Supplementary Material for Submission: "PatchMatch Stereo - Stereo Matching with 004 Slanted Support Windows" 007 BMVC 2011 Submission # 289 The Global Algorithm 011 012 013 In Section 2.4 of the paper we have described how to build a cost volume using our slanted adaptive support weight windows that can be used by global stereo methods. We embed this cost volume into a global algorithm whose details are described here. The global algorithm searches a disparity map D that assigns each pixel of both views to 016 a discrete disparity and minimizes the energy defined as 017 $E(D) = E_{data}(D) + \lambda E_{smooth}(D).$ (1)019 Here, λ is a parameter that balances the influence of data and smoothness terms. We take the data term from [] which accomplishes symmetrical occlusion handling and is defined as $E_{data}(D) = \sum_{p \in \mathscr{I}} \begin{cases} c(p, d_p) : d_p = d_{p'} \\ \lambda_{occ} : d_p < d_{p'} \\ \infty : \text{otherwise} \end{cases}$ (2)where \mathscr{I} denotes all pixels of both views. We write p' to denote p's matching point according to p's disparity in D. The function $c(p,d_p)$ looks up the costs for matching pixel p at disparity d_p in our cost volume and the parameter λ_{occ} puts a penalty on occluded pixels. As a smoothness term, we use the second order term of [] that puts a penalty on disparity curvature: $E_{smooth}(D) = \sum_{\substack{< p,q,r > \in \mathcal{N}}} \min(|d_p - 2d_q + d_r)|, \tau_{smooth})$ (3)034 Here, \mathcal{N} denotes the set of all 3×1 and 1×3 patches in left and right images. The parameter τ_{smooth} truncates the smoothness costs in order to allow for sharp jumps in disparity at depth discontinuities. This smoothness term is a natural choice for our algorithm, since it overcomes the bias towards fronto-parallel surfaces that competing terms suffer from (e.g., truncated linear model).

For optimization we use the α -expansion algorithm [\square]. Note that the graph used to compute an optimal α -expansion can contain non-submodular edges. We use QPBO [\square] to derive a potentially incomplete binary labelling of pixels where label 0 means that the old disparity is kept and label 1 means that disparity α is taken. Unlabelled pixels are set to label 0, i.e., we apply QPBOF.

^{© 2011.} The copyright of this document resides with its authors.

⁴⁵ It may be distributed unchanged freely in print or electronic forms.

AUTHOR(S): PATCHMATCH STEREO

Referen	nces	046
[1] Y. Boyl cuts. <i>P</i> .	kov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph <i>AMI</i> , 23(11):1222–1239, 2001.	047 048 049
[2] V. Koln a review	nogorov and C. Rother. Minimizing non-submodular functions with graph cuts - w. <i>PAMI</i> , 29(7):1274–1279, 2007.	050 051 052
[3] V. Kolr ECCV,	mogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. In 2002.	052 053 054
[4] O. Woo second	odford, P. Torr, I. Reid, and A. Fitzgibbon. Global stereo reconstruction under order smoothness priors. In <i>CVPR</i> , 2008.	055 056 057
		058 059 060
		061 062
		063 064 065
		066 067
		068 069 070
		071 072 072
		073 074 075
		076 077 078
		079 080
		081 082 083
		084 085
		086 087 088
		089 090