] investigated such a spatially varying PSF, but found it to neglect the simul-

taneous existence of multiple PSFs around occlusion boundaries. More sophisticated blur

models [AFM98, Coo07] can account for multiple kernels, but they require the knowledge

of the underlying three-dimensional segmentation (i.e. multiple depth values at each pixel).

Reconstruction of this three-dimensional binary segmentation from only one single natu-

ral image is very hard in practice, and therefore we follow the deblurring literature (see

e.g. [SXJ07, Lev06, JSK08]) and use an approximative model which accounts for depth-

dependent blur with a spatially varying PSF.

6Note that by assuming that the material properties and thickness of the objects vary gradually, we could
still model the alpha matte as a smooth function.
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(a) Ground truth alpha
matte

(b) Input image with
trimap

(c) Binary
segmentation

(d) Result of (c)
convolved with PSF.

Figure 3.7: Alpha model. We model the ground truth alpha (a) as a combination of a
binary segmentation (c) and a PSF. The result (d) is close to the ground truth.

Our approximative model describes the observed alpha matte α as a convolution of an

underlying, potentially higher-resolution, binary segmentation αb with a spatially varying

point spread function K, whose result is potentially downsampled:

α = D(K ⊗ αb). (3.6)

Here, ⊗ denotes convolution and D is the downsampling function. In our formulation

the kernel K accounts for all fractional alpha values induced by the imaging system. In

chapter 6.4, we will qualitatively and quantitatively demonstrate that this approximative

model is a good prior for many real alpha mattes.

To illustrate our approximative model, let us consider figure 3.7(a), which shows the

ground truth (GT) alpha matte for the image crop in figure 3.7(b). We estimated the un-

derlying binary segmentation αb (figure 3.7(c)) using the GT alpha matte. Convolving this

binary segmentation with our estimated PSF K gives the result in figure 3.7(d). It is very

close to the true alpha matte and qualitatively and quantitatively better than the results

of Levin et al. [LLW08] and Wang et al. [WC07a] on this crop (compare the results of

[LLW08, WC07a] in figure 3.1).

Another major advantage of this model is the potential to easily incorporate prior

knowledge. For example we know that the binary segmentation of objects which are non-

occluded (a common assumption [VKR08]) are usually connected. In fact, we show in
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Figure 3.8: Sparse distribution of alpha. For the image in (a) the ground truth alpha matte
is depicted in (b). In (c) the histogram of the alpha matte in (b) is depicted, which follows
a beta distribution (red line). Figure from [WFZ02].

chapter 7 that connectivity is an important factor for the human perception of alpha mat-

tes. However, for continuous-valued alpha mattes, such a prior is significantly harder to

formulate and to enforce than for binary masks.

Let us now discuss a property of our model that has been exploited by some previous

matting approaches to model the global distribution of the alpha values. In particular, our

segmentation-based model (see eq. (3.6)) generates alpha mattes whose fractional alpha

values occur only at the boundary of an object and most parts of the matte have a value of

either zero or one. Some work on matting (e.g. [WFZ02, WC07a, LRAL08]) exploited this

insight to formulate a so-called sparsity prior on alpha. However, the respective authors

did not motivate such a prior from the alpha formation process. Instead, these sparsity

priors were based on empirical observations that fractional alpha values in real mattes were

distributed sparsely.

For instance, [WFZ02] found that the global distribution of alpha in ground truth mattes

follows a beta distribution (see figure 3.8). Based on this observation, [WFZ02] formulated

a pixel-wise prior on alpha that pushes as many pixels as possible to 0 or 1. In the approach

of Levin et al. [LRAL08], discussed in section 2.2.1, a similar prior as in [WFZ02] was em-

ployed. It prefers those “matting components” which contain most 0 and 1 values. Finally,

in Wang et al. [WC07a], pixels whose estimated alpha values have a low confidence were

biased towards an alpha value of 0 or 1 (see section 2.2.2 for a more detailed description).
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It is important to note that these generic sparsity priors are employed to each pixel

independently of the local context. Hence, they do not respect the alpha formation process.

Ideally, the prior should be based on the approximative image formation model in eq. (3.6),

which depends on the underlying binary segmentation. We will show in chapter 6 that such

a segmentation-based prior is better than the previously used generic sparsity priors.



Chapter 4

A New Trimap Extraction Method

Given an input image, most natural image matting algorithms start by asking the user to

specify a trimap, which is a partitioning of the image into foreground, background and

unknown regions. Matting algorithms then compute an alpha matte for the unknown re-

gions, while using the fore- and background regions of the trimap as boundary constraints.

The quality of the resulting alpha matte, as well as the computational expenses required

to obtain this matte, heavily depend on the accuracy of the user-provided trimap. Hence,

to quickly derive high-quality results the user should assign as many pixels as possible to

either the fore- or the background. However, manually drawing an accurate trimap is a very

tedious and time-consuming process for the user.

Therefore, in this chapter, we present a new and efficient segmentation method that

automatically infers an accurate trimap from only a rough indication of the fore- and back-

ground regions. An overview of our approach is given in figure 4.1. In the first step, the

user indicates the fore- and background regions by placing only a few scribbles on the in-

put image (figure 4.1 left). Using these scribbles, our algorithm automatically computes an

accurate trimap (figure 4.1 middle). The user can refine this trimap and remove obvious

mistakes. For instance, in our approach the user can interactively adjust the size of the

unknown trimap region with a slider interface. In the final step, an alpha matte is computed

using the previously proposed matting algorithm of Wang et al. [WC07a] (figure 4.1 right).

The advantage of our two-step process (i.e. trimap extraction followed by trimap-based

alpha matting) over directly computing the alpha matte from the user-defined scribbles is

45
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Figure 4.1: Our interactive matting framework. Given an input image and user-defined
scribbles (left), we automatically compute an accurate trimap (middle). From the trimap
an alpha matte (right) is computed, together with the true fore- and background colors (not
shown here).

both speed and higher quality. The main benefit in speed comes from the observation that

in a typical image most pixels belong solely to either the fore- or background (see chapter

3). For these fore- and background pixels, computationally expensive matting algorithms

which recover the full range of fractional alpha values should not be invoked. For example,

computing the alpha matte directly from the user-defined scribbles with the approaches of

[WC05], [LLW08] and [GCL+06] takes between 20 and 200 seconds for a typical low-

resolution, 0.3 Mpix, image. Using the same image and user-defined scribbles, we first

automatically extract a trimap with our approach and then employ the matting algorithm of

[WC07a] to derive the alpha matte, which in total requires only 4.5 seconds.

Moreover, not only speed but also the quality of the matte is improved by our two-step

process. This is demonstrated in figure 4.2, which shows the result of different matting

methods for the image of a soft toy. We see that for this image, all tested matting approaches

perform rather poorly if the matte is computed directly from sparse scribble input (see

figure 4.2(a-e)). To achieve good results for this image, either many scribbles (figure 4.2(f))

or an accurate trimap (figure 4.2(g)) are necessary. In contrast, our high-quality result in

figure 4.2(h) requires only a single bounding box selection and one additional background

scribble as user input. Note that pixels outside the bounding box define the background

constraints, and all other pixels are regarded as unknown. Hence, there are no foreground

constraints.

The work most similar to our approach is that by Juan et al. [JK05], where the idea

of extracting a trimap using a scribble-based interface has been introduced. However, the

trimap extraction method of Juan et al. [JK05] is based on a model that mainly relies on
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(a) Spectral
Matting [LRAL08]

(b) Closed-form
Matting [LLW08]

(c) Iterative
Matting [WC05]

(d) Easy Matting
[GCL+06]

(e) Robust Matting
[WC07a]

(f) Closed-form
Matting [LLW08]

(g) Iterative
Matting [WC05]

(h) Our approach

Figure 4.2: Comparison of scribble-based matting approaches (see text for discussion).
Scribbles are marked in either red (fgd) and blue (bkg) or white (fgd) and black (bkg). Our
result as shown in (h) was achieved by selecting the foreground object with a bounding box
and drawing one additional background scribble. Note that our approach can also handle
more challenging alpha mattes, e.g. as shown in figure 4.1. All results we show were either
taken from the original papers or created with the original implementation of the respective
authors.
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color features. (See chapter 2.1 for a detailed review of [JK05].) Such a model is ambiguous

for images where the colors of the fore- and background are overlapping.

The main contribution of our work is a new model that can resolve these ambiguities

by considering several images cues, thus enabling us to extract trimaps of considerably

higher quality. Our model draws its motivation from the alpha formation process, where

the majority of fractional alpha values are induced by blurring the underlying binary seg-

mentation of the foreground object with the camera’s Point Spread Function (see chapter

3). Our approach predicts the structure of the underlying binary segmentation, which gives

a good indication of the spatial extent of the unknown trimap region. Furthermore, we use

a large set of images with known ground truth alpha mattes to train a classifier that predicts

the ratio of unknown pixels in the trimap from the input image.

The remainder of this chapter is organized as follows. In section 4.1 we give an

overview of our approach, and then we detail our model in section 4.2. The training of

our classifier is discussed in section 4.3. Finally, in section 4.4, we qualitatively and quan-

titatively demonstrate that our approach outperforms the approach by Juan et al. [JK05] as

well as other techniques that could be used to extract a trimap from sparse user input.

4.1 Overview

We start by defining some notation. Let I be the set of all pixels in the input image and

αi the alpha value at pixel i. We define a trimap as a partitioning of I into the three

subsets F ,B and U (see figure 4.1 middle). The subsets are defined as B = {i|αi < ε},
F = {i|αi > (1 − ε)} and U = I\(F ∪ B), where we choose ε = 5

255
. We also introduce

two additional subsets F ′,B′ where B′ = {i|αi ≤ 0.5} and F ′ = {i|αi > 0.5}. The

subsets F ′ and B′ define a binary segmentation of the image and the transition from F ′ to

B′ corresponds to the boundary of this segmentation. Obviously, it is F ⊂ F ′, B ⊂ B′ and

F ′ ∪ B′ = F ∪ B ∪ U = I.

To obtain a trimap, one could follow Juan et al. [JK05] and assign each pixel in the

image to one of the three labels F ,B,U . (For simplicity, sets and labels have the same

name, e.g. F .) In our approach we additionally assign each pixel to one of the two labels

F ′ and B′. This has the main advantage that we can model the transition from F ′ to B′,
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which usually coincides with strong edges in the image1. (Commonly, this transition is

modeled by segmentation techniques such as [BJ01] or [RKB04] that aim to infer a binary

segmentation of the image into fore- and background.)

The advantage of additionally modeling the transition from F ′ to B′ is twofold. Firstly,

it allows us to detect the spatial location of the unknown trimap region more accurately.

Secondly, some parts of this transition usually coincide with clean, “sharp boundaries” of

the foreground object, where the unknown trimap region can be modeled as a small band

around this boundary. For instance, the sharp parts of the boundary of the object in figure

4.3(d) are marked in red. We discuss the detection of sharp boundaries in detail in section

4.2.4.

Ideally, we would like to define an energy function that models the optimal assignment

of each pixel in the image to all 5 labels F ,F ′,B,B′,U and optimize this energy function

globally. Instead, we employ a two-step process that allows a more comprehensive model

and higher speed. In particular, we first obtain a binary segmentation into the sets F ′ and B′

using the binary segmentation approach “GrabCut” proposed by Rother et al. [RKB04]. We

use the energy function and parameter settings as defined in [RKB04], and the interested

reader is referred to the respective paper for details. Following this binary segmentation,

we further partition the image into the three labels F ,B and U . In the following, we show

that this trimap segmentation can be posed as a binary classification problem and that the

corresponding energy function can be minimized with graph cuts [BK04].

4.2 Model

We start by assuming that each pixel in the image has been already classified into F ′ or B′

by using the “GrabCut” algorithm [RKB04]. We now assign each pixel to one of the three

labels F ,B or U . Since F ⊂ F ′ and B ⊂ B′, a binary classification into two labels U and

Ū = F ∪B is sufficient to derive the trimap. (Given F ′ and B′, each pixel in Ū is uniquely

specified to be in either F or B).

The goodness of a binary segmentation of the image into U and Ū is characterized by

1Note that the other transitions, e.g. the transition from B to U , do not depend on the image edges and are
therefore harder to predict.
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the following energy function E:

E(x) =
∑

(i,j)∈N
θbV

b(xi, xj) + V s(xi, xj)

+
∑

i

Dc(xi) +Dp(xi) + θb′D
b(xi) + θs(D

s(xi))
θs′ , (4.1)

where xi ∈ {U , Ū} denotes the label of pixel i and the vector x encodes the labeling of all

pixels in the image. The set of neighboring pixels (8-neighborhood) is denoted by N , and

θb, θb′ , θs, θs′ define the model parameters. The energy can be locally optimized using graph

cuts [RKB04] or the parametric maxflow technique [KBR07], depending on the choice of

the free parameters during runtime (see below). The individual terms Dc,Dp and Ds are

defined in subsections 4.2.1-4.2.3. The terms Db and V b are discussed in subsection 4.2.4

and, finally, the term V s is defined in subsection 4.2.5.

4.2.1 Color

The unary term Dc for pixels xi ∈ Ū models the color distribution of the fore- and back-

ground regions of the trimap as

Dc(xi) =

{
−logP (ci|θF) if xi ∈ F ′

−logP (ci|θB) if xi ∈ B′,

where ci is the color of the input image at pixel i. Here θF and θB are the Gaussian Mixture

Models (GMM) of fore- and background, respectively, that are initialized from the colors

in F ′ and B′, respectively.

In the unknown region, the color distribution of Dc(xi), with xi ∈ U , is represented by

a third GMM θGU by blending all combinations of fore- and background mixtures of the

respective GMMs as in [JK05]. This blending coefficient is correlated to the distribution of

the alpha values over the image. Since the alpha values are likely to be distributed sparsely

over the image (see chapter 3), we follow [WFZ02] and model the distribution of alpha

values with a beta distribution whose two free parameters were derived as (0.25, 0.25)

from ground truth data. This is in contrast to [JK05], where the distribution of alpha (and
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(a) Input image with scribbles (b) Sub-blur kernel structures (unary
energy)

(c) Color (unary energy) (d) Physically sharp boundary
detection

Figure 4.3: Unary terms for trimap segmentation. (a) Input image with user scribbles
(red-foreground, blue-background). We show the unary energy for the sub-blur kernel
structures term in (b) and the unary energy for the color term in (c). In (b,c) dark pixels
indicates a low energy for U and white pixels a high energy. (d) Pixels in a small band
around the F ′,B′ transition of GrabCut [RKB04] (green line) are classified into physically
sharp boundary pixels indicated in bright red (the image was darkened for better visibility).
The class prior is not visualized, since it is constant over the whole image.

therefore the distribution of the blending coefficient of the GMM) is modeled as linear. An

example of the color energy computed for the input from figure 4.3(a) is shown in figure

4.3(c).
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4.2.2 Class Prior

The class prior models the probability of a pixel to belong to the class U or Ū , which

depends on the image. For instance, an image where the foreground object has been tightly

cropped has a different proportion of U versus Ū pixels than the original image. We model

this ratio by a unary term as:

Dp(xi) = λδ(xi 
= U) , (4.2)

where δ is the Kronecker delta. Intuitively, a larger value for λ in eq. (4.2) gives a larger U
region. We show that predicting λ during runtime improves the performance considerably.

The learning of the predictor is discussed in section 4.3. Furthermore, the parameter λ

(which corresponds to the size of the unknown trimap region) is also exposed to the user

with a slider interface. To efficiently obtain the solution for all values of λ, we minimize

our energy function in eq. (4.1) with the parametric maxflow technique [KBR07].

4.2.3 Sub-blur Kernel Structures

As we have demonstrated in chapter 3 there are different reasons for a pixel to have frac-

tional alpha values (i.e. belong to U). Here, we will assume that the main source of frac-

tional alpha values is defocus blur. Thus our approach usually cannot detect fractional

alpha values that are induced by motion blur or light-transmitting scene objects (e.g. a

plastic bag). Our goal is to detect thin structures which have a width that is smaller than the

size of the defocus blur kernel (e.g. the hair in figure 4.3(b)). Such “sub-blur kernel struc-

tures” are assumed to be originally opaque and show solely fractional alpha values after

convolution with the defocus blur kernel. An example is given in figure 4.4 (top). It shows

a 1-D example of a thin binary structure αb on the left. It is convolved with the defocus blur

kernel (here a 1-D averaging filter), which gives the alpha matte. Since the binary structure

is smaller than the blur kernel, the resulting alpha matte comprises solely fractional alpha

values (i.e. α < 1).

In contrast, structures larger than the size of the blur kernel lead to “sharp boundaries”.
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b

Figure 4.4: Sub-blur kernel structures. A 1-D example of a thin (top, left) and thick
(bottom, left) binary structure (αb). Convolution with the blur kernel delivers α (see text
for details).

We can see an example in figure 4.4 (bottom). Blurring the spatially extended binary struc-

ture results in two smooth boundary transitions and the pixels between these transitions

remain at an alpha value of 1. These transitions should ideally coincide with the bound-

aries of the binary segmentation into F ′ and B′ (thus should be detected and handled by the

sharp boundary term discussed in section 4.2.4).

In this section, we want to build a detector for the case where the structure is smaller

than the size of the blur kernel. We have experimented with many different first and sec-

ond order derivative filters and found the following to work best. Roughly speaking, the

magnitude of the first derivative of a filter of size s should be low and at the same time the

magnitude of the derivatives of the two s/2 sized filters, shifted by s/2, should be high.

Here, s is twice the size of the blur kernel.We confirmed experimentally that s = 5 gives

the lowest error rate over a training set with known ground truth alpha mattes.

Formally, we use max(0, |a − b| + |b − c| − |a − c|), where a, b, c are the left, cen-

ter and right pixel values on a line segment of length 5. We made this (symmetric) de-

tector orientation independent by taking the maximum response over four discrete angles

(0o, 45o, 90o, 135o). All three color channels were weighted equally. A further improve-

ment was achieved by setting those filter responses to 0 for which not all pixels on the line

segment were assigned to the same mixture in the GMM θU . The underlying assumption is

that in a small window the true fore- and background colors are similar. We define Ds as

the filter response. Figure 4.3(b) depicts a result for the image in figure 4.3(a). We found it
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to even work well for complicated interference patterns, e.g. many thin overlapping hairs.

As desired, our filter has a lower response at sharp boundaries and inside the true F and B
areas.

4.2.4 Sharp Boundary

The F ′,B′ transition determined by GrabCut [RKB04] often coincides with a clean, “sharp

boundary”. This means that in the vicinity of the detected boundary (defined by the spatial

extent of the blur kernel) there is no other boundary transition that could lead to a sub-blur

kernel structure. An example is the body (without hairs) of the object in figure 4.3(d). At

such boundaries the width of U is equal to the width of the imaging system’s PSF and thus

is only a few pixels wide. To determine which parts of the F ′,B′ transition correspond

to a sharp boundary, we have designed a simple classifier. We first derive an alpha matte

with the matting algorithm of [LLW08] in a small band (twice the size of the blur kernel,

centered on the F ′,B′ transition), which can be computed very efficiently. Then a pixel i in

this band belongs to a sharp boundary if the following conditions hold for a small window

wi (twice larger than the blur kernel) centered on i:

1. The average alpha values of the pixels inside the window wi are close to 0.5.

2. Half of the pixels inside wi have an alpha value larger than 0.5.

3. At least half of the pixels in wi are close to an alpha value of either 0 or 1.

Note that these conditions tolerate a shift of the boundary by half the size of the blur

kernel. The classification error (percentage of misclassified pixels along the binary seg-

mentation boundary) on our training set is 19.3%. Stronger conditions, which are compu-

tationally more expensive, could be considered in the future.

The result of this classifier is used to model the boundary terms Db and V b. Consider

figure 4.5, which illustrates an in-focus region of a sharp boundary in a low-resolution

alpha matte. The red line is the result of the binary segmentation into F ′ and B′. We

force all pixels adjacent to the F ′,B′ boundary to be in U , which is encoded in Db by

using hard constraints (green pixels in figure 4.5). Also some pixels which are neighbors
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Figure 4.5: Sharp boundary terms. (See text for details.)

of green pixels are forced to be in Ū (encoded in Db by using hard constraints). These

are those pixels which are close to a physically sharp boundary and are shown in red in

figure 4.5. Intuitively, these pixels form a barrier which prevents the unknown region U
from leaking out at sharp boundaries. The pairwise term V b is shown as a blue line in

figure 4.5. It forms an 8-connected path which follows tightly the green pixels. Intuitively,

it enforces smoothness of this barrier. This means that it can close small gaps where our

sharp boundary detector misclassified the F ′,B′ transition.

4.2.5 Smoothness Prior

The smoothness prior V s encodes our assumption that pixels with similar colors should be

assigned to the same label (U or Ū). Following [RKB04], the smoothness term is defined

as

V s(xi, xj) =
δ(xi = xj)

dist (i, j)

(
θr exp−β ‖ci − cj‖2) , (4.3)

where ci and cj are the colors at pixels i and j, respectively. The Kronecker delta is denoted

by δ, and β is as defined in [RKB04]. The parameter θr is defined in section 4.3. As we

show in section 4.4.2, our smoothness prior nicely preserves thin structures, e.g. hairs,

inside the unknown region.

We also enforce the unknown region U to be 4-connected, which is true for 98.6% of

the pixels in the ground truth database which we used to evaluate our algorithm. Since
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Figure 4.6: Visualization of the correlation between λ and the size of the U region. (See
text for details).

minimizing our energy in eq. (4.1) under connectivity constraints was found to be NP-

hard by Vicente et al. [VKR08], we enforce connectivity by simple post-processing. In

particular we remove all disconnected islands of U .

4.3 Parameter Training

For training of the free parameters θb, θb′ , θs, θs′ , θr and λ, we have used the following

heuristic error (loss) function, which counts false negatives twice compared to false posi-

tives:

errortrimap =
100

n

n∑
i=1

2 · δ(x∗i = U ∧ xi 
= U) + δ(x∗i 
= U ∧ xi = U), (4.4)

where δ is the Kronecker delta, x∗i is the labeling of the ground truth trimap at pixel i

and n is the number of pixels in the image. This is motivated by the fact that a missed

unknown (U) pixel in the trimap cannot be recovered during alpha matting. We see in

section 4.4.2 that this error measure is correlated to the error for alpha matting. Based on

our training dataset of 20 images with known ground truth (see section 4.4.1), we have

hand-tuned the parameters {θb, θb′ , θs, θs′ , θr}, defined in eqs. (4.1) and (4.3), to values

of {2, 40, 1, 2, 0.1}. The training of the remaining parameter λ (defined in eq. (4.2)) is

discussed in the following.

As we have seen in section 4.2.2, the parameter λ defined in eq. (4.2) is correlated to
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the size of the region U . This correlation is visualized in figure 4.6, where the blue dots

represent the optimal values for λ with respect to the size of the unknown region U of the

ground truth trimaps of our training images. We see a correlation between the optimal

values for λ and the size of the unknown trimap region. To exploit this correlation, we have

built a predictor for the size of U (see below). The red dots in figure 4.6 show the optimal

values for λ with respect to the size of the unknown region U that was predicted from

our training images. The red curve is a quadratic function (3 parameters) fitted to the red

dots. We see that the red (predicted) and blue (true) points are close-by. During runtime,

the size of U is predicted using the test images, and the quadratic function provides the

corresponding λ. The dashed line in figure 4.6 shows the average λ = 2.3, which was

computed by averaging over all values independently of the size of U . This straightforward

averaging performs less well than predicting λ using our quadratic function, as we will see

in section 4.4.2.

To predict the size of the unknown trimap region at runtime, we compute an initial

trimap using the following heuristics. We use the data termsDc, Ds, that are available after

the user has placed the initial scribbles, and find the globally optimal trimap by simply

thresholding this unary energy. On our set of training images with known ground truth, we

have obtained an average prediction error for U of 1.5% relative to the image size.

4.4 Experimental Results and Evaluation

4.4.1 Test and Training Data

In order to quantitatively compare different interactive trimap extraction techniques, we

first constructed a set of images with known ground truth alpha mattes denoted as α∗. We

then obtained the ground truth trimap by partitioning the ground truth alpha matte α∗ into

a foreground region F , background region B and unknown region U as B = {i|α∗
i < ε},

F = {i|α∗
i > (1 − ε)} and U = I\(F ∪ B), where we choose ε = 5

255
.

To obtain natural images, which serve as input for the trimap segmentation algorithms,

we recorded 27 images in a professional studio environment. These input images were

obtained by photographing different foreground objects in front of a screen showing natural
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Figure 4.7: Training and test images. Our self-recorded training (images in red box) and
test images (images in blue box).

images which served as background. The photographed objects have a variety of hard and

soft boundaries and different boundary lengths, e.g. a tree with many holes (see figure 4.7

for an overview). For the input images, the ground truth alpha mattes were obtained with

Triangulation Matting [SB96].

To increase the complexity of some input images, we replaced some of the backgrounds

with more challenging, e.g. highly textured, backgrounds afterwards. These new compo-

sitions were simply generated by blending the ground truth foreground color with a new

background using the ground truth alpha matte. The finally used background images show

a varying degree of difficulty including color ambiguity of fore- and background and back-

grounds with different degrees of blur. In total we employed in our tests a set of 10 training

and 17 test images. An overview of the training and test images is depicted in figure 4.7.

Finally, we created for each image a set of potential user inputs by casually drawing

large scribbles that intend to cover the major colors present in the image, while at the same

time avoiding to draw the scribbles close to the object boundaries.
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4.4.2 Comparison of Trimap Extraction Methods

In this section we compare our trimap extraction method to the method of Juan et al. [JK05].

In order to show that we also improve the quality of the final alpha matte, we further

compare our approach to the 5 matting methods [WC07a, LLW08, LRAL08, GCL+06]

and [GSAW05]2. Prior to applying the different methods, we first down-scaled our 6 Mpix

input images to a size that most competing algorithms can handle, which was 0.3 Mpix

(e.g. 700 × 560) - the limit of the publicly available system of [LLW08]3. In addition we

show results for the approach of [WC05] in figures 4.2 and 4.8. This approach had already

been shown to be slightly outperformed by [GCL+06], with the latter one being included

in our test.

To quantitatively estimate the trimap quality, we use the metric defined in section 4.3,

which measures the percentage of misclassified pixels with respect to the image size. To

obtain a trimap error for systems which directly produce an alpha matte from the input

scribbles, we transformed the resulting alpha matte into a trimap by thresholding. In order

to derive an alpha matte from our computed trimaps, and those of Juan et al. [JK05], we

use the matting approach of [WC07a].

The error for an alpha matte is defined as the following error function, which penalizes

more heavily an over-estimation of alpha:

erroralpha =
100

n

n∑
i=1

(1.5 · δ(αi ≥ α∗
i ) + 0.5 · δ(αi < α∗

i )) · |αi − α∗
i |, (4.5)

where αi and α∗
i denote the computed and the ground truth alpha matte at pixel i, respec-

tively. The Kronecker delta is denoted as δ, and n is the number of pixels in U .

Figures 4.8-4.11 compare the results of our trimap segmentation method with the re-

sults generated by the competing algorithms. We only show results of the best performing

competing algorithms. The others were worse, both visually and in terms of error rates.

For each method we show the computed trimaps and final composites. The results were

2We used the original authors’ implementation of [WC07a, LLW08, LRAL08, GCL+06, GSAW05] and
our own implementation of [JK05].

3For [LRAL08] we had to even scale down the images to 0.15 Mpix. For comparison, the obtained result
was then up-scaled to 0.3 Mpix images.
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Method av. error worst 25% time (seconds)
Grady et al. ’05 [GSAW05] 24.3 (19.8) 33.6 (28.6) 5
Levin et al. ’07 [LRAL08] 17.9 (9.5) 28.3 (17.8) 20
Guan et al. ’06 [GCL+06] 13.4 (9.0) 22.7 (16.5) 300
Levin et al. ’06 [LLW08] 11.4 (6.9) 19.0 (13.3) 18
Wang et al. ’07 [WC07a] 11.0 (8.4) 22.5 (19.0) 50

Juan et al. ’05 [JK05] 7.6 (4.6) 13.8 (12.0) 5
Our (fixed λ = 2.3) 2.5 (1.2) 4.9 (2.3) 4.5
Our (predicted λ) 2.3 (1.0) 4.5 (1.9) 4.5
Our (user-tuned λ) 2.2 (0.7) 4.5 (1.5) 5.3

True trimap 0.0 (0.4) 0.0 (0.8) -

Table 4.1: Quantitative comparison of trimap methods. We show the trimap error and
corresponding alpha matte error in parentheses (definition of the error measures is given in
the text). Depending on the columns, the numbers are averaged over all or the worst 25% of
the test images. Times are in seconds and were measured on the same machine (2.2 GHz).

generated from the scribbles shown in the top row of (a) in the respective figure. An excep-

tion are the results shown in (e) of each figure. Here we adjusted λ and used extra scribbles

(bottom images in (a)) to demonstrate the capability of our method to easily generate al-

most perfect results. In each figure, we see that our results outperform the competitors both

visually and in terms of error rates. Further results are depicted in figure 4.1 and 4.2.

A quantitative comparison is shown in table 4.1. Let us first discuss the runtime per-

formance of our algorithm in comparison to the other methods. We see that the matting

systems [WC07a], [LLW08], [LRAL08] and [GCL+06] are obviously considerably slower.

Table 4.1 also shows that our method with the user-tuned value of λ takes on average 0.8

seconds longer to compute. This is because all solutions for the range of λ ∈ [0, 5] have to

be computed.

Let us now discuss the quality of the computed trimaps and alpha mattes. We see that

our system clearly outperforms all other approaches both in terms of trimap errors and alpha

matte errors4. We further see a correlation between the trimap- and alpha matte error, which

motivates our heuristically defined error functions in eqs. (4.4) and (4.5). Also, the results

4The relatively low performance of [LRAL08] might be explained by the fact that this algorithm was not
designed for a scribble-based interface, but a matting component picking interface.
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confirm that predicting λ in our system works better than using a fixed λ. As expected,

letting the user choose the λ value for each image, gives the best performance. Finally,

by using the ground truth trimap to compute the alpha matte with the matting algorithm of

[WC07a] (last row in table 4.1) gives by far the lowest alpha matte errors, which confirms

that the problem of good trimap generation is vital for successful alpha matting.

4.5 Summary

In this chapter we have presented a new method to obtain a trimap from only a few user-

provided scribbles. The main contribution was a new energy function that resolves ambigu-

ities in the trimap better than previous trimap extraction approaches. Our energy function

considered several image cues that have drawn their motivation from the alpha formation

process. For instance, we predicted the structure of the underlying binary segmentation,

which indicates the spatial extent of the unknown trimap region. Furthermore, we used a

large set of images with known ground truth alpha mattes to train a classifier that predicted

the ratio of unknown pixels in the trimap from the input image. Our trimap extraction

approach is fast, and we have confirmed that the quality of our computed trimaps and con-

sequently alpha mattes improves on the state-of-the-art.
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(a) (b) (c)
Top: 3 scribbles

Bottom: 6 scribbles
Closed-form Matting [LLW08]

(13.0;7.4)
Spectral Matting [LRAL08]

(11.3;12.5)

(d) (e) (f)
Our method

(predicted λ=3.5)
(5.9;2.0)

Our method
(user-tuned λ=3 & 6 scribbles)

(4.8;1.8)

Ground truth
(0.0;0.93)

Figure 4.8: Comparison of trimap methods (1). This figure shows trimap segmentation
results for a challenging image showing a soft toy with complex hair structure (a). For each
result we show the trimap error and α matting error in parentheses.
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(a)
Top: 4 scribbles

Bottom: 5 scribbles

(b)
Closed-form Matting [LLW08]

(6.1;3.5)

(c)
Robust Matting [WC07a]

(5.5;6.4)

(d)
Our method

(predicted λ = 2.2)
(1.9;1.0)

(e)
Our method

(user-tuned λ=1.8 & 5
scribbles)
(1.8;0.7)

(f)
Ground truth

(0.0;0.0)

Figure 4.9: Comparison of trimap methods (2). Trimap segmentation results for an
example with both simple and complex object boundaries. For each result we show the
trimap error and α matting error in parentheses.
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(a)
Top: 3 scribbles

Bottom: 7 scribbles

(b)
Easy Matting [GCL+06]

(18.0;16.7)

(c)
Juan et al. [JK05]

(13.4;13.6)

(d)
Our method

(predicted λ = 1.3)
(2.1;1.0)

(e)
Our method

(user-tuned λ=0.6 & 7
scribbles)
(1.2;0.6)

(f)
Ground truth

(0.0;0.0)

Figure 4.10: Comparison of trimap methods (3). Trimap segmentation results for exam-
ples with sharp boundaries and severely overlapping fore- and background color distribu-
tions. For each result we show the trimap error and α matting error in parentheses.
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(a)
Top: 3 scribbles

Bottom: 5 scribbles

(b)
Robust Matting [WC07a]

(14.5;14.8)

(c)
Juan et al. [JK05]

(13.5;18.8)

(d)
Our method

(predicted λ = 4.5)
(10.1;2.8)

(e)
Our method

(user-tuned λ=5.8 & 5
scribbles)
(9.4;2.5)

(f)
Ground truth

(0.0;0.0)

Figure 4.11: Comparison of trimap methods (4). This figure shows trimap segmentation
results for a difficult example used in the paper of [WC07a]. For each result we show the
trimap error and α matting error in parentheses.



Chapter 5

Improved Color Modeling

In the previous chapter we have shown how to semi-automatically extract an accurate

trimap with a small amount of user interaction. Given such a semi-automatically com-

puted, or manually defined trimap, this chapter addresses the problem of extracting an

alpha matte from a single photograph. More precisely, we concentrate on improving the

color modeling step, in which for each pixel the fore- and background colors are estimated

and then an optimal alpha value is computed for each pixel individually.

These alpha values form the data term that is combined with a smoothness term in an

objective function. Minimizing this objective function yields the final alpha matte. We

show that the alpha mattes obtained with our approach are superior to those computed with

previous approaches.

5.1 Overview

Our approach builds on the “Robust Matting” approach of Wang and Cohen [WC07a] (see

chapter 2.2 for details) and splits the color modeling task into two successive steps:

1. Collecting candidate color samples.

2. Selecting the best samples from the candidate set.

In the following, we first give an overview of the two different steps of our color mod-

eling approach. Then both steps are explained in detail in section 5.2 and 5.3.

66
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(a) Image crop
with trimap

(b) Pixel-wise
alpha values

(c) Confidence of
alpha (Bright
pixels indicate

high confidence)

(d) Final alpha (e) Composite

Figure 5.1: Overview of our approach. From an image crop (a), color samples are col-
lected which give rise to an independently estimated alpha value at each pixel (b), together
with its confidence (c). This forms the data term of our objective function. Combined with
the smoothness term of [LLW08], it produces the final alpha matte (d). This alpha matte
and corresponding foreground colors can be used to generate a new image composition as
in (e).

Let us consider the image crop in figure 5.1(a). The user-defined trimap is indicated by

the red (foreground F) and blue (background B) regions. For each pixel in the unknown re-

gion of the trimap, e.g. the green pixel in figure 5.1(a), we first gather a number of potential

fore- and background color samples from the F and B regions. This is done by spreading

the samples along the boundaries of the respective regions (red dots indicate background

and yellow dots foreground samples). While previous approaches (e.g. [WC07a]) spread

samples in an area which is spatially close to the green pixel, we use a spreading area which

is close in geodesic space (see section 5.2).

In the next step a confidence value is computed for all possible pairs of sampled fore-

and background colors. The confidence value reflects, among others, how well the sampled

colors explain the mixed color of the pixel under consideration (i.e. fit the compositing

equation (1.1)). A novel paradigm to compute the confidence value is presented in section

5.3. Then the corresponding sample pair with the highest confidence is selected for each

pixel. Figure 5.1(b) shows the α values, computed from the selected sample pairs using eq.

(1.1), with the corresponding confidence given in figure 5.1(c). This pixel-wise computed
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alpha matte is the data term of our objective function.

The confidence values in figure 5.1(c) are used to weight the data term with respect to

the smoothness term of our objective function.1 We use the smoothness term of [LLW08]

and minimize the objective function by solving a sparse set of linear equations yielding

a final α matte shown in figure 5.1(d). As we can see, the propagation removed many

artifacts of the pixel-wise α in figure 5.1(b). The composition onto a white background

(figure 5.1(e)) shows that fine details of the hair are nicely preserved.

5.2 Collecting Candidate Samples

Let I be the set of all pixels in an image and let the subsets F , B and U define the fore-

ground, background and unknown region of the user-defined trimap. For each pixel z ∈ U
we first collect a sample set of N (we use N = 30 in our implementation) fore- and back-

ground color samples: Fz = (F 1
z , ..., F

i
z , ..., F

N
z ), Bz = (B1

z , ..., B
j
z , ..., B

N
z ), from F and

B, that are used to reason about the true fore- and background color at pixel z.2 (For

simplicity, we omit the subscript z if only a single pixel is under consideration).

Most previous approaches (e.g. [CCSS01, RT00]) reason about the fore- and back-

ground colors by fitting a parametric model to the sampled colors, e.g. a Gaussian Mixture

Model. The key insight of [WC07a] was that better results can be achieved by simply se-

lecting the “best” samples (defined in section 5.3) from the initial set. This circumvents

a potential poor fit of the low-dimensional parametric model, and adds robustness with

respect to outliers. The basic assumption of this approach is that the true fore- and back-

ground colors for every mixed pixel are present in the sample sets (or that the true colors

are at least very close to the colors in the sample sets). This makes the collection of color

samples a crucial part of the overall algorithm. In order to capture a large variation of

colors, [WC07a] suggested to spread the samples along the boundaries of the known fore-

and background regions (instead of collecting the spatially closest pixels from the fore- and

background trimap regions). Let us improve on this idea.

1An important difference to [WC07a] is that they use a constant weighting of the data term, and in their
approach the confidence value is used to bias pixels with high uncertainty towards an alpha value of zero or
one. We show experimentally that our approach is superior.

2We use calligraphic letters for a set of pixels, e.g. I, and bold letters for a set of color samples, e.g. F.
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(a) Image crop (b) Trimap with
samples

(c) Geodesic
distance to green

pixel

(d) Pixel-wise
alpha using blue

samples

(e) Pixel-wise
alpha using yellow

samples

Figure 5.2: Collecting color samples (detailed description in text). Collecting foreground
candidate samples for image crop (a). (b) Trimap with “geodesic samples” in yellow and
spatial samples in blue. The result with spatial samples (d) is worse than with geodesic
samples (e).

Let us consider the image crop in figure 5.2(a) of a buckle which is part of a soft toy.

Assume we aim to find a good set of foreground colors F for the green pixel in figure

5.2(b). A simple approach to gather F is to start spreading the sample set from the spatially

nearest pixel in F (bold blue dot in figure 5.2(b)).3 Unfortunately, this sample set includes

only bright colors, which do not match the true foreground color (i.e. dark brown) of the

pixel marked in green. Thus, this simple sampling scheme results in a poor estimation of

α (figure 5.2(d)). Our basic idea is to improve the search for a suitable foreground color

by assuming the foreground object to be spatially connected (a common assumption - see

e.g. [VKR08]). The yellow path in figure 5.2(b) goes from the unknown pixel (marked

green) to the bold yellow dot in F and passes solely through pixels that are very likely

to belong to the foreground object. The bold yellow dot defines a better starting point to

spread the foreground samples, since the sample set comprises colors that are similar to

the true foreground color. This motivates to spread the sample set from the closest pixel

in geodesic distance (figure 5.2(c)), which respects the shape of the foreground object and

gives better results (figure 5.2(e)).

The geodesic distance is defined as the shortest path on a weighted graph from a given

3We believe that a similar method was used in [WC07a], although no details were given in the respective
paper.
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pixel z ∈ U to the foreground region F of the trimap. Similar to [BS07] we choose the

weights of the edges to be the gradient of the likelihood, i.e. ∇PF(z). The likelihood

PF(z), for a pixel z to belong to F , is obtained from the user-provided trimap as in [BS07]:

PF(z) = p(Cz|θF)/ (p(Cz|θF) + p(Cz|θB)) , (5.1)

where p(Cz|θF) is the probability that the color C, at pixel z, was generated by the Gaus-

sian Mixture Model θF of the foreground, which is constructed from all pixels in F . The

probability p(Cz|θB) is computed likewise. Note that the color models could also be built

from local windows placed over the unknown region (similar to [CCSS01, RT00]). How-

ever, in practice we did not find a window-based approach to improve results.

To collect candidate samples for the background, we use the same approach as [WC07a],

i.e. spread the sample set from the spatially nearest pixel in B. This is based on the fact

that the background region is usually not connected, due to occlusion by some foreground

parts. We have seen experimentally that the performance can be improved even further

by combining the “geodesic samples” with the samples of the spatially closest area. The

reason could be that the likelihood PF is not necessarily always perfect. Hence we gather

in total 60 samples in each set Bz and Fz for every pixel z. In practice about 40 − 50% of

our “geodesic samples” contribute to the optimal sample pairs.

5.3 Selecting Best Candidate Samples

Given a candidate set of fore- and background colors (Fz and Bz) for each pixel z ∈ U
with color Cz, we first introduce our approach to compute the confidence for all sample

pairs (F i
z , B

j
z) from this initial set. Confident sample pairs should meet three criteria: (i) F i

and Bj should fit the linear model in eq. (1.1) (i.e. the mixed color C should lie on the line

segment, in color space, spanned by F i and Bj); (ii) F i and Bj should be widely separated

in color space, to allow for a robust estimation of α using the compositing eq. (1.1); (iii)

Assuming that the alpha value of most pixels in the image is likely to be either 0 or 1, F i

or Bj are likely to be close in color space to C. (This is a reasonable assumption based on

the alpha formation process described in chapter 3.)
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Following [WC07a], we encode (i) and (ii) in a distance ratio R(F i, Bj) as

R(F i, Bj) =
‖C − (α̂F i + (1 − α̂)Bj)‖

‖F i −Bj‖ , (5.2)

where α̂ is estimated by projecting the observed color C onto the line spanned by the

sample pair (F i, Bj) under consideration. The numerator in eq. (5.2) represents the linear

fit to the model, i.e. criterion (i), while the denominator encodes robustness (criterion (ii)).

For criterion (iii) we define two weights w(F i) and w(Bj) that encourage individual

fore- and background samples to be similar to colorC. It should be noted that this approach

is different to [WC07a], where two weights were defined that avoid samples which are

similar to color C. In our approach, we define the two weights w(F i) and w(Bj) as:

w(F i) = exp

{
− max

s∈{1,..,N}

(‖F s − C‖2) / ‖F i − C‖2

}
w(Bj) = exp

{
− max

s∈{1,..,N}

(‖Bs − C‖2) / ‖Bj − C‖2

}
,

(5.3)

where N is the number of fore- and background samples, respectively. The function maxs

returns the maximum squared difference between the mixed color C and all corresponding

fore- or background color samples, respectively. Finally, a confidence value f for each

sample pair is computed, as in [WC07a], by combining eqs. (5.2) and (5.3) to

f(F i, Bj) = exp

{
−R(F i, Bj)2 · w(F i) · w(Bj)

σ2

}
, (5.4)

where σ is set to 0.1. The confidence f(F i, Bj) is large if the distance ratio R is low or if

the samples F i or Bj are similar to color C. This is in contrast to [WC07a] where samples

close to the mixed color C are assigned to a low confidence value and biased towards 0 or

1 in a later step.

We compute then a confidence value for each sample pair, and the pair with the highest

confidence f̂ = maxi,j (f (F i, Bj)) is selected to obtain a pixel-wise estimation of α,

denoted as α̂. Note, in practice it is computationally too expensive to evaluate eq. (5.4) for

all 3600 pairs of samples. Therefore we prune each sample set from 60 to 15 using criterion

(iii), i.e. by selecting those samples which are closest in color to the mixed color C. Hence,

we obtain only 225 sample pairs. In our tests, this gave virtually no drop in performance.
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(a) Pixel-wise
alpha using

[WC07a]. Arrows
mark artifacts.

(b) Final alpha
using [WC07a].

(c) Pixel-wise
alpha of our

method. Arrows
mark artifacts.

(d) Final alpha
using our method.

(e) Ground truth

Figure 5.3: Sample selection (detailed description in text). The pixel-wise estimation of
alpha, based on the selected color samples, has fewer artifacts with our approach (c) than
with [WC07a] (a). Given the data term, our final alpha matte (d) is close to the ground truth
(e), while many artifacts remain in the final alpha matte of [WC07a] (b).

Figure 5.3(a) shows the pixel-wise computed matte obtained with the method of [WC07a],

which contains considerable blurry artifacts and is of lower quality than the initial matte

obtained with our approach (figure 5.3(c)).

In the next step, we use the pixel-wise estimated α̂ and its confidence f̂ to define the

data term. We use a quadratic function with the minimum at α̂. The data term is then

combined with a smoothness term. Here, we use the Matting Laplacian L of [LLW08].

The complete objective function J is

J(α) = αTLα + (α− α̂)T Γ̂(α− α̂), (5.5)

where α and α̂ are treated as column vectors. The first term of eq. (5.5), αTLα, defines the

smoothness term and the second term is the data term. The diagonal matrix Γ̂ defines the

weighting between data and smoothness term. In contrast to [WC07a], where a constant

weighting of the data term is used (i.e. the diagonal elements of Γ̂ are set to a constant), we

regulate each diagonal element γ̂z of Γ̂ with the confidence f̂z of the pixel-wise estimated

α̂z: γ̂z = γ · f̂z, where γ is a constant (we use 10−3 in our implementation). Thus our

approach relies more on propagation (provided by the smoothness term) in low confidence
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regions. In order to deal with high-resolution (e.g. 6 Mpix) images, we solve the sparse

linear system in a multi-resolution framework to obtain α mattes with reasonable time and

memory consumption.

Figures 5.3(b) and (d) compare the final result of [WC07a] to our approach. We see

that our result is close to the ground truth (figure 5.3(e)), while considerable blurry artifacts

remain in the result of [WC07a], e.g. visible in the middle of figure 5.3(b).

5.4 Experimental Results

To test our approach, we computed alpha mattes on a variety of different images and

trimaps. In this section we present qualitative results that demonstrate the good perfor-

mance of our algorithm. A quantitative comparison of our algorithm to the state-of-the-art

in presented in chapter 7.

Figure 5.4 compares the results of our approach to two previous approaches. The alpha

mattes were computed on an image crop, showing part of a solid toy and a fuzzy broom

(figure 5.4(a)). The result of [LLW08] shows large semi-transparent regions, especially

in the background (figure 5.4(b)). Similarly, the approach of [WC07a] has problems to

correctly recover the background (figure 5.4(c)). In the result computed with our approach

(figure 5.4(d)), most artifacts in the background are eliminated and the fuzzy broom was

recovered well. The result is very close to the ground truth (e).

A second example is given in figure 5.5, which shows the crop of an artificial flower.

We see that, similar to the example in figure 5.4, the methods of [WC07a] and [LLW08]

generate large artifacts in the background (see figure 5.5(b,c)). Again, our approach (figure

5.5(d)) generates a more clear alpha matte and is close to the ground truth in figure 5.5(e).

Finally, we depict a very challenging example showing fuzzy hair in figure 5.6. We

see that the approach of [WC07a] could not correctly reconstruct the hair (figure 5.6(b)),

which is presumably due the color ambiguities. The method of [LLW08] (figure 5.6(c))

better recovers the hair, although our approach delivers slightly better results (see figure

5.6(d)).
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(a) Input image with trimap (b) Closed-form Matting
[LLW08]

(c) Robust Matting
[WC07a]

(d) Our final result (e) Ground truth

Figure 5.4: Qualitative comparison (1). Matting results for the input image in (a) are
depicted in (b-d). See the text for a detailed discussion.

5.5 Summary

In this chapter we have presented a new approach to color modeling which relies on infor-

mation from global color models to find better local estimates of the true fore- and back-

ground colors. In particular, we first gathered a number of potential fore- and background

color samples from user-constrained regions which are close in geodesic space. This is

in contrast to previous approaches which simply collect samples from spatially nearby re-

gions. Furthermore, we have presented a new paradigm to compute a confidence value for

the color samples which is motivated by the alpha formation process. Finally, we computed

a pixel-wise alpha matte from the color samples with the highest confidence. This matte

defines the data term of an objective function which is minimized to obtain the final alpha
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(a) Input image with trimap (b) Robust Matting
[WC07a]

(c) Closed-form Matting
[LLW08]

(d) Our approach (e) Ground truth

Figure 5.5: Qualitative comparison (2). Matting results for the input image in (a) are
depicted in (b-d). See the text for a detailed discussion.

(a) Input image with trimap (b) Robust Matting
[WC07a]

(c) Closed-form Matting
[LLW08]

(d) Our approach (e) Ground truth

Figure 5.6: Qualitative comparison (3). Matting results for the input image in (a) are
depicted in (b-d). See the text for a detailed discussion.
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matte. Finally, we have validated the good performance of our approach with compelling

examples.



Chapter 6

Segmentation-based Prior for Matting

In this chapter, we aim to recover the alpha matte based on the assumption that in real

world images, fractional alpha values are often induced during the imaging process, in

particular, caused by the camera’s Point Spread Function (PSF). If this assumption is met,

we have seen in chapter 3 that one can model the prior distribution of the alpha matte α

as a convolution of an underlying, potentially higher resolution, binary segmentation αb

with a kernel K that models the PSF. The result of this convolution may be downsampled

afterwards by a function D:

α = D(K ⊗ αb). (6.1)

In this chapter we model the kernel K as spatially constant, which can account for defo-

cus blur in the presence of a large depth of field. It should be noted, however, that our

framework could be extended with spatially varying blur kernels in the future.

To construct the prior, the key challenge is to solve the blind deconvolution problem,

which is the reconstruction of the binary segmentation αb and kernel K in eq. (6.1) from

an input alpha matte α. (A deconvolution approach is commonly denoted as blind, if the

kernel K is unknown, and denoted as non-blind otherwise.)

We will present two new approaches for the deconvolution of alpha mattes in sections

6.2 and 6.3. Our methods assume that the PSF is a kernel with a single peak, which is

usually true for optical blur or very slight motion blur (a limitation is complex motion

77
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blur). If our assumption is met, it has been shown by Joshi et al. [JSK08] that the binary

segmentation can be recovered from the edges in the blurred alpha matte. In this work, we

infer the binary mask αb and, consequently, the kernelK with new segmentation techniques

from the initial alpha matte α. In our approaches, we compute this initial matte using the

Improved Color Matting algorithm presented in chapter 5.

Convolving the recovered binary segmentation αb with the PSF K gives a new alpha

matte that is typically of high-quality. However, to account for potential artifacts in the

matte, we use this convolved segmentation as prior in the Improved Color Matting method.

The result is an alpha matte whose quality usually exceeds the current state-of-the-art, as

we show in sections 6.2.8 and 6.3.7.

The remainder of this chapter is organized as follows. First, in section 6.1, we briefly

review previous deconvolution approaches that can be used to solve for αb and K, given

a input alpha matte α. In sections 6.2 and 6.3 we introduce two new approaches for the

deconvolution of alpha mattes and use the resulting binary segmentation and PSF as prior

for image matting. Finally, section 6.4 demonstrates qualitatively and quantitatively that

the model in eq. (6.1) is indeed a good prior for many alpha mattes of real images.

6.1 Deconvolution of Alpha Mattes - Related Work

Recovering the binary segmentation αb and blur kernel K from an alpha matte is the task

of blind deconvolution, and we discuss related work in the following. In this section we use

the ground truth alpha matte α∗ for comparing deconvolution methods. However, for the

matting approaches described in most parts of sections 6.2 and 6.3, we use an alpha matte

computed from the input image with the Improved Color Matting algorithm described in

chapter 5. To ensure that the underlying segmentation αb is more likely to be binary, in this

test we upscaled α∗ by a factor of 3 before applying the methods discussed below.

In theory one should be able to perfectly reconstruct αb by deconvolution algorithms,

given the true alpha matte α∗ and the true blur kernelK∗, respectively. (We also confirmed

this in a synthetic experiment.) However, in practice we found the results obtained with

state-of-the-art (blind) deconvolution approaches1 to be inappropriate for our purposes.

1We experimented with the non-blind deconvolution algorithms of [LFDF07, SJA08] and the blind method
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More specifically, we observed that the deconvolved alpha mattes were usually far away

from being binary. This empirical observation was recently confirmed in the work of Levin

et al. [LWDF09] which shows that the simultaneous Maximum A Posteriori (MAP) estima-

tion of both K and αb mostly favors a solution where K is the delta kernel. To overcome

this problem, Levin et al. [LWDF09] suggested to first estimate the PSF using the approach

of [FSH+06] and then perform (non-blind) deconvolution using [LFDF07]. We tested this

approach, using the authors’ implementations, but unfortunately the results were still non-

binary. Hence, to obtain αb we had to threshold the deconvolution results, which resulted

in the loss of many details like hair strands. Since [FSH+06] was mainly designed for large

motion blur, we also used [JSK08] to initialize the PSF for [LFDF07], but found it to give

non-binary results as well.

A possible explanation for this failure is that state-of-the-art deblurring approaches are

based on natural image statistic priors that are not applicable to alpha mattes. In particular,

the desired deblurred alpha matte is a two-tone image, thus has a much simpler structure

than a natural image. Experiments in Levin et al. [LWDF09] suggest that a prior which

favors two-tone images could potentially overcome the undesired solution where K is the

delta kernel. Therefore, one could follow the approach of Jia [Jia07] and incorporate in the

deconvolution process the assumption that the unblurred alpha matte is binary. The result

of this approach2 is shown in figure 6.1(b) for the ground truth alpha matte in figure 6.1(a).

Unfortunately many fine details were lost.

Another class of deconvolution approaches explicitly detect edges in the image to infer

a binary segmentation. For instance, the recent approach by Joshi et al. [JSK08] detects

the location of step edges in the (unknown) sharp image by applying a sub-pixel-accurate

edge detector to the blurred image. If the deblurred image is two-toned (which is true for

alpha mattes), the location and orientation of the sharp image edges is sufficient to infer

αb around the detected edges. We found this method to perform reasonably well on solid

boundaries, but it severely over-estimated αb in the presence of thin structures like hair

strands, due to incorrect edge localization (see, e.g., figure 6.1(c)).

A straightforward approach to obtain αb is to run binary segmentation methods like

of [SJA08]. When using [LFDF07, SJA08] we initialized K using [JSK08].
2The author of [Jia07] kindly applied his method on a crop of a ground truth matte of our test set.
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(a) Ground truth alpha (b) αb from [Jia07]
(in high-resolution)
(crop of (a) due to
memory limits)

(c) αb from [JSK08]
(in high-resolution)

(d) αb using our Hybrid
Deconvolution
approach (in

low-resolution)

Figure 6.1: Deconvolution with binary prior. Deconvolution of the ground truth alpha (a)
with the approach of [Jia07] results in the loss of many details like hair strands (b). (c) The
deconvolution result of [JSK08] preserves most structures, but the segmentation of the hair
is too wide. Our Hybrid Deconvolution approach (d) preserves thin structures and better
recovers the width of thin structures. For a better visualization, we show a zoom-in of the
yellow-marked region in (a) in the upper right corners of the result in (a), (c) and (d).

GrabCut [RKB04] on the image. However, current state-of-the-art segmentation methods

oftentimes cannot recover very fine structures like hairs. Thus one could follow the ap-

proach described in chapter 4 and classify the segmentation borderline into sharp and soft

boundaries. In the vicinity of a sharp boundary, fractional alpha values are likely to occur

only in a small band around such a boundary (given by the width of the PSF) and pixels

adjacent to this small band should be pushed towards an alpha value of 0 or 1. We tested

this approach and found it to work well close to sharp boundaries, but clearly it did not

work well if the foreground object exhibited fine soft-boundary structures like hair strands.

6.2 Hybrid Deconvolution Approach

As discussed in the previous section, the binary segmentation and the PSF may be derived

using deconvolution approaches from an input alpha matte. In this section we propose

a new Hybrid Deconvolution method that splits the task into two steps. We first deblur

the alpha matte with the deconvolution approach by Levin et al. [LFDF07]. As we have
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observed in the previous section, the resulting deblurred alpha matte αd is oftentimes not

binary. Therefore, in the second step, we infer a binary segmentation αb from the decon-

volved alpha matte αd with a new segmentation technique that was designed to preserve

fine structures like hair strands in the segmentation result. Figure 6.1(d) shows αb obtained

with our method from the ground truth alpha matte in figure 6.1(a). We see that, in contrast

to the methods proposed by Jia [Jia07] and Joshi et al. [JSK08], which infer the binary

mask in a single step, our two-step process could better preserve the fine details.

6.2.1 Overview of our Matting Approach

Our matting approach comprises five steps: (i) Given an input image and trimap, compute

an initial (usually) imperfect alpha matte α, with the Improved Color Matting approach

presented in chapter 5; (ii) estimate the PSF from α; (iii) use the PSF to deblur α with

the method by Levin et al. [LFDF07] to obtain a deconvolved (but usually non-binary)

alpha matte αd; (iv) estimate the binary segmentation αb from the deconvolved αd while

preserving edges; (v) convolve the binary segmentation αb with the PSF and use it to re-

estimate the alpha matte α. We now describe each step in detail.

6.2.2 Estimating the Initial Alpha Matte

We have seen in section 6.1 that the binary segmentation may be derived with deconvolution

methods from the ground truth alpha matte. To apply our approach to natural images where

the ground truth is unknown, we infer the binary segmentation and PSF from an alpha matte

computed from the natural image with a conventional matting algorithm. In particular, we

use our Improved Color Matting approach, that was detailed in chapter 5. As shown in

chapter 5, the Improved Color Matting algorithm first computes a pixel-wise estimation of

alpha denoted as α̂, which defines the data term. The data term is then combined with the

smoothness term of Levin et al. [LLW08], giving the following objective function J :

J(α) = αTLα + (α− α̂)T Γ̂(α− α̂), (6.2)

where α and α̂ are treated as column vectors and L is the Matting Laplacian of [LLW08].
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The diagonal matrix Γ̂ weights the data against the smoothness term. The objective function

is minimized by solving a set of sparse linear equations, subject to the user defined input

constraints, which gives the initial alpha matte α.

The initial matte computed for the image crop and trimap in figure 6.2(a) is shown in

figure 6.2(b).

6.2.3 Estimating the PSF

We model the PSF as a symmetric kernelK of size 9×9 pixels with non-negative elements

which sum up to 1. Furthermore, we assume the PSF to be spatially constant. Given the

alpha matte α, computed with the Improved Color Modeling method, we derive an initial

approximation of αb by thresholding α at 0.5 (αb ≈ δ(α > 0.5)). We can then obtain an

approximation of K by minimizing the linear system

||δ(α > 0.5) ⊗K − α||2. (6.3)

Note that we can potentially refine the resulting kernel K, once we have computed a

more accurate binary segmentation αb (section 6.2.5). For this purpose, we re-estimate K,

by solving the linear system in eq. (6.3) after replacing δ(α > 0.5) in eq. (6.3) with αb.

6.2.4 Alpha Deblurring

We now deblur the initially computed alpha matte α with the computed PSF K, using

the algorithm by Levin et al. [LFDF07]. The resulting deblurred alpha matte αd, derived

from the initial alpha matte in figure 6.2(b), is shown in figure 6.2(c). We can see that

the alpha values in the deconvolved matte are distributed more sparsely than those in the

initial matte. Hence, this deblurred matte can serve as an initial approximation of the binary

segmentation. However, the deconvolved matte is still far from being binary. To derive a

binary segmentation one could simply threshold the deconvolution result. However, we

observed that thresholding removes many fine details, such as hairs. Therefore, in the next

section, we introduce a new binary segmentation method that we use to derive a much

better binarization from αd.
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(a) Cropped image.
Trimap: white-bkg;

black-fgd

(b) Initial alpha matte
computed with the

Improved Color Modeling
method

(c) αd computed from (b)

(d) αb computed from (c) (e) Our prior (convolving
(d) with the PSF)

(f) Final alpha obtained
with our Hybrid

Deconvolution approach

(g) Ground truth alpha

Figure 6.2: Intermediate results of our matting approach. For the input image (a) we
first compute an initial alpha matte shown in (b). The alpha matte in (b) is then deconvolved
giving the result in (c). We then binarize the deconvolved alpha matte using our new edge-
preserving segmentation approach. The resulting binary segmentation is shown in (d).
Convolving this binary segmentation with the PSF gives a prior for the alpha matte shown
in (e). The final alpha matte (f), computed with the prior in (e), shows fewer artifacts than
our initial matte (b).
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6.2.5 Binarization of the Deblurred Alpha Matte

To derive the binary segmentation αb from the deblurred alpha matte αd, we formulate the

following energy function E:

E(αb) =
∑
i∈I

D(αb
i) + θ1

∑
{i,j}∈N

V (αb
i , α

b
j), (6.4)

where αb
i ∈ {0, 1} denotes the binary label of the image pixel i and the vector αb encodes

the labeling on the set of image pixels I. The set of neighboring pixels is denoted by N
(we use an 8-connected neighborhood). We minimize the energy function in eq. (6.4) by

finding the minimum cut in a specialized graph via Quadratic Pseudo Boolean Optimization

(QPBO) [KR07]. The terms D and V in eq. (6.4) are given by

D(αb
i) = |αb

i − αd
i | + θ2|αb

i |; (6.5)

V (αb
i , α

b
j) = V Potts(αb

i , α
b
j) + θ3V

edge(αb
i , α

b
j)

where the constants (θ1, θ2, θ3) = (5, 0.2, 0.002) weight the individual terms. The first

part of the data term D encourages the labeling to be similar to αd and the second part

encodes a small preference towards an alpha value of zero. The preference towards zero

was motivated by the empirical observation that the loss of some thin structures (e.g. hair

strands) is visually less distracting than erroneously attaching parts of the background to

the foreground object.

The pair-wise term V consists of two sub-terms V Potts and V edge. The first term V Potts

is defined as V Potts(αb
i , α

b
j) = δ(αb

i 
= αb
j), where the Kronecker delta δ encodes the

standard Potts model. Thus V Potts imposes a cost of 1, if two neighboring pixels i and

j are assigned to different labels, and zero costs otherwise.

The second term, V edge, was designed to preserve thin structures of the deblurred alpha

matte αd in the binary segmentation αb. It is defined as V edge(αb
i , α

b
j) = (αb

i −αb
j)(α

d
j −αd

i ).

The term V edge imposes no costs if two neighboring pixels i and j are assigned to the same

label. However, if two neighboring pixels are assigned to different labels, the costs of V edge

depend on the values of pixels i and j in the deblurred alpha matte αd.
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Minimizing the energy function in eq. (6.4) gives a binary segmentation, for which an

example is depicted in figure 6.2(d). We see that the fine hair strands were nicely preserved.

6.2.6 Re-estimating Alpha Using the Segmentation Prior

Given the computed binary segmentation αb (figure 6.2(d)) and the computed blur kernel

K, we now close the “loop” by improving the alpha matte using our alpha model in eq.

(6.1) as prior. The prior P is constructed by convolving the binary αb withK. The resulting

prior is shown in figure 6.2(e). The prior is then simply added to the objective function by

replacing α̂ in eq. (6.2) with this term:

α̂new
i = α̂i + θ4P, (6.6)

where θ4 = 5 is the relative weight of the new prior. The final alpha matte, depicted in

figure 6.2(f), shows less blurry artifacts than the initial matte in (b).

6.2.7 Multi-resolution Estimation of the Matte

To obtain high-quality alpha mattes of high-resolution (e.g. 6 Mpix) images within rea-

sonable time and memory requirements, we use a multi-resolution framework with three

levels: 0.3 Mpix, 1.5 Mpix and 6 Mpix. The matte in lower resolutions is used as a weak

regularization for higher resolutions. At the higher resolution, α is solved by processing

the image in overlapping windows. Using the low resolution matte as regularization has

two advantages: (a) it encourages a smooth transition between windows (for that reason,

this prior gets a higher weight along window boundaries), (b) it pushes the solution towards

the global optimum, which is essential for handling windows without user constraints.

6.2.8 Experimental Results

To test the performance of our matting approach, we computed alpha mattes on different

images and trimaps. In this section we present qualitative results to demonstrate the good-

ness of our method. A quantitative comparison of our algorithm to the state-of-the-art is

presented in chapter 7.



CHAPTER 6. SEGMENTATION-BASED PRIOR FOR MATTING 86

In figure 6.3, our approach is compared to its closest competitors [WC07a, LLW08,

LRAL08] on a crop of a high-resolution image showing part of a wool scarf. We see that the

results of all competitors show large blurry artifacts in the background. This is because the

background colors are erroneously interpreted as semi-transparent layers. Even the pixel-

independent sparsity priors of [LRAL08] and [WC07a] were not able to recover the correct

alpha values. Our prior successfully removed the background artifacts (figure 6.3(f)), be-

cause large semi-transparent regions are very unlikely to occur in our segmentation-based

model.

A further example is given in figure 6.4. The results were computed on the crop of a

high-resolution image showing hairs of a toy. We see that the Spectral Matting approach

gave the worst result (figure 6.4(c)). Even more severe, it seems that its pixel-independent

sparsity prior biased the wrong pixels towards an alpha value of 0 and 1. The results of

[LLW08] and [WC07a] are better but show large regions where the color was erroneously

interpreted as semi-transparent. Again we can see that by explicitly committing to a specific

alpha formation model, we can obtain a much better result since large blurry regions are

unlikely to occur in our model (see figure 6.4(f)).
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(a) High-resolution image

(b) Image crop and
trimap (white: bkg;

black: fgd)

(c) Spectral Matting
[LRAL08]

(d) Closed-form Matting
[LLW08]

(e) Robust Matting
[WC07a]

(f) Our Hybrid
Deconvolution Matting

(g) Ground truth

Figure 6.3: Comparison of matting methods (1). (b) Crop of the 7.7 Mpix image in (a)
showing a region with a woolen scarf. The input trimap is superimposed: black (fore-
ground) and white (background). (c-e) Results of various methods. Our result in (f) shows
fewer artifacts in the background and is closer to the ground truth in (g).
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(a) High-resolution image

(b) Image crop and
trimap (white: bkg;

black: fgd)

(c) Spectral Matting
[LRAL08]

(d) Closed-form Matting
[LLW08]

(e) Robust Matting
[WC07a]

(f) Our Hybrid
Deconvolution Matting

(g) Ground truth

Figure 6.4: Comparison of matting methods (2). (b) Crop of the 7.6 Mpix image in (a)
showing hair of a toy. The input trimap is superimposed: black (foreground) and white
(background). (c-e) Results of various methods. Our result in (f) is closest to the ground
truth in (g).
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6.3 Segmentation-based Deconvolution

In the previous section we introduced a method to obtain the binary segmentation αb from

the deconvolved alpha matte using a new segmentation approach that preserves the edges

in the deblurred alpha matte. We have seen that this method can effectively preserve thin

structures like hair strands in the binary segmentation αb. Let us now re-investigate the

quality of this approach using the example from section 6.1. We use the ground truth alpha

matte α∗ for this comparison. However, for the matting algorithms described in sections

6.3.1-6.3.7, we use an alpha matte computed from the input image with the Improved Color

Matting algorithm described in chapter 5.

Figure 6.5(d) shows αb estimated from the ground truth alpha (figure 6.5(a)) with our

Hybrid Deconvolution method. We see that most details are better preserved in comparison

to the results of [Jia07] and [JSK08] (figure 6.5(b) and (c)). However, αb is overestimated

(i.e. the segmentation of the hair strands is too wide) and originally connected hair strands

appear fragmented (see e.g. the inlet in the upper right corner of figure 6.5(d)).

Therefore, the goal of this section is to improve on the segmentation results of the Hy-

brid Deconvolution approach in several important respects. Firstly, we propose to work

on the higher-resolution (upscaled) alpha matte, where the underlying binary segmentation

of thin structures is more likely to be binary (see a more detailed discussion in section

6.3.3). We also found that working in the higher resolution greatly improves the result of

the Hybrid Deconvolution algorithm for which an example is depicted in figure 6.5(e). Sec-

ondly, our Segmentation-based Deconvolution approach estimates the binary segmentation

αb directly from the alpha matte, as opposed to the Hybrid Deconvolution method, where

computationally expensive deconvolution methods were applied to alpha before binariza-

tion. Thirdly, we apply a different segmentation procedure, described in section 6.3.4,

which enforces connectivity of the binary segmentation αb.

Figure 6.5(f) shows αb obtained with our Segmentation-based Deconvolution method

from the ground truth α∗. We see that most of the fine details were nicely recovered and,

in contrast to the Hybrid Deconvolution method, αb is not overestimated. Furthermore, the

segmentation of the foreground is connected, whereas this is not always the case for the

Hybrid Deconvolution method. Convolving our computed αb with our estimated PSF gives
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(a) Ground truth alpha (b) αb from [Jia07] (in
high-resolution) (crop
of (a) due to memory

limits)

(c) αb from [JSK08] (d) αb using our Hybrid
Deconvolution
approach (in

low-resolution)

(e) αb using our Hybrid
Deconvolution
approach (in

high-resolution)

(f) αb using our
Segmentation-based

Deconvolution method
(in high-resolution)
(computed 13 times

faster than (e))

(g) Prior from our
Segmentation-based

Deconvolution
approach.

(h) Final alpha matte
with our

Segmentation-based
Deconvolution

approach.

Figure 6.5: Deconvolution with binary prior (more results). (Extension of figure 6.1 in
section 6.1.) Using the ground truth alpha (a), our segmentation approach (f) estimates the
underlying binary segmentation better than previously proposed approaches for this task
(b,c,d,e). For a better visualization, we show a zoom-in of the yellow-marked region in (a)
in the upper right corners of the results in (c-h).

an alpha matte (figure 6.5(g)) which is very close to the ground truth, both visually and in

terms of error rate. To further refine this result, we use it as prior in the Improved Color

Matting approach (see result in figure 6.5(h)). This example shows that our Segmentation-

based Deconvolution method has the potential to estimate the model parameters αb and K

with high accuracy.
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6.3.1 Overview of our Matting Approach

Our matting approach comprises five steps: (i) Given an input image and trimap, compute

an initial (usually imperfect) alpha matte α with the Improved Color Matting algorithm that

was presented in chapter 5; (ii) upsample α to a resolution where the underlying segmenta-

tion is more likely to be binary, apart from discretization artifacts; (iii) estimate the binary

segmentation αb with an MRF; (iv) downsample αb again and compute the PSF; (v) con-

volve αb with the PSF and use the convolved αb as a prior in the Improved Color Matting

approach to estimate the final alpha matte α. In the following, each step is described in

more detail.

6.3.2 Estimating the Initial Alpha Matte

Following our Hybrid Deconvolution approach, we compute an initial alpha matte α using

the Improved Color Modeling algorithm proposed in chapter 5. To avoid overlap with

section 6.2, we refer the reader to section 6.2.2 for details.

6.3.3 Upsampling Alpha

It is possible that small structures like hair strands project to a camera sensor area which is

smaller than a pixel. To ensure that the underlying binary structure is at least of the size of

one pixel, we compute α on a higher-resolution pixel grid. Thus we bicubically upscale the

image to a resolution where the underlying segmentation is likely to be binary (i.e. where

the underlying binary structures are at least on the order of the size of a pixel).

We found that a scaling factor of 3 was sufficient to preserve most details in our test

images. However, further work could be conducted to learn the optimal scaling factor in a

user study.

6.3.4 Estimating the Binary Segmentation from Alpha

Our approach recovers the binary mask αb from the upscaled alpha matte α by solving the

following energy function with a graph cut technique:
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E(αb) =
∑
i∈I

D(αb
i) + θ1X(αb

i) + θ2

∑
{i,j}∈N

V (αb
i , α

b
j), (6.7)

where αb
i ∈ {0, 1} denotes the binary label of the image pixel i and the vector αb encodes

the labeling on the set of image pixels I. N denotes an 8-connected neighborhood on the

set of image pixels I. The constants θ1 and θ2 balance the terms in eq. (6.7) and were fixed

to 200 and 0.005, respectively.

The data term D encourages αb to be close to α:

D(αb
i) = δ(αb

i = 1) · Li, (6.8)

where δ is the Kronecker delta and Li is the difference of the negative log likelihood that a

pixel i with alpha value αi belongs to the fore- or the background, respectively:

Li = − log(2αi) + log(2(1 − αi)). (6.9)

To detect edges and to preserve thin structures like hair strands in the segmentation,

we use flux, which has been shown to be effective for segmenting thin objects in medical

grayscale images [VS02] and has been demonstrated to be amenable for graph cut mini-

mization [KB05]. The unary term X represents the flux of the gradient in L:

X(αb
i) = δ(αb

i = 0) · div (∇Li · exp (−|Li|/σ)) , (6.10)

where ∇ and div denote the gradient and divergence and σ was fixed to 2. In X , the

exponential function is used to truncate the gradient in places where the foreground and

background likelihoods in Li are approximately equal.

Finally, our pairwise term V encourages neighboring pixel to be assigned to the same

label:

V (αb
i , α

b
j) = δ(αb

i 
= αb
j). (6.11)

Enforcing Connectivity

In addition to the smoothness prior, discussed before, we enforce the foreground object to
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be a single 4-connected component. In general, this assumption holds for non-occluded

objects, and also for the images used for evaluation in section 6.3.7. Recently, a solution

to minimize energy functions, like eq. (6.7), under connectivity constraints has been pre-

sented by Nowozin et al. [NL09]. Unfortunately, their solution to this NP-hard problem

requires the image to be segmented into large super-pixels for computational reasons. Thus

it is impractical for segmenting fine structures like hair strands. An interactive solution to

this problem was proposed by Vicente et al. [VKR08]. They start by computing a segmen-

tation without connectivity constraints (e.g. figure 6.6(a)). Then the user manually marks a

pixel which has to be connected to the main part of the foreground object, and also man-

ually selects a minimum width for the “connection path”. The method finds a connected

component which fulfills these constraints.

In the following we propose a new approach to compute an entirely connected seg-

mentation, which in contrast to previous work is very efficient and fully automatic. In

essence, we automate the user interactions of [VKR08] and also make the core algorithm

of [VKR08] much more efficient while keeping high-quality results.

More precisely, we first compute a segmentation α̂b by minimizing (6.7) without con-

nectivity constraints (figure 6.6(a)). Then those regions in α̂b which are disconnected from

a source region s are identified. We define s to be all pixels in α̂b that are 4-connected

to the user-marked foreground pixels (e.g. spider body in figure 6.6(a)). Then for each

disconnected region t a segmentation α̂b′ is computed by minimizing (6.7) under the con-

straint that s and t must be connected. (This step is discussed in detail below.) We also

determine an alternative solution α̂b′′ by simply removing region t from α̂b. Now we keep

the solution with lower energy, i.e. we keep, e.g., α̂b′ if E(α̂b′)≤E(α̂b′′). In this manner all

disconnected regions are processed, which gives the final result (figure 6.6(b)).

The difficult step in the above procedure is to find a segmentation subject to the con-

dition that regions s and t are connected. Vicente et al. [VKR08] suggested a heuristic

method called DijkstraGC. It works by computing the “shortest path” in a graph where the

“distance” between two nodes measures the value of the energy (6.7) under the constraint

that all pixels on the path from s to t belong to the foreground. Unfortunately, DijkstraGC

is computationally very expensive, since it requires many calls to the maxflow algorithm to
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(a) Segmentation
without connectivity

(b) Our final connected
result

(c) Our connected result
using a fixed minimum

path width

(d) Result using
DijkstraGC [VKR08]
(40 times slower than

ours)

(e) Image with scribbles
(blue=bkg; red=fgd)

(f) Input image.
Computed connected
paths from (b) are

marked red.

(g) Input image.
Computed connected

paths from (c) are
marked red.

(h) Input image.
Computed connected
paths from (d) are

marked red.

Figure 6.6: Enforcing connectivity. Given an input image and user constraints (e), an
originally disconnected binary segmentation is computed (a). Our approach automatically
connects (or excludes) disconnected islands in (a) to the foreground. Our final binary seg-
mentation (b) includes most of the spider legs and shows no background artifacts. The
result of our approach, where we disable the automatic estimation of the minimum width
of the “connection path” (hence, we use a fixed minimum width of 1 pixel) is shown in
(c). As expected it is worse than (b). Our results (b,c) are comparable to the result of
DijkstraGC (d), which is, however, 40 times slower than our approach. We show the “con-
nection paths” for the results in (b-d) in (f-h). (For this example we replaced eq. (6.7) with
the energy in [RKB04] to compute the initial binary segmentation in (a), for reasons of
compatibility with the original implementation of [VKR08].)
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minimize function (6.7).3 Hence, we found it impractical to compute a solution for many

disconnected islands.

The key idea of our approach is to compute the shortest path on a graph where the

weight of each node is its min-marginal energy under (6.7), which is given by

M(i) = min
αb,αb

i=1
E(αb) − min

αb
E(αb), (6.12)

where minαb,αb
i=1E(αb) returns the minimum energy when fixing the variable αb

i to a value

of 1, while minimizing over all other variables. The min-marginal energy can be computed

very efficiently using graph recycling [KT06]. (The path to all disconnected islands can

be computed in a single run of Dijkstra.) A segmentation is then computed by minimizing

(6.7) under the constraint that all pixels on the shortest path in the min-marginals belong

to the foreground. Hence, our approach approximates DijkstraGC but gives comparable

results (for instance, compare our result in figure 6.6(b) with the result of DijkstraGC in

figure 6.6(d)).

Finally, we address the problem of finding the minimum width of the “connection path”.

It has been observed in [VKR08] that DijkstraGC might result in undesired one-pixel-wide

segmentations (see e.g. figure 6.6(c,d)). In [VKR08] this problem was fixed by manually

specifying a minimum width for each connecting path (see [VKR08] for details). We auto-

mate this process by computing multiple shortest paths with different widths ϕ ∈ {1, .., 4}
for each disconnected island and choose that path which gives the segmentation with the

lowest costs under (6.7). We encourage thicker paths by dividing the costs of paths where

ϕ>1 by a factor of 1.005.

6.3.5 Estimating the PSF

We model the PSF as a spatially constant kernelK of sizeR×Rwith non-negative elements

that sum up to one (we use R = 6). Similar to [JSK08], we apply a smoothness prior to

K that is given by γ||∇K||2, where γ = R2 normalizes the kernel area. Given αb and the

3In [VKR08] the computational burden was reduced by recycling flow and search trees [KT07]. But the
authors of [VKR08] found that their effectiveness was significantly reduced, since nodes had to be (un)fixed
in an unordered fashion.
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ground truth alpha α, we can obtain K by minimizing the quadratic energy function:

||αb ⊗K − α||2/σ2 + θ3γ||∇K||2, (6.13)

where σ denotes the noise level and θ3 weights the smoothness prior. (In our implemen-

tation, we have chosen σ = 0.005 and θ3 = 2.) Note that for the Hybrid Deconvolution

method (section 6.2) we used a very similar formulation to derive K. However, for the

Segmentation-based Deconvolution algorithm we apply a smoothness constraint, since the

symmetry constraint used in the Hybrid Deconvolution method cannot account for potential

slight motion blur. For computational reasons we compute K in the original image resolu-

tion, thus we bicubically downsample αb before PSF computation. We found this to give

similar results as computing the PSF from the upscaled alpha matte and then downsampling

the convolved result.

6.3.6 Re-estimating Alpha Using the Segmentation Prior

Following our Hybrid Deconvolution approach, we now construct the alpha prior P by

convolving the computed binary αb with the computed blur kernel K: P = (αb ⊗K). We

then re-estimate the alpha matte α by using P as data term in the Improved Color Matting

approach as shown in section 6.2.6.

To obtain high-resolution alpha mattes with reasonable memory requirements, we solve

for alpha in a window-based fashion similar to section 6.2.7. Since we only have to process

pixels in the unknown trimap region, we found memory requirements reasonable.

6.3.7 Experimental Results

In this section we demonstrate the good performance of our matting approach by presenting

qualitative results on different images and trimaps. A detailed quantitative comparison of

our algorithm to the state-of-the-art is presented in chapter 7.

Figure 6.7 compares our approach to its closest competitors for a crop of an image

showing fuzzy hair (figure 6.7(a)). We see that the approach of [LLW08] (figure 6.7(b))

cuts off some hair and overestimates alpha in other regions. The approach of [WC07a]



CHAPTER 6. SEGMENTATION-BASED PRIOR FOR MATTING 97

(a) Image crop + trimap
(inverted)

(b) Result of [LLW08] (c) Result of [WC07a] (d) Result of the
Improved Color

Matting

(e) Result of the Hybrid
Deconvolution

approach

(f) Binary segmentation
obtained with our

Segmentation-based
Deconvolution method

(g) Final result obtained
with our

Segmentation-based
Deconvolution method

(h) Ground truth alpha

Figure 6.7: Comparison of matting methods (1). (b-g) Results for a crop of an image
(a) showing the hair of a toy. Arrows point to artifacts. The input trimap is superimposed
(trimap was inverted for better visibility). See the text for a discussion.

(figure 6.7(c)) better recovers the hair strands but introduces artifacts in the background and

underestimates alpha in other places. The result of our Improved Color Matting approach

(figure 6.7(d)) shows are cleaner background but the alpha in the foreground regions is still

underestimated and some hair strands are missing. The Hybrid Deconvolution approach

(figure 6.7(e)) could not improve the alpha matte. Even worse, it removed some of the hair

strands. The result of our Segmentation-based Deconvolution algorithm (figure 6.7(g)) is

based on the segmentation in figure 6.7(f) and is closest to the ground truth alpha matte
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(a) Image crop + trimap
(inverted)

(b) Result of [LLW08] (c) Result of [WC07a] (d) Result of the
Improved Color

Matting

(e) Result of the Hybrid
Deconvolution

approach

(f) Binary segmentation
obtained with our

Segmentation-based
Deconvolution method

(g) Final result obtained
with our

Segmentation-based
Deconvolution method

(h) Ground truth alpha

Figure 6.8: Comparison of matting methods (2). (b-g) Results for a crop of an image (a)
showing hair of a toy. Arrows point to artifacts. The input trimap is superimposed (trimap
was inverted for better visibility). See the text for a discussion.

(figure 6.7(h)). We can see that it preserves the hair strands and shows only small artifacts

in the background.

Another example is depicted in figure 6.8, which shows results for a crop of an im-

age showing hair strands of a doll (figure 6.8(a)). We see that [LLW08], [WC07a] as well

as our Improved Color Matting approach underestimate the alpha values at the fine hair

strands (figure 6.7(b-d)). Also our Hybrid Deconvolution approach could not completely

recover the alpha matte. In contrast our Segmentation-based Deconvolution approach (fig-

ure 6.7(g)), based on the segmentation shown in figure 6.7(f), is closest to the ground truth

(figure 6.7(h)), since it preserves the hair strands.
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6.4 Model Analysis

In the previous sections we have introduced a prior that models the alpha matte α as a

convolution of an underlying, potentially higher-resolution, binary segmentation αb with

a point spread function K (see eq. (6.1)). This prior is based on the assumption that the

fractional alpha values are induced mostly by the imaging process, in particular, caused by

by the camera’s Point Spread Function (PSF). In the following, we quantitatively demon-

strate that our model, based on a binary segmentation and PSF, can describe complex alpha

mattes, originating from e.g. hairs or fur.

We evaluated the goodness of our model on a dataset of 27 natural images with corre-

sponding ground truth alpha mattes (see chapter 7 for details about the dataset). First, as

we aim at modeling alpha mattes for scenes without light-transmitting objects, we excluded

one alpha matte that possessed such region from the test set (shown in figure 6.9). Thus we

tested our model on the remaining 26 alpha mattes. We believe that these 26 images rep-

resent a typical set of photographs, and similar data were used for comparison in previous

matting work. For evaluation purposes we split the set into two classes by careful manual

inspection of the images. The first class comprises 7 images that show only solid, opaque

objects with sharp boundaries. The second class comprises the remaining 19 fuzzy objects

that have a boundary which potentially transmits light (e.g. hair or fur).

Clearly, the segmentation-based model is a good representation for the 7 opaque (solid)

objects. So the key question is whether our model is also a good representation for the fuzzy

objects. Although for these objects the majority of fractional alpha values could be caused

by the PSF, parts of these objects might also transmit light (violating our assumption). To

answer this question, we conducted the following experiment.

Given the ground truth alpha matte α∗, we computed the underlying binary segmenta-

tion αb and blur kernelK with the Segmentation-based Deconvolution algorithm described

in section 6.3. We implemented a further variant of this algorithm that can handle spatially

varying defocus blur kernel, which further improved the results. In particular, given the

ground truth alpha matte α∗ and the computed binary segmentation αb, we first derive the

shape of the blur kernel K (e.g. Gaussian Kernel) by computing a single (spatially con-

stant) kernel from all pixels in the image as described in section 6.3.5. Then we locally
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(a) Image (b) Ground truth alpha matte of (a)

Figure 6.9: Limitation - large translucent area. We did not validate our model on the
ground truth alpha matte depicted in (b), because its fractional alpha values were mainly
caused by the light transmitting flag that belongs to the foreground object (marked in red).
Hence, for this alpha matte our assumption that the fractional alpha values are generated
by the PSF is largely violated.

estimate the optimal scale S (which re-sizes K by a factor of S) of this kernel by mini-

mizing Si = arg minS(||αb ⊗ KS − α∗||) over a local window centered at pixel i. Here

KS is the bicubically scaled kernel K with a scaling factor of S. (We used four scales

S = {1, 2, 3, 4}.)
A result of this approach is depicted for the image crop in figure 6.10(a), which shows

part of a soft toy whose background is more heavily blurred than the foreground, due to a

narrow depth of field. Using the ground truth α∗ (figure 6.10(b)), we computed the scale

factor S for every pixel of the binary segmentation (figure 6.10(c)). Convolving αb with the

spatially varying kernel delivers results (figure 6.10(e)) close to the ground truth, whereas

using a constant PSF cannot recover the larger amount of blur in the background (figure

6.10(d)).

Once the binary segmentation αb and spatially varying PSF K were computed from

the ground truth alpha matte, the goal was then to predict the ground truth alpha matte

α∗ by convolving the computed αb with K. Clearly, the errors obtained by comparing the

predicted alpha matte α with the ground truth α∗ will not be zero. This is because αb andK

are still approximations of the reality. However, the error rate obtained for the class of truly

opaque objects (for which we can assume that our model is a very good approximation of

alpha) indicates some limit of how close we can approximate the ground truth alpha using
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(a) Input image (b) Ground truth alpha (c) PSF scale: blue:1, red:2

(d) αb convolved with
constant PSF

(e) αb convolved with
varying PSF

Figure 6.10: Spatially varying PSF. For the example in (a), the ground truth alpha (b)
cannot be modeled with a constant PSF (d), due to depth-dependent defocus. We split the
image in regions (c) where the scale of the PSF is approximately constant to recover the
alpha matte in (e).

our computed αb and K. Hence, if the error rates for the truly opaque objects are close to

those obtained for the class of fuzzy objects (i.e. for objects that might be partially light

transmitting), our model is very likely to be also a good representation for the latter group.

The obtained error rates for this experiment are shown in the upper part of table 6.1.

It shows the errors between the computed alpha matte α and the ground truth α∗ with

respect to three error metrics that were averaged over the 7 and 19 test cases comprising

only solid and fuzzy objects, respectively. The error metrics are defined as Mean Absolute

Distance (MAD): 1/|U|∑i∈U |αi−α∗
i |, Mean Squared Error (MSE): 1/|U|∑i∈U(αi−α∗

i )
2

and Gradient Error (Grad): 1/|U|∑i∈U(∇αi − ∇α∗
i )

2. Here U denotes the set of pixels

in the unknown region of the trimap (which here corresponds to all pixels with a fractional

alpha value in the ground truth matte α∗). The error rates were finally multiplied by a factor

of 100 such that they correspond to percentage values.

The first row of table 6.1 shows errors for the results obtained by convolving αb with

K that we computed with our Segmentation-based Deconvolution approach. The results in

the second row were obtained by additionally applying [LLW08], i.e. using (αb ⊗ K) as

prior in the framework of [LLW08] (similar to section 6.3.6). We see that for both methods
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Method MAD MSE Grad
solid ; fuzzy solid ; fuzzy solid ; fuzzy

Segm.-based Deconv. 4.5 ; 4.9 0.4 ; 0.4 1.0 ; 0.6
Segm.-based Deconv. + [LLW08] 4.5 ; 4.5 0.4 ; 0.4 0.4 ; 0.2

Joshi 08 [JSK08] 6.9 ; 16.3 0.9 ; 5.8 1.0 ; 1.9
Levin 08 [LFDF07] 8.8 ; 13.6 1.3 ; 3.0 1.1 ; 1.1

Hybrid Deconvolution (section 6.2) 5.4 ; 9.0 0.5 ; 1.5 0.8 ; 0.7

Table 6.1: Model errors. Errors averaged over solid; fuzzy objects suggest that our model
is valid to a high degree of accuracy also on fuzzy objects. The gap between the error rate
of our model and those obtained with practical algorithms (2 lines in the bottom) suggests
that our model may improve alpha matting accuracy.

(first two rows in table 6.1) the average error on the opaque objects is very close to the

error on the fuzzy class. This demonstrates that our model is also a good representation for

fuzzy objects.

We further computed αb andK with the approaches of [JSK08, LFDF07] as well as our

Hybrid Deconvolution approach and compared the re-convolved result to the ground truth.

For a fair comparison, we used the results of these methods as prior in the framework of

[LLW08].4 The errors of the so obtained alpha mattes are shown in the middle part of table

6.1. We see that, out of these three algorithms, the Hybrid Deconvolution method (section

6.2) performs best, but is still inferior to our Segmentation-based Deconvolution approach.

The error rates also reflect that the method of [JSK08] performs reasonably well for solid

objects but is not able to correctly recover αb for the fine structures of the fuzzy objects.

6.5 Summary

In this chapter we proposed and tested a prior for alpha that is based on a model where

the alpha matte is a convolution of a binary segmentation with the camera’s Point Spread

Function. We have seen that recovering the parameters of this model is related to the task

of blind deconvolution. We presented two new deconvolution algorithms that recover the

4We thresholded the result of the deblurring algorithm [LFDF07] at 0.5 to obtain αb.
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underlying binary segmentation and PSF. Incorporating our new prior into a state-of-the-

art matting technique produces results that are of considerably higher quality than those of

previous matting algorithms.

The first algorithm, presented in section 6.2, starts by computing an initial approxima-

tion of alpha using a traditional matting algorithm. From this initial alpha matte, we infer

the PSF and the binary segmentation using a novel segmentation technique that is effective

in preserving thin structures like hair strands. Then we blur the binary segmentation with

the PSF and use it to re-estimate an improved alpha matte. Our second algorithm (section

6.3) improves on this idea by computing the segmentation from the higher-resolution (up-

scaled) alpha matte, where the underlying binary segmentation is more likely to be binary.

Furthermore, we apply a different segmentation procedure, which enforces connectivity of

the binary segmentation and considerably improves the computational performance. The

high-quality of the resulting alpha mattes was demonstrated by showing results on natural

images.



Chapter 7

An Evaluation System for Image

Matting

To evaluate the performance of our proposed matting algorithms, a quantitative comparison

to the state-of-the-art on a standard benchmark test would be highly useful. Unfortunately,

no such standard benchmark test had been developed so far for the task of image matting.

Therefore, the major goal of this chapter is to design and implement such a benchmark for

image matting and to provide it to the scientific community.

A key requirement for a matting benchmark is a challenging test set with corresponding

high-quality ground truth alpha mattes. Recently, some ground truth data sets have been

proposed to provide a test bed for the matting algorithms in [LRAL08] and [WC07a].

Although these data sets are publicly available, they cannot be used for a benchmark test in

a straightforward way, since they have serious flaws. For instance, the data in [LRAL08]

is considerably affected by noise from the camera sensor, and the reference solutions in

[WC07a] are biased towards some natural image matting algorithms that were used by

[WC07a] to generate the ground truth. In contrast, we propose a dataset in section 7.1

with high-quality reference solutions that were generated independently of any previous

natural image matting approaches. Our images show a large diversity of natural scenes

with a variety of image properties (e.g. different focus settings, translucent scene objects,

different depths of field). This dataset largely reflects the challenges inherent to real images

and provides the basis for our comparison of matting algorithms.

104
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Another issue addressed in this chapter is that none of the previously proposed datasets

has emerged as an accepted standard. As a consequence, comparisons in subsequent work

were not conducted on the same coherent set of data, thus lowering their informative value.

This is presumably due to the lack of an appropriate online benchmark system that allows

other researchers to include novel results. Thus, in section 7.2, we establish a dynamic on-

line benchmark test which provides all data and scripts that enable the research community

to complement our evaluation with new results. This will bring researchers in the favorable

position to inspect previous work, which will hopefully inspire further research.

Our third contribution in this chapter - besides providing a new ground truth dataset and

a dynamic online benchmark test - is to improve on the evaluation methodology for image

matting. In previous work (e.g. [WC07b],[WC07a],[LLW08]), such evaluations have been

usually tied to simple pixel-wise error measures that do not always correlate to the visual

quality as perceived by humans. Thus we go beyond these evaluation methodologies and

seek to develop quantitative error measures that are based on subjective human perception.

More specifically, we concentrate on two properties of alpha mattes that considerably affect

the visual quality of matting results, namely the connectivity of the foreground object and

the preservation of gradients in the alpha matte. In section 7.3 we develop error functions

that estimate the compliance of these properties, and in a user study we validate that our

measures are correlated to human perception. This aspect of our work is related to research

in other areas of computer vision where perceptual distance measures have been developed

for e.g. image segmentation [PV08, CDGE02] or color constancy [GGL08].

Experimental results presented in section 7.4 show that our dataset is challenging and

pronounces strengths and weaknesses of image matting algorithms that were not appar-

ent in previous evaluations. Even more importantly, we show that our matting algorithms

presented in chapters 5 and 6 considerably improve on the state-of-the-art.

The remainder of this chapter is organized as follows. In section 7.1 we discuss the

construction of our ground truth dataset and analyze its properties. We explain the design of

our online benchmark in section 7.2 and derive our perceptually motivated error functions

in section 7.3. Finally, we evaluate and compare the performance of our matting algorithms

to the state-of-the-art in section 7.4.
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7.1 Ground Truth Database

Ideally, a ground truth dataset for image matting should feature several important proper-

ties. Firstly, the data should cover a variety of conditions found in real-world images such

as color ambiguity, different focus settings, or high-resolution data. Secondly, the data

should be challenging in order to further push the limits of current methods, and thirdly the

data has to be paired with high-quality ground truth alpha mattes to allow for a meaningful

comparison. We strive to construct a dataset that has all these properties.

To obtain ground truth information for real-world images, one could follow the ap-

proach of [WC07a], where existing matting methods were applied to natural images and

their results were manually combined to a reference solution. We tested this approach

on several challenging natural images, but found the resulting alpha mattes to be of low-

quality. Furthermore we argue that such a dataset would be biased towards the algorithms

that were used to construct the ground truth.

Since there seems to be no reasonable chance to derive alpha mattes with sufficient

quality from real-world imagery, we decided to capture high-quality ground truth mattes

in a restricted studio environment by triangulation [SB96] (see section 7.1.1). Our set of

35 images is considerably more challenging than previously used data and depicts natural

(indoor) scenes that comprise of a variety of challenges one faces in real-world images, like

different focus settings (see section 7.1.2). A large dataset might prevent other researchers

to upload their own results. This was one of the reasons why we finally split up our data

set into 8 test and 27 training images (see section 7.2).

7.1.1 Data Capture

To obtain a composite image that can serve as test image for evaluation purposes, we built

up several natural background scenes that were then photographed with a foreground ob-

ject. To derive high-quality ground truth alpha mattes for these composites, we carefully

placed a monitor (Apple Cinema 30” HD) between the object and the scene, without mov-

ing neither the object nor the camera (all subsequent shots had to be perfectly aligned with

the composition). On the monitor we displayed four single-colored backgrounds (i.e. black,

red, green and blue) that were photographed with the foreground object. After capturing the
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object in front of the screen, the object was removed to photograph the plain single-colored

backgrounds as well. This allowed us to extract a ground truth matte by triangulation mat-

ting [SB96] (see section 1.2.1 for a description). We obtained 8 images using this setup.

For the remaining 27 images, a similar setup was used, but the image compositions were

obtained by photographing the objects in front of a monitor which showed natural back-

ground images. By using a monitor for projecting the backgrounds, we could avoid the

fragile process of placing the monitor between the object and the scene. This enabled us to

generate alpha mattes with even higher quality.

All images were shot in unprocessed RAW format with a professional Digital Single

Lens Reflex (DSLR) camera (Canon 1D MarkIII with a Canon 28-105mm zoom lens) at

a resolution of 10.1 Megapixels with constant camera settings. To avoid camera shake,

we locked the mirror of the camera (hence the shutter was the only moving part inside the

camera) and used a remote control to trigger the shutter. This enabled us to take images

that were registered to each other with sub-pixel accuracy. For computing the alpha matte,

the RAW image data was transformed into RGB color images without gamma correction

(i.e. linear gamma) in order to avoid the introduction of noise in dark areas. Finally, the

images were cropped at a bounding box that was casually drawn around the foreground

objects, resulting in test scenes with an average size of about 6 Megapixels.

To assure that our newly recorded ground truth mattes are indeed of high-quality, we

evaluated their noise level. For this purpose, we manually marked regions which obviously

were supposed to have an alpha alpha value of exactly 1 (i.e. truly foreground) and then

computed the number of pixels in these regions with an alpha value lower than 0.97. For

our 8 images that were captured by photographing a three dimensional scene, 3.4% of the

pixels were below this threshold. For the 27 images where a monitor was used to project

natural background images, only 0.3% of the pixels were below this threshold. These are

very good values compared to the data in [LRAL08], where we found on average 26.7% of

true foreground pixels with an alpha value below 0.97.
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7.1.2 Image Properties

Our images exhibit many characteristics of real-world images, like highly textured back-

grounds, different depths of field, as well as color ambiguity. We included a range of fore-

ground objects that have different properties such as hard and soft boundaries, translucency

or different boundary lengths and topologies (e.g. a tree with many holes).

Our dataset is challenging and exhibits various levels of difficulty. On our data set,

the mean squared error (normalized over the number of pixels with unknown alpha values)

of the alpha mattes computed using the algorithms of [WC07a] and [LRAL08] (averaged

over the algorithms) varies between 0.3 and 21.8, with an average value of 4.2. This is

considerably larger than the average error rates we computed with the same procedure on

the datasets of [WC07a] and [LRAL08], which are 1.1 and 0.9, respectively. These results

suggest that our data set shows a higher variation of difficulty and is more discriminative

than previously proposed data sets.

7.1.3 User Input

As we have seen in chapter 2.1, the most common form of user interaction is the trimap

interface, where the user manually partitions the image into foreground, background and

unknown regions. Some matting algorithms are also capable of working on very sparse

trimaps, commonly denoted as scribbles. However, scribbles are subject to an even higher

variation of inputs, compared to trimaps, and are often only used to derive a more accurate

trimap afterwards [JK05, BS07, RRRAS08].

Given the predominance of trimap input, we decided to simulate the user input by a set

of three different trimaps for each test image. Two of them where generated automatically

by dilating the unknown region of the high-resolution ground truth trimap by 22 and 44

pixels, respectively. To account for more natural user input, we also included a hand-drawn

trimap for every test case. These were generated by an experienced user given a paint tool

with a set of three brushes (i.e. unknown, foreground and background) and flood filling

capability. The user was imposed a time constraint of 2 minutes per image, which we

found sufficient to create a reasonable trimap for all images.
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Although most matting algorithms accept trimap input, we plan to extend our bench-

mark with matting results that were generated by other forms of user interaction or in a

completely automatic way (e.g. [LRAL08] supports a component picking interface and a

completely unsupervised mode).

7.2 Online Benchmark System

An important reason that has led to the success of recently proposed benchmark tests in

computer vision is that they have been made freely available on the web. Inspired by

[SS02, BSL+07] who have focused on stereo and optical flow algorithms, we designed

an online benchmark that is accessible at www.alphamatting.com. Similar to other online

benchmarks, a major advantage of our repository is that it can be dynamically updated

with novel datasets or error measures, if needed in the future. We provide all scripts and

data necessary to allow other researchers to submit new results. We hope that this will

encourage the research community to participate in the competition. A screenshot of our

online benchmark is shown in figure 7.1.

Selecting a Representative Test Set

A comprehensive benchmark test for matting algorithms should be carried out on a dataset

that covers a large variation of different scenarios that are encountered in practical matting

applications. Since we invite other researchers to submit their results to our benchmark, a

very large dataset is unreasonable, especially when people process high-resolution images

with unoptimized research code. For example, assuming an average computation time

of two minutes per image, computing results for our dataset of 35 images on 3 different

trimaps would require more than 3 hours. Hence, we need a dataset that is as small as

possible but still largely maintains the same variations as the full set.

We decided to split up our database into a test and training set. The test set comprises

8 images for which the ground truth alpha mattes are hidden from the public, in order to

largely prevent excessive parameter tuning. The remaining 27 images serve as training

dataset with publicly available ground truth. This set may be used by other researchers for

parameter learning.
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Figure 7.1: Online benchmark. A screenshot of our online evaluation table. The values
in each cell correspond to the error generated by a specific method (rows) on a test image
(columns). Moving the mouse over a specific error value displays the image of the cor-
responding alpha matte (leftmost image). To allow for a better inspection of the result, a
zoom-in of the alpha values in the red box is shown next to it. The zoomed-in area can be
easily changed by moving this box. Furthermore, we show the corresponding input image
and trimap.

To select a representative test set from our full database, we applied the following strat-

egy. Firstly, we manually assigned each image to one out of four available categories,

depending on the amount of fractional alpha values in their respective ground truth matte.

Then we computed error rates (mean squared error) for all images with a set of six matting

algorithms (i.e. [WC07a, LRAL08, GCL+06, SJTS04, CCSS01, GSAW05]). From each

of the four categories, we selected those two images that were most challenging for the

algorithms (i.e. images with a large average error and diverging quality of results).

To confirm that we had chosen a well-balanced subset, we compared the performance of

various matting algorithms on our subset against their performance on the average subset.

Therefore, we computed the average ranking of the 6 aforementioned algorithms over all

possible subsets of 8 images. Indeed this ranking turned out to be identical to the one

obtained on our particular subset. This suggests that we have chosen a subset that maintains

similar properties as the full dataset. Furthermore, we computed the average correlation of

rankings obtained from every possible subset of 8 images with the rankings on the full set,
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which gives a value of 0.91. This is very close to the correlation value of 0.87, which was

found for our subset. Again, this demonstrates that we have chosen a well balanced subset.

We finally downscaled the images of our dataset such that the longest image side is

800 pixels. This was done because most current matting algorithms are not capable of pro-

cessing high-resolution images. Therefore, in this dissertation we restricted our evaluation

(section 7.4) to low-resolution data. However, in the future we plan to complement the

online benchmark with the original high-resolution images for those algorithms that can

handle them.

7.3 Perceptually Motivated Error Measures

In order to quantitatively evaluate the performance of matting algorithms, their outputs (i.e.

alpha mattes) have to be compared to the ground truth using an error metric. In previous

work, simple metrics like the sum of absolute differences (SAD) or the mean squared error

(MSE) have been used for this task. While these measures provide a good basis for compar-

ison, they are not always correlated to the visual quality as perceived by a human observer.

An example is depicted in figure 7.2, which shows two image compositions where the SAD

error is not correlated to the visual quality. This motivates to study error metrics that are

better suited for a perceptual comparison of matting methods.

Clearly, the development of perceptually driven distance measures depends on the tar-

get application and thus we will focus on the commonly used application scenario of com-

positing the extracted foreground object onto a new background (cut & paste). To further

reduce the complexity, we will restrict ourselves to pasting onto a homogeneously colored

background, which is an important application in the media industry (e.g. creating images

for magazine covers).

Human observers judge the visual quality of image compositions by perceiving and

weighing the different types of errors that appear in these images. This judgment depends

on many different factors such as the color and texture of the resulting composite as well

as the structure of the alpha matte. Ideally, one should learn a single visual error function

over image regions that takes all these degrees of freedom into account. However, there

are two major problems with this approach. Firstly, image regions that are big enough to
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(a) (b) (c) SAD: 312 (d) SAD: 83

(e) (f) (g) SAD: 1215 (h) SAD: 806

Figure 7.2: Motivation for perceptual error measures. Two images (a; e) were cropped
to give the images shown in (b; f). Matting methods have been applied to generate new
compositions (c-d; g-h). In both cases, the average user ranking was exactly opposite to
the error computed by SAD. This motivates to study perceptual error measures that better
correlate to the visual quality. The top row (c-d) shows results for our connectivity set, and
the bottom row (g-h) results for our gradient set.

preserve the context of the depicted scene, e.g. windows of size 100x100 pixels, have a

very high number of potential colors and alpha values. Secondly, given the same patch of

an image composite, people might disagree on the visual error. This indicates the need for

a multi-modal error function. For instance, 12% of the participants in our study preferred

figure 7.2 (d) over figure 7.2 (c), while 88% decided the other way round. To largely

circumvent these challenges, we concentrate on developing perceptual error functions for

two specific error categories for which previously used error metrics, like SAD, largely

disagree with humans. In an explorative pre-study with 4 subjects (3 males and 1 female),

two error categories emerged that seem to considerably degrade the visual quality of image

composites: (i) connectivity errors, which are a result of disconnected foreground objects
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(for example, a disconnected piece of hair floating in the air); (ii) gradient errors, which

are due to oversmoothing or erroneous discontinuities in the alpha matte (i.e. the gradient

in the alpha matte diverges from the ground truth). Examples of each of these categories

are depicted in figure 7.2.

In the remainder of this section, we first derive the visual quality of image compositions

in a user study (section 7.3.1). In section 7.3.2, we design perceptual distance measures

and show that their correlation to the visual quality is superior to previously used error

measures, like SAD.

7.3.1 User Study

The main goal of our user study was to infer the visual quality of image compositions from

human observers in the presence of connectivity and gradient artifacts.

Data

We performed our experiments on two sets of image compositions, each of them afflicted

solely by either connectivity or gradient artifacts. To construct these sets, we applied a

variety of matting algorithms to the input images of our ground truth database and cre-

ated composites by pasting the extracted foreground object onto homogeneously colored

backgrounds. We then carefully selected crops of these compositions that mainly exhibited

either connectivity or gradient artifacts. The size of the crops was chosen such that they

were small enough to isolate these error categories, but still big enough to provide the user

with sufficient contextual information to judge their quality. In our pre-study, we found

that crops with a size of about 100 × 100 pixels were a good trade-off between these two

factors.

Compositions created from the same image crop (but with different matting algorithms)

were arranged into a single test case. Figure 7.3 shows an example. To increase the num-

ber of composites per test case, we also included artificial images that we generated by

interpolating some composites towards their ground truth. Note that by including these

interpolations, the results of this study become more applicable to the output of future mat-

ting methods with higher quality results. From this pool of test cases, we have chosen only
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those examples whose composites could be sorted relatively easily according to their qual-

ity (to reduce potential ambiguities) and for which we expected traditional error measures

(e.g. SAD) to diverge from the human perception. For the study we used a total number

of 20 test cases (10 for each error category), with each test case consisting of 6 image

compositions.

Study Procedure

The study was carried out with 17 participants (8 males and 9 females) whose ages ranged

from 24 to 67 years, with an average age of 36. The study aimed to derive an ordering of the

compositions associated with each test case, from the judgment of the participants. Such an

ordering can be obtained by means of absolute (on a discrete scale) or relative rankings. We

preferred to derive relative rankings, since they have been shown to significantly raise the

agreement between users in the context of web page ranking [CBCD08]. Relative rankings

can be obtained by a sequence of pairwise comparisons (the user selects one out of a pair

of images) or by sorting the compositions at a glance. In our pre-study we observed that

the participants preferred to rank the compositions at a glance, and therefore we decided

for the following experimental setup shown in figure 7.3.

For each test case, the subjects were shown the associated 6 compositions in a list

that they could interactively sort by moving the images on the screen (figure 7.3(left)).

Each list element showed the original image crop (left) together with compositions on 4

homogeneously colored backgrounds (i.e. white and shades of red, green and blue). To

provide the user with more contextual information, we also displayed the corresponding

uncropped image (figure 7.3(right)). For every participant, the compositions in each test

case were shown in random order. This was done to overcome any bias of subjects against

any particular initial position of the list of images.

Prior to the study, the participants were told that they would be presented crops of pho-

tomontages that had been generated by inserting objects, extracted from a photograph, onto

a single-colored background. Then we instructed the subjects to rank the results according

to how realistic the image compositions appeared. The users were given the opportunity

to indicate cases where two or more compositions could not be distinguished because they

had the same quality. To reveal further details about the decision making process of the
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Figure 7.3: A test case used in our study. Explanation in text.

users, we also recorded their verbal feedback.

7.3.2 Analysis of Results

To obtain generalizable results, the study was evaluated with respect to the ranking of the

“average user”. In the average scores we accounted for image pairs that could not be clearly

ranked (i.e. pairs for which the average ranks differed by less than 0.2) by assigning them

to the same score (14% and 8% of pairs in the gradient and connectivity set were affected).

To demonstrate that an analysis on the average observer basis is valid, we first analyzed the

variability of the user judgments with respect to the average rankings. Then, we examined

to which extent several distance measures were correlated to these average scores. Since

the distance measures give absolute error values, we converted them to relative rankings

beforehand. To measure the similarity between two rankings, we utilized the Kendall’s τ

measure [Ken55], which is commonly used in statistics for comparing the correlation of
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ordinal random variables [Joa02].

Agreement of Observers

The correlation of the individual participants (averaged over all test cases and users) with

the average user ranking was 0.90 and 0.87 for the connectivity and gradient test set, re-

spectively. These are reasonably high values compared to the zero coefficient that would be

given to a random ranking. However, the remaining variation in the user judgments implies

that even for the identical image composition, people disagreed on the visual error. This

suggests that there is inherent ambiguity in the perception of errors and a single visual error

function for image matting may not exist. Note that ambiguity in the perception of errors

does not mean that there is no single global optimum (ground truth) for the alpha matte.

Error Measures

Our perceptual error measures are described in the following:

- Gradient. We tried a number of different gradient measures, including the commonly

used angular error between the gradient vectors, but found the following measure to work

best. The difference between the gradients of the computed alpha matte α and its ground

truth α∗ is defined as

∑
i

(∇αi −∇α∗
i )

q , (7.1)

where ∇αi and ∇α∗
i are the normalized gradients of alpha at pixel i that we computed

by convolving the mattes with first-order Gaussian derivative filters with variance σ (not

shown in eq. (7.1)). The parameter q denotes the norm of the error metric. The values for

σ and q will be defined in section 7.3.3.

- Connectivity. A considerable amount of work has been devoted to the problem of

measuring connectivity [Ros83, VS91]. Following recent work in this area [BNG04], we

define the degree of connectedness by means of connectivity in binary threshold images

computed from the grayscale alpha matte.

In detail, we define the connectivity error of an alpha matte α with its corresponding

ground truth α∗ as
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∑
i

(ϕ(αi,Ω) − ϕ(α∗
i ,Ω))p , (7.2)

where ϕ measures the degree of connectivity for pixel i with alpha value αi to a source

region Ω. The parameter p denotes the norm of the error metric and its value will be defined

in section 7.3.3. Consider figure 7.4, which illustrates the intensity function of a row of

pixels in an alpha matte. The source region Ω is defined by the largest connected region

where both the alpha matte as well as its ground truth are completely opaque (illustrated by

the red line in figure 7.4). The degree of connectivity is based on the distance di = αi − li,

where li is the maximum threshold level where pixel i is 4-connected to Ω (dashed line

in figure 7.4). A pixel is said to be fully connected if li = αi. Finally, the degree of

connectivity ϕ for pixel i is defined as

ϕ (αi,Ω) = 1 − (λi · δ (di ≥ θ) · di) . (7.3)

This means that a pixel is fully connected if ϕ = 1 and completely disconnected if

ϕ = 0. The δ function enforces that very small values of di below θ are neglected. (The

parameter θ will be defined in section 7.3.3.) We further weight di at disconnected pixels

with their average distance λi to the source region:

λi =
1

|K|
∑
k∈K

distk(i), (7.4)

where K is the set of discretized alpha values in the range between li and αi. The function

distk gives the normalized Euclidean distance of i to the closest pixel that is connected to

Ω at threshold level k. The intuition behind this is that unconnected parts that are further

away from the connected region are visually more distracting.

Unfortunately, computing the connectivity under this metric is computationally rather

expensive, since it requires to evaluate the function distk at each threshold level k. To

make the computation tractable, in our online evaluation system we use a slightly modified

version of this metric, which neglects the distance of unconnected islands to the connected

region. This was done by simply setting λi in eq. (7.3) to a constant value of 1.
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Figure 7.4: Connectivity error. See explanation in the text.

Data Grad. Conn. MSE SAD User consent
Grad. 0.75 0.47 (0.41) 0.51 0.45 0.87
Conn. 0.40 0.75 (0.77) 0.34 0.28 0.90

Table 7.1: Error measure correlations. The correlation coefficients of four error measures
for the connectivity and gradient set. Correlations of the modified connectivity metric that
we use for online evaluation are shown in parentheses.

Agreement of Error Measures

The agreement of our error measures on the gradient test set (first row of table 7.1) shows

that the correlation of SAD and MSE with the average human observer is rather low (0.45

and 0.51, respectively). Our connectivity measure performs similarly with a correlation of

0.47. The correlation for our computationally less expensive connectivity measure (shown

in parentheses in table 7.1) is 0.41. As expected our gradient measure outperforms all of

them with a correlation of 0.75.

Analysis on the connectivity set (second row of table 7.1) shows that SAD and MSE

exhibit an even lower correlation than on the gradient set (0.28 and 0.34) and also our gra-

dient error (0.40) is not capable of capturing errors in the connectivity. As expected our

measure for connectivity performs well with a correlation coefficient of 0.75. Interestingly,

our modified connectivity metric, which neglects the distance of disconnected islands, per-

forms even slightly better with a correlation of 0.77.

7.3.3 Choice of Parameters

We decided to choose the values for the four important parameters σ, q (eq. (7.1)), p (eq.

(7.2)) and θ (eq. (7.3)) of our error measures according to their robustness and correlation
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with the user scores. The robustness of error measures with respect to noise in the data is a

test commonly used in information retrieval [ZC06]. We added Gaussian noise (zero mean

and variance σnoise ranging from 0.001 to 0.005) to our alpha mattes and ranked the cor-

rupted maps using our new perceptual error measures. We then computed the correlation

coefficients between these rankings and the ones derived on undistorted data. We repeated

this K times (we found K = 200 sufficiently large) and used the average correlation co-

efficient as robustness score. (The correlation coefficients range between a value −1 and

1, taking a value of exactly −1 or 1 if the data is completely uncorrelated or completely

correlated, respectively.)

Let us consider figure 7.5 (left), which shows the robustness of our gradient measure for

different values of the parameter σ, which is the variance of the Gaussian derivative filters

used to compute the gradients. We can see that for σ = 0.2 (blue curve), the robustness

(vertical axis) drops off quickly with increasing noise level. This is not surprising since

a low σ makes the estimation of the gradient more sensitive to noise. For larger values

of σ (1.4 and 3) the robustness is constantly high. Clearly, the choice of our parameters

does not only depend on their robustness, but also on the correlation to the user scores. An

example is depicted in figure 7.5 (right), which shows the correlation of the parameter σ to

the user scores. We can see that although a large value of σ = 3 (green curve in figure 7.5

(left)) makes the measure robust to noise, the correlation of the gradient measure is rather

low for this value. Thus we limited the parameters to a range where the error measures

exhibit a robustness score of at least 0.9 and a correlation that is at worst 10% lower than

its maximum value (averaged over all noise levels). Therefore a good choice would be

σ ∈ {1.2, .., 2.0}, where our measure is robust and highly correlated to the user scores.

Accordingly, we can limit the remaining parameters of our error measures to the ranges

q ∈ {1, .., 3}, θ ∈ {0.13, .., 0.25} and p ∈ {1, .., 2}. Finally we select the number in each

range which gives the maximum correlation (i.e. σ = 1.4, q = 2, θ = 0.15 and p = 1).

Clearly, our approach for parameter selection assumes that the user rankings are invariant

to small noise in the alpha mattes. Finally, it should be noted that instead of selecting the

parameters according to the robustness and correlation to the user scores, one may also

train the parameters directly from the data. However, for this purpose a larger training set

would be necessary, thus we leave it for future work.
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Figure 7.5: Robustness of parameters. See the text for explanation.

7.4 Evaluation Results

In this section, we compare our three matting approaches presented in chapters 5 and 6

against 9 algorithms that mostly represent the current state-of-the-art, namely Bayesian

Matting [CCSS01], Closed-form Matting [LLW08], Easy Matting [GCL+06], Geodesic

Matting [BS07], Iterative Matting [WC05], Poisson Matting [SJTS04], Random Walk Mat-

ting [GSAW05], Spectral Matting [LRAL08] and Robust Matting [WC07a]. For all algo-

rithms, we used the implementations of the respective authors, except for Poisson Matting

[SJTS04], which we implemented ourselves. To offer a fair comparison, we set the param-

eters for all algorithms to the values reported in the respective papers.

7.4.1 Performance on SAD and MSE

We evaluated all of the above mentioned algorithms on our 8 test images, using three differ-

ent trimaps as inputs (see section 7.1.3). We computed the accuracy of the resulting alpha

matte with respect to the four error measures defined in section 7.3.2 (i.e. SAD, MSE,

gradient and connectivity error). Each test case (image and trimap) gives a ranking of all

algorithms. This rank, averaged over all test cases, is shown in table 7.2. Additional to the

ranks of our three algorithms and its nine competing algorithms, we report the rank of our

Segmentation-based Deconvolution method without connectivity prior in the third row of
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table 7.2.

One of the 8 test cases shows very large semi-transparent regions that originate from

light transmitting materials (i.e. a translucent plastic bag), which largely violates the as-

sumptions of our segmentation-based algorithms. Thus we additionally show the average

ranking over the 7 remaining images in parentheses in table 7.2.

When analyzing the results with respect to the SAD and MSE error measure, we ob-

serve that all three matting methods proposed in this thesis perform better than the state-of-

the-art. We also see that a segmentation-based prior (used in our Segmentation-based and

Hybrid Deconvolution approaches, respectively) improves the quality of the alpha mattes.

More precisely, we see that our Segmentation-based Deconvolution approach performs best

on both error measures. The Hybrid Deconvolution approach shows lower performance on

the MSE metric, because it can sometimes amplify strong errors in the alpha matte that is

used to initialize the Hybrid Deconvolution algorithm.

The very good performance of our segmentation-based priors is even more clear if we

look at the average rankings over the subset of 7 images which consists solely of fore-

ground object that are largely opaque (shown in parentheses in table 7.2). In particular, the

gap between the Segmentation-based Deconvolution method and its competitors is further

increasing.

On the SAD and MSE metrics, the best performing previously proposed method is

Closed-form Matting, followed by Robust Matting. We notice that the performance of Ro-

bust Matting, Bayesian Matting, Iterative Matting and Easy Matting, in comparison to the

remaining algorithms, is lower than what was reported in previous evaluations [WC07b,

WC07a]. These methods use a data term in their objective function, which is derived

from global color models of true fore- and background regions. These data terms typi-

cally require to set a fair amount of free parameters. Hence, a potential over-fitting of

these parameters to their respective test data might lead to a lower performance on our un-

seen data. Note that the test datasets for these methods in the original papers were mostly

composed of images with smooth backgrounds, whereas our dataset contains examples of

highly textured backgrounds. A detailed inspection of these data terms shows that they

are fairly sensitive to the exact placement of the trimap (i.e. true fore- and background re-

gions). This sensitivity can introduce large artifacts in the alpha matte. Pure propagation
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Method SAD MSE Grad. Conn.
Segm.-based Dec.

(chap. 6.3)
2.71 (2.11) 3.01 (2.51) 2.11 (1.31) 5.65 (5.25)

Hybrid Dec. (chap.
6.2)

3.22 (3.12) 3.43 (3.32) 3.53 (3.23) 4.43 (3.63)

Segm.-based Dec.
without connectivity

(chap. 6.3)

3.43 (3.12) 3.74 (3.43) 2.82 (2.12) 6.37 (5.96)

Impr. Color Matting
(chap. 5)

3.74 (4.05) 3.32 (3.54) 4.14 (4.54) 4.74 (4.34)

Closed-form
Matting [LLW08]

3.85 (3.84) 3.95 (3.95) 4.85 (5.15) 3.32 (3.52)

Robust Matting
[WC07a]

5.36 (5.96) 5.06 (5.46) 5.06 (5.26) 7.58 (7.58)

Random Walk
Matting [GSAW05]

8.07 (7.87) 8.07 (7.98) 8.18 (8.58) 2.11 (2.31)

Geodesic Matting
[BS07]

8.58 (8.68) 8.78 (8.99) 9.810 (9.810) 9.210 (9.510)

Iterative Matting
[WC05]

8.79 (8.89) 7.59 (7.77) 8.07 (8.17) 8.89 (9.09)

Easy Matting
[GCL+06]

9.110 (9.010) 10.311 (10.110) 10.47 (10.111) 9.911 (10.511)

Bayesian Matting
[CCSS01]

10.011 (10.411) 9.910 (10.110) 10.411 (10.412) 11.713 (12.213)

Spectral Matting
[LRAL08]

12.212 (12.112) 11.912 (12.012) 9.111 (9.59) 5.86 (6.17)

Poisson Matting
[SJTS04]

12.212 (12.112) 12.413 (12.313) 12.913 (12.913) 10.612 (11.412)

Table 7.2: Evaluation. The table reports the overall ranks of the different algorithms with
respect to four error measures. These ranks were obtained by averaging the ranks over
all test cases, i.e. all test image-trimap input pairs. In parentheses we show the rankings
obtained after excluding one image (light-transmitting plastic bag) from the test set. The
red lowercase numbers indicate the ordering of the algorithms in each column according to
their ranking.
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based approaches, like Closed-form Matting and Random Walk Matting, seem to suffer

less from this problem. An exception is the propagation based Poisson Matting algorithm

that performed constantly worse than its competitors, since its assumption of smooth fore-

and background colors is rarely met on our dataset.

Although previously proposed methods that model the fore- and background colors

rank slightly worse on our dataset, visual inspection of the results shows that these meth-

ods can sometimes overcome locally ambiguities in the fore- and background colors. For

instance, Closed-form Matting (which does not have a global color model) tends to over-

smooth holes in the foreground and shortens fine structures like hair. These structures

were sometimes better captured by methods which have a global color model (e.g. Robust

Matting).

In figure 7.6 we give an example that shows results on a crop of a challenging test

image. We can see that the purely propagation-based Closed-form Matting (figure 7.6(f))

approach over-smoothed the hole in the foreground. Also our Improved Color Matting

approach (figure 7.6(e)) could not recover the hole, whereas the Robust Matting approach

(figure 7.6(d)) performed better. However, Robust Matting introduced large artifacts in the

background. In contrast, our Segmentation-based Deconvolution approach (figure 7.6(c))

shows the fewest errors in the background and could also recover the hole in the foreground

object.

Another observation is that the propagation-based Geodesic Matting [BS07] approach

ranks only average among all methods. This is presumably because it was designed to run

on very tight trimaps, whereas we evaluate the algorithms also on coarse trimaps. We also

see that the propagation-based Spectral Matting approach shows a rather bad performance

on our dataset. This might be explained by the fact that Spectral Matting is better suited for

a component picking interface. Using a scribble or trimap-based interface to group the mat-

ting components might result in large errors, if the wrong matting components are grouped.

Furthermore, Spectral Matting does not guarantee that the scribbles will be assigned to the

user defined alpha value. Interestingly, Easy Matting, which builds on the Iterative Matting

approach, shows worse results than Iterative Matting. A possible explanation is that Easy

Matting changes the energy during optimization to better cope with coarse scribble input.

However, this might not be suitable for our trimap input.
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(a) Input image (b) Input image crop (c) Segm.-based deconv.

(d) Robust Matting (e) Improved Color
Matting

(f) Closed-form Matting

Figure 7.6: Performance of Segmentation-based Deconvolution method. The crop of
this challenging example shows that our Segmentation-based Deconvolution approach (c)
could remove background artifacts better than its competitors. This indicates that our
segmentation-based prior can better resolve ambiguities in the solution space.

7.4.2 Performance on Gradient Error

When analyzing the scores with respect to the gradient error, we see that all of our proposed

matting algorithms outperform the state-of-the-art. This indicates that in our results the gra-

dient of fine structures like hair is better preserved. We also see that Closed-form Matting

performs worse and is now almost on par with Robust Matting. This is because Closed-

form Matting tends to attenuate or completely cuts off fine structures like hair strands in

the alpha matte.

An example is shown in figure 7.7, where the Closed-form Matting approach (figure

7.7(d)) cuts off some hair of the soft toy. In contrast, our Hybrid Deconvolution method

(figure 7.7(c)) could better recover the hair. We also see that Random Walk Matting (figure

7.7(e)), which performs reasonably well on the SAD metric, for this test image heavily

oversmoothed the alpha matte. This is probably because its affinity function, which was

originally designed for binary segmentation, oftentimes cannot recover the changes in the
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(a) Input image (b) Crop of (a) (c) Hybrid
Deconvolution

Matting

(d) Closed-form
Matting

(e) Random Walk
Matting

Figure 7.7: Performance on gradient error. For the image crop in (b), our Hybrid De-
convolution method can nicely recover the fine hair strands (c), whereas the Closed-form
Matting approach tends to cut off the hair (d). Random Walk Matting (e) heavily over-
smoothes the hair, which is penalized by the gradient error metric.

alpha levels. This oversmoothing is, however, penalized by the gradient measure.

7.4.3 Performance on Connectivity Error

When considering the rankings based on our connectivity error measurement, we see that

the Random Walk algorithm is clearly the best performer. This is not surprising, since

alpha mattes generated by Random Walk are perfectly connected, i.e. they obtain a value

of ϕ = 1 (eq. (7.3)) for each pixel. However, this does not mean that the connectivity

error (which is the difference of the connectivity of the alpha matte with its ground truth) is

necessarily zero, since the ground truth is usually not perfectly connected. As opposed to

the connectivity error, however, the Random Walk algorithm shows quite large errors under

the other metrics.

We also see that the Closed-form Matting approach takes the second place on the con-

nectivity measure, which is presumably due to its bias towards constant solutions (see chap-

ter 2.2.1). This has the advantage that the results show less background artifacts (which

would cause a high penalty under the connectivity metric), but comes at the cost of often-

times cutting off fine structures like hair.

Our three approaches (rows 1, 2 and 4 in table 7.2) rank directly behind Random Walk

and Closed-form Matting with respect to the connectivity measure. This is because our
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algorithms might erroneously fit fractional alpha values to the background texture. On the

other hand, our methods can detect the alpha matte of thin structures that might be missed

by the more “conservative” Random Walk and Closed-form methods.

Intuitively, this should be less of a problem for our Segmentation-based Deconvolution

approach, which uses a connectivity prior on the underlying binary segmentation. How-

ever, it ranks worst out of our three algorithms on the connectivity metric. This is mainly

because our connectivity prior might connect larger, originally disconnected regions to the

foreground object with a small one-pixel-wide connecting path. In the final matte the alpha

values along this path can be attenuated, hence regions which are connected in the binary

segmentation appear disconnected (because of low alpha values on the connecting path)

in the final alpha matte. (In practice also some background artifacts can be connected to

the foreground in the same way, although they appear disconnected in the final matte.) To

fix this problem, one could define a minimal width of the connecting path as in [VKR08].

However, a good single parameter for the minimum width is hard to define, since it depends

on the local characteristics of the foreground object. For instance, hair strands should be

connected by a thin path, whereas the feet of a human should be connected to the body by

a wide path. In the future we would like to investigate methods that automatically find a

minimum width for each connecting path.

To show that our connectivity prior is nonetheless important for the performance of our

algorithm, we also report the performance our Segmentation-based Deconvolution method

without connectivity prior (see third row of table 7.2). We can see that our connectivity

prior considerably helps to improve the performance of our Segmentation-based Decon-

volution method on all four error measures. This is because our connectivity prior closes

gaps between fine hair stands and removes some undesired artifacts in the background (see

figure 7.8 for an example).

7.5 Summary

We have presented a new benchmark test for the evaluation of image matting algorithms

that is freely available on the web at www.alphamatting.com. We have shown that the

matting algorithms presented in this thesis considerably improve on the state-of-the-art
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(a) Image crop (b) Segmentation
without

connectivity prior

(c) Segmentation
with connectivity

prior

(d) Alpha from (b) (e) Alpha from (c)

Figure 7.8: Advantages of the connectivity prior. For the crop of the input image in
(a), the segmentation without connectivity prior (b) shows many disconnected hair strands.
The result with connectivity prior (c) could better recover the hair strands. The alpha
matte computed using the disconnected segmentation as prior is shown in (d). Using the
connected segmentation as prior yields alpha mattes where some hair strands are better
preserved (e). (Arrows point to improvements.)

matting algorithms on our challenging dataset. Furthermore, our benchmark revealed fail-

ures of previously proposed algorithms on images containing highly textured backgrounds,

and images where the fore- and background cannot be differentiated on the basis of color

alone. Finally, we proposed and validated perceptually motivated error measures based on

the connectivity and gradient of the alpha matte. We hope that our work will encourage re-

searchers to develop new matting algorithms that pay more attention to visually important

features such as spatial connectivity.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we have focused on interactive image matting, which is the problem of esti-

mating a transparency map from a single natural image with the help of user interaction. In

particular, we have investigated three important aspects of interactive image matting which

are (i) providing a suitable way for user interaction; (ii) formalizing a good cost function

that defines the goodness of an alpha matte; and (iii) the evaluation of matting algorithms.

The key idea that distinguishes this thesis from previous alpha matting work is that we

have explicitly considered the image formation process. In particular, we have modeled

the alpha matte as the convolution of a binary segmentation with the point spread func-

tion of the camera. We have shown that our alpha matting approach based on this model

outperforms current state-of-the-art matting methods. Our work constitutes an important

step towards unifying two areas of research: binary segmentation and alpha matting. We

believe that in the near future commercial matting methods will be based on our model. In

the following our contributions are discussed in more detail.

To provide a good way for user interaction, we have developed a fast algorithm that

automatically generates a trimap from only a few user-defined scribbles that are placed on

the input image. Our approach works by predicting the structure of the binary segmentation

that underlies the alpha matte. We infer this binary structure using several image cues, like

color and image edges. We have shown that our method is fast and produces results that

128
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exceed the quality of previous trimap extraction algorithms.

Given a trimap, we have introduced an approach that extracts an alpha matte by accu-

rately modeling the fore- and background colors at each pixel in the unknown region of the

trimap. The novelty of this “Improved Color Matting” approach was to exploit information

from global color models to find better local estimates for the true fore- and background

colors.

An important contribution was to further enhance the quality of the alpha mattes gener-

ated by this Improved Color Matting approach by incorporating a new prior which is based

on the image formation process. In particular, we have modeled the prior probability of

an alpha matte as the convolution of a binary segmentation with the point spread function

of the camera. We have proposed two new approaches that can recover the prior model,

given an approximate alpha matte. By incorporating the resulting prior model into our

Improved Color Matting method, we are able to generate results that outperform current

state-of-the-art matting methods.

Finally, we have introduced a new benchmark for the evaluation of image matting algo-

rithms that is available to the research community on the web at www.alphamatting.com.

We evaluated our matting algorithms on our challenging dataset and showed that they com-

pare favorably to the current state-of-the-art. An important contribution of our work was

the proposal and validation of perceptually motivated error measures based on the connec-

tivity and gradient of the alpha matte. To the best of our knowledge, this was the first study

that validated error measures for alpha matting. We hope that our work will encourage re-

searchers to develop new matting algorithms that pay more attention to visually important

features such as connectivity.

8.2 Future Research Topics

Although we have demonstrated that our methods generate very accurate results, our al-

gorithms could be further improved in some respects. The most promising directions for

future research are listed below.

• One limitation of our segmentation-based matting approaches is that we model the

Point Spread Function (PSF) as a spatially constant kernel. In images where the PSF
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varies, e.g. due to depth variations, a spatially constant PSF is an oversimplification.

However, recovering a spatially varying PSF, given only a single natural image as

input is not straightforward and left for future work.

• Our segmentation-based matting approaches infer the binary segmentation from the

edges in the alpha matte. Thus our approaches can correctly recover the segmentation

if the PSF is a kernel with a single peak, which is mostly true for defocus blur or slight

motion blur. However, strong motion blur can lead to blur kernels with multiple

peaks, which cannot be handled by our approaches. Hence other methods could be

investigated in the future which can overcome this limitation.

• We derive the binary segmentation that underlies the alpha matte from an initial ap-

proximation of the matte, computed with our Improved Color Matting algorithm.

Clearly, the quality of the computed binary segmentation depends on the initial (usu-

ally imperfect) alpha matte. A promising direction of future research would be to

infer the underlying binary segmentation directly from the input image.

• Future work could also concentrate on establishing more complex perceptual mea-

sures that take into account other factors such as color and texture of the image. Such

an error function would be highly desirable, since it could be used by machine learn-

ing methods to train the parameters of alpha matting algorithms. However, more

research is needed, since results of our user study indicate that the visual perception

of errors is ambiguous and thus a single error function might be hard to establish.
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